

1 Insight into the Phytoremediation Capability of *Brassica juncea* (v. Malopolska): Metal 2 Accumulation and Antioxidant Enzyme Activity

3 Arleta Malecka^{1*}, Agnieszka Konkolewska², Anetta Hanć³, Danuta Barałkiewicz³, Liliana
4 Ciszewska², Ewelina Ratajczak⁴, Aleksandra Maria Staszak⁵, Hanna Kmita⁶, Wiesława
5 Jarmuszkiewicz⁶

¹⁾ Department of Biotechnology, Institute of Molecular and Biotechnology, Adam Mickiewicz University, Collegium Biologicum, Umultowska 89, 61-614 Poznan, Poland

²⁾ Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Biologicum, Umultowska 89, 61-614 Poznan, Poland

³⁾ Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89 b, 61-614 Poznan, Poland

⁴⁾ Institute of Dendrology, Polish Academy of Sciences, Parkowa 35, 62-035 Kornik, Poland

⁵) Plant Physiology Department, Institute of Biology, University of Bialystok, Ciołkowskiego 11, 15-245 Bialystok, Poland

⁶) Department of Bioenergetic, Institute of Molecular and Biotechnology, Adam Mickiewicz University, Collegium Biologicum, Umultowska 89, 61-614 Poznan, Poland

Correspondence should be addressed to Arleta Malecka, arletam@amu.edu.pl

22 Abstract:

23 Metal hyperaccumulating plants should have extremely efficient defence mechanisms, enabling
24 growth and development in a polluted environment. *Brassica* species are known to display
25 hyperaccumulation capability. *Brassica juncea* (Indiana mustard) v. Malopolska plants were
26 exposed to trace elements, i.e., cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), at a
27 concentration of 50 μ M and were then harvested after 96 hours for analysis. We observed a
28 high index of tolerance (IT), higher than 90%, for all *B. juncea* plants treated with the four
29 metals, and we showed that Cd, Cu, Pb and Zn accumulation was higher in the above-ground
30 parts than in the roots. We estimated the metal effects on the generation of reactive oxygen
31 species (ROS) and the levels of protein oxidation as well as on the activity and gene expression

32 of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and ascorbate
33 peroxidase (APX). The obtained results indicate that organo-specific ROS generation was
34 higher in plants exposed to essential metal elements (i.e., Cu and Zn), compared with non-
35 essential ones (i.e., Cd and Pb), in conjunction with SOD, CAT and APX activity and
36 expression at the level of encoding mRNAs and existing proteins. In addition to the potential
37 usefulness of *B. juncea* in the phytoremediation process, the data provide important information
38 concerning plant response to the presence of trace metals.

39 **Key words:** oxidative stress, antioxidative system, Brassicaceae family, heavy metals,

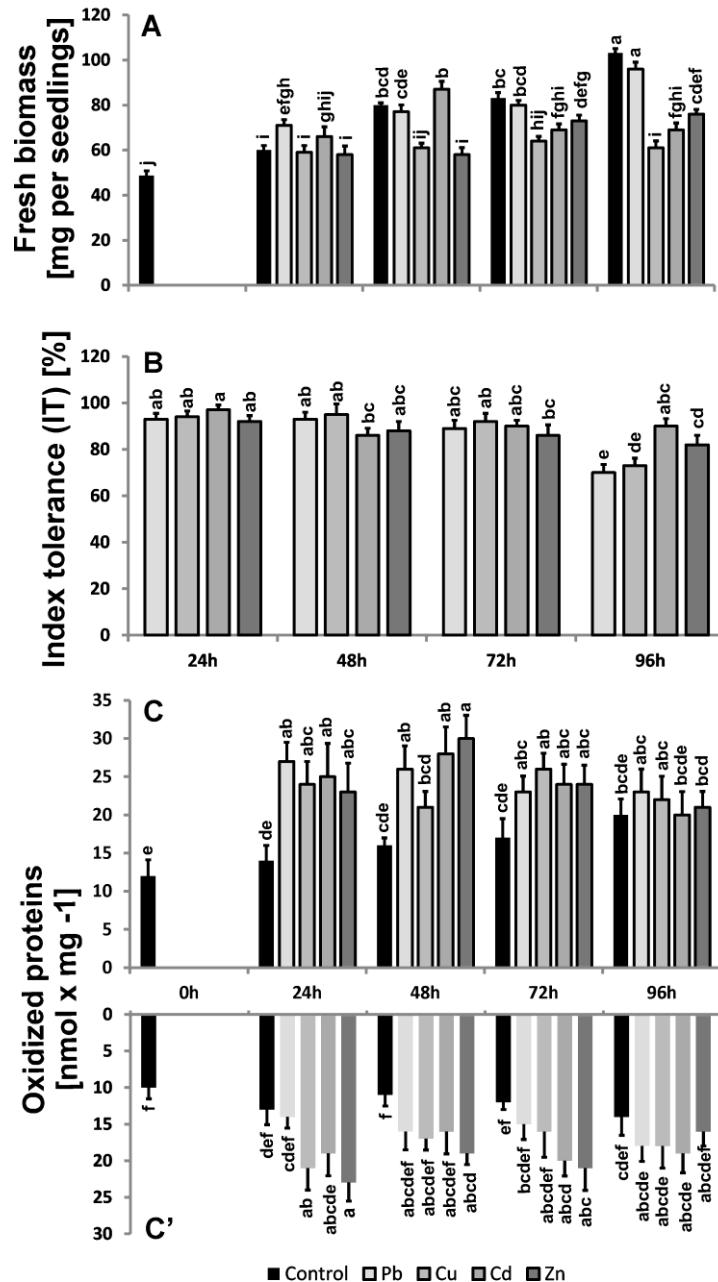
40

41 1. Introduction

42 Trace metal element contamination in soils is one of the world's major environmental problems,
43 posing significant risks to human health as well as to ecosystems (Chen et al., 2014). Metals
44 such as zinc (Zn), iron (Fe) and copper (Cu) are essential micronutrients required for a wide
45 range of physiological processes in all plant organs, and the processes are based on the activities
46 of various metal-dependent enzymes and proteins. However, they can also be toxic at elevated
47 levels. Metals such as arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pd) are nonessential
48 and potentially highly toxic (Dalvi and Bhalerao, 2013). Trace metal element toxicity includes
49 changes in the chlorophyll concentration in leaves and damage of the photosynthetic apparatus,
50 inhibition of transpiration and destruction of carbohydrate metabolism as well as nutrition and
51 oxidative stress, which collectively affect plant development and growth (Molas, 2002; Krämer
52 and Clemens, 2005; Bhardwaj et al., 2009; Bankaji et al., 2014; Małecka et al., 2015).

53 Biological organisms are incapable of degrading metals, so they persist in their body
54 parts and environment, leading to health hazards (Khan et al., 2015). Metal accumulation and
55 other abiotic stresses cause excess ROS generation, leading to oxidative stress (e.g., Małecka

56 et al., 2015). Plant cells are equipped with enzymatic mechanisms to eliminate or reduce
57 oxidative damage that occurs under metal accumulation. The antioxidative defence system
58 includes SOD, CAT and APX, which are regarded as responsible for maintaining the balance
59 between ROS production and scavenging (Bankaji et al., 2015).

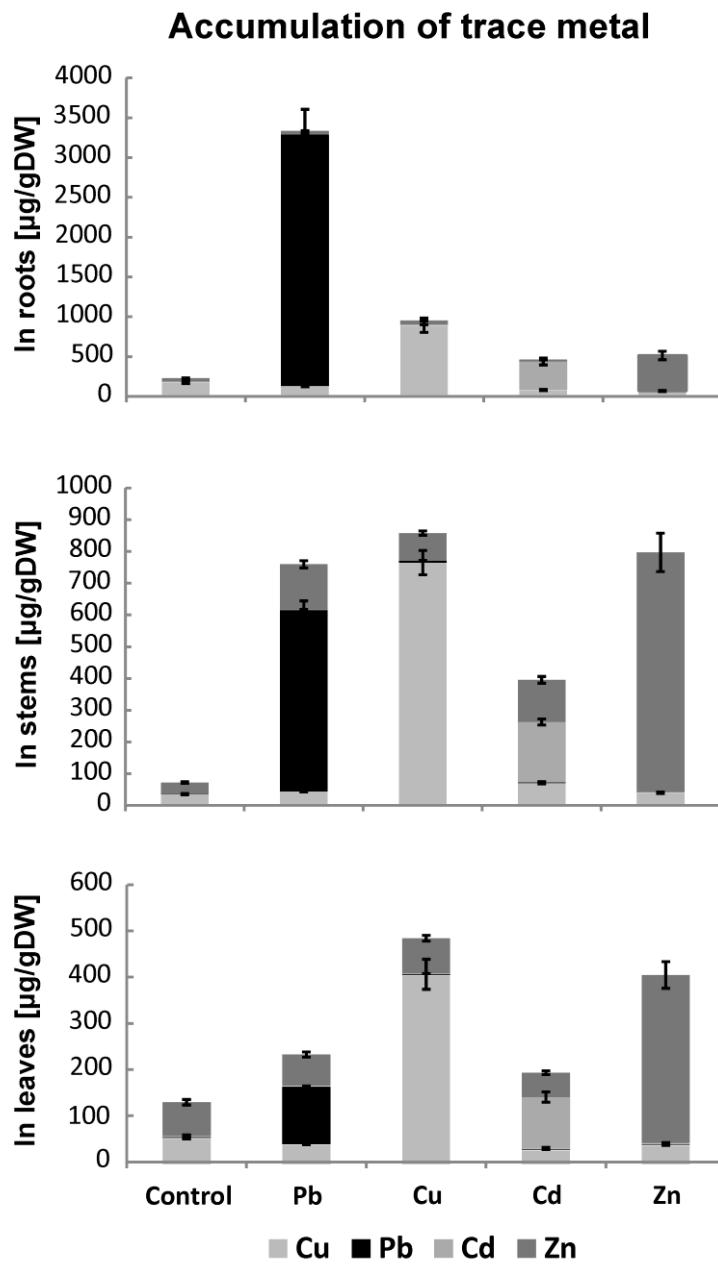

60 The Brassicaceae family includes many genera abundant in metallophytes, such as *Thlaspi*,
61 *Brassica* and *Arabidopsis*. They accumulate a wide range of heavy metals, especially Zn, Cd,
62 nickel (Ni), thallium (Tl), chromium (Cr) and selenium (Se) (Babula et al. 2012). The term
63 hyperaccumulator is used for plants that accumulate 1000 mg per kg of dry matter of any
64 aboveground tissue when grown in their natural habitat (Eapen, 2005; Singh et al., 2016). As
65 of 2013, approximately 500 metal hyperaccumulator plant species were described (Rascio,
66 Navari-Izzo 2011, Ent et al., 2013), and the number is increasing. *B. juncea* exhibits some traits
67 of a metal hyperaccumulator – this species can take up significant quantities of Pb, Cd (Jiang,
68 Liu, and Hou 2000; Meyers et al. 2008) and Cr, Cu, Ni, Pb and Zn (Prasad and Freitas 2003;
69 Babula et al., 2012), although its translocation ability is not as efficient as shown for other
70 known hyperaccumulators. Metal hyperaccumulating plants should have extremely efficient
71 defence mechanisms, enabling growth and development in a polluted environment. Therefore,
72 the objective of the present study was to estimate the contribution of the *B. juncea* (v.
73 Malopolska) enzymatic antioxidant system to combating the oxidative stress induced by
74 essential (Cu, Zn) and non-essential (Pb, Cd) metal elements to allow survival under adverse
75 environmental conditions. The analysis included trace metal accumulation, level of stress
76 parameters and antioxidant enzyme activity as well as estimation of encoding mRNA and
77 enzyme protein levels.

78

79 2. Result

80 2.1 Levels of metal accumulation

81 Research using laser ablation combined with plasma mass spectrometry (LA-ICP-MS) made it
82 possible to determine the levels of metal accumulation in *B. juncea* organs (Fig. 2). The analyses
83 were performed for roots, stems and leaves. In the case of roots, Pb constituted approximately
84 60% of all accumulated metals. In addition, approximately 4 times higher levels of accumulated
85 Cu and Zn as well as more than 140 times higher levels of Cd were found in roots compared to
86 control plant seedlings. In the stems and leaves, high levels of Cu and Zn were observed to be
87 approximately 20 times higher than in control plants. The data allowed for calculation of the
88 amount of accumulated Cu, Cd, Zn and Pb in the above-ground parts, which were 58%, 55%,
89 52% and 38% higher, respectively, than the amount in the roots. The results indicated that *B.*
90 *juncea* is a good accumulator of trace metals, especially Cd.


91

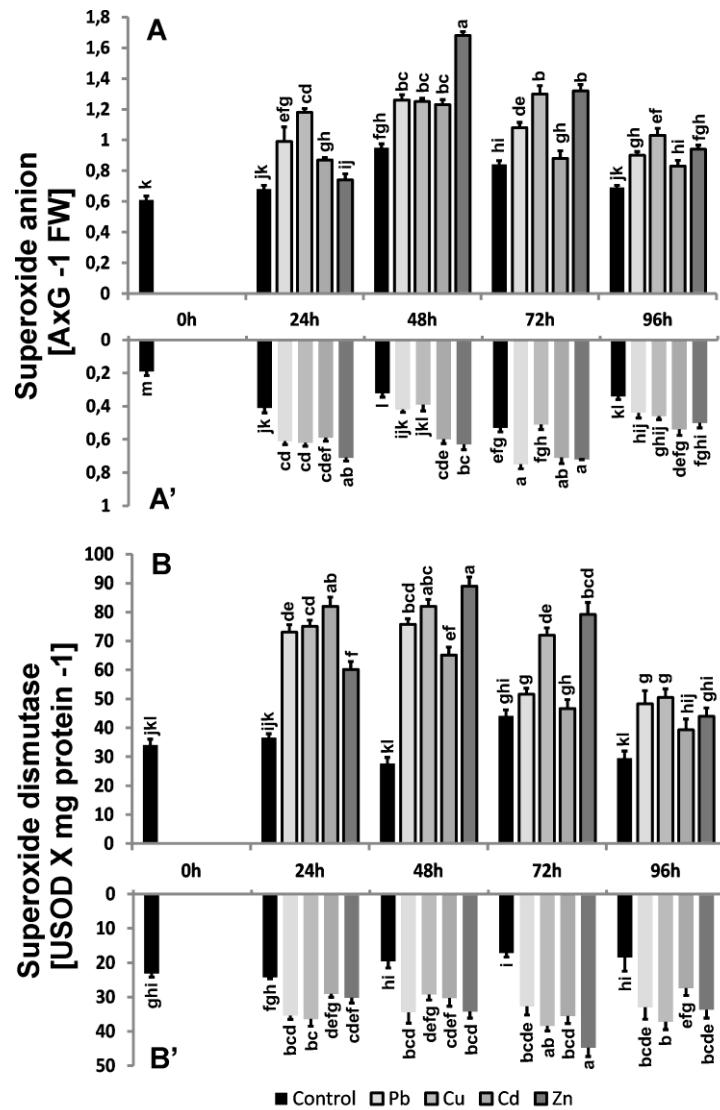
92 **Figure 1.** Accumulation of Pb, Cu, Cd and Zn in the roots, stems and leaves of *Brassica juncea*
 93 var. Malopolska seedlings grown in Hoagland's medium and treated with lead, cooper,
 94 cadmium and zinc ions. Metal solutions $\text{Pb}(\text{NO}_3)_2$, CuSO_4 , CdCl_2 , and ZnSO_4 were applied at
 95 a 50 μM concentration. Mean values of three replicates ($\pm\text{SD}$).

96

97 2.2 Biomass and morphological changes

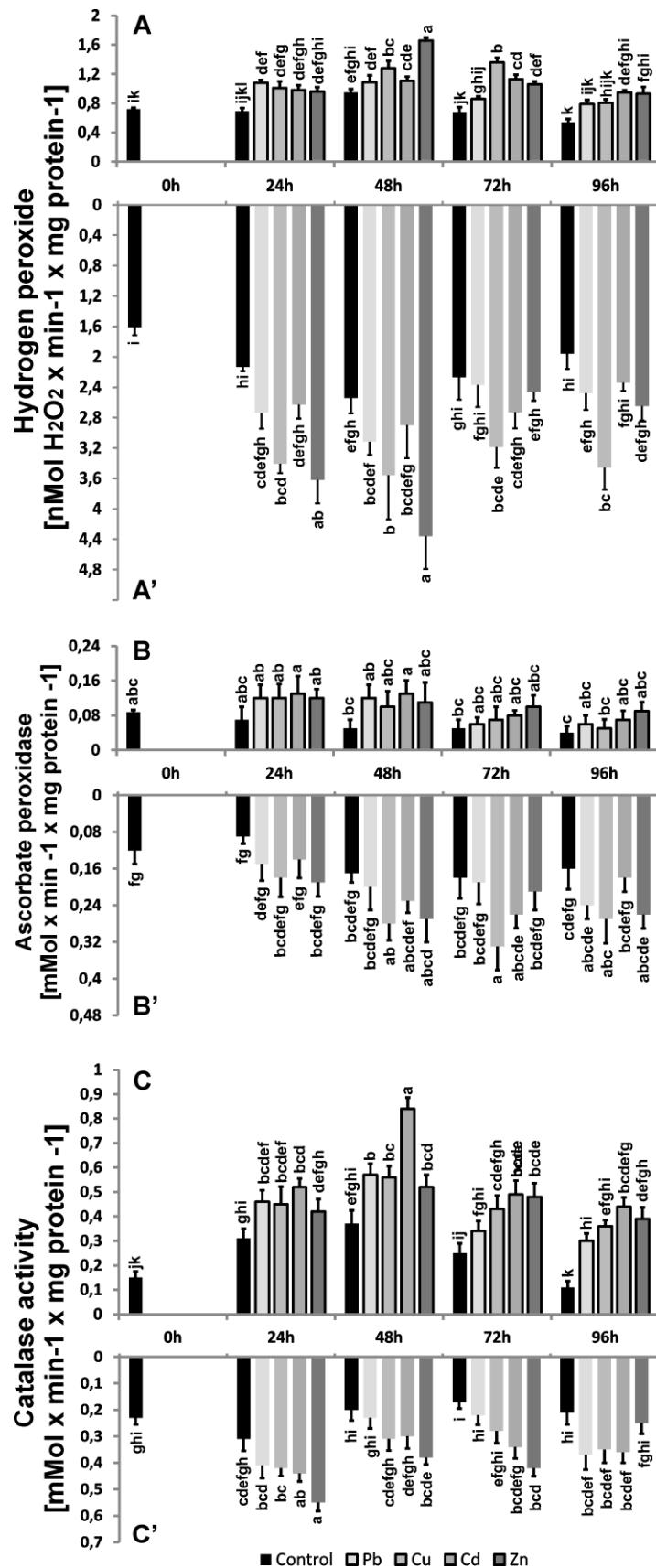
98 The metals used in the research did not dramatically increase *B. juncea* (v. Malopolska) seedling
99 biomass (Fig. 1). The highest inhibition of biomass growth was observed for seedlings exposed
100 to Cu. After 96 hours of treatment, the seedling biomass was approximately 34% lower than
101 that of control plants. The weakest effect was observed for seedlings treated with Pb, as after
102 96 hours of treatment, the seedlings were approximately 10% lighter compared to control plants.
103 The metals used in the study also did not appreciably inhibit the increase in root length. The
104 value of the index of tolerance (IT), based on average root length, also did not change
105 dramatically (Fig. 1). After 96 hours of treatment, we observed the lowest IT value for Pb (70%)
106 and the highest IT value for Cd, i.e., 90,4%. We observed the occurrence of necrotic spots on
107 leaves and the inhibition of leaf blade surface growth with respect to control seedlings in the
108 above-ground parts of seedlings. Moreover, in Cd-treated seedlings, leaves were slightly
109 twisted, whereas Cu caused strong chlorosis and shortening of the end of leaves. The smallest
110 morphological changes were observed for seedlings treated with Zn.

111


112 **Figure. 2** Stress parameters in *Brassica juncea* seedlings treated with trace metals: Pb, Cu, Cd
 113 and Zn. The results are expressed as the mean \pm standard deviation (n=3). Metal solutions
 114 $\text{Pb}(\text{NO}_3)_2$, CuSO_4 , CdCl_2 , and ZnSO_4 were applied at a 50 μM concentration. Mean values of
 115 three replicates ($\pm\text{SD}$).

116

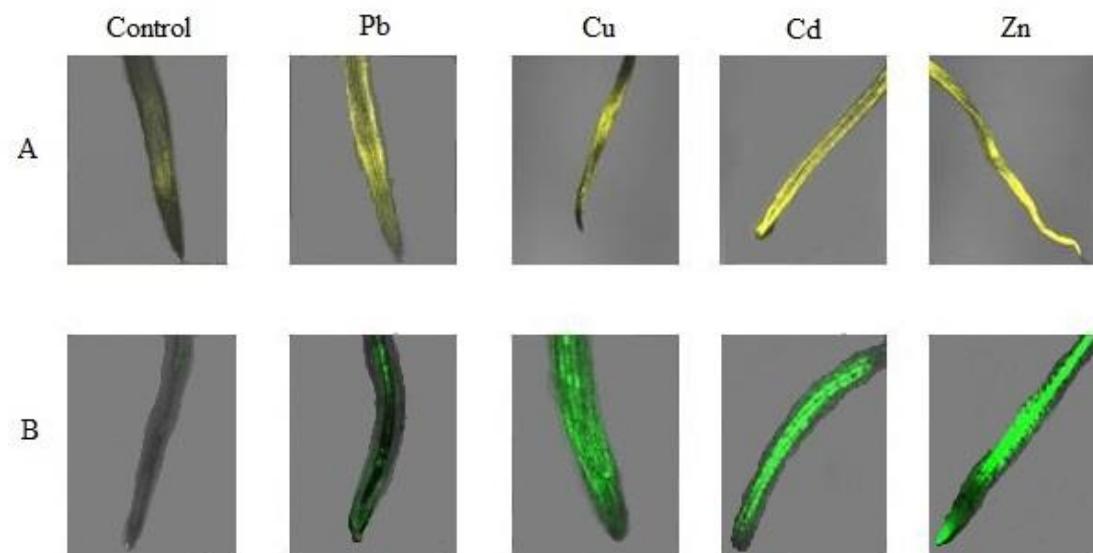
117 2.3 Production and localization of ROS


118 The metal-treated seedlings increased O_2^- production at levels comparable for shoots and roots
119 compared to control seedlings, but the fluctuation in the production observed for control plants
120 was maintained (Fig. 3). In the roots, the highest values were mainly observed in the first 72
121 hours (over 30%), whereas in the aboveground parts, the highest values were observed for 48
122 hours (over 30-40%). After 96 hours, the levels of O_2^- decreased, which may indicate high
123 activity of the SOD enzyme. The highest level of O_2^- in roots was observed for plants treated
124 with Zn compared with shoots treated with Zn and Cd.

125 The profile of the changes in the H_2O_2 level was similar for control roots and shoots,
126 but the levels were distinctly higher in roots. The highest H_2O_2 amount was observed in roots
127 treated with Cu, Cd and Zn. For metal-treated samples, a significant increase in H_2O_2 occurred
128 between 48 and 72 hours of treatment, and the observed profile of H_2O_2 changes was more
129 homogenous for shoots. We noticed a large difference in the level of H_2O_2 in roots after 96
130 hours of treatment, reaching approximately 20-50% higher compared to the control. As in the
131 case of O_2^- , H_2O_2 levels were also confirmed by confocal microscopy (Fig. 4). The most
132 intensive fluorescence DHE, indicating the presence of O_2^- , was observed for the *B. juncea*
133 roots treated for 24 hours with 50 μM Cd and Zn. The highest amount of H_2O_2 generated was
134 observed in roots treated with 50 μM Cu, Cd and Zn.

135

136 **Figure 3.** Superoxide anion ($A_{580} \text{ g}^{-1} \text{ FW}$) level and SOD (USOD $\text{mg}^{-1} \text{ protein}^{-1}$) activities in
137 roots and above-ground parts of *B. juncea* var. Malopolska seedlings grown in Hoagland's
138 medium and treated with lead, cooper, cadmium and zinc ions. Metal solutions $\text{Pb}(\text{NO}_3)_2$,
139 CuSO_4 , CdCl_2 , and ZnSO_4 were applied at a $50 \mu\text{M}$ concentration. Mean values of three
140 replicates ($\pm \text{SD}$).



141

142 **Figure 4.** Hydrogen peroxide level (nMol H₂O₂ x min⁻¹ x mg protein⁻¹, CAT (μmol min⁻¹ mg⁻¹ protein) and APX (μMol x min⁻¹ x mg protein⁻¹) activities in roots and above-ground parts of

144 *B. juncea* var. Malopolska seedlings grown in Hoagland's medium and treated with lead, cooper,
145 cadmium and zinc ions. Metal solutions $\text{Pb}(\text{NO}_3)_2$, CuSO_4 , CdCl_2 , and ZnSO_4 were applied at
146 a 50 μM concentration. Mean values of three replicates ($\pm\text{SD}$).

147

148

149 **Figure 5.** Trace metals induced O_2^{\bullet} and H_2O_2 production in *B. juncea* var. Malopolska roots.
150 Fluorescent images of *B. juncea* roots grown in Hoagland's medium in the presence of 50 μmol
151 of $\text{Pb}(\text{NO}_3)_2$, CuSO_4 , CdCl_2 and ZnSO_4 for 24 hours and control roots of plants stained with
152 DHE for 12 h (A) and DCFH-DA for 4 h (B). The bar indicates 1 μm .

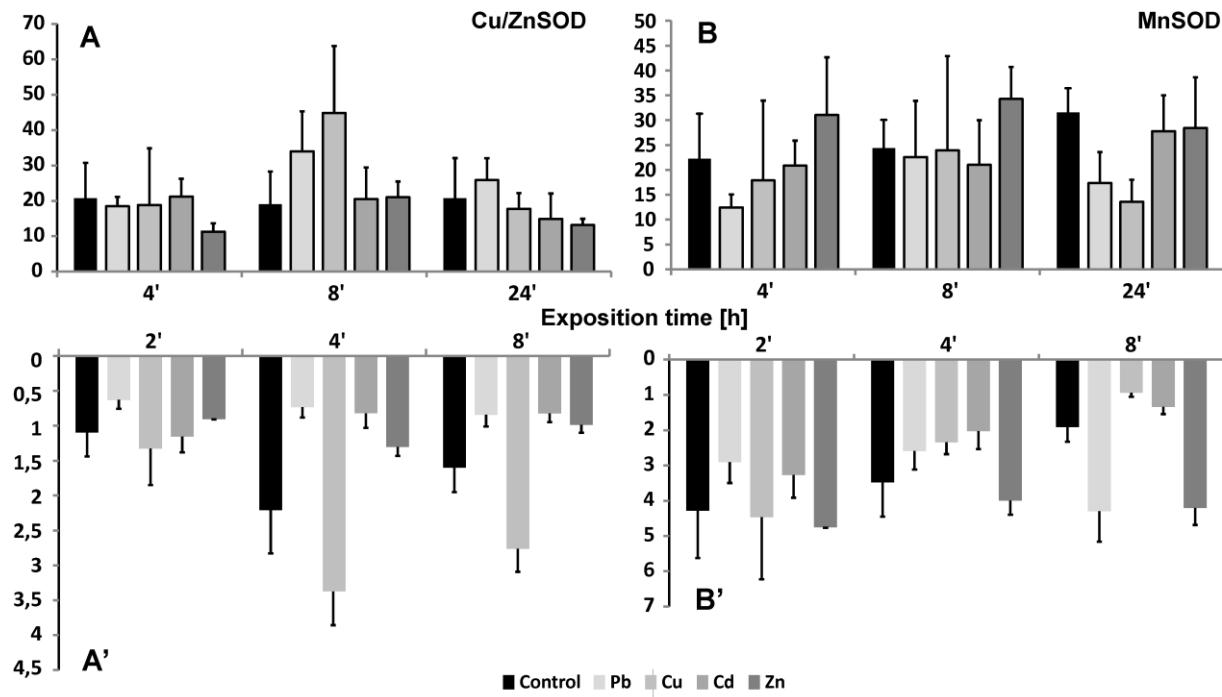
153

154 2.4 Levels of oxidized proteins

155 The levels of protein oxidative modification imposed by the metal treatment were 12 to 44%
156 higher for roots and above-ground parts compared to control plants (Fig. 1). The level of
157 oxidized proteins reached a maximum after 48 hours and was three-fold higher than in the
158 shoots of control plants.

159

160 *2.5 Enzyme antioxidant activity*

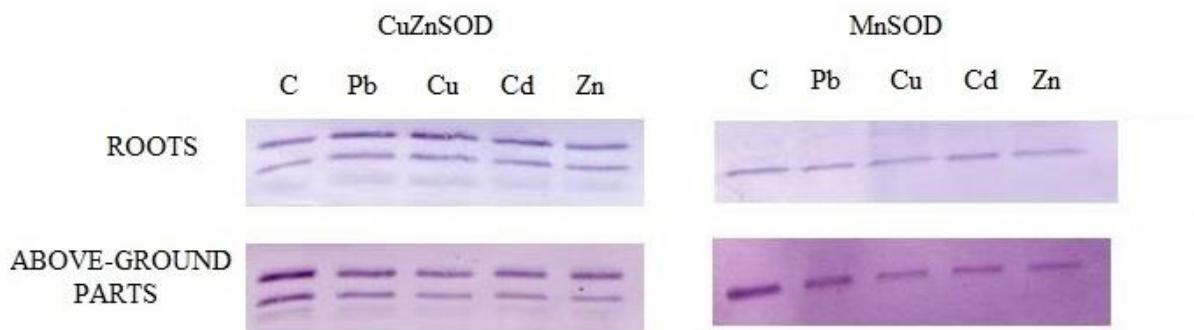

161 SOD activities were 25 to 50% higher in the roots of plants treated with trace metals. In the
162 aboveground parts, greater differences in SOD activity between research variants, ranging from
163 8 to 70%, were observed. However, the general activity of SOD was higher in roots and shoots
164 compared to control seedlings (Fig. 3) and changed differently for the seedling parts. In the case
165 of roots, the activity level and profile were comparable to those of control seedlings, whereas
166 for shoots, after the initial increase, the activity decreased significantly after 96 hours. The
167 generation of H₂O₂ caused a rapid increase in CAT activity within 24 hours of cultivation, i.e.,
168 from 30 to 70% in the roots of plants treated with trace metals, especially in plants treated with
169 Zn (Fig. 4). In the next days, we observed a slight decrease (approximately 12 to 55%), but this
170 decrease remained higher than that in control plants. The highest CAT activity was observed
171 above ground in the first 48 hours of cultivation (56%) in plants exposed to Cd. Activities of
172 APX, a second enzyme involved in the dismutation of hydrogen peroxide, systematically
173 increased in roots exposed to metals during the cultivation period, especially in plants grown in
174 the presence of Cu and Zn, which had approximately 10-43% higher levels than those observed
175 in the control (Fig. 4). In the aboveground parts of *B. juncea* cultured in the presence of trace
176 metals, we observed an increase in the intensity of APX during the first 48 hours, reaching a
177 maximum in plants treated with Cd for 48 hours, approximately 62% higher than in the control,
178 and then a slight decrease, but the activities were approximately two-fold higher than those in
179 control plants. The activity profiles of CAT and APX differed between the control roots and
180 shoots (Fig. 4). The metal treatment increased the activity of both enzymes, and the CAT
181 activity profile appeared to be maintained in roots and shoots. However, the APX profile did
182 not differ from that of the control plants with respect to treated shoots, whereas in treated roots,
183 the APX activity profile was variable and metal-dependent, although comparable for Cu and
184 Zn.

185 *2.6 Levels of gene transcripts*

186 To estimate possible changes at the level of CuZnSOD and MnSOD encoding gene transcripts,
187 we used an electrophoretic separation technique and the CpAtlas programme (Fig. 6). In the
188 case of CuZnSOD, a decrease in the expression of the gene encoding CuZn-SOD was observed
189 in the roots of plants treated with trace metals after 4 and 24 hours of cultivation, with the
190 exception of the roots of *B. juncea*-treated Cu. Induction of the gene in the aboveground parts
191 was visible, with an approximate two-fold increase in the level of the transcript in plants after
192 8 hours of copper treatment and an approximate 2-fold decrease in plants after 4 hours of zinc
193 treatment. The results indicate that the presence of cadmium ions had no significant effect on
194 the induction of CuZnSOD gene expression because no significant changes in the level of the
195 transcripts was observed in either the roots or above-ground parts of *B. juncea* plants.

196 When analysing changes in the expression of the gene encoding MnSOD, a decrease in the
197 expression was observed in the roots and above-ground parts of plants after 4 hours of treatment
198 with lead ions; in the remaining research variants, there were no significant differences in
199 transcript levels compared to control plants. An approximate two-fold increase in the level of
200 the transcript was found in plant roots after 24 hours of Pb and Zn treatment in comparison to
201 the control. The greatest decrease in expression was observed after 24 hours in the aboveground
202 parts of plants treated with Cu, which was almost fivefold higher than that in the control (Fig.
203 6).

Changes in transcriptional level in *Brassica juncea*



204 **Figure 6.** Transcriptional levels of genes encoding antioxidative enzymes in roots and above-
 205 ground parts of *B. juncea* var. Malopolska seedlings grown in Hoagland's medium and treated
 206 with lead, cooper, cadmium and zinc ions. Metal solutions $\text{Pb}(\text{NO}_3)_2$, CuSO_4 , CdCl_2 , and ZnSO_4
 207 were applied at a 50 μM concentration. Enzymes chosen for the experiment were amplified
 208 using semi-quantitative RT-PCR with primers designed for *A. thaliana* genes. *CSD1* for
 209 *CuZnSOD* and *MSD1* for *MnSOD*.

211

212 2.7 Identification of enzyme forms

213 To distinguish between the enzyme forms, Western blot analysis was performed for protein
 214 extracts from roots and above-ground seedling parts in the absence and presence of the metal
 215 treatment (Fig. 7). This allowed for the detection of MnSOD (25 kDa) and CuZnSOD (15 and
 216 20 kDa) subunits. The obtained signal was similar for both the treated and control seedlings.
 217 Thus, the metal presence likely did not change the levels of the CuZnSOD and MnSOD proteins.

218

219 **Figure 7.** Effects of 50 μ M Pb, Cu, Cd and Zn for 24 h on the CuZnSOD and MnSOD of roots
220 and above-ground parts of *B. juncea* var. Malopolska seedlings. The protein content was
221 evaluated by Western blot using specific antibodies.

222

223 3. Discussion

224 Trace metals are one of the most important abiotic stress factors affecting the natural
225 environment. As a result of anthropogenic activities, we can observe their increasing levels
226 from year to year. Metal toxicity results in effects at physiological and cellular levels, leading
227 to distorted metabolism, including plant metabolism (Hossain et al., 2012). Abiotic stresses,
228 including the presence of trace metals in soil, are estimated to be the main cause of global crop
229 yield reduction of ca. 70% and thus are considered a great constraint to crop production. This
230 situation has worsened due to disturbed equilibrium between crop production and human
231 population growth. Therefore, it is especially important to understand plant responses to such
232 stress factors. This also applies to trace metals (Singh et al. 2016). In the present study, this was
233 clearly visible in the growth of plant biomass, which significantly decreased during the culture
234 in the presence of heavy metals. Copper and zinc ions are essential for the normal growth and
235 development of all organisms but can be toxic to plants at excessive levels. Lead and cadmium
236 are nonessential elements and are toxic to plants even at low levels (Khan et al., 2015). Essential
237 and nonessential trace elements, when exceeding the threshold limits, can cause different

238 physiological, morphological, and genetic plant anomalies, including reduced growth,
239 mutations, and increased mortality (Khan et al., 2015). Therefore, plants suitable for
240 phytoremediation are at present of great importance.

241 In our study, we noticed that in the case of *B. juncea* v. Malopolska, all the mentioned metals
242 used at 50 μ M concentration displayed moderate phytotoxic properties. The biomass
243 increments ranged between 96 mg for Pb-treated plants and 61 mg for Cu-treated plants, and
244 the values were approximately 7% and 41% lower, respectively, than those in control plants.

245 Several studies have shown that high concentrations of trace metals in the soil cause plant
246 growth impairment (Malecka et al., 2014; Bankaji et al., 2015). In *Sesbania drummondii*, a
247 reduction in seedling biomass was caused by Pb -21%, Cu-46,3%, Ni-31,5% and Zn- 25,2%
248 (Israr et al., 2011). The inhibition of shoot growth by trace metals may be due to a decrease in
249 photosynthesis, as trace metals disturb mineral nutrition and water balance, change hormonal
250 status, and affect membrane structure and permeability (Sharma and Dubey 2005). Trace metals
251 might cause an inhibition of root growth that alters water balance and nutrient absorption (Singh
252 et al., 2016) and decrease calcium uptake in root tips, leading to a decrease in cell division or
253 cell elongation (Liu et al., 2009; Marshner 2012; Bankaji et al., 2015). According to Marshner
254 (2012), Cd-induced mineral stress can reduce plant dry weight accumulation. Other authors
255 have shown a negative influence of Pb (Zaier et al. 2010), Cu (Yadav et al., 2018), Cd (Irfan et
256 al., 2014) and Zn (Israr et al., 2011). Despite the inhibitory effect caused by trace metals on the
257 growth of the biomass of *B. juncea*, we observed a high IT amounting to approximately 90%
258 resistance of the plants to trace metals.

259 The bioaccumulation of trace metals is different for various plant species, reflected by their
260 growth, reproduction, occurrence, and survival in metal-contaminated soil because the
261 mechanisms of elemental uptake by plants are not the same for all species. The capacity of
262 plants to take up trace metals is different for different metals, and the same trace metal can be

263 accumulated at different ratios in different plant species (Singh et al. 2010b). Metal
264 bioavailability is also affected by the presence of organic compounds of that metal in plants
265 (Khan et al., 2015). The ICP-MS results we obtained indicate that the accumulation of trace
266 metals was higher in above-ground parts than in roots, especially for cadmium, lead and zinc.
267 The metal concentrations followed an order of Pb>Cu>Zn>Cd in roots, Zn>Cu>Pb>Cd in the
268 stem and Zn>Cu>Cd>Pb in leaves (Kutrowska et al., 2017). Based on the obtained results, it
269 can be concluded that *B. juncea* is a hyperaccumulator of Cd, Zn and Pb. Cherif and co-authors
270 (2011) reported that Zn induced a decrease in Cd uptake and a simultaneous increase in Zn
271 accumulation, indicating a strong competition between these two metals for the same membrane
272 transporters. In our earlier study (Kutrowska et al., 2017) in *B. juncea* plants treated with a
273 binary combination of metals, namely, PbCu, PbCd, PbZn, CuZn, CuCd and ZnCd, at a
274 concentration of 25 μ M of each, a synergistic response between Zn and Pb was observed,
275 resulting in an increased accumulation of the two metals. The accumulation results obtained for
276 plants treated with Cu are different from those of other researchers. Purakayastha and others
277 (2008) showed that Cu is accumulated mainly in above-ground parts of *B. juncea*. This
278 difference may result from different exposure durations of the plant to the metal, other metal
279 concentrations and different plant ages at the time of analysis of the collected metal. Quaritacci
280 et al. (2006) reported that *B. juncea* was identified as a species able to take up and accumulate
281 metals in its above-ground parts, such as Cd, Cu, Ni, Zn, Pb and Se. It has been observed that
282 this species concentrated Cu, Pb and Zn in its above-ground part in amounts much higher than
283 those detected in the metal soluble fractions present in a soil contaminated by acidic water and
284 pyritic slurry (Quaritacci et al., 2006).
285 The accumulation of trace metals in organs is dangerous for plants. In an earlier study (Hanc et
286 al., 2016), we confirmed that plants are not adequately protected by the detoxification system

287 because trace metals penetrate in areas with high metabolic activity, such as the cytoplasm,
288 mitochondria or cell membrane.

289 The occurrence of oxidation stress conditions in *B. juncea* treated with the trace metals Pb, Cu,
290 Cd and Zn was confirmed by the increase in the level of oxidized proteins in the roots
291 (approximately 7-12%) and aboveground parts (approximately 13%). Several metals, including
292 Cd, Pb and Hg, have been shown to cause protein oxidation by depletion of protein thiol groups
293 (Sharma et al., 2012). ROS cause protein modifications through the formation of carbonyl
294 groups at certain amino acid residues. Such modifications were caused by the presence of heavy
295 metals, e.g., cadmium (Romero-Puertas et al., 2002), mercury lead, aluminium, zinc, copper,
296 cobalt, nickel, and chromium (Pena et al., 2006).

297 ROS also act as signalling molecules involved in the regulation of many key physiological
298 processes, such as root hair growth, stomatal movement, cell growth and cell differentiation,
299 when finely tuned and regulated by an antioxidative defence system (Singh et al., 2016). We
300 showed an increase in the level of ROS compared to control plants in all plants treated with
301 heavy metals. The O_2^- rate after 2 hours of culture was 2 times higher than that observed in
302 plants grown under control conditions. The high level of O_2^- was the highest between 24 to 72
303 hours of the treatment depending on the research variant. The highest value of O_2^- was
304 measured in plants treated with Zn, while the highest H_2O_2 values were observed in plants
305 treated with Cu and Cd. Similar results were obtained by other researchers. Markovska et al.
306 (2009) showed a 10-fold higher level of H_2O_2 in the leaves of *B. juncea* after 5 days of treatment
307 with Cd ions at a concentration of 50 μM . Wang et al. (2004) observed the highest levels of
308 H_2O_2 in *B. juncea* roots treated with Cu ions for 4 days. In our research, the highest level of
309 H_2O_2 was obtained after 4 days in plants treated with single metals. The reduction of O_2^- and
310 the H_2O_2 content in roots and above-ground parts of plants treated with trace metals during the
311 cultivation period suggested that some antioxidative enzymes would work effectively in the

312 removal of ROS. To detect ROS in plant cells, we used incubation with fluorescent labels such
313 as 2'7'-difluoroscein and dihydroethidium and imaging under confocal microscopy. We
314 observed increased generation of O_2^- and H_2O_2 in the roots of *B. juncea* treated with trace metals,
315 especially Cd, Zn (for O_2^-) and Cu, Cd and Zn (for H_2O_2).

316 The increase in ROS production in metal-treated plants was precisely associated with changes
317 in the activity of antioxidant enzymes. We always observed the induction of antioxidant enzyme
318 activity in *B. juncea* roots and leaves, although there were no significant differences between
319 the used metals. We observed increasing activity of antioxidant enzymes, i.e., 20-158% for
320 SOD, 15-147% for CAT, and 6-68% for APX. The highest activity of SOD in both roots and
321 shoots was observed in plants treated with Zn and Cu. The first line of defence against ROS-
322 mediated toxicity is through SOD, which catalyses the dismutation of superoxide anions to
323 H_2O_2 and O_2 . The stimulation of SOD activity has also been reported in several plants exposed
324 to Pb, Cu, Cd, Zn, Ni and As ions (Israr et al., 2011; Malecka et al., 2012; Kanwar et al., 2015;
325 Yadaw et al., 2018). We noticed that in the roots of *B. juncea*, the most induced activity of CAT
326 was for Zn, compared with Cd in the above-ground parts. APX was definitely lower than
327 catalase, especially in the aboveground parts, which means that this enzyme complements CAT
328 catalytic activity. APX activity was significantly elevated in the metal-treated plants, which
329 suggests its role in the detoxification of H_2O_2 . Enhanced CAT and APX activity has been
330 observed in various plant species after application of trace metals: Pb, Cu, Cd, Zn, Ni, and As
331 (Wang et al., 2009; Israr et al., 2011; Malecka et al., 2012; Kanwar et al., 2015, Yadaw et al.,
332 2018). APX may be responsible for controlling the levels of H_2O_2 as signal molecules, and the
333 CAT function is to remove large amounts of oxygen during oxidative stress. APX may be
334 responsible for controlling the levels of H_2O_2 as signal molecules, and the CAT function is to
335 remove large amounts of oxygen during oxidative stress (Pinto et al., 2009). Mohamed et al.
336 (2012) showed in *B. juncea* that the higher activity of antioxidant enzymes offers a greater

337 detoxification efficiency, which provides better plant resistance against trace metal-induced
338 oxidative stress. Yadav and co-authors (2018) reported increases in the activities of antioxidant
339 enzymes: SOD by 16,2%, DHAR - 27,58, GR- 35,74%, GST, GPX by 19,19% and APX by
340 42,75% in *B. juncea* plants treated with 0,0005 M Cu. The authors indicated that
341 brassinosteroids can regulate the activity of the antioxidant system and help in scavenging
342 overproduced ROS and can provide tolerance by inducing the expression of regulatory genes
343 such as respiratory burst oxidase homologue, mitogen activated protein kinase-1, and mitogen-
344 activated protein kinase 3, as well as activating genes involved in antioxidative defence and
345 responses (Yadav et al., 2018). Other authors (Singh et al. 2016) have noted that
346 brassinosteroids are a group of hormones that regulate ion uptake in plant cells and reduce trace
347 metal accumulation in plants. An exogenous application of brassinosteroids is widely used to
348 improve crop yield as well as stress tolerance in various plant species.

349 We previously demonstrated an increase in the activity of the antioxidant system at the
350 physiological and biochemical levels. The next step was to determine whether trace metals
351 influence the transcription level of genes encoding suitable defence proteins. ROS
352 concentration at an appropriate level can promote plant development and reinforce resistance
353 to stressors by modulating the expression of a set of genes and redox signalling pathways (Singh
354 et al., 2016). In our research, we observed differences in the expression induction depending on
355 the exposure time and the metal used. We observed an increase in the level of the gene coding
356 for Cu, Zn-SOD in plants treated with copper, zinc and lead. The highest level of expression
357 was obtained after 4 hours in roots and 8 hours in above-ground parts. Romero-Puertas and co-
358 authors (2007) noted a drastic reduction in the expression of genes coding for CuZnSOD and
359 no changes in MnSOD in *Pisum sativum* under conditions of stress caused by the presence of
360 Cd. Their results showed a reduction in Cu and Zn-SOD levels in the presence of Cd, while in
361 our study, we did not observe significant differences in the level of transcript for plants treated

362 with this metal in relation to control plants. We observed the induction of gene expression
363 encoding Mn-SOD in *B. juncea* roots after 8 hours of exposure to Zn and Pb ions, compared
364 with lead ions in above-ground parts. Other authors did not observe any changes or a low
365 expression of genes coding for SOD, e.g., Fidlago et al. (2011) showed no differences in Mn-
366 SOD-related mRNA accumulation in leaves and roots, but CuZn-SOD-related transcripts
367 decreased in leaves but did not change in roots in Cd-treated *Solanum nigrum* L. Others authors
368 (Lou et al., 2011) indicated that Cd stress induced an upregulated expression of FeSOD,
369 MnSOD, Chl Cu/ZnSOD, Cyt Cu/ZnSOD, APX, GPX, GR and POD at 4–24 h after treatment
370 began for *Lolium perenne* L., and their results suggested that the gene transcript profile was
371 related to the enzyme activity under Cd stress. Romero-Puertas et al. (2007) indicated two
372 groups of genes in pea plants treated with Cd. First, some elements of the signal transduction
373 cascade accentuated or attenuated the Cd effect on CAT, MDHAR and CuZn-SOD mRNA
374 expression. The second was formed by the genes Mn-SOD, APX, and GR that were not affected
375 by these modulators during the Cd treatment because their expression was not modified
376 compared to control plants.

377 The effect of Cd on the expression of CuZn-SOD was reversed by an NO· scavenger, indicating
378 that NO· must be a key element in the regulation of this SOD, showing the existence of a
379 relationship between an increase in ROS production and nitric oxide (NO). NO-dependent
380 downregulation was also observed for Mn-SOD, while the opposite effect was found for APX
381 and GR. This suggests that protein phosphorylation is involved in the response to Cd stress
382 (Romero-Puertas et al., 2007). Bernard and co-authors (2015) indicate that molecular analysis
383 (gene expression) is the first level of integration of environmental stressors, and it is supposed
384 to respond to stressors earlier than biochemical markers.

385 Our results from Western blotting indicate that the presence of trace metals does not increase
386 the synthesis of the proteins CuZnSOD and MnSOD in the organs of *B. juncea* plants but
387 induces an increase in their activity.

388 **4. Materials and Methods**

389 *4.1 Plant material*

390 *Brassica juncea* v. Malopolska seeds were grown in Petri dishes for 7 days under optimal
391 conditions. Next, seedlings were cultivated hydroponically on Hoagland's medium for 7 days
392 in a growth room with a 16/8 h photoperiod, day/night at room temperature and light intensity
393 of 82 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Then, the applied medium was changed into 100 x-diluted Hoagland's
394 medium and a heavy metal solution in combination; Cu, Pb, Cd and Zn ions at a concentration
395 of 50 μM were applied. In the cultivation, a solution of $\text{Pb}(\text{NO}_3)_2$, CuSO_4 , CdCl_2 , Zn SO_4 was
396 used. The roots and shoots were cut off after 0, 24, 48, 72, and 96 hours of cultivation. The
397 roots were dipped sequentially in cold solutions of 10 mM CaCl_2 and 10 mM EDTA for 5
398 minutes each to eliminate trace elements adsorbed at the root surface. Then, roots and shoots
399 were rinsed three times with distilled water, frozen in liquid nitrogen and stored at -80°C until
400 molecular analysis.

401 *4.2 Phytotoxic test*

402 The index of tolerance (IT) was calculated according to Wilkins (1957):

403
$$\text{IT} = \frac{\text{average length of roots in tested solution}}{\text{average length of roots in control}} \times 100\%$$

404 The changes in fresh biomass of control plants and plants treated with metals were measured
405 on a Radwag scale after 0, 24 28, 72 and 96 hours of cultivation.

406

407 *4.3 Accumulation of trace metals*

410 The determination of trace metal accumulation was performed using *ICP-MS (inductively*
411 *coupled plasma mass spectrometry)* and laser ablation connected with *ICP-MS (LA-ICP-MS)*.
412 Plant material (roots, stems and leaves) was rinsed with distilled water, gently dried on blotting
413 paper, weighed and dried at 70 ± 2 °C. The dried samples were mineralized in an MDS-2000
414 microwave digestor oven (CEM Corporation Matthews, NC, USA). A three-stage dilution was
415 conducted in a closed system using 5 mL of 65% HNO₃. After mineralization, samples were
416 transferred to 10 mL flasks filled with deionized water. An inductively coupled plasma mass
417 spectrometer (ICP-MS) model Elan DRC II, (Perkin Elmer Sciex, Canada) was used to
418 determine the concentration of elements in the mineralized plant tissues.

419 Plant roots, stems and leaves were collected after 72 hours of treatment for the analysis of metal
420 distribution. Samples were cut into 3 mm long pieces and ablated along the pre-defined line
421 across the cross-sections. Laser performance was optimized according to a detailed scheme
422 (Hanć, Olszewska, and Baralkiewicz 2013) using a single variable method.

423 *4.4 Superoxide anion determination*

424 The superoxide anion content was determined according to Doke (1983). *B. juncea* roots (0.5
425 g) were placed in the test tubes that were filled with 7 mL of a mixture containing 50 mM
426 phosphate buffer (pH 7.8), 0.05% NBT (nitro blue tetrazolium) and 10 mM of NaN₃. Next, the
427 test tubes were incubated in the dark for 5 min, and then 2 mL of the solution was taken from
428 the tubes, heated at 85°C for 10-15 minutes, cooled on ice for 5 min, and the absorbance was
429 measured at 580 nm against the control.

430 *4.5 Hydrogen peroxide content*

431 The hydrogen peroxide content was determined using the method described by Patterson et al.
432 (1984). The decrease in absorbance was measured at 508 nm. The reaction mixture contained
433 50 mM phosphate buffer (pH 8.4) and reagents, 0.6 mM 4-(2-pyridylazo) resorcinol and 0.6

434 mM potassium-titanium oxalate (1:1). The corresponding concentration of H₂O₂ was
435 determined against the standard curve of H₂O₂.

436 *4.6. In situ detection of superoxide anion and hydrogen peroxide*

437 The roots and shoots from plants exposed to metals for 24 hours were submerged for 12 hours
438 in 100 μM of CaCl₂ containing 20 μM of dihydroethidium (DHE, pH 4.75; samples for
439 superoxide anion radicals) or 4 μM dichlorodihydrofluorescein diacetate (DCFH-DA)
440 (samples for hydrogen peroxide) in 5 mM dimethyl sulfoxide (DMSO). After rinsing with 100
441 μM of CaCl₂ or 50 mM phosphate buffer (pH 7.4), the roots and shoots were observed with a
442 confocal microscope (Zeiss LSM 510, Axiovert 200 M, Jena, Germany) equipped with no. 10
443 filter set (excitation 450-490 nm, emission 520 nm or more).

444 *4.7 Estimation of protein oxidation*

445 For carbonyl quantification, the reaction with DNPH was used basically as described by Levine
446 et al. (1994). For each determination, two replicates and their respective blanks were used.
447 Roots and shoots (0.5 g) were incubated with isolation buffer containing 0.1 M Na-phosphate
448 buffer, 0.2% (v/v) Triton X—100, 1 mM EDTA and 1 mM PMSF. After centrifugation at 13000
449 × g for 15 minutes, supernatants (200 μL) were mixed with 300 μL of 10 mM DNPH in 2 M
450 HCl. The blank was incubated in 2 M HCl. After 1 h incubation at room temperature, proteins
451 were precipitated with 10% (w/v) trichloroacetic acid (TCA), and the pellets were washed three
452 times with 500 μL of ethanol/ethylacetate (1:1). The pellets were finally dissolved in 6 M
453 guanidine hydrochloride in 20 mM potassium phosphate buffer (pH 2.3), and the absorption
454 was measured at 370 nm. Protein recovery was estimated for each sample by measuring the
455 absorption at 280 nm. The carbonyl content was calculated using the molar absorption
456 coefficient for aliphatic hydrazones, 22 000 M^{−1} cm^{−1}.

457 *4.8. Determination of antioxidant enzyme activities*

458 The activity of SOD was assayed by measuring its ability to inhibit the photochemical reduction
459 of NBT, adopting the method of Beauchamp and Fridovich (1971). The reaction mixture
460 contained 13 μ M riboflavin, 13 mM methionine, 63 μ M NBT and 50 mM potassium phosphate
461 buffer (pH 7.8). Absorbance at 560 nm was then measured. One unit of SOD activity has been
462 defined as the amount of enzyme that causes a 50% decrease in the inhibition of NBT reduction.
463 The activity of CAT was determined by directly measuring the decomposition of H_2O_2 at 240
464 nm for 3 min as described by Aebi (1984) in 50 mM phosphate buffer (pH 7.0) containing 5
465 mM H_2O_2 and enzyme extract (Gałgańska et al., 2008 ABB). CAT activity was determined
466 using the extinction coefficient of $36 \text{ mM}^{-1} \text{ cm}^{-1}$ for H_2O_2 . The activity of APX was assayed
467 using the method described by Nakano and Asada (1981) by monitoring the rate of ascorbate
468 oxidation at 290 nm (extinction coefficient of $2.9 \text{ mM}^{-1} \text{ cm}^{-1}$) for 3 min. The reaction mixture
469 consisted of 25- 50 μ L supernatant, 50 mM phosphate buffer (pH 7.0), 20 μ M H_2O_2 , 0.2 mM
470 ascorbate and 0.2 mM EDTA.

471 *4.9. Isolation of total RNA and RT-PCR*

472 Roots and aboveground parts (100 mg) of *B. juncea* plants in the presence of trace metals and
473 under control conditions were collected for total RNA isolation. The RNA was isolated with
474 TRIzol reagent and tested spectrophotometrically for purity at 260 and 280 nm. Then, RNA
475 was reverse-transcribed with oligo (dT) primers using the RevertAid Reverse Transcriptase Kit
476 (Thermo Science) after DNA was treated with DNase I (Thermo Science).
477 Primer pair sequences were as follows (forward/reverse, gene accession number):
478 gtgattgcggcagggttt/ cagaatacgaaagcaatgtca, X54844.1 (TUB1), ggagcaagttgggtccatt/
479 aaggttattcgccagattg, U30841.1 (MnSOD), gaacaatggtaaggctgt/ gtgaccacccttccaaagat
480 M63003.1 (Cu,Zn-SOD). As a reference gene, the gene encoding tubulin was used. PCRs were
481 performed with 30 (BJMnSOD) and 34 (BjCuZnSOD) cycles of denaturation, 95°C for 30 s;

482 annealing primers, 53°C for 30 s; and elongation, 72°C for 30 s using a 1:100 diluted cDNA
483 template and REDAllegroTaq DNA Polymerase (Novazym).

484 PCR products were separated by electrophoresis on a 1,3% agarose gel with ethidium bromide
485 in TBE (445 mM Tris-HCL; 445 mM boric acid; 10 mM EDTA; pH 8,0), visualized under UV
486 light and photographed using the Photo Print 215SD V.99 Vilber Lourmat Set. CP Atlas 2.0
487 were used for densitometric analysis of relative gene expression.

488

489 *4.10. Western blot*

490 RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% Na deoxycholate, 0.1% SDS, 50 mM Tris,
491 pH 8.0) was used to lyse cells for protein extraction. The protein concentrations were
492 determined using the Bradford method, and 20 µg of each extract was loaded onto a 12% SDS–
493 PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) gel. Separated proteins
494 were transferred to polyvinylidene fluoride membrane (ImmobilonTM-P, Millipore) at 350 mA
495 for 1 h using the Mini Trans-BlotCell (Bio-Rad). Membranes were blocked with 1% BSA and
496 incubated with an antibody against Cu-ZnSOD at a final dilution of 1:2500. The secondary
497 antibody, goat anti-rabbit IgG conjugated with alkaline phosphatase (Sigma-Aldrich, St Louis,
498 MO, USA), was used at a 1:3000 dilution to visualize protein bands by reaction with 5-bromo-
499 4-chloro-3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) (Sigma-Aldrich, St Louis,
500 MO, USA/ CALBIOCHEM.V.S. and Canada) as a substrate.

501 *4.11 Protein quantification*

502 Total soluble protein contents were determined according to the method of Bradford (1976)
503 using the Bio-Rad assay kit with bovine serum albumin as a calibration standard.

504 *4.12 Statistical analyses*

505 Each experiment was performed in three biological and technical replicates. The mean values
506 ± S.E. are given in the tables and figures. The data were analysed statistically using IBM SPSS

507 Statistics (Version 22 for Windows). Significant differences among treatments were analysed
508 by one-way ANOVA, taking $p < 0.05$ as the significance threshold, and the b-Tukey post hoc
509 test was conducted for pairwise comparisons between treatments.

510 **4. Conclusion**

511 This study was conducted to determine the interactive role of Pb, Cu, Cd and Zn in metal uptake,
512 plant growth and the antioxidative system of *B. juncea*. Plants accumulated high amounts of
513 trace metals, i.e., more than 40% in the roots, and in the above-ground parts, the values for Cu,
514 Cd, Zn, and Pb were 58%, 55%, 52%, and 38%, respectively. The results suggest that *B. juncea*
515 var. Malopolska is a good hyperaccumulator of trace metals, especially Cu, Cd and Zn, and can
516 be useful in phytoremediation. The presence of metals resulted in a considerable reduction in
517 *B. juncea* biomass; the highest reduction was observed in plants treated with Cu and Cd. Despite
518 the visible influence of trace metals on plant morphology, the IT coefficient was high and
519 exceeded 90%, indicating the high resistance of *B. juncea* plants. Trace metals lead to the
520 production of ROS, which causes an imbalance in the redox state in the plant cells and increases
521 the level of oxidized proteins. We noticed that under the conditions of oxidative stress, the
522 antioxidant system was activated: SOD, CAT and APX. We observed that the presence of
523 metals influenced the increase in the activity of antioxidant enzymes, while no significant
524 differences were observed in the levels of CuZnSOD and MnSOD transcripts and proteins. The
525 results obtained indicate that *B. juncea* var. Malopolska has efficient defence mechanisms to
526 cope with different metals.

527 **Conflicts of Interest:** The authors declare that they have no conflict of interests

528 **Acknowledgements:** This work was partially supported by the National Science Centre no. N
529 N305 381138.

530

531 **References**

532 Aebi, H.E. (1983). Catalase *in vitro*. Methods of Enzymatic Analyses (Bergmeyer, H.U., ed.)
533 Verlag Chemie, Weinheim 3, 273-282. doi.org/10.1016/b978-0-12-091302-2.50032-3
534

535 Babula, P., Adam, V., Havel, L., and Kizek R. (2012). Cadmium Accumulation by Plants of
536 Brassicaceae Family and Its Connection with Their Primary and Secondary Metabolism. in:
537 The Plant Family Brassicaceae. Springer Netherlands, pp. 71-97. , doi 10.1007/978-94-007-
538 3913-0_3
539

540 Bankaji, I., Sleimi, N., Lopez-Climent, M. F., Perez- Clmente, R.M., and Gomez-Cadenas,
541 A. (2014). Effects of combined abiotic stresses on growthth trace element accumulation and
542 phytohormone regulation in two halophytic species. *J. Plant Growth Regul.* 33, 632-643. doi
543 10.1007/s00344-014-9413-5
544

545 Bankaji, I., Cacador, I., Sleimi, N. (2015). Physiological and biochemical responses of
546 *Suaeda fruticosa* to cadmium and copper stresses: growthth, nutrient uptake, antioxidant
547 enzymes, phytochelatin, and glutatione levels. *Environ. Sci. Pollut. Res.* 22, 13058-13069.
548 Doi::10.1007/s11356-015-4414-x
549

550 Beauchamp, C., and Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay
551 applicable to acrylamide gels. *Anal. Biochem.* 44, 276-287. doi.org/10.1016/0003-
552 2697(71)90370-8
553

554 Bernard, F., Brulle, F., Dumez, S., Lemiere, S., Platel, A., Nesslany, F., Cuny, D., Deramz A.,
555 and Vandenbulcke, F. (2015). Antioxidant responses of Annelids, Brassicaceae and Fabaceae
556 to pollutants: A review. *Ecotoxicol. Environ. Safety* 114, 273-303.
557 doi.org/10.1016/j.ecoenv.2014.04.024.
558

559 Fidalgo F., Freita, R., Ferreira, R., Pessoa, A.M., Teixeira, J. (2011) *Solanum nigrum* L.
560 antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in
561 Cd-induced stress. *Environ. Exp. Bot* 72, 312-319. doi.org/10.1016/j.envexpbot.2011.04.007
562

563 Bhardwaj, P., Chaturvedi, A., K., and Prasad, P. (2009). Effect of Enhanced Lead and
564 Cadmium in soil on Physiological and Biochemical attributes of *Phaseolus vulgaris* L. *Nature*
565 and *Science* 7, 63-75.
566

567 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram
568 quantitiesof protein utilizing the principle of protein- dye binding. *Anal. Biochem.* 72: 248-254.
569 doi.org/10.1016/0003-2697(76)90527-3
570

571 Chen, Z., Zhao, Y., Gu, L., Wang, S., Li, Y., and Dong, F. (2014). Accumulation and
572 Localization of Cadmium in Potato (*Solanum tuberosum*) Under Different Soil Cd Levels.
573 *Bulletin of environmental contamination and toxicology* 92, 745-751.
574

575 Cherif, J., Mediouni, Ch., Ammar, W. B., Jemal, F. (2011). Interactions of zinc and cadmium
576 toxicity in their effects on growth and in antioxidative systems in tomato plants (*Solanum*
577 *lycopersicum*). *J. Environ. Sci.* **23**, 837-844. doi: 10.1016/S1001-0742(10)60415-9.
578

579 Dalvi, A. A., and Bhalerao, S.A. (2013). Response of Plants towards Heavy Metal Toxicity:
580 An overview of Avoidance. Tolerance and Uptake Mechanism. *Ann. Plant Sci.* **02**, 362-368.
581

582 Doke, N. (1983). Involvement of superoxide anion generation in the hypersensitive response
583 of potato tuber tissues to infection with an incompatible race of *Phytophthora infestans* and to
584 the hyphal wall components. *Physiol. Mol. Plant Pathol.* **23**, 345-355.
585

586 Eapen, S., and Souza, S., F., D. (2005). Prospects of genetic engineering of plants for
587 phytoremediation of toxic metals. *Biotechnology Advances* **23**, 97-114
588 doi.org/10.1016/j.biotechadv.2004.10.001
589

590 Ent van der, A., Baker, A., J., M., Reeves, R., D., Pollard, A., J., and Schat, H. (2013).
591 Hyperaccumulators of metal and metalloid elements: Facts and fiction. *Plant Soil* **362**, 319-
592 334.

593 Hanć, A., Olszewska, H., Barałkiewicz, D. (2013). Quantitative analysis of elements migration
594 in human teeth with and without filling using LA-ICP-MS. *Microchem J.* **110**, 61-9.

595 Hossain, M. A., Piyatida, P., da Silva, J.A.T., and Fujita, M. (2012). Molecular mechanism of
596 heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of
597 reactive oxygen species and methylglyoxal and in heavy metal Chelation. *J. Bot.*
598 doi.org/10.1155/2012/872875.
599

600 Hu, Y. T., Ming, F., Chen, W. W., Yan, J. Y., Xu Z. Y. (2012). TcOPT3, a Member of
601 Oligopeptide Transporters from the Hyperaccumulator *Thlaspi caerulescens*, Is a Novel
602 Fe/Zn/Cd/Cu Transporter. *PLoS ONE* **7**(6), e38535, doi:10.1371/journal.pone.0038535
603

604 Irfan, M., Ahmad, A., and Shamsul, H. (2014). Effect of cadmium on the growth and
605 antioxidant enzymes in two varieties of *Brassica juncea*. *Saudi J. Biol Sci.* **21**, 125-131.
606 doi:10.1016/j.sjbs.2013.08.001
607

608 Israr, M., Jewell, A., Kumar D., Sahi S., V. (2011). Interactive effects of lead, copper, nickel
609 and zinc on growth, metal uptake and antioxidative metabolism of *Sesbania drummondii*. *J*
610 *Hazardous Materials* **186**, 1520-1526.
611

612 Jiang, W., Liu, D., and Hou, W. (2008). Hyperaccumulation of lead by roots, hypocotyls, and
613 shoots of *Brassica juncea*. *Biol. Plant.* **43**, 603-606.
614

615 Kanwar, M. K., Poonam, and Bhardwaj, R. (2015). Arsenic induced modulation of
616 antioxidative defense system and brassinosteroids in *Brassica juncea* L. *Ecotoxicol. Environ.*
617 *Safety* 115, 119-125. doi.org/10.1016/j.ecoenv.2015.02.016
618

619 Khan, A., Khan, S., Khan, M., A., Qamar Z., and Waqas, M. (2015). The uptake and
620 bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and
621 associated health risk: a review. *Environ. Sci Poll. Res.* 22, 13772-13799.
622

623 Kramer, U., and Clemens, S. (2005). Functions and homeostasis of zinc, copper and nickel in
624 plants. *Topics in Current Genet.*, Springer: Hiedelberg, 14, 215.
625

626 Liu, D., Zou, J., Men, Q., Zou, J., Jiang, W. (2009). Uptake and accumulation and oxidative
627 stress in garlic (*Allium sativum* L.) under lead phytotoxicity. *Ecotoxicology* 18, 134.
628

629 Luo, H., Li, H., Zhang, X., and Fu, J. (2011). Antioxidant responses and gene expression in
630 perennial ryegrass (*Lolium perenne* L.) under cadmium stress. *Ecotoxicology* 20, 770–778.
631

632 Kutrowska, A., Małecka, A., Piechalak, A., Masiakowski, W., Anetta Hanc, A., Barałkiewicz,
633 D., Andrzejewska B., Zbierska, J., Tomaszewska B. (2017). Effects of binary metal
634 combinations on zinc, copper, cadmium and lead uptake and distribution in *Brassica juncea*. *J.*
635 *Trace Elem. Med. Biol.* 44, 32–39.
636

637 Malecka, A., Piechalak, A., Mensinger, A., Hanc, A., Barałkiewicz, D., and Tomaszewska,
638 B. (2012). Antioxidative defense system in *Pisum sativum* roots exposed to heavy metals (Pb,
639 Cu, Cd, Zn). *Polish J Environ Studies* 21, 1721-30.
640

641 Malecka, A., Piechalak, A., Zielińska, B., Kutrowska, A., and Tomaszewska, B. (2014).
642 Response of the pea roots defense systems to the two-element combinations of metals (Cu,
643 Zn, Cd, Pb). *Acta Bioch. Polonica* 61, 23-28.
644

645 Malecka, A., Kutrowska, A., and Piechalak, A. (2015). High Peroxide Level May Be a
646 Characteristic Trait of a Hyperaccumulator. *Water Air Soil Pollution* 226, 84.
647

648 Markovska, Y. K., Goranova , N. J., Nedkovska, M. P., Miteva, K. M. (2009). Cadmium-
649 induced oxidative damage and antioxidant responses in *Brassica juncea* plants. *Biol. Plant.* 53,
650 151-154.
651

652 Marshner, P. (2012). Marschner's Mineral Nutrition of Higher Plants, third ed. Academic Press,
653 London, UK. doi.org/10.1016/B978-0-12-384905-2.00015-7.
654

655 Meyers, D., E., R., Auchterlonie, G., J., Webb, R., I., and Wood, B. (2008). Uptake and
656 localisation of lead in the root system of *Brassica juncea*. *Pollut. Environ.* 153, 323-332.
657

658 Mohamed, A. A., Castagna, A., Ranieri, A., Sanita di Toppi, L. (2012). Cadmium tolerance in
659 *Brassica juncea* roots and shoots is affected by antioxidant status and phytochelatin
660 biosynthesis. *Plant Physiol. Biochem.* 22, 13058-13069. doi.org/10.1016/j.plaphy.2012.05.002
661

662 Molas, J. (2002). Changes of chloroplast ultra structure and total chlorophyll concentration in
663 cabbage leaves caused by excess of organic Ni (II) complexes. *Environ. Exp. Bot.* 47, 115-126.
664

665 Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific
666 peroxidase in spinach chloroplasts. *Plant Cell Physiol.* 22, 867-880.
667

668 Patterson, B., D., Macrae, E., A., and Ferguson, I., B. (1984). Estimation of hydrogen
669 peroxide in plant extracts using titanium(IV). *Anal. Biochem.* 139, 487-492.
670

671 Pena, L. B., Tomaro, M. L., and Gallego, S. M. (2006). Effect of different metals on protease
672 activity in sunflower cotyledons. *Electronic J. Biotech.* 9, 259- 262. doi: 10.2225/vol9-
673 issue3-18.
674

675 Pinto, A. P., Alves, A.S., Candeias, A. J., Cardoso, A. L., de Varennes, A., Martins, L. L.,
676 Mourato, M. P., Goncales, M. L. S., and Mota, A. M. (2009). Cadmium accumulation and
677 antioxidative defences in *Brassica juncea* L. Czer, *Nicotiana tabacum* L. and *Solanum nigrum*
678 L. *Int. J. Environ. Anal. Chem.* 89, 661-676. doi.org/10.1080/03067310902962585.
679

680 Prasad, M., N., V., and Freitas, H. (2003). Metal hyperaccumulation in plants—biodiversity
681 prospecting for phytoremediation technology. *Electron J. Biotech* , 6. doi: 10.2225/vol6-
682 issue3-fulltext-6. doi: 10.2225/vol6-issue3-fulltext-6
683

684 Purakayastha, T. J., Viswanath, T., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P.,
685 and Suribabu, K. (2008). Phytoextraction of Zinc, Copper, Nickel and Lead from a
686 Contaminated Soil by Different Species of Brassica. *Intern. J Phytoremediation* 10:1, 61-
687 72. doi: 10.1080/15226510701827077.
688

689 Quartacci, M. F., Argilla A., Baker, A. J. M., and Navari-Izo, F. (2006). Phytoextraction of
690 metals from a multiply contaminated soil by Indian mustard. *Chemosphere* 63, 918-925.
691 doi.org/10.1016/j.chemosphere.2005.09.051.
692

693 Rascio, N., and Navari-Izzo , F. (2011). Heavy metal hyperaccumulating plants: How and
694 why do they do it? And what makes them so interesting? *Plant Sci.* 180, 169–181. doi:
695 10.1016/j.plantsci.2010.08.016

696

697 Romero-Puertas, M. C., Corpas, F. J., Rodriguez-Serrano, M., Gomez, M., del Rio, L.A., and
698 Sandalio, L. M. (2007). Differential expression and regulation of antioxidative enzymes by
699 cadmium in pea plant. *J. Plant Physiol.* **164**, 1346–1357. doi: 10.1016/j.jplph.2006.06.018
700

701 Sharma, P., and Dubey, R.S. (2005). Lead toxicity in plants. *Braz J Plant Physiol* **17**, 35–52.
702 doi.org/10.1590/s1677-04202005000100004

703
704 Sing, S., Sinam, G., Mishra, R. K., and Mallick, S. (2010). Metal accumulation, growth,
705 antioxidantas and oil yield of *Brassica juncea* L. exposed to different metals. *Ecotoxicol.*
706 *Environm. Saf.* **73**, 1352–1361. doi.org/10.1016/j.ecoenv.2010.06.025.
707

708 Singh, S., Parihar, P., Singh, R., Singh V.P., Prasad, S.M. (2016). Heavy Metals Tolerance in
709 Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. *Frontiers in Plant*
710 *Science* **6**, articles 1143. doi: 10.3389/fpls.2015.01143

711
712 Wang, S. H., Yang, Z. M., Yang, H., Lu, B., Li, S. Q., and Lu Y. P. (2004). Copper-induced
713 stress and antioxidative responses in roots of *Brassica juncea* L. *Bot. Bull. Acad. Sin.* **45**, 203–
714 212.

715
716 Wang, S. L., Liao, W. B., Lu, F. Q., Liao, B., and Shu, W. S. (2009). Hyperaccumulation of
717 lead, zinc and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China.
718 *Environ. Geol.* **58**, 471–476. doi.org/10.1007/s00254-008-1519-2
719

720 Wilkins, D., A. (1957). A technique for the measurement of lead tolerance in plants. *Nature*
721 **180**, 37–38. doi.org/10.1038/180037b0
722

723 Yadav, P., Kaur, R., Kanwar M. K., Bhardwaj, R., Sirhind, G., Wijaya, L., Alyemeni, M. N.,
724 and Ahmad, P. (2018). Ameliorative Role of Castasterone on Copper metal Toxicity by
725 Improving Redox Homeostsis in *Brassica juncea* L. *J. Plant Growth Regul.* **37**, 575–590.
726 doi:10.1007/s00344-017-9757-8
727

728 Zaier, H., Mudarra, A., Kutcher, D., Fernandez de la Campa, M. R., Abdelly, C., and Sanz-
729 Medel, A. (2010). Induced lead binding phytochelatins in *Brassica juncea* and *Sesuvium*
730 *portulacastrum* investigated by orthogonal chromatography inductively coupled plasma-mass
731 spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry.
732 *Analytica Chimica Acta* **671**, 48–54. doi:10.1016/j.aca.2010.04.054
733

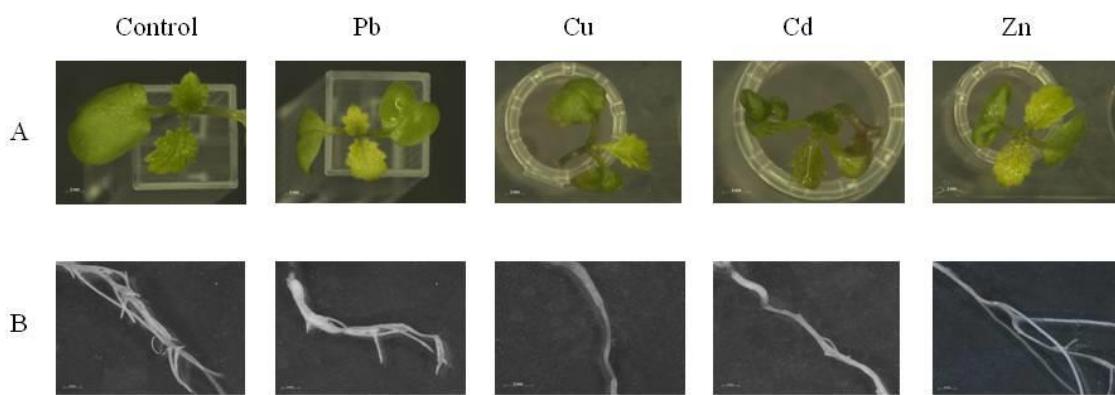


Fig.8. Morphological changes of *Brassica juncea* roots and leaves exposed to Cu, Pb, Cd and Zn metals at 50 μ Mol concentration for 48 hours using Zeiss stereoscopic microscope.