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Abstract. The article is devoted to applications of 2-dimensional 

hyperbolic numbers and their algebraic 2n-dimensional extensions in 

modeling some genetic and cultural phenomena. Mathematical 

properties of hyperbolic numbers and their bisymmetric matrix 

representations are described in a connection with their application to 

analyze the following structures: alphabets of DNA nucleobases; 

inherited phyllotaxis phenomena; Punnett squares in Mendelian 

genetics; the psychophysical Weber-Fechner law; long literary Russian 

texts (in their special binary representations). New methods of algebraic 

analysis of the harmony of musical works are proposed, taking into 

account the innate predisposition of people to music. The hypothesis is 

put forward that sets of eigenvectors of matrix representations of basis 

units of 2n-dimensional hyperbolic numbers play an important role in 

transmitting biological information. A general hyperbolic rule 

regarding the oligomer cooperative organization of different genomes is 

described jointly with its quantum-information model. Besides, the 
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hypothesis about some analog of the Weber-Fechner law for sequences 

of spikes in single nerve fibers is formulated. The proposed algebraic 

approach is connected with the theme of the grammar of biology and 

applications of bisymmetric doubly stochastic matrices. Applications of 

hyperbolic numbers reveal hidden interrelations between structures of 

different biological and physical phenomena. They lead to new 

approaches in mathematical modeling genetic phenomena and innate 

biological structures.  

 

Keywords: hyperbolic numbers, matrix, eigenvectors, genetics,  

Punnett squares, Fibonacci   

                    numbers,  phyllotaxis, music harmony, literary texts, 

doubly stochastic matrices 
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1 Introduction  

Living bodies are a huge number of various molecules interconnected 

by quantum-mechanical and stochastic relationships. These sets of 

molecules have an amazing ability to inherit the biological characteris-

tics of organisms to the next generations. G. Mendel, in his experiments 

with plant hybrids, found that the transmission of traits during the 

crossing of organisms occurs by certain algebraic rules, despite the co-

lossal heterogeneity of molecular structures of their bodies. In genetics 

textbooks, these algebraic rules of polyhybrid crossbreeding are pre-

sented since 1906 in the form of Punnett squares resembling mathemat-

ical square matrices in their structure. Mendel also proposed a model 

for explanation of the observed rules, introducing the idea of binary-

oppositional forms of the existence of factors of inheritance of traits: 

dominant and recessive forms.                                                               

This article continues the search for algebraic models of the natural 

features of genetic structures and inherited macrobiological phenome-

na. As known, the key difference between living and inanimate objects 

is as follows: inanimate objects are controlled by the average random 

movement of millions of their particles, while in a living organism, ge-

netic molecules have a dictatorial effect on the entire living organism 

[McFadden, Al-Khalili, 2018]. For this reason, the author focuses on 

studying the system of genetic alphabets and the genetic code in the 
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form of mathematical matrices constructed on binary-oppositional fea-

tures of DNA alphabets. 

In this way, the article addresses the issues of coding information in 

the genetic system. In a broad sense, code is usually understood as cor-

respondence between two sets of characters. For example, from this 

point of view, a usual phone book can be considered as a coding sys-

tem, in which its phone numbers encode names of people. But this arti-

cle considers analogies of the genetic code with more complex kinds of 

codes termed as algebraic codes and algebra-geometric codes, which 

are widely used in modern communication technologies for algorithmic 

providing a noise-immunity transfer of information. The genetic coding 

of information has noise immunity, which allows the transfer of genetic 

information from ancestors to descendants along the generation chain 

through very difficult and different living conditions of organisms. The 

study of possible algorithms for noise-immunity transfer of genetic in-

formation is an important scientific task, the successful solution of 

which can give a lot of useful for engineering, medical, biotechnologi-

cal and other sciences. It is about unraveling the bioinformatical patents 

of living matter. 

This article draws special attention to structural analogies of the 

molecular system of genetic coding with one of the known types of 

multidimensional hypercomplex numbers commonly called hyperbolic 

numbers (although other their names are also used in the literature: 

double numbers, Lorentz numbers, etc.). As known, this type of hyper-

complex numbers can be represented by bisymmetric matrices, which - 

in special cases - are doubly stochastic matrices having many applica-

tions in linear programming, the theory of games and optimizations, 

etc. and interesting for their application in algebraic biology.  

The main task of mathematical natural sciences is the creation of 

mathematical models of natural systems. The development of models 

and formalized theories depends highly on those mathematical notions 

and instruments, on which they are based. Modern science knows that 

different natural systems could possess their own individual geometries 

and their own individual arithmetic [Kline, 1982]. Various kinds of 

multi-dimensional numbers – complex numbers, hyperbolic numbers, 

dual numbers, quaternions, and other hypercomplex numbers – are used 

in different branches of modern science. They have played the role of 

the magic tool for the development of theories and calculations in prob-

lems of heat, light, sounds, fluctuations, elasticity, gravitation, mag-
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netism, electricity, current of liquids, quantum-mechanical phenomena, 

special theory of relativity, nuclear physics, etc. For example, in phys-

ics, thousands of works - only in XX century – were devoted to quater-

nions of Hamilton (their bibliography is in [Gsponer, Hurni, 2008].     

 The idea about special mathematical peculiarities of living matter 

exists long ago. For   example V.I. Vernadsky put forward the hypothe-

sis on a non-Euclidean geometry of living nature [Vernadsky, 1965]. It 

seems an important task to investigate what systems of          multi-

dimensional numbers are connected or can be connected with ensem-

bles of parameters of the genetic code and inherited biological peculiar-

ities. Some results of such investigation are presented in this article. 

They are connected with hyperbolic numbers and their algebraic exten-

sions, matrix forms of which give a new class of mathematical models 

in biology.     Author’s results described in this article are related in 

particular to works by O. Bodnar who noted that ontogenetic transfor-

mations of phyllotaxis lattices in plants can be formally modeled by 

hyperbolic rotations, which are particular cases of hyperbolic numbers 

and are well known in the special theory of relativity (Lorentz trans-

formations) [Bodnar, 1992, 1994]. On this basis, he stated that the ge-

ometry of living bodies has structural relations with Minkovsky geome-

try. Another evidence in favor of structural relations of inherited bio-

logical phenomena with hyperbolic rotations was shown in the work 

[Smolyaninov, 2000], which analyzed problems of locomotion control 

and put forward ideas of the “locomotor theory of relativity”. 

All physiological systems must be argued with a genetic coding sys-

tem to be genetically encoded for their survival and inheritance into the 

next generations. For this reason, the structural organization of physio-

logical systems can bear the imprint of the structural features of molec-

ular genetic systems. Our study aims to identify such relationships of 

inherited physiological structures with the molecular genetic system. 

Taking into account known data about ratios of musical harmony in the 

parametric organization of DNA molecules, new algebraic approaches 

are proposed for analyzing the hidden harmony of musical pieces. 

 

2    Matrix representations of DNA alphabets and hyperbolic num-

bers 

 

In DNA molecules DNA genetic information is written in sequences of 

4 kinds of             nucleobases: adenine A, cytosine C, guanine G, and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints201908.0284.v4

https://doi.org/10.20944/preprints201908.0284.v4


6 

thymine T. They form a DNA alphabet of 4 monoplets. Besides, DNA 

alphabets of 16 doublets and 64 triplets also exist. It is known [Fimmel, 

Danielli, Strüngmann, 2013; Petoukhov, 2008; Petoukhov, He, 2010; 

Stambuk, 1999] that these four nucleobases A, C, G, and T are interre-

lated due to their symmetrical  peculiarities into the united molecular 

ensemble with its three pairs of binary-oppositional traits or indicators 

(Fig. 2.1):   

1) Two letters are purines (A and G), and the other two are pyrim-

idines (C and T). From the standpoint of these binary-oppositional 

traits one can denote C = T = 0, A = G = 1; 

2) Two letters are amino-molecules (A and C) and the other two are 

keto-molecules (G and T). From the standpoint of these traits one 

can designate A = C = 0, G = T = 1;  

3) The pairs of complementary letters, A-T and C-G, are linked by 2 

and 3 hydrogen bonds, respectively. From the standpoint of these 

binary traits, one can denote C = G = 0,          A = T = 1.  

 

 

№  Binary Symbols   C A G T/U 

1 01 — pyrimidines 

11 — purines  

01 11 11 01 

2 02 — amino 

12 — keto 

02 02 12 12 

3 03 — three hydrogen bonds; 

13 — two hydrogen  onds 

03 13 03 13 

 

 
Fig. 2.1.  Left: the four nitrogenous bases of DNA: adenine A, gua-
nine G, cytosine C, and thymine T. Right: three binary sub-alphabets 
of the genetic alphabet based on three pairs of binary-oppositional 
traits or indicators.  
 

Taking into account the phenomenological fact that each of DNA-

letters C, A, T, and G is uniquely defined by any two kinds of men-

tioned binary-oppositional indicators (Fig. 2.1), these genetic letters can 

be represented through corresponding pairs of binary symbols, for ex-

ample, from the standpoint of two first binary-oppositional indicators. 

It is convenient for us - for the further description - use at the first posi-
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tion of each of letters its binary symbol from the second pair of binary-

oppositional indicators (the indicator "amino or keto": C=A=0, T=G=1) 

and at the second positions of each of letters its binary symbol from the 

first pair of binary-oppositional indicators (the indicator "pyrimidine or 

purine": C=T=0, A=G=1). In this case, the letter C is represented by the 

binary symbol 0201 (that is as 2-bit binary   number), A – by the symbol 

0211, T – by the symbol 1201, G – by the symbol 1211. Using  these rep-

resentations of separate letters, each of 16 doublets is represented as the 

concatenation of the binary symbols of its letters (that is as 4-bit binary 

number): for example, the  doublet CC is represented as a 4-bit binary 

number 02010201, the doublet CA – as a 4-bit binary number 02010211, 

etc. By analogy, each of 64 triplets is represented as the concatenation 

of the binary symbols of its letters (that is as 6-bit binary number): for 

example, the triplet CCC is represented as a 6-bit binary number 

020102010201, the triplet CCA – as 6-bit binary number 020102010211, 

etc. In general, each of n-plets is represented as the concatenation of the 

binary symbols of its letters (below we will not show these indexes 2 

and 1 of separate letters in  binary representations of n-plets but will 

remember that each of positions corresponds to its own kind of indica-

tors from the first or from the second set of indicators in Fig. 2.1). 

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 

doublets, 64 triplets, … 4n n-plets in a form of appropriate square tables 

(Fig. 2.2), which rows and columns are    enumerated by binary sym-

bols in line with the following principle. Entries of each column are 

enumerated by binary symbols in line with the first set of binary-

oppositional indicators in Fig. 2.1 (for example, the triplet CAG and all 

other triplets in the same column are the combination “pyrimidine-

purine-purine” and so this column is correspondingly enumerated 011). 

By contrast, entries of each of rows are enumerated by binary numbers 

in line with the second set of indicators (for example, the same triplet 

CAG and all other triplets in the same row are the combination “amino-

amino-keto” and so this row is correspondingly numerated 001). In 

such tables (Fig. 2.2), each of 4 letters, 16 doublets, 64 triplets, … takes 

automatically its own individual place and all of them are arranged in a 

strict order. 

These 3 separate genetic tables form the joint tensor family of ma-

trices since they are interrelated by the known operation of the tensor 

(or Kronecker) product of matrices [Bellman, 1960]. So they are not 

simple tables but matrices. By definition, under tensor multiplication of 
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two matrices, each of the entries of the first matrix is multiplied with 

the whole second matrix. The second tensor power of the (2*2)-matrix 

[C, A; T, G] of 4 DNA-letters gives automatically the (4*4)-matrix of 

16 doublets; the third tensor power of the same (2*2)-matrix of 4 DNA-

letters gives the (8*8)-matrix of 64 triplets with the same strict ar-

rangement of entries as in Fig. 2.2. In this tensor construction of the 

tensor family of genetic matrices, data about binary-oppositional traits 

of genetic letters C, A, T, and G are not used at all. So, the structural 

organization of the system of DNA-alphabets is connected with the 

algebraic operation of the tensor product. It is important since the oper-

ation of the tensor product is well known in mathematics, physics, and 

informatics, where it gives a way of putting vector spaces together to 

form larger vector spaces. The following quotation speaks about the 

crucial meaning of the tensor product: «This construction is crucial to 

understanding the quantum mechanics of multiparticle systems» [Niel-

sen, Chuang, 2010, p. 71]. 

 

 

 
 

 

 

 

 

 

 

 000  001 010  011 100 101 110 111 

000  CCC CCA CAC CAA ACC ACA AAC AAA 

001  CCT CCG CAT CAG ACT ACG AAT AAG 

010  CTC CTA CGC CGA ATC ATA AGC AGA 

011  CTT CTG CGT CGG ATT ATG AGT AGG 

100  TCC TCA TAC TAA GCC GCA GAC GAA 

101 TCT TCG TAT TAG GCT GCG GAT GAG 

 

 0 1 

0 C A 

1 T G 
 

  00 01 10 11 

00 CC CA AC AA 

01 CT CG AT AG 

10 TC TA GC GA 

11 TT TG GT GG 
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110 TTC TTA TGC TGA GTC GTA GGC GGA 

111 TTT TTG TGT TGG GTT GTG GGT GGG 

 

Fig. 2.2. The square tables of DNA-alphabets of 4 nucleotides, 16 dou-

blets and 64 triplets with a strict arrangement of all components. Each 

of the tables is constructed in line with the principle of binary numera-

tion of its column and rows based on binary-oppositional traits of the 

nitrogenous bases (see explanations in the text).  

 

In the DNA double helix, complementary nucleobases C and G are 

connected by 3 hydrogen bonds and complementary nucleobases A and 

T are connected by 2 hydrogen bonds. One can denote their typical 

connections with hydrogen bonds by expressions C=G=3 and A=T=2. 

Replacing in the (2*2)-matrix [C, A; T, G] (Fig. 2.2) symbols C, A, T 

and G by their numbers of hydrogen bonds 3 and 2, a numeric matrix 

[3, 2; 2, 3] appears (Fig. 2.3). The second and the third tensor powers of 

this matrix [3, 2; 2, 3](n), where n = 2, 3, generate numeric (4*4)- and 

(8*8)-matrices in Fig. 2.3, which automatically represent symbolic ma-

trices of 16 doublets and 64 triplets in Fig. 2.2 from the standpoint of 

the product of their numbers of hydrogen bonds. For example, the dou-

blet CA is replaced by number 3*2=6 and the triplet AGT is replaced 

by number 2*3*2=12. These genetic matrices are closely connected by 

their structures with so-called matrices of dyadic shifts, which are 

known in digital information technology of noise immune coding and 

which are described below in the Appendix I. See also some thematic 

details and argumentations for using 2n-dimensional hyperbolic num-

bers and dyadic shifts in matrix genetics and algebraic biology in ([Pe-

toukhov, 2019 c]). 

 

 

3 2 

 9 6 6 4 

6 9 4 6 
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27 18 18 12 18 12 12 8 

18 27 12 18 12 18 8 12 

18 12 27 18 12 8 18 12 

12 18 18 27 8 12 12 18 

18 12 12 8 27 18 18 12 

12 18 8 12 18 27 12 18 

12 8 18 12 18 12 27 18 

8 12 12 18 12 18 18 27 

 

Fig. 2.3. Numeric representations of the tensor family of symbolic 

matrices (Fig. 2.2) of    4 monoplets, 16 doublets and 64 triplets from 

the standpoint of their numeric characteristics of hydrogen bonds 

C=G=3 and A=T=2. 

 

 Fig. 2.4 shows that the matrix [3, 2; 2, 3] is decomposed into 

sum of two sparse     matrices, one of which is the identity matrix (j0 = 

[1, 0; 0, 1]) and the second matrix                                j1 = [0, 1; 1, 1]) 

represents imaginary unit of hyperbolic numbers since j1
2 = j0. The set 

of these matrices j0 and j1 is closed relative to multiplication and 

defines the multiplication table of the algebra of hyperbolic numbers 

(Fig. 2.4, right). 

 

3, 2 

2, 3 

 

= 3* 

1, 0 

0, 1 

 

+ 2* 

0, 1 

1, 0 

 

= 3*j0 +2*j1; 

 
 

2 3 
 

6 4 9 6 

4 6 6 9 
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    Fig. 2.4. The decomposition of the matrix [3, 2; 2, 3] into two sparse 

matrices, where    matrices j0 and j1 are matrix representations of real 

and imaginary units of the algebra of hyperbolic numbers with the 

shown multiplication table of these units. 

  

    Here we should remind that two-dimensional hyperbolic numbers are 

written in linear   notation as m1 = a*1+b*j (where 1 is the real unit; j is 

the imaginary unit with the property        j ≠ ±1 but j2 = 1; a, b are real 

coefficients). These numbers are used in physics and mathematics and 

they have also synonymical names: "split-complex numbers", “double 

numbers” and "perplex numbers". The collection of all hyperbolic 

numbers forms algebra over the field of real numbers [Harkin, Harkin, 

2004; Kantor, Solodovnikov, 1989]. The algebra is not a      division 

algebra or field since it contains zero divisors. Addition and multiplica-

tion of       hyperbolic numbers are defined by (2.1):  

 

                         (x+jy)+(u+jv)=(x+u)+j(y+v);     

(x+jy)(u+jv)=(xu+yv)+j(xv+yu)            (2.1)  

 

This multiplication is commutative, associative and distributes over 

addition.  

A hyperbolic number has its matrix form of representation: [a, 

b; b, a] = a*[1, 0; 0, 1] +b*[0, 1; 1, 0] where [1, 0; 0, 1] is the identity 

matrix representing real basis unit;  [0, 1; 1, 0] represents imaginary 

basis unit. Fig. 2.4 shows the matrix representation of hyperbolic num-

bers a*1+b*j for the case a = 3 and b = 2. The symmetric matrices [1, 

0; 0, 1] and [0, 1; 1, 0] representing these real and imaginary unites are 

orthogonal matrices.  

If a2-b2 = 1, then the matrix [a, b; b, a] defines hyperbolic rota-

tions known in the    special theory of relativity as Lorentz transfor-

mations. Hyperbolic rotations are usually     expressed by a symmetric 

matrix (2.2) through hyperbolic cosine «cosh» and hyperbolic sine 

«sinh» since cosh2x– sinh2x= 1 [Collins Concise Dictionary, 1999; 

Shervatov, 1954; Stakhov, 2009]: 

cosh x,    
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sinh x 

sinh x,   

cosh x 

                                            

(2.2) 

 

       Symmetric matrices that represent hyperbolic numbers have real 

eigenvalues and       orthogonal eigenvectors (which distinguishes them 

from non-symmetric matrix representations of complex numbers). Such 

symmetric matrices form the basis of the theory of          resonances of 

oscillatory systems with many degrees of freedom and are also metric 

tensors from Riemannian geometry. 

The second tensor power of the bisymmetric matrix [a, b; b, a], 

which represents   hyperbolic numbers, is decomposed into 4 sparse 

matrices e0, e1, e2 and e3 with real            coefficients aa, ab ba and bb 

(Fig. 2.5). The used decomposition is based on the known   principle of 

dyadic shifts described below in the Appendix I. 

 The set of matrices e0, e1, e2 and e3 is closed relative to multi-

plication and satisfies to the multiplication table in Fig. 2.5. The set of 

these (4x4)-matrices corresponds to algebra of 4-dimensional numbers 

aa*e0 + ab*e1 + ba*e2 + bb*e3, where the matrix e0 represents the real 

unit 1 and matrices e1, e2 and e3 represent imaginary units. These 4-

dimensional numbers are algebraic extensions of 2-dimensional hyper-

bolic numbers and for simplicity they can be termed “4-dimensional 

hyperbolic numbers” (in our previous publications we termed them 

“hyperbolic matrions” [Petoukhov, 2008; Petoukhov, He, 2010]). Each 

of matrices e0, e1, e2 and e3 is an orthogonal matrix with its determinant 

+1. 

    By comparing Fig. 2.3 and Fig. 2.5, one can see that the numeric 

(4*4)-matrix of hydrogen bonds in Fig. 2.3 represents 4-dimensional 

hyperbolic number 9e0+6e1+6e2+4e3 where e0 is the identity matrix rep-

resenting real unit 1. By analogy, the numeric (8*8)-matrix in Fig. 2.3 

represents 8-dimensional hyperbolic number 

27j0+18j1+18j2+12j3+18j4+12j5+12j6+8j7 where jk are basis units of 8-

dimensional hyperbolic numbers. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints201908.0284.v4

https://doi.org/10.20944/preprints201908.0284.v4


13 

 
 

Fig. 2.5. The decomposition of the matrix [a, b; b, a](2), representing 4-

dimensional               hyperbolic numbers, into 4 sparse matrices, the 

set of which is closed relative to                    multiplication. The multi-

plication table for this set is shown at the right. The symbol 1      de-

notes the identity matrix e0. 
 

In a general case, 2n-dimensional hyperbolic (or double) numbers are 

hypercomplex numbers and they possess, by definition, the following 

features. They contain 2n basis units ek (one real unit and 2n-1 imagi-

nary units), which are interrelated by a symmetric table of their mutual 

multiplication where all ek
2 = +1 (k = 0, 1, 2,..., 2n-1). 

By analogy with Figs. 2.4 and 2.5, the higher tensor powers n = 3, 4, 

5, … of the bisymmetric matrix [a, b; b, a] produce bisymmetric matri-

ces [a, b; b, a](n), which can be also     decomposed into 2n sparse matri-

ces, the set of which is closed relative to multiplication and which de-

fine appropriate multiplication tables of algebras of 2n-dimensional hy-

percomplex numbers mn (which were termed “hyperbolic matrions” of 

the order n in our previous           publications [Petoukhov 2008; Pe-

toukhov, He, 2010]). These decompositions use a structural similarity 

of the matrices [a, b; b, a](n) with matrices of dyadic shifts described 

below in the Appendix I. 

It is useful to rewrite the multiplication table in Fig. 2.5 into a form 

where all decimal indexes of basis units e0, e1, e2 and e3 are shown in 

their binary notations: e00, e01, e10 and e11 (Fig. 2.6).  

* e00 e01 e10 e11 

e00 e00 e01 e10 e11 

e01 e01 e00 e11 e10 

e10 e10 e11 e00 e01 
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Fig. 2.6. The multiplication table in algebra of 4-dimensional hyperbol-

ic numbers where   indexes of basis units are shown in their binary no-

tations e00, e01, e10 and e11 in contrast to their decimal notations e0, e1, e2 

and e3 in Fig. 2.5. 

 

One can see from Fig. 2.6 that in all cases a result of the product of 

two basis units        (ep*ek = es) is equal to that basis unit es whose bina-

ry index s is equal to a result of modulo-2 addition for binary indexes p 

and k of the factors ep and ek (under the operation of modulo-2 addition 

the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1). In other 

words the    following equation (2.3) for bimary indexes is true: 

 

                                                        ep*ek = ep+k                                                            

(2.3) 

 

For example, a result of the product e2*e3 is equal to e1 since decimal 

indexes 2 and 3 are expressed by binary numbers 10 and 11 whose 

modulo-2 addition gives the binary number 01 refered to decimal num-

ber 1. This method of binary operations with indexes to calculate a re-

sult of the product of any two basis units is true not only for 4-

dimensional hyperbolic numbers but also for other 2n-dimensional hy-

perbolic numbers. The equation (2.3) is especially useful in cases of 

high values n when it is difficult to address to multiplication tables hav-

ing 2n*2n sizes each time when you need to know a result es of the 

product of basis units ep*ek = es. (For example, the Appendix III con-

tains matrix representations of basis units of 32-dimensional hyperbolic 

numbers, which are useful for mathematical musicology). 

For this you should represent indexes p and k in their binary notation 

(inside a complete set of n-bit binary numbers) and calculate their bina-

ry sum p+k on the basis of the known operation of modulo-2 addition 

where the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1. The 

result of such modulo-2 addition is a searched index s in its binary no-

tation. For example, if you multiplicate two 23-dimensional hyperbolic 

numbers each other, the complete set of 3-bit binary numbers is the 

following: 000, 001, 010, 011, 100, 101, 110, 111 (they        correspond 

decimal numbers 0, 1, 2, 3, 4, 5, 6, 7). To calculate a result of multupli-

cation of basis units e3*e5, you take decimal indexes 3 and 5 in their 

e11 e11 e10 e01 e00 
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binary notation 011 and 101. Their modulo-2 addition gives binary 

number 110, which corresponds decimal number 6. In such way we get 

the search result: e3*e5=e6. 

 

3 Hyperbolic and Fibonacci numbers in phyllotaxis modeling 

 

Fibonacci numbers Fn form an additive sequence such that each number 

is the sum of the two preceding ones: Fn = Fn-1 + Fn-2  (Table 3.1).  

 

                                   Table 3.1. The Fibonacci sequence. 

n 1 2 3 4 5 6 7 8 9 10 … 

Fn 1 1 2 3 5 8 13 21 34 55 … 

 

Fibonacci numbers are strongly related to the golden ratio φ = 

(1+50.5)/2. Binet’s formula (3.1) expresses the nth Fibonacci number in 

terms of n and the golden ratio, and implies that the ratio of two con-

secutive Fibonacci numbers tends to the golden ratio as n increases: 

 

                                               Fn = (φn – (-φ-1))/50.5                                                            

(3.1) 

 

In biology, it has long been known that, for example, in many plant 

objects the spiral        arrangement of their bioorganisms form ordered 

patterns (shoots of plants and trees, seeds in the heads of sunflowers, 

scales of coniferous cones and pineapples, etc.). These patterns are de-

termined by overlapping left and right oriented spiral lines - parasti-

chies. To characterize phyllotaxis of such botanical objects, usually 

indicate two parameters: number of left spirals and number of right spi-

rals, which are observed on the surface of phyllotaxis objects.      Phyl-

lotaxis of structures with such patterns is described by ratios of neigh-

boring Fibonacci numbers: 

                             Fn+1/Fn :    2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, …                             

(3.2)  
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                (Fn+1/Fn) → (Fn+2/Fn+1): 2/1 → 3/2 → 5/3 → 8/5 → 13/8 → 

21/13 →…         (3.3) 

 

The sequence (3.2) is termed the “parastichic sequence” [Jean ,2006; 

Petoukhov, 1981]. It seems natural to use 2-dimensional hyperbolic 

numbers for modeling these 2-parametric patterns in phyllotaxis objects 

and their ontogenetic transformations. In this approach, proposed by the 

author, the sequence (3.2) of phyllotaxis ratios is transformed into addi-

tive sequences  (3.4, 3.5) reflecting linear notation of appropriate hy-

perbolic numbers and their matrix representations (we call sequences 

(3.4, 3.5) as parastichic sequences of hyperbolic numbers): 

 

           Fn+1 + jFn :  2 + j, 3 +j2, 5 + 3j, 8 + 5j, 13 +8j, 21 + 13j, 34 + 21j, 

….                  (3.4)   

 

Fn+1, Fn 

Fn,  Fn+1 

 

: 

2, 1 

1, 2 

 

, 

3, 2 

2, 3 

 

, 

5, 3 

3, 5 

 

, 

8, 5 

5, 8 

 

, 

13, 8 

 8, 13 

 

… 

 

                    (3.5) 

         

In this approach, to define a hyperbolic number u+jv, which transforms 

a hyperbolic number Fn+1 + jFn into its neighboring hyperbolic number 

Fn+2 + jFn+1 from the sequence (3.4), the    following simple equation 

(3.6) should be solved: 

 

                                    (Fn+1 + jFn)(u + jv) = (Fn+2 + jFn+1)                                               

(3.6) 

 

The solution to this equation (3.6) gives the following expressions (3.7) 

for components of the desired hyperbolic number u + jv: 

 

           u = Fn+1/Fn + (-1)n+1*Fn-1 / (Fn*(Fn
2 – Fn-1

2)),    v =  (-1)n / (Fn
2 – 

Fn-1
2)                 (3.7)                                            

 

In the case of such components (3.7), u2 – v2 ≠ 1 and the appropriate 

matrix [u, v; v, u] does not present a hyperbolic rotation in the sense of 
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expression (2.2). But this matrix can be    rewriting into the form (10) 

where the matrix of a hyperbolic rotation (in the sense of        expres-

sion (2.2)) is multiplied by a coefficient (u2 - v2)0.5:  

 

        [u, v; v, u] =  (u2 - v2)0.5 [u(u2 - v2)-0.5, v(u2 - v2)-0.5; v(u2 - v2)-0.5, 

u(u2 - v2)-0.5]        (3.8) 

 

Now let us describe results of the author’s study of eigenvalues 

of the symmetric   matrices in the parastichic sequence (3.5). Each of 

these matrices [Fn+1, Fn; Fn, Fn+1] has two eigenvalues, which are equal 

to two Fibonacci numbers again: Fn+2 and Fn-1. One can noted that these 

eigenvalues are the sum and the difference of the Fibonacci compo-

nents of the original hyperbolic number Fn+1+ jFn since Fn+2 = Fn+1 + Fn 

and Fn-1 = Fn+1 - Fn. The ratio Fn+2/Fn-1 of such eigenvalues defines a 

new sequence (11) of Fibonacci ratios, which tend to φ3 as n increases: 

                                    Fn+2/Fn-1 :    3/1, 5/1, 8/2, 13/3, 21/5, 34/8, 55/13, 

….                    (3.9) 

   

By analogy with expressions (3.2, 3.4, 3.5) such pair of eigenvalues 

Fn+2 and Fn-1 can be   considered as components of a new hyperbolic 

number Fn+2 + jFn-1. In this case the sequence of ratios (3.9) is trans-

formed into additive sequences (3.10, 3.11) reflecting linear notation of 

appropriate hyperbolic numbers and their matrix presentations: 

 

                  Fn+2 + jFn-1 :    3 + j, 5 + j, 8 + j2, 13 + j3, 21 + j5, 34 + j8, 55 

+ j13, ….        (3.10) 

   

Fn+2, Fn-1 

 Fn-1, Fn+2 

 

: 

3, 1 

1, 3 

 

, 

5, 1 

1, 5 

 

, 

8, 2 

2, 8 

 

, 

13, 3 

3, 13 

 

, 

21, 5 

 5, 21 

 

… 

 

       (3.11) 

                   

Each of symmetric matrices [Fn+2, Fn-1; Fn-1, Fn+2] of the sequence 

(3.11) has two eigenvalues, which are again equal to two Fibonacci 

numbers multiplied by a factor 2 (twice the Fibonacci numbers): 2Fn+1 

and 2Fn. Ratios 2Fn+1/2Fn of such eigenvalues form a sequence, which 
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is identical to the initial parastichic sequence (3.2). Using the Binet’s 

formula (3.1), all members of these sequences can be additionally ex-

pressed through the golden ratio φ in integer powers. This procedure of 

analysis of the eigenvalues of new and new sequences of        symmet-

ric matrices, representing hyperbolic numbers by analogy with se-

quences (3.4, 3.5, 3.10, 3.11), can be repeated as long as desired, ob-

taining a hierarchy of eigenvalues of the matrices based on Fibonacci 

numbers multiplied by a factor 2 at corresponding steps of the iterative 

procesure.  

The following important point should be emphasized. In con-

trast to the traditional  additive series of one-dimensional Fibonacci 

numbers, the author introduces an additive   series of two-dimensional 

hyperbolic numbers and an additive series of (2*2)-matrices      repre-

senting these numbers and defining an additional additive series of ei-

genvalues of these matrices (3.4, 3.5, 3.10, 3.11). As far as we know, 

such Fibonacci series of two-dimensional numbers have not been de-

scribed in the literature by anyone, and therefore they can be     consid-

ered new in the extensive subject matter of Fibonacci numbers and their 

applications (some of author's results of the study of additive series of 

4-dimensional hyperbolic Fibonacci numbers will be presented below). 

Similar results are obtained by considering the additive series of 

two-dimensional   hyperbolic Lucas numbers and the additive series of 

their matrix representations, which    determine the additive series of 

eigenvalues of these symmetric matrices (these results are been pub-

lishing in a separate article). Here one can remind that one-dimensional 

Lucas   numbers form the series Ln+2 =Ln +Ln+1: 2, 1, 3, 4, 7, 11, 18, ... , 

which is also known in   phyllotaxis laws [Jean, 2006]. А study of addi-

tive series of complex numbers, whose      components are Fibonacci 

numbers, and of their ordinary representations by non-symmetric        

matrices gives also interesting additive series of their eigenvalues but in 

form of complex numbers. 

It should be noted that the study of the eigenvalues of symmetric 

matrices has special meaning due to the fact that in the theory of oscil-

lations symmetric matrices are matrix      representations of oscillatory 
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systems with many degrees of freedom. Moreover, the          eigenval-

ues of such a matrix determine the resonant frequencies of the corre-

sponding        oscillatory system. The described results on the proper-

ties of inherited phyllotaxis                phenomena with their Fibonacci 

ratios, represented by symmetric matrices and their matrix                

eigenvalues, are important, in particular, for the concept of multi-

resonance genetics, which connects structural features of molecular-

genetic systems with resonances of oscillatory    systems [Petoukhov, 

2016]. 

4     Fibonacci sequences of 2n-dimensional hyperbolic numbers 

This Section continues the theme of additive series of hyperbolic num-

bers, coordinates of which are Fibonacci numbers. Now we turn to al-

gebraic extensions of hyperbolic numbers in forms of 2n-dimensional 

hyperbolic numbers. Let us consider an additive sequence (4.1) of      4-

dimensional hyperbolic numbers Fn+3e0+Fn+2e1+Fn+1e2+Fne3 with Fibo-

nacci coordinates from (Table 3.1). In this sequence, each member is 

equal to the sum of two previous      members: 

             3e0+2e1+1e2+1e3; 5e0+3e1+2e2+1e3; 8e0+5e1+3e2+2e3; 

13e0+8e1+5e2+3e3; …      (4.1) 

 

 A corresponding matrix representation of each member from (4.1) has 

4 eigenvalues, which can be considered again as coordinates of a new 

4-dimensional hyperbolic number. The author reveals that these new 4-

dimensional hyperbolic numbers form a new additive sequence (4.2): 

      1e0+1e1+3e2+7e3; 1e0+3e1+5e2+11e3; 2e0+4e1+8e2+18e3; 

3e0+7e1+13e2+29e3;…        (4.2) 

 

    The sequence (4.2) combines Fibonacci and Lucas sequences in the 

following sense. In its    4-dimensional hyperbolic numbers, coordi-

nates of basis elements e0 and e2 are Fibonacci numbers and coordi-

nates of basis elements e1 and e3 are Lucas numbers: 3, 1, 4, 7, 11, 18, 

29, … . Such aggregation of Fibonacci and Lucas numbers resembles a 
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phyllotaxis-like locations of amino acid residues in the helices of poly-

peptides for various molecular chains - 11/3, 18/5, 29/8, 47/13; here 

fraction numerators are Lucas numbers and fraction denominators are 

Fibonacci numbers. These bio-molecular phenomena of polypeptides 

configurations are described in the fundamental book [Frey-Wissling, 

Muhlethaler, 1965].  

A matrix representation of each member of the sequence (4.2) 

has 4 eigenvalues, which can be considered again as coordinates of a 

new 4-dimensional hyperbolic number. These 4-dimensional hyperbol-

ic numbers form a new additive sequence (4.3): 

 

 -8e0-4e1+4e2+12e3; -12e0-8e1+4e2+20e3; -20e0-12e1+8e2+32e3; -32e0-

20e1+12e2+32e3;.. (4.3)  

 

    Comparing sequences (4.1) and (4.3) reveals that a set of coordinates 

of each member of the sequence (4.3) repeats - with a factor 4 - a set of 

coordinates of the corresponding member of the sequence (4.1) with 

accuracy up to signs and a cyclic permutation of coordinates. For ex-

ample, the first member of (4.1) contains coordinates 3, 2, 1, 1 and the 

first member of (4.3) contains coordinates -4*2, -4*1, 4*1, 4*3. This 

procedure of calculating repeating additive sequences of 4-dimensional 

hyperbolic numbers associated with Fibonacci and Lucas numbers can 

be repeated as long as desired. Similar results are received for additive 

sequences of 2n-dimensional hyperbolic numbers with Fibonacci coor-

dinates in cases n = 3, 4, … .  

5     Hyperbolic numbers and the Weber-Fechner law  

It is profitable for an organism, which is a single whole, to have the 

same typical             algorithms at different levels of its functioning for 

a mutual optimal coordination of its parts. By this reason we study pos-

sibilities to simulate differentinnate phenomena on the general basis of 

hyperbolic numbers and its algebraic extensions. This Section is devot-

ed to the main       psychophysical law by Weber-Fechner and its struc-

tural connection with phyllotaxis laws through hyperbolic numbers. 
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The innate Weber-Fechner law states that the intensity of the perception 

is proportional to the logarithm of stimulus intensity; it is expressed by 

the      equation (5.1):  

 

                                    p = k*ln(x/x0) = k*{ln(x) - ln(x0)}                                              

(5.1)  

 

where p - the intensity of perception, x – stimulus intensity, x0 - thresh-

old stimulus,              ln – natural logarithm, k – a weight factor. It is 

known that different types of inherited         sensory perception are sub-

ordinated to this law: sight, hearing, smell, touch, taste, etc.       Be-

cause of this law, the power of sound in physics and engineering tech-

nologies is measured on a logarithmic scale in decibels.  

One can suppose that the innate Weber–Fechner law is the law espe-

cially for nervous    system. But it is not so since its meaning is much 

wider because it holds true in many kinds of lower organisms without a 

nervous system in them: “this law is applicable to chemo-tropical, he-

lio-tropical and geo-tropical movements of bacteria, fungi and anther-

ozoids of ferns, mosses and phanerogams ... . The Weber-Fechner law, 

therefore, is not the law of the nervous system and its centers, but the 

law of protoplasm in general and its ability to respond to stimuli" 

[Shults, 1916, p.126]   

Let us show that hyperbolic numbers are related to the Weber-

Fechner law, which is based on the natural logarithm (5.1). Historically 

the natural logarithm was formerly termed the hyperbolic logarithm, as 

it corresponds to the area under a hyperbola [Klein, 2004;         Sherva-

tov, 1954]. History of hyperbolic logarithms is described for example 

in the book [Klein, 2004]. As known, the natural logarithm can be de-

fined for any positive real number “a” as the area under the hyperbola y 

= 1/x from 1 to a (Fig. 5.1, left). It means that two points of the hyper-

bola with their coordinates (x, 1/x) and (x0, 1/x0), where x > 1 and x0 > 

1, define values of natural logarithms ln(x) and ln(x0). Subtraction ln(x) 

− ln(x0) = ln(x/x0)     expresses the intensity of perception p in the ex-

pression (5.1) of the Weber–Fechner law    (Fig. 5.1, right). A change 

of a stimulus intensity x1 into a new stimulus intensity x2 corresponds 

to a hyperbolic rotation, which transforms points of this hyperbola each 

into other and defines an appropriate change of intensity of perception: 

Δp  =  k*ln(x2/x1). One can add that each point (x, 1/x) of this 

hyperbola, where x≥1, can be naturally interpreted as hyperbolic num-
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ber with positive coordinates x+x-1j, which is represented by a bisym-

metriс matrix with positive entries (such matrices coincide with doubly 

stochastic matrices under an appropriate matrix normalization; see be-

low Section 12 on doubly stochastic matrices and their applications).    
 

 
 

Fig. 5.1. Natural logarithm as the area under the hyperbola y = 1/x. 

Left: ln(a) is equal to the area under the hyperbola from 1 to a. Right: 

ln(x/x0) is equal to the area under the          hyperbola from x0 to x. 

 

Hyperbolic rotations are particular cases of 2-dimensional hyperbolic 

numbers. This         analysis gives evidences that our sensory percep-

tion obeys the same structural principles as morphogenesis with its 

phyllotaxis laws and that these principles can be effectively modelling 

on the basis of hyperbolic numbers. 

Phyllotaxis laws are related with the golden ratio (or the golden sec-

tion) φ = (1+50.5)/2 = 1,618… . Here one can attract attention to the 

well-known phenomenon of human visual perception, which consists in 

the aesthetic preference for proportions of the golden ratio.  People are 

endowed with an aesthetic feeling that allows them to prefer certain 

proportions and forms in specific situations (review materials can be 

found in the book [Petoukhov, 1981, Appendix 1]). A classic example 

is given by the proportion of the golden section, which is featured for a 

long time in architecture and theoretical works on aesthetics, although 

it sometimes causes criticism due to the efforts of some authors to ab-

solutize its significance. The famous American neurophysiologist and 

one of the founders of cybernetics McCalloch specially studied the aes-

thetics of this proportion [McCulloch, 1965, c. 395]. He wrote that he 

spent two years measuring the person’s ability to bring an adjustable 

oblong object to a preferred shape, because he did not believe that hu-

man persons prefer the golden ratio or that they could recognize it. 

They prefer and they can! In repeated experimental constructing the 

most pleasant forms, human persons come to the preference of the 
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golden ratio and they can establish it. As McCulloch concluded one 

who is able to detect a difference in the twentieth of the length, area or 

volume, exposes this difference to 1:1,618, and not to 1:1,617 or 

1:1,619. 

  Obviously, if in the ratio 1:1,618 for the smaller and larger sides of 

a rectangle, the length of the larger side is redenoted as 1, then the rela-

tive length of the smaller side will become equal to φ-1=0,618. In other 

words, these values φ and φ-1 in the aesthetics of proportions for our 

visual perception always go in pairs and therefore they can be consid-

ered - in the frame of our approach - as two parts of the single hyper-

bolic number φ+j*φ-1 whose matrix presentation is [φ, φ-1; φ-1, φ]. But 

this hyperbolic number φ+j*φ-1 is related with hyperbolic number 

3+j*2, which was shown above as connected with the molecular-

genetic system (see Figs. 2.3 and 2.4). Really,  (φ+j*φ-1)2 = 3+j*2 or in 

their matrix presentations: 

 

                                                 
 

Fig. 5.2. The relation of 2-dimensional hyperbolic numbers φ+j*φ-1 

and 3+j*2 

 

Below we’ll meet again the hyperbolic number 3+j*2 in Sections on 

relations of hyperbolic numbers with musical harmony and the quint 

ratio 3/2 (or the pure perfect fifth).  

The end of this article contains one additional paragraph with the hy-

pothesis that some   analogue of the Weber-Fechner law exists in single 

nervous fibers for encoding time intervals among action potentials, 

whose sequences carry information in nervous system. 

 

6       The alphabets of orthogonal vector bases associated with basis 

units of                            

         2n-dimensional hyperbolic numbers 

 
Let us remind the essence of the eigenvalues and eigenvectors 

by means of the matrix A on Fig. 6.1, which acts on vectors [x, y]. In 

this case almost any vector is transformed into a new vector [x, y]*A 

with changing its direction. The exceptions are those vectors [x, y], 
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which belong to two orthogonal dotted lines and are called "eigenvec-

tors" of the matrix A; they conserve their direction under action of the 

matrix A, but their lengths are scaled with factors λi, which are called 

“eigenvalues” of the matrix A (each eigenvalue corresponds to its own 

direction of eigenvectors). 

 

 

 

 

Fig. 6.1. Illustration of actions of the matrix A on vectors [x, y] (from 

[Zharov, 2002]) 

Еасh basis unit of 2n-hyperbolic numbers is represented by a corre-

sponding symmetric (2n*2n)-matrix, which is an orthogonal matrix and 

has its own set of orthogonal eigenvectors. This orthogonal set is a cor-

responding vector basis of 2n-dimensional space. For example in the 

case of any 2-dimensional hyperbolic number a*j0 +b*j1 (Fig. 2.4) its 

real component aj0 is presented by the matrix a*[1, 0; 0 1], which has 

two orthogonal eigenvectors [1, 0] and   [0, 1] independently on value 

of the coefficient a (a  0). This pair of eigenvectors defines the first 

vector basis of the 2-dimensional space of existance of hyperbolic 

numbers. The        imaginary term bj1 is presented by the matrix b*[0, 

1; 1, 0] (Fig. 2.4), which has another pair of orthogonal eigenvectors [-

2-0.5, 2-0.5], [2-0.5, 2-0.5] independently on value of the coefficient b (b  

0). This pair of eigenvectors defines the second vector basis of the con-

sidered             2-dimensional space. In other words, the pairs of eigen-

vectors are determined only by basis units j0 and j1. These two pairs of 

eigenvector bases can be considered as a two-term vector alphabet of 

basis units of hyperbolic numbers in case of 2-dimensional space.  

A similar situation is true for cases of other 2n-dimensional hyperbol-

ic numbers and        eigenvectors of their matrix representations. For 

example, in the case of 4-dimensional      hyperbolic numbers ae0 + 
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b*e1 + c*e2 + d*e3, matrix representations of their basis units (see Fig. 

2.5) have the following eigenvectors:  

• The (4*4)-matrix [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1] rep-

resenting the real unit e0 has 4 eigenvectors [1, 0, 0, 0], [0, 1, 0, 

0], [0, 0, 1, 0], [0, 0, 0, 1]; 

• The (4*4)-matrix [0, 1, 0 0; 1, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0] rep-

resenting the first           imaginary unit e1 has 4 eigenvectors [-

2-0.5, 2-0.5, 0, 0], [0, 0, -2-0.5, 2-0.5],                       [0, 0, 2-0.5, 2-0.5], 

[2-0.5, 2-0.5, 0, 0]; 

• The (4*4)-matrix [0, 0, 1, 0; 0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 0] rep-

resenting the second imaginary unit e2 has 4 eigenvectors [-2-0.5, 

0, 2-0.5, 0], [0, 2-0.5, 0, -2-0.5],                    [0, 2-0.5, 0, 2-0.5], [-2-0.5, 

0, -2-0.5, 0]; 

• The (4*4)-matrix [0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0, 0; 1, 0, 0, 0] rep-

resenting the third    imaginary unit e3 has 4 eigenvectors [0, -2-

0.5, 2-0.5, 0], [2-0.5, 0, 0, -2-0.5],                       [2-0.5, 0, 0, 2-0.5], [0, 

2-0.5, 2-0.5, 0]. 

Correspondingly in the case of 4-dimensional hyperbolic numbers 

and their space, the       4-term eigenvector alphabet of their 4 basis 

units exists. In a general case of 2n-dimensional hyperbolic numbers, 

the 2n-term eigenvector alphabet of their 2n basis units exists. Each 

member of such alphabet is a set of 2n orthogonal vectors. The author 

briefly calls such alphabets of eigenvector bases of matrix 

representations of basis units of 2n-dimensional hyperbolic numbers 

as «hyperbolic eigenvector alphabets» or simply «hyper-alphabets». 

Here the prefix "hyper" is the beginning of the word "hyperbolic" and 

its use is additionally justified by the fact that each member of such 

hyper-alphabet contains in itself 2n eigenvectors, each of which can be 

considered – in special cases - as a member of another alphabet  of the 

lower level. 

Any transition from one such eigenvector basis into another (that is 

a transition of one member of  such a hyper-alphabet into another) is 

carried out by means of an orthogonal matrix (orthogonal operator), 

that is, a real unitary matrix (previously, the structural connection of 

DNA alphabets with orthogonal matrices was shown by the author in 

[Petoukhov, 2018a]; unitary operators play a great role in quantum 

mechanics and quantum computing; for example, all calculations in 

quantum computers are based on unitary operators). Orthogonal 

operators preserve the space metric and define transformations of 
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proper and improper rotations. Any sequence of basis units (or their 

sums) of 2n-dimensional hyperbolic numbers corresponds to a certain 

sequence of eigenvector bases of these units, and also to a sequence of 

orthogonal matrices transforming successively these bases. Such 

algebraic sequences can be used for transmitting information. Taking 

into account some results of his previous published studies, the author 

supposes that genetic sequences are related with such algebraic 

sequences. 

Moreover, the author puts forward the hypothesis that alphabets of 

eigenvectors of matrix representations of basis units of 2n-dimensional 

hyperbolic numbers play a key role in transmitting biological infor-

mation and that they can be considered as a foundation of        coding 

information at different levels of biological organization. The 

corresponding languages using such alphabets define many inherited 

phenomenological structures in biology including molecular-genetic 

structures.  

As known, the principle of transmitting information in the form of 

certain texts composed on the basis of certain “alphabets” is widely 

used in living organisms: genetic information is recorded in DNA 

molecules in the form of texts based on the DNA alphabet; music is a 

sequence of sound frequencies of one or another musical scale (that is, 

the "alphabet" of note sound frequencies of one octave); literary texts 

are written on the basis of literary alphabets, etc. The author believes 

that various alphabets and texts in these bioinformational fields can be 

effectively modeled and studied on the basis of the presented hidden 

algebraic alphabets as their joint algebraic foundation. This approach 

is connected with the theme of a  «grammar of biology», which term 

was introduced by E.Chargaff in the title of his article on DNA 

peculiarities «Preface to a Grammar of Biology» [Chargaff, 1971] 

(see also the book [Yamagishi, 2017]).  

Since alphabets are used as foundations of corresponding 

languages, each algebraic hyper-alphabet in 2n-dimensional spaces 

with a concrete number n can be considered as a foundation of a 

corresponding algebraic language. From this point of view, many such 

algebraic languages using these hyper-alphabets exist in biology. 

7        Quint ratios in DNA parameters and musical harmony  
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As known, thoughts about the key significance of musical harmony 

in the organization of the world exist from ancient time. For example, 

one can quote here a classical work of     Chinese literature “Spring and 

Autumn” by Lu Bu We about the fundamental role of music and num-

bers 3 and 2 as numbers of Heaven and Earth: “The origins of music lie 

far back in the past. Music arises from Measure and is rooted in the 

great Oneness. … Music is founded on the harmony between Heaven 

and Earth” (this citation is taken from the book [Hesse, 2002]. In An-

cient China the ratio 3/2, traditionally termed as the quint ratio (or the 

pure     perfect fifth), was used as the fundament of quint music scales. 

After Ancient Chinese,     Pythagoreans also considered numbers 2 and 

3 as the female and male numbers (or Yin and Yang numbers), which 

can give birth to new musical tones in their interconnection. Ancient 

Greeks attached an extraordinary significance to search of the quint 3:2 

in natural systems because of their thoughts about musical harmony in 

the organization of the world. For example, Archimedes considered as 

the best result of his life a detection of the quint 3/2 between volumes 

and surfaces of a cylinder and a sphere entered in it.  

Science has been dealing with the physiological mechanisms of mu-

sic perception for a long time [Weinberger, 2004]. There is no special-

ized center of music in the human brain, a sense of love for music can 

be considered dispersed throughout the body, similar to the        disper-

sion of genetic DNA molecules throughout all of its cells. More than 30 

thousand years ago, long before the advent of arithmetic, our ancestors 

already played stone flutes and bone harps. For example, the bone flute 

found in France is at least 32 thousand years old. The      enjoyment of 

music is usually explained by the fact that it gives rise to emotions and 

feelings. Aristotle tried to understand how rhythms and melodies, being 

only sounds, resemble states of mind. Available data indicate that our 

affinity for music and musical creativity is biological in nature and the 

sense of musical harmony is based on innate mechanisms. Therefore, 

one should look for a connection between the genetic system and musi-

cal harmony. 

       For Europeans the idea of musical harmony is basically connect-

ed with the name      Pythagoras. The Pythagorean musical scales, 

which are based on the quint ratio 3/2, played the main role in the Py-

thagorean’s doctrine about a cosmic meaning of musical harmony. Fig. 

7.1 shows the known interconnection of sound frequencies of notes of 
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Pythagorean 7-stages scale (a heptatonic scale) on the basis of the ratio 

3/2 when notes are spaced in the                appropriate octaves.  
 

fa (F) do (C) sol (G) re (D1) la (A1) mi (E2) si (B2) 

87 130 196 293 440 660 990 

(3/2)-3 (3/2)-2 (3/2)-1 (3/2)0 (3/2)1 (3/2)2 (3/2)3 
 

Fig. 7.1. The quint sequence of the 7 notes of the Pythagorean musical 

scale is presented. The upper row shows the notes. The second row 

shows their frequencies. The third row shows the ratios between the 

frequencies of these notes to the frequency 293 Hz of the note    re (D1). 

The designation of notes is given on Helmholtz system. Values of fre-

quencies are                 approximated to integers.       
 

Pythagoras created the mathematical foundations of ancient Greek 

music, borrowing in a certian degree some ancient knowledge on musi-

cal harmony. His theory used the discovery that the frequency of a vi-

brating string is inversely proportional to its length and that musical 

consonances can be represented by the ratios of small integer numbers, 

first of all the octave ratio 2:1 and the quint ratio 3:2. These ideas be-

came the basic fundamental ones of all music theory from antiquity to 

even modern times. For most Europeans from antiquity, quint scales in 

music are connected with this Pythagorean mathematical theory of mu-

sical harmony and with divisions of vibrating strings in the quint ratio 

3:2.  

In a general case, the Pythagorean scale is any scale, which can be 

constructed from only quint ratios 3:2 and octaves 2:1 [Sethares, 2005, 

p. 163]. One of known Pythagorean scales is a pentatonical scale, 

which is a five-stages music scale, all the sounds of which can be   ar-

ranged in quint ratios. Its example is the set of the following 5 notes 

with their sound     frequencies from Fig. 7.1: do(C)-sol(G)-re(D1)-

la(A1)-mi(E2) or respectedly 130-196-293-440-660 Hz. Other examples 

of Pythagorean scales are tetratonic and tritonic scales, which are corre-

spondingly 4-stages and 3-stages music scales, all the sounds of which 

can be      arranged by the quint ratio, for instance, 130-196-293-440 Hz 

for the tetratonic scale and 130-196-293 Hz for the tritonic scale. 

The historical fact is that these Pythagorean musical scales on the ba-

sis of the quint ratio were used by different civilisations around the 

world long before Pythagoras without knowledge of any mathematical 
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laws [Apel, 1969; Day-O'Connell, 2007; Christidis, Arapopoulou, 

Christi, 2007; Olsen, Sheehy, 1998; Todd Titon, 1996]. For example, 

the pentatonical scale is the foundation of traditional music of the 

Chinese, Vietnamese, Mongols, Turkic peoples (Bashkirs, Tatars, 

Chuvashes, etc.), the Inca Empire and the peoples of the South Andes 

in general. Pentatonics is also found in European musical folklore and 

in the oldest layers of the Russian folk song (especially in the so-called 

calendar ritual songs). Tetratonic music was noted as common in Poly-

nesia and Melanesia. Tetratonic scales were known for example among 

the Plains Indians, the Arapaho, Blackfoot, Crow, Omaha, Kiowa, 

Pawnee, Sioux, some Plateau tribes, the Creek Indians, and in the Great 

Basin region among the Washo, Ute, Paiute, and Shoshone. In the 

Southwest, the Navajo people also largely used the pentatonic and tet-

ratonic, occasionally also tritonic scales. Tetratonic, as well as tritonic 

scales, were commonly used by the tribal peoples of India, such as the 

Juang and Bhuyan of Orissa state [Sudhibhushan Bhattacharya, 1968]. 

Tetratonic scales are generally associated with prehistoric music 

[Baines, 1991].  

G.Leibniz declared that music is arithmetic of soul, which computes 

without being aware of it. But what is there in living organisms that 

determines the special attraction of musical scales on the basis of the 

quint ratio 3/2 for representatives of various civilizations and epochs? 

A possible answer lies in the structural features of DNA molecules that 

are carriers of genetic information in humans and other living organ-

isms. The author has paid attention to the fact that the parametric struc-

ture of DNA molecules is connected in many ways with the quint ratio 

3/2 and with numbers 3 and 2 at various levels of their parametric or-

ganization [Petoukhov, 2008; Petoukhov, He, 2010]. Let us briefly say 

now about this relation between the musical harmony and structures of 

genetic molecules. 

Molecules of heredity - DNA and RNA – contain sequences of 4 

“letters” or nucleobases: adenine (A), cytosine (C), guanine (G), thy-

mine (T) (or uracil U in RNA). Letters A-T(U) and C-G form comple-

mentary pairs with 2 and 3 hydrogen bonds in them, respectively. From 

the standpoint of its sequence of two and three hydrogen bonds, each 

DNA molecule is a long chain of numbers 2 and 3 of a type 32232332 

.... 

    The genetic code encodes sequences of 20 amino acids in proteins by 

means of 64 triplets (three-letter words) that represent all possible com-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints201908.0284.v4

https://doi.org/10.20944/preprints201908.0284.v4


30 

binations of these four letters (ATC, TTA, ...). Since A = T = 2, C = G 

= 3, each triplet has a numeric representation as a product of number of 

hydrogen bonds of its constituent letters. For example, the triplet ACT 

is               represented by number 2*3*2 = 12. Each of 64 triplets is 

represented by one of such numbers of hydrogen bonds 23=8, 22*3=12, 

2*32=18, 33=27, the pairwise relations between which are equal to the 

quint 3/2 in varying integer degrees (by analogy with music tetratonic 

scales), for example, 27/8 = (3/2)3, 18/8 = (3/2)2, etc.  

Under considering pairs of adjacent triplets, then DNA molecule ap-

pears as a quint         sequence of 7 kinds of numbers of hydrogen 

bonds with the following numeric representation: 26=64, 25*3=96, 

24*32=144, 23*33=216, 22*34=324, 2*35=486, 36=729.       Pairwise 

ratios in this series of numbers are equal to the quint 3/2 in the same 

powers as in the Pythagoras 7-stage scale in Fig. 7.1. If, for example, 

the frequency of 87 Hz of the note "F" is compared with the first num-

ber 64 of this series, then all other numbers of this series will corre-

spond precisely to the other frequencies of the Pythagoras scale. Then 

any sequence of triplets (eg, insulin gene GGC-ATC-GTT-GAA-CAG-

TGT- ...) can be associated uniquely with a sequence of notes of Py-

thagoras 7-stages scale (figuratively speaking, we have “music of genes 

in the Pythagoras scale”). 

Accordingly, each DNA molecule as a chain of hydrogen bonds is 

characterized by its own sequences of the quint 3/2 in different integer 

degrees. By analogy with quint musical scales, depending on the cho-

sen lengths of nucleobase fragments of DNA, we have – on the basis of 

considered hydrogen bonds - various systems for transmitting infor-

mation signals with         quint-power relations between signals. 

The quint ratios are realized in DNA not only for the hydrogen bonds 

of complementary nucleobases, but also for several other parameters, 

such as sums of atoms in the rings of     purines and pyrimidines (num-

bers 9 and 6 with their ratio 3/2), or sums of protons in the rings of 

complementary nitrogenous bases (numbers 60 and 40 with their ratio 

3/2), and      others. Chains of these parameters in DNA form their own 

sequences of quint ratios, which are similar to sequences of note fre-

quencies in quint scales of music. In other words, Nature   created DNA 

as a plexus of various sequences of quint ratios (“a quint polyphony of 

DNA”). The harmony of the parametric organization of the genetic sys-

tem is akin to the musical  harmony of the Pythagorean scales. 
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As it was reminded above, over the centuries from Ancient China to 

antiquity, the numbers 2 and 3 were considered respectively as female 

and male numbers (that is as Yin and Yang numbers) forming the im-

portant pair. The author proposes their consideration not as separate 

one-dimensional numbers but as two separate parts of two-dimensional 

number. Mathematics knows 3 main kinds of two-dimensional num-

bers: complex numbers, hyperbolic (or double) numbers and dual num-

bers [Kantor, Solodovnikov, 1989]. Taking into account a set of our 

results on relations of genetic system and inherited physiological phe-

nomena with hyperbolic numbers, we choice namely hyperbolic num-

bers for a presentation of these historically known numbers 3 and 2 as 

two interrelated parts of single two-dimensional number             G2 = 

3+2j, where j is imaginary unit with its features j ≠ ±1, j2 = +1; the in-

dex 2 refers                           2-dimensionality of the number G2. This 

hyperbolic number can be expressed as a point or a vector on a hyper-

bolic plane with Cartesian coordinates, in which the axis of abcissus is 

considered the axis of Yang-numbers, and the axis of ordinates is con-

sidered the axis of            Yin-numbers. Fig. 7.2 shows this coordinate 

system and also the matrix form of presentation of hyperbolic numbers 

with its decomposition into 2 sparse matrices playing the role of real 

and imaginary basis units of hyperbolic numbers. This matrix [3, 2; 2, 

3] is conditionally termed “quint matrix” since its components 3 and 2 

give the ratio 3/2. (The same quint matrix         [3, 2; 2, 3] appears un-

der a consideration of DNA alphabet C, A, T, G and its three binary 

sub-alphabets [Petoukhov, 2008, Chapter 2;  Petoukhov, He, 2010, 

Chapter 4]).  

 

 

 

 

 

G2 = 

 

3, 2 

2, 3 

 

 

= 3* 

 

1, 0 

0, 1 

 

 

+ 2* 

 

0, 1 

1, 0 

 

 

; 
 

 

Fig. 7.2. The graphical and matrix presentation of 2-dimensional hy-

perbolic number            G2 = 3 + 2j1 (by analogy with Fig. 2.4). The 

first sparse matrix [1, 0; 0, 1] is the identity    matrix, the second sparse 

matrix [0, 1; 1, 0] presents imaginary unit j1 having the property                   

[0, 1; 1, 0]2 = [1, 0; 0, 1]. The multiplication table of these sparse ma-

trices, where 1 refers the matrix [1, 0; 0, 1], is also shown at right.  
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8     Applications of matrix representations of 2n-dimensional hy-

perbolic numbers in  

        musicology  

 

In the Introduction to this article, the important role of hypercomplex 

numbers in many fields of science has already been mentioned. This 

Section is devoted to the author’s proposal to use in musicology 2n-

dimensional hyperbolic numbers and their matrix representations to 

study the laws of harmony of the development of themes in musical 

works (or in other words, the harmony of the plasticity of a musical 

work). As is known in musicology, the musical theme of a musical 

work is the basis of its development, the core of the formation of its 

form. Sometimes a theme is defined as any element, motive, or small 

musical construction, which is the basis for the further development of 

musical material. The structure of musical works has a clear logic of 

construction. Some masterpieces of world classics are literally calculat-

ed mathematically. It is no accident that in Ancient Greece, music was 

included in a number of mathematical sciences. 

In musicology, to date, only one-dimensional numbers are used to 

express sound frequencies and durations of individual notes. The crea-

tive possibilities of the language of multidimensional numbers are just 

waiting for their use in musicology. Music acts on the listener as an 

operator, changing his state. And this operator’s action is determined 

not by individual notes, but by harmony in the sequence of elements of 

a musical work (“harmony of plasticity” in music). How to mathemati-

cally explore this harmony of plasticity? 

For this, the author proposes to use  2n-dimensional hyperbolic 

numbers and their matrix representations, which are related with the 

alphabetic structures of genetic DNA molecules and many inherited 

physiological structures. The proposed use allows us to represent the 

sequence of elements of a musical work in the form of:   

• a sequence of vectors (or points) of the vector metric space of 

2n-dimensional numbers;  

• a sequence of corresponding matrix representations (or matrix 

operators) of                2n-dimensional numbers. 

 

Let us explain the scheme of this approach using a simplified example 

of a conditional musical fragment written on the basis of a musical 

scale having only three notes, for example,        C (do1), E (mi1), G 
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(sol1) of the first octave (Fig. 8.1). Sound frequencies of these notes 

will be expressed in relative values as usual for the piano keyboard with 

its equal-tempered scale:       1, 24/12, 27/12. Durations of notes are tradi-

tionally given by the values 1, 2-1, 2-2, 2-3, 2-4, ... . 

 

 
 

Fig. 8.1. A conditional musical fragment written on the basis of the 

musical scale having only  

               three kinds of musical notes. 

 

 In our approach, for the vector analysis of this musical frag-

ment, it is enough to use  4-dimensional vectors  Ž = a0ē0 + a1ē1 + a2ē2 + 

a3ē3 of 4-dimensional hyperbolic numbers. In the Cartesian coordinate 

system of the corresponding 4-dimensional space, we will consider ē0, 

ē1, ē2, ē3 as unit vectors of 4 coordinate axes. In this case, the note C 

with its relative frequency 1 is represented by the unit vector ē1 of one 

coordinate axis, the note E with its         frequency 24/12 - by the vector 

24/12ē2 of the second axis, the note G with its frequency 27/12 - by the 

vector 27/12ē3 of the third axis. Durations 1, 2-1, 2-2, 2-3, ... are represent-

ed by vectors of the fourth axis: ē0, 2
-1ē0, 2

-2ē0, 2
-3ē0, etc. 

In elements of musical works, the pitch of each note is not separable 

from its duration. In our approach, this symbiosis of “frequency + dura-

tion” of a musical element is represented by the sum of the named vec-

tors. We also present chords as the sum of the vectors of their sound 

components and duration. Correspondingly four musical measures of 

the presented fragment (Fig. 8.1) are been recording as a sequence of 

vectors of a given 4-dimensional discrete space (Fig. 8.2): 

 

 
 

Fig. 8.2. The representation of the sequence of elements of the musical 

fragments from            

               Fig. 8.1 as the sequence of their vectors. 
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But for any two vectors, there is a difference vector between them. 

Therefore, in the          described approach, the sequence of musical 

elements appears additionally as a sequence of                            4-

dimensional difference vectors of transition from the vector of the pre-

vious musical element to the vector of the next musical element. Each 

such transition vector has a length and a conjugation angle with a sub-

sequent transition vector. A metric analysis of their sequence allows 

you to study the harmony of the plasticity of a musical work, taking 

into account the symbiosis of its tonal and temporal organization. Mu-

sical works become the subject of metric vector analysis.  

Such a vector analysis is possible not only for sequences of separate 

elements in musical works, but also for sequences of musical measures, 

periods, etc. This vector approach is suitable for musical works written 

in a wide variety of musical systems, for example, in 7-stage Pythago-

rean scale, 12-stages tempered musical scale and in any microchromatic 

scales. The difference is only in the choice of the corresponding 2n-

dimensional vectors for such vector analysis. For example, for a 7-stage 

system, it is sufficient to use the vectors of 8-dimensional hyperbolic 

numbers (seven coordinates are assigned to its 7 stages and one coordi-

nate to durations); for a 12-stage system one can use vectors of 16-

dimensional hyperbolic numbers (you assign 12 coordinates to its 12 

stages and one coordinate to durations, taking zero values for other 3 

coordinates). 

In the case of using the described multi-dimensional numbers, cardi-

nally new mathematical personages come into play in musicology: ma-

trix operators, orthogonal bases of multidimensional spaces and or-

thogonal transformations of such bases related with hyper-alphabets 

described above in Section 6. These new personages allow significantly 

encreasing analytical possibilities in musicology by means of those 

mathematical tools, which are effectively used in many scientific and 

technology fields. 

Now let us turn to using in musicology bisymmetric (2n*2n)-

matrices, which represent 2n-dimensional hyperbolic numbers (see 

above the Section 2). In this case, a musical work is considered as a 

sequence of matrix operators. For example, a 4-dimensional hyperbolic 

number a0ē0 + a1ē1 + a2ē2 + a3ē3 is represented by the (4*4)-matrix, 

which is the sum of 4 sparse bisymmetric matrices representing 4 basic 

units e0, e1, e2, e3 (Fig. 8.3): 
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Fig. 8.3. The decomposition of the matrix representation of 4-

dimensional hyperbolic number a0ē0 + a1ē1 + a2ē2 + a3ē3. 

 

Under analyzing this musical fragment, one can replace the vector 

representations of the basic units e0, e1, e2, e3 (in Fig. 8.2) with their 

matrix representations (from Fig. 8.3). In this case you pass to a repre-

sentation of the musical fragment as a sequence of matrices (matrix 

operators). This introduces into musicology the ideology of matrix 

analysis from physics, where the action of the matrix operator on the 

state vector of a system determines a change in its state vector, etc.  

Each of bisymmetric (4*4)-matrices, representing e0, e1, e2, e3 or 

their linear combinations, has a set of 4 orthogonal eigenvectors (a 

“hedgehog” set of vectors). Therefore, this musical fragment has a con-

ditional artistic representation in the form of a sequence of “hedgehogs” 

carrying such 4 orthogonal vectors (Fig. 8.4): 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4. The artistic image of the sequence of sets of 4 orthogonal 

eigenvectors of    

               bisymmetric matrices, which represent elements of the mu-

sical fragment. 

 

The transition from a set of orthogonal eigenvectors of a matrix rep-

resenting some element of a given musical fragment to a set of orthog-

onal eigenvectors of a matrix representing a subsequent musical ele-

ment is determined by a new matrix of corresponding orthogonal trans-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints201908.0284.v4

https://doi.org/10.20944/preprints201908.0284.v4


36 

formation. Therefore, a sequence of elements of a musical play corre-

sponds to a sequence of matrices of orthogonal transformations, which 

transform the said sets of orthogonal eigenvectors into each other. The 

matrix of each of these orthogonal transformations, in turn, has its own 

set of orthogonal eigenvectors. Transitions between orthogonal sets of 

eigenvectors of neighboring matrices of the named sequence are again 

determined by matrices of some orthogonal transformations, which is 

accompanied by the appearance of a new - shortened - sequence of ma-

trices of orthogonal transformations with their orthogonal sets of eigen-

vectors. As a result of repeating this procedure, for each new sequence 

of matrices of orthogonal transformations that arises, a tree of orthogo-

nal transformations arises (Fig. 8.5). Since orthogonal transformations 

represent proper and improper rotations in appropriate vector spaces, 

the development of a musical play from element to element can be ar-

tistically imaged as the spinning of dance couples in such multidimen-

sional space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.5. The artistic image of the tree, whose levels show sequences 

of sets of                        

               4 orthogonal eigenvectors of matrices of orthogonal trans-

formations, which are   

               hiddenly related with the sequence of elements of the musi-

cal fragment. 

 

Apparently, ingenious composers intuitively feel the algebraic tonal-

temporal harmony of music. Not without reason G.Leibniz argued that 
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music is mathematics of soul, which        computes without being aware 

of it. The deep interest to numerology by I.S. Bach is known, in con-

nection with which some musicologists study the connection of his 

works with numerology.  

A special place in the theme “Music and Mathematics” is occupied 

by the famous book “Bead Game” by H. Hesse. This book deeply 

speculates on time, when «the analytical study of musical values had 

led to the reduction of musical events to physical and mathematical 

formulas» and when there were invented «the principles of a new lan-

guage, a language of  symbols and formulas, in which mathematics and 

music played an equal part, so that it became  possible to combine as-

tronomical and musical formulas, to reduce mathematics and music to 

a  common denominator». At its core, the “bead game” is the art of 

composing a metatext, a synthesis of all branches of art into one, uni-

versal art. 

Described in this article searches of an adequate system of multidi-

mensional numbers and matrix operators for the analysis and synthesis 

of musical works can be considered as a continuation of thoughts and 

beliefs of many musicians and thinkers about the connection between 

music and mathematics (with an author’s addition of modern 

knowledge on algebraic features of the genetic coding in human and 

other living organisms). We believe that genetic DNA texts are those 

metatexts, in the image of which biological texts of various natures are 

built. This article jointly with the article [Petoukhov, 2019c] show the 

structural connections of genetic texts with 2n-dimensional hyperbolic 

numbers. Taking all of these materials into account, the author propos-

es to look at music as a bead game with its basis on hyperbolic numbers 

and corresponding matrix operators. 

 

    

    9 Advantages of matrix representations of hyperbolic num-

bers 

 

The matrix forms of presentation of 2n-dimensional hyperbolic num-

bers deserve a special attention since they have the following useful 

properties:  

1. This presentation form is based on symmetric matrices, which 

are closely related with the theory of resonances of oscillatory 

systems, having many degrees of freedom, [Petoukhov, 2015, 
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2016]. Symmetrical matrices are related with the theory of reso-

nance of L. Pauling whose book [Pauling, 1940] about this the-

ory in structural chemistry is the most quoted among scientific 

books of the XX century. The actual molecule, as Pauling pro-

posed, is a sort of hybrid, a structure that resonates   between 

the two alternative extremes; and whenever there is a resonance 

between the two forms, the structure is stabilized. Pauling 

claimed that living organisms are chemical in nature, and reso-

nances in their molecules should be very essential for   biologi-

cal phenomena. In general, quantum mechanics was emerged 

and developed largely as a science about resonances in mi-

croworld. Thus, the concept of system-resonance genetics (or 

spectral-resonance genetics) creates models of genetic phenom-

ena on the same language of frequencies and resonances, on 

which models in quantum mechanics are based. In addition to 

this, it uses the same matrix language, on which “matrix me-

chanics” of Werner Heisenberg has been created: it was histori-

cally the first form of quantum mechanics, which retains its val-

ue to this day. 

2. These symmetric matrices are Hermitian (self-adjoint) matrices, 

which play an       important role in quantum mechanics. By this 

reason they can be used in development of applications of ideas 

and methods of quantum mechanics and quantum informatics in 

the field of bioinformatics and algebraic biology. In this con-

nection some of        author’s works [Petoukhov, 2018a,b, 

2019a,b; Petoukhov, Petukhova, Svirin, 2019] are devoted to 

using formalisms of quantum mechanics and quantum informat-

ics in bioinformatics and algebraic biology including analysis of 

long genetic and and      literary texts. For example, in long 

DNA sequences of nucleobases, where           complementary 

nucleobases C and G (A and T) are linked by 3 (2) hydrogen 

bonds, 2n-dimensional hyperbolic numbers [%3, %2; %2, %3](n) 

(where %3 and %2 denote percentages of numbers 3 and 2 of 

hydrogen bonds in the analyzed DNA sequence;    n = 2, 3, 4, 

5) effectively models percentages of monoplets, doublets, tri-

plets, tetraplets and pentaplets of these numbers 3 and 2 of hy-

drogen bonds [Petoukhov, 2018].  

3. These symmetric matrices can be interpreted as metric tensors, 

which are main        invariants in Riemanian geometry and 
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which can be used in the theory of                  morpho-resonance 

morphogenesis [Petoukhov, 2008, 2015, 2016];  

4. These symmetric matrices are related with hyperbolic rotations 

[ch x, sh x; sh x, ch x], which are particular cases of hyperbolic 

numbers and are connected with the theory of biological phyllo-

taxis laws [Bodnar, 1992, 1994; Stakhov, 2009], with problems 

of locomotion control [Smolyaninov, 2000], with the main psy-

chophysical law of       Weber-Fechner (see above and also in 

[Petoukhov, 2016]), with Lorenz                      transformations 

in the special theory of relativity;  

5. These bisymmeric matrices are related with doubly stochastic 

matrices (under an appropriate normalization of bisymmetric 

matrices), whose using for genetics is described below; 

6. These symmetric matrices are related with the theory of solitons 

of sine-Gordon   equation [Petoukhov, 1999, 2008; Petoukhov, 

He, 2009]. Such solitons are the only relativistic type of soli-

tons; they were put forward for the role of the fundamental type 

of solitons of living matter in the book [Petoukhov, 1999]. 

Symmetric matrices possess a wonderful property to express 

resonances [Bellman, 1960; Balonin, 2000]. The expression y = A*S 

models the transmission of a signal S via an acoustic system A, 

represented by a relevant matrix A. If an input signal is a resonant tone, 

then the output signal will repeat it with a precision up to a scale factor 

y = λ*S by analogy with a situation when a musical string sounds in 

unison with the neighboring vibrating string. In the case of a matrix A, 

its number of resonant tones Si corresponds to its size. They are termed 

its eigenvectors, and the scale factors λi with them are termed its 

eigenvalues or, briefly, spectrum A. One of the main tasks of the theory 

of oscillations is a determination of natural frequencies 

(mathematically, eigenvalues of operators) and the natural forms of 

oscillations of bodies. To find all the eigenvalues λi and eigenvectors of 

the matrix A, which are defined by the matrix equation A*s = λ*s, the 

“characteristic equation” of the matrix A is analyzed: det(A − E) = 0, 

where E – the identity matrix (see more in [Petoukhov, 2016]). 

Matrices, which are relevant to the various problems of the theory of 

oscillations, are usually symmetric real matrices [Gladwell, 2004]. 

Such matrices have real eigenvalues and their eigenvectors are 

orthogonal. 
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Symmetric matrices representing hyperbolic numbers are 

simultaneously metric tensors by their structure. Metric tensors are 

main invariants of Riemanian geometry, which can be used for 

modelling inherited curvilinear forms of biological bodies. By 

definition, the metric tensor in the n-dimensional affine space with the 

scalar multiplication introduced is defined by the nondegenerate matrix 

||gij|| under the condition of symmetry gij = gji [Rashevskij, 1964], 

which is satisfied by the structure of bisymmetric matrices of 

hyperbolic numbers. The coordinates gij of the metric tensor are the 

pairwise scalar products of vectors of the frame, on which it is built. If 

we extract the square root from a bisymmetric matrix, we get a square 

matrix whose columns are vectors of this frame. It is interesting that the 

extraction of the square root from quint matrices of 2n-dimensional hy-

perbolic numbers [3, 2; 2, 3](n), which has integer components, get 

square matrices of 2n-dimensional hyperbolic numbers                [φ, φ-1; 

φ-1, φ](n) whose components are irrational numbers of the golden 

section                     φ = (1+50.5)/2 = 1,618… in integer powers; the 

golden section φ is famous in the aesthetics of proportions and 

described by many authors in a series of inherited physiological 

systems [Petoukhov, 2008; Petoukhov, He, 2010]. It means that metric 

tensors, having forms of quint matrices of hyperbolic numbers, are built 

on a frame of "golden" vectors, all components of which are equal to 

the golden sections in integer powers. 

10    2n-dimensional hyperbolic numbers and phenomenologic rules 

of percentages in genetics 

   The author revealed that in some cases it is possible to use 2n-

dimensional hyperbolic numbers and their matrix representations for 

modeling some phenomenological rules in biology, first of all, in 

genetics. In this cases the tensor family of symmetric matrices          

[%S, %W; %W, %S](n) is under consideration, where %S and %W refer 

to percentages of biological realisation of some events denoted by 

symbols S and W (%W+%S=100%).                 

    This tensor family contains matrix representations of 2-dimensional 

hyperbolic numbers %S + %W*j1; of 4-dimensional hyperbolic 

numbers  %S*%S + %S*%W*j1 + %W*%S*j2 + %W*%W*j3; of 8-

dimensional hyperbolic numbers, etc. Expressions like as %S*%S, 

%S*%W, %W*%W can be considered as percentages of realisation of 
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doublets SS, SW, WW in chains of these events. Let us show some 

concrete phenomenologic data. 

Any long DNA sequence contains many millions of nucleotides A, C, 

G, T. For example a DNA filament of the first chromosome of the hu-

man genome contains about 250 millions of these letters. In DNA dou-

ble helixes, nitrogenous bases C-G and A-T form complementary pairs 

by means of 3 and 2 hydrogen bonds (it can be denoted as C=G=3 and 

A=T=2). Correspondingly, any DNA sequence contains a long chain of 

numbers 2 and 3 of hydrogen bonds, for example, 33223223233… . 

We term such number chains of hydrogen bonds as “hydrogen bond 

sequences” (briefly, “hydrogen texts”). The author analysed the proper-

ties of such long hydrogen bond sequences for many different organ-

isms (here the term “long” means DNA sequences containing ≥ 100000 

letters). 

Studying such binary “hydrogen texts” 33223223233… of a 

wide number of various genomes, the author discovered that percent-

ages (or frequencies) of hydrogen monoplets (3, 2), doublets (33, 32, 

23, 22), triplets (333, 332, 323, 322, 233, 232, 223, 222), tetraplets and 

pentaplets in them are subordinated to hidden rules: percentages of 

monoplets (values %3 and %2) are strongly interrelated with percent-

ages of other H-n-plets (n = 2, 3, 4, 5). These interrelations are effec-

tively described by a tensor family of matrices [%3, %2; %2, %3](n) 

representing 2n-dimensional hyperbolic numbers: 

• %3 + %2*j  (when n=1);   

• %3*%3 +%3*%2*e1+%2*%3*e2+%2*%2*e3 (when n=2);  

• etc. 

Fig. 10.1 shows one example of matrices from this tensor family: the 

second tensor power of the percentage matrix [%3, %2; %2, %3](2), 

which represents 4-dimensional hyperbolic  number %3*%3 

+%3*%2*e1+%2*%3*e2+%2*%2*e3. 

 

 

%3, %2 

%2, %3 

(2) 

            

     = 

%3*%3, %3*%2, %2*%3, %2*%2 

%3*%2, %3*%3, %2*%2, %2*%3 

%2*%3, %2*%2, %3*%3, %3*%2 

%2*%2, %2*%3, %3*%2, %3*%3 

 

Fig. 10.1. The second tensor power of the percentage matrix [%3, %2; 

%2, %3] represents 
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              4-dimensional hyperbolic number  

%3*%3*e0+%3*%2*e1+%2*%3*e2+%2*%2*e3. 

 

     As it turned out, coefficients of these hyperbolic numbers effectively 

model percentages of corresponding n-plets in long DNA sequences: 

for example, the value %3*%2 models the percentage of doublets 32, 

and the value %2*%3*%3 models the percentage of triplets 233. 

Knowing only percentages of monoplets %3 and %2, you can predict 

percentages of dozens of hydrogen n-plets in long DNA. 

For an illustration of this statement, Fig. 10.2 shows - in a 

graphical form - an example of phenomenological values of probabili-

ties of all members of alphabets of hydrogen     n-plets (n = 1, 2, 3, 4, 5) 

in the case of the DNA sequence of the first chromosome of the plant 

Arabidopsis thaliana, which contains 30427671 nucleotide pairs. Sim-

ultaneously, Fig. 10.2 shows model values of these percentages as 

components of 2n-dimensional hyperbolic numbers [q, p; p, q](n), where 

q=0,35873552 and p=0,64126448, n = 1, 2, 3, 4, 5. 

 
Percentages 

of 2 monoplets      

(3, 2) 

Percentages 

of 4 doublets 

(33, 32, 23, 22) 

Percentages      

of 8 triplets 

(333, 332, …, 222) 

Percentages                   

of 16 tetraplets 

(3333, 3332, …, 2222) 

Percentages                              

of 32 pentaplets 

(33333, 33332,…, 22222) 

 
q=0,35873552 

p=0,64126448 

  
 

 

 

 

 

 

q=0,35873552 

p=0,64126448 
 

           

[q, p; p, q](2) 

 
               

  [q, p; p, q](3) 
 

       [q, p; p, q](4)  
               [q, p; p, q](5) 

 

Fig. 10.2. The graphic representation of percentages of all kinds of hy-

drogen n-plets (n = 1, 2, 3, 4, 5) in the DNA sequence of the first chro-
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mosome of the plant Arabidopsis thaliana (initial data   relating to this 

chromosome were accessed from 

https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9). Blue points in 

the graphs show phenomenological percentages of n-plets of numbers 

of hydrogen bonds, while red points show model values of these proba-

bilities as components of 2n-dimensional hyperbolic numbers       [q, p; 

p, q](n), where q and p are percentages of hydrogen bonds 3 and 2 in 

this DNA. 

 

Fig. 10.3 shows phenomenological and model values of per-

centages of all members of hydrogen n-plet alphabets (n = 1, 2, 3, 4) for 

the same DNA sequence as in Fig. 10.2. It can be seen that these model 

values reproduce phenomenological values with the level of accuracy, 

which one can see in Fig. 10.2. 
Percentages of hydrogen monoplets 3 and 2 

Reality:                  q = [3] = 0,3587;                  p = [2] = 0,6413 

Probabilities of hydrogen doublets (4 kinds of doublets: 33, 32, 23, 22) 

Reality:   [33] = 0,1198;       [32] = 0,2390;      [23] = 0,2389;      [22] = 

0,4023. 

Model:     [33] = 0,1287;       [32] = 0,2300;      [23] = 0,2300;      [22] = 

0,4112. 

Percentages of hydrogen triplets  

(8 kinds of triplets: 333, 332, 323, 322, 233, 232, 223, 222) 

Reality:   [333]= 0,0385;   [332]= 0,0812;    [323]= 0,0880;    [322]= 

0,1507;  

                [233]= 0,0812;   [232]= 0,1577;    [223]= 0,1514;    [222]= 

0,2512. 

Model:     [333]=0,0462;   [332]=0,0825;    [323]=0,0825;    [322]=0,1475;  

                  [233]=0,0825;   [232]=0,1475;    [223]=0,1475;    [222]=0,2637. 

Percentages of  hydrogen tetraplets 

(16 kinds of tetraplets: 3333, 3332, 3323, 3322, 3233, 3232, 3223, 3222,  

                                     2333, 2332, 2323, 2322, 2233, 2232, 2223, 2222) 

Reality: [3333]=0,0132;  [3332]=0,0253;  [3323]=0,0310;  [3322]=0,0502;  

                [3233]=0,0311;  [3232]=0,0570;  [3223]=0,0601;  

[3222]=0,0906;  

                [2333]=0,0253;  [2332]=0,0560;   [2323]=0,0570;  

[2322]=0,1007;  

                [2233]=0,0502;  [2232]=0,1008;   [2223]=0,0907;  

[2222]=0,1607. 

Model:   [3333]=0,0166;  [3332]=0,0296;   [3323]=0,0296;  
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[3322]=0,0529;  

                [3233]=0,0296;  [3232]=0,0529;   [3223]=0,0529;  

[3222]=0,0946;  

                [2333]=0,0296;  [2332]=0,0529;   [2323]=0,0529;  

[2322]=0,0946;  

                [2233]=0,0529;  [2232]=0,0946;   [2223]=0,0946;  

[2222]=0,1691. 

 

Fig. 10.3. Phenomenological values (in blue color) and model values 

(in red color) of percentages of all kinds of hydrogen n-plets (n = 1, 2, 

3, 4) in the DNA sequence of the first chromosome of Arabidopsis tha-

liana (appropriate graphs are shown in Fig. 10.2; initial data relating to 

this chromosome were accessed from 

https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9). Numbers in 

square brackets refer to percentages of corresponding hydrogen n-plets 

(for example, the symbol [323] refers to the percentage of the hydrogen 

triplet 323 in the hydrogen sequence of this DNA like 322-232-233-

…). All values are rounded to the fourth decimal place. 

 

Similar results have been obtained in our analysis of the plant, 

Arabidopsis thaliana; nematode, Caenorhabditis elegans; fruit fly, 

Drosophila melanogaster; house mouse, Mus musculus; and Homo 

Sapiens, drawing on nuclear chromosome data and DNA sequence data 

obtained from GenBank. 

The author has also calculated percentages of all kinds of n-

plets  (n = 1, 2, 3, 4, 5) in        19 genomes of bacteria and archaea from 

the full list in the article [Rapoport, Trifonov, 2012, p. 2]: “Aquifex ae-

olicus, Acidobacteria bacterium, Bradyrhizobium japonicum, Bacillus 

subtilis, Chlamydia trachomatis, Chromobacterium violaceum, Deha-

lococcoides ethenogenes, Escherichia coli, Flavobacterium psy-

chrophilum, Gloeobacter violaceus, Helicobacter pilory, Methano-

sarcina acetivorans, Nanoarchaeum equitans, Syntrophus aciditrophi-

cus, Streptomyces coelicolor, Sulfolobus solfataricus, Treponema 

denticola, Thermotoga maritima  and Thermus thermophiles”. The cal-

culated sets of these percentages were also modelled on the basis of sets 

of coordinates of appropriate 2n-dimensional hyperbolic numbers              

[q, p; p, q](n). These results confirm that the proposed model approach 

on the basis of             2n-dimensional hyperbolic numbers [q, p; p, q](n) 

can be used to obtain idealized models of percentages of all kinds of n-
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plets in actual long DNA sequences (n = 1, 2, 3, 4, … is much less than 

the length of such sequences). 

The proposed application of 2n-dimensional hyperbolic numbers 

allows the prediction of percentages of all kinds of considered 

hydrogen n-plets in long DNA sequences with a high level of accuracy, 

using knowledge of percentages of only two numbers - 3 and 2 – of 

hydrogen bonds in the DNA sequence. 

 

 

11 2n-dimensional hyperbolic numbers and phenomenologic 

rules of percentages in long literary texts         

Impressive recent discoveries in genetics have borrowed terminology 

from linguistics and the theory of communications. As experts in mo-

lecular genetics note, “the more we understand laws of coding of the 

genetic information, the more strongly we are surprised by their simi-

larity to principles of linguistics of human and computer languages” 

[Ratner, 2002, p. 203].  

    Leading experts in the field of structural linguistics have long be-

lieved that languages of human dialogue were formed as a continuation 

of genetic language or, are, at least, closely connected with genetic lan-

guage. Analogies between systems of genetic and linguistic information 

are of wide and important scientific interest, which this article briefly 

illustrates. Some relevant concepts will be referred to by R. Jakobson 

[1987, 1999], one of the most famous lingusitics experts and author of 

an in-depth theory of binary lingustic oppositions. Jointly with F. Ja-

cob, Nobel Prize winner in molecular genetics, and with other linguistic 

specialists holding the same views, Jakobson proposed that genetic lan-

guage is the structural basis of linguistic languages [Jacob et al., 1968; 

Jakobson, 1985]. In particular, according to Jakobson, all relations 

among linguistic phonemes are decomposed into a series of binary op-

positions of elementary differential attributes (or traits). By analogy, 

the set of four letters of the genetic alphabet contains the three binary 

sub-alphabets, which allow creating new mathematical models in mo-

lecular genetics [Petoukhov, 2017, 2018a]. As Jakobson wrote, the ge-

netic code system is the basic simulator, which underlies all verbal 

codes of human languages. “The heredity in itself is the fundamental 

form of communications … Perhaps, the bases of language structures, 
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which are imposed on molecular communications, have been con-

structed by its structural principles directly” [Jakobson, 1985, p. 396]. 

These questions had arisen to Jakobson as consequence of his long-

term research into the connections between linguistics, biology and 

physics. Such connections were considered at a united seminar of phys-

icists and linguists, organized by Niels Bohr and Roman Jakobson, 

jointly, at the Massachusetts Institute of Technology. 

“Jakobson reveals distinctly a binary opposition of sound attributes 

as underlying each system of phonemes... The subject of phonology has 

changed by him: the phonology considered phonemes (as the main sub-

ject) earlier, but now Jakobson has offered that distinctive attributes 

should be considered as “quantums” (or elementary units of lan-

guage)… Jakobson was interested especially in the general analogies 

of language structures with the genetic code, and he considered these 

analogies as indubitable” [Ivanov, 1985]. We are reminded also of the 

title of the monograph "On the Yin and Yang nature of language" 

[Bailey, 1982], which is characteristic for the theme of binary 

oppositions in linguistics.  

F. Jacob, Nobel Prize winner in molecular genetics, also considered 

the relationship between genetics and linguistic languages in connec-

tion with the principle of binary oppositions, systematically described 

in the Ancient Chinese book “I-Ching”. He wrote: « C’est peut-être I 

Ching qu’il faudrait étudier pour saisir les relations entre hérédité et 

langage» (In English: To understand the relationship between genetics 

and language, perhaps it would be necessary to study the Ancient Chi-

nese “I Ching”) [Jacob, 1974, p. 205]. 

This connection between linguistics and the genetic code interests 

many researchers, and some even perceive linguistic language as a liv-

ing organism. In his book, “Linguistic Genetics”, Makovsky says: "A 

look at language as a living organism, subject to the natural laws of 

nature,, ascends to a deep antiquity … Research of a nature, of disposi-

tion and of reasons of isomorphism between genetic and linguistic reg-

ularities is one of the most important fundamental problems for linguis-

tics of our time" [Makovsky, 1992]. 

In this Section the author describes the structural analogies be-

tween long DNA-‘texts’ and long literary works in Russian. The repre-

sented analysis of long literary Russian texts uses binary-oppositional 

phonetic features of the Russian alphabet, whose importances were ac-
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cented by R.Jakobson and which have similarities with binary-

oppositional features of genetic lanquage. 

The DNA alphabet of nucleobases A, C, G and T has the binary-

oppositional structure in accordance with their molecular traits (Fig. 

11.1 left): it contains the sub-alphabet of purines (A, G), each of which 

has two rings in its molecular structure, and the sub-alphabet of pyrim-

idines (T, C), each of which has only one ring. Each of these sub-

alphabets possesses its own binary-oppositional structure since it con-

tains two sub-sub-alphabets defined by 2 or 3 hydrogen bonds: in the 

sub-alphabet of purines, adenine A has 2 hydrogen bonds and guanine 

G has 3 hydrogen bonds; in the sub-alphabet of pyrimidines, cytosine C 

has 3 hydrogen bonds and thymine T has 2 hydrogen bonds (Fig. 11. 1 

right). 

 

 

 

 
 

Fig. 11.1. Left: the DNA alphabet of 4 nucleobases A, C, G and T. 

Right: the scheme of         

                 binary-oppositional structure of this DNA alphabet. 

    

The Russian alphabet has also a binary-oppositional phonetic 

structure since it has two binary-oppositional sub-alphabets: the sub-

alphabet of vowels and the sub-alphabet of consonants. Each of these 

sub-alphabets also has its own binary-oppositional structure: the sub-

alphabet of vowels consists of the sub-sub-alphabet of long vowels and 

the sub-sub-alphabet of short (or iotated) vowels; the sub-alphabet of 

consonants consists of the sub-sub-alphabet of voiced consonants and 

the sub-sub-alphabet of deaf consonants (Fig. 11.2 right). The soft sign 

“ь” and the hard sign “ъ” in the Russian alphabet do not convey any 
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sound and therefore they are not taken into account in its phonologic 

structure. 

  

 

Fig. 11.2. The similarity of binary-oppositional structures of the DNA 

alphabet (left) and the    alphabet of Russian lanquage (right). 

 

For analyzing long literary Russian texts, let us introduce two cor-

responding classes of equivalency for letters of the Russian alphabet (in 

Fig. 11.2 the first class is marked by      yellow and the second class is 

marked by green): 

1. The first class of equivalency combines all short (iotated) 

vowels and all deaf consonants: e, ё, ю, я, п, ф, к, т, ш, с, х, 

ц, ч, щ. We denote all the 14 members of this class by the 

common symbol 0; 

2. The second class of equivalency combines all long vowels 

and all voiced consonants: а, и, о, у, ы, э, б, в, г, д, ж, з, й, 

л, м, н, р. We denote all the 17 members of this class by the 

common symbol 1.  

Leaving only these letters in the literary text, and replacing each letter 

with the symbol of its equivalence class 0 or 1, we obtain the represen-

tation of the text by a binary sequence of the type 100101100.... 

In such binary representation of long literary texts, let us denote 

percentages of letters from classes of equivalency 0 and 1 by symbols 

%0 and %1 correspondingly.  Then consider the bisymmetric matrix of 

percentages  [%0, %1; %1, %0], representing 2-dimensional      hyper-

bolic number, and the matrix tensor family [%0, %1; %1, %0](n), repre-

senting               2n-dimensional hyperbolic numbers: 
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• %0*e0 + %1*e1 (if n = 1);  

• %0*%0*e0 + %0*%1*e1 + %1*%0*e2 + %1*%1*e3 (if n = 2),  

• etc. 

The author studied percentages %0 and %1 of letters of these two 

classes in long        literary texts by L.N.Tolstoy, A.S.Pushkin, 

F.M.Dostoevsky, etc. More precisely, for each fixed n, the author 

analyzed percentage of each type of n-plets inside the mentioned binary 

representation of any long Russian language literary text (or a long lit-

erary text of any other language translated into Russian). Under a fixed 

value n, each of these percentages is equal to the ratio: “the total quanti-

ty of a corresponding type of n-plets” divided by “the total quantity of 

these binary n-plets”. For example, in the text of the work "Anna 

Karenina", by Leo Tolstoy, in its binary representation there are 

654523 doublets 00, 01, 10 and 11. This number includes 75895 

doublets 00, 142504 doublets 01, 142547 doublets 10 and 293577 

doublets 11. Correspondingly, the percentage of doublets 00 is equal to 

75895/654523 = 0,115954672; the percentage of doublets 01 is equal to 

142504/654523 = 0,217721914; the percentage of doublets 10 is equal 

to 142547/654523 = 0,21778761; the percentage of doublets 11 is equal 

to 293577/654523 = 0,448535804 (such values of percentages are 

shown below rounded to four decimal places).  

By analogy with binary sequences of hydrogen bonds 

32232223… in long DNA, it turned out - in the case of these literary 

texts - that knowing only percentages of monoplets %0 and %1 in such 

binary representation of a long Russian text, one can predict percent-

ages of dozens of types of n-plets in it.  Coordinates of 2n-hyperbolic 

numbers [%0,%1; %1,%0](n) effectively model percentages of corre-

sponding types of n-plets in long Russian texts: for example, the prod-

uct of values %1*%0*%1 models the percentage of binary triplets 101, 

etc. 

Figs. 11.3 and 11.4 represent results – in graphical and tabular 

forms - of the analysis of the novel «Anna Karenina» of Leo Tolstoy by 

the above described approach. Significant correspondences can be seen 

between phenomenologic values of percentages (blue points in graphs 

in Fig. 11.3) of all considered types of n-plets, and model values (red 

points in graphs), represented by coordinates of 2n-dimensional hyper-

bolic numbers [%0, %1; %1, %0](n), n = 2, 3, 4. These graphs reveal 

that the model points of red color are almost exactly superimposed on 

the phenomenologic points of blue color. Fig. 11.4 shows the proximity 
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of the numerical phenomenological and model values of the studied 

percentages. All values are rounded to four decimal places. Therefore, 

knowing only two percentages %0 and %1 of monoplets 0 and 1 in the 

binary n-plet representation of this well known novel, percentages of all 

other considered types of n-plets can be predicted. We presume that a 

similar model correspondence also holds true for n = 5, 6,  ... (if n is 

much less than the length of the considered literary text) but this should 

be studied in future research.  

 

 

L.N. Tolstoy «Anna Karenina» (1309047 letters) 

  Percentages of      

2 monoplets  

(0, 1) 

Percentages of         

4 doublets  

(00, 01, 10, 11) 

Percentages of 

8 triplets  

(000, 001, 010, …, 111) 

Percentages of 

16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3337092 

%1= 0,6662908 

   

 
%0= 0,3337092 

%1= 0,6662908 

 
 

[%0,%1; %1,%0](2) 

 
 

      [%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.3. Graphical analysis results of the novel “Anna Karenina” 

by Leo Tolstoy (the original literary text was accessed from 

http://samolit.com/books/62/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representations of this novel are 
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shown.  Blue points correspond to phenomenologic values of the per-

centages of hydrogen n-plets, while red points correspond to model 

values of the percentages calculated as coordinates of the 2n-

dimensional hyperbolic numbers [%0,%1; %1,%0](n), where %0 and 

%1 are percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

 

L.N. Tolstoy «Anna Karenina» (1309047 letters) 

Percentages of types of monoplets  

Reality:                   %0 (or 0p)= 0,3337;                    %1 (or 1p) = 

0,6663 

Percentages of types of binary doublets 

Reality:    0P0P=0,1160;       0P1P=0,2177;       1P0P=0,2178;        

1P1P=0,4485. 

Model:     0P0P=0,1114;        0P1P=0,2223;       1P0P=0,2223;        

1P1P=0,4439. 

Percentages of types of binary triplets 

Reality:       0P0P0P=0,0348;    0P0P1P=0,0818;   0P1P0P=0,0708;    

0P1P1P=0,1481;  

                   1P0P0P=0,0808;    1P0P1P=0,1353;   1P1P0P=0,1465;    

1P1P1P=0,3019. 

Model:         0P0P0P=0,0372;    0P0P1P=0,0742;   0P1P0P=0,0742;    

0P1P1P=0,1481;  

      1P0P0P=0,0742;    1P0P1P=0,1481;    1P1P0P=0,1481;    

1P1P1P=0,2958. 

Percentages of types of binary tetraplets 

Reality:    0P0P0P0P=0,0114;   0P0P0P1P=0,0232;   0P0P1P0P=0,0257;   

0P0P1P1P=0,0559;  

                 0P1P0P0P=0,0247;   0P1P0P1P=0,0460;   0P1P1P0P=0,0505;   

0P1P1P1P=0,0970;  

                 1P0P0P0P=0,0231;   1P0P0P1P=0,0582;   1P0P1P0P=0,0446;   

1P0P1P1P=0,0914;  

                 1P1P0P0P=0,0565;   1P1P0P1P=0,0899;   1P1P1P0P=0,0975;   

1P1P1P1P=0,2045. 

Model:     0P0P0P0P=0,0124;   0P0P0P1P=0,0248;   0P0P1P0P=0,0248;   

0P0P1P1P=0,0494;       

                 0P1P0P0P=0,0248;   0P1P0P1P=0,0494;   0P1P1P0P=0,0494;   
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0P1P1P1P=0,0987;  

                 1P0P0P0P=0,0248;   1P0P0P1P=0,0494;   1P0P1P0P=0,0494;   

1P0P1P1P=0,0987;  

                 1P1P0P0P=0,0494;   1P1P0P1P=0,0987;   1P1P1P0P=0,0987;   

1P1P1P1P=0,1971. 

 

Fig. 11.4. The numeric representation of the analysis of the novel 

“Anna Karenina” by Leo Tolstoy (the original literary text was ac-

cessed from http://samolit.com/books/62/). Percentages of all the types 

of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this 

novel are shown. All values are rounded to four decimal places. Blue 

numbers correspond to phenomenologic values of the percentages for 

cases named in tabular sections, while red numbers correspond to mod-

el values of these percentages calculated as coordinates of the 2n-

dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and 

%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers. 

Denotations 0p and 1p are used as equivalents of denotations %0 and 

%1.  

 

Below the author shows some results received by similar analysis 

of famous Russian literary works: L.N. Tolstoy «War and Peace»; F.M. 

Dostoevsky «Crime and Punishment» and «Idiot»; A.S. Pushkin 

«Evgenij Onegin» and «Dubrovsky»; the Russian Bible. All these re-

sults are similar to those described for the novel «Anna Karenina» 

(Figs. 11.3 and 11.4): they confirm that percentages of binary n-plets (n 

= 1, 2, 3, 4) are, to some degree, interrelated to each other and that this 

interrelation can be effectively modeled on the basis of                     2n-

dimensional hyperbolic numbers [%0, %1; %1, %0](n), where n = 1, 2, 

3, 4. The computer program for the analysis of literary texts was creat-

ed by our graduate student V.I. Svirin. 

 

 
L.N. Tolstoy «War and Peace», Book I (1068479 letters) 

Percentages of      

2 monoplets  

(0, 1) 

Percentages of         

4 doublets 

(00, 01, 10, 11) 

Percentages of 

8 triplets 

(000, 001, 010, …, 111) 

Percentages of 

16 tetraplets 

(0000, 0001, …, 1111) 
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%0= 0,32830126 

%1= 0,67169874 

 
  

 
%0= 0,32830126 

%1= 0,67169874 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.5. Graphical analysis results of the novel “War and Peace” 

(Book 1) by Leo Tolstoy (the original literary text was accessed from 

http://samolit.com/books/64/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representations of this novel are 

shown.  Blue points correspond to phenomenologic values of the per-

centages of hydrogen n-plets, while red points correspond to model 

values of the percentages calculated as coordinates of the 2n-

dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and 

%1 are percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

 

 

L.N. Tolstoy «War and Peace», Book I (1068479 letters) 

Percentages of types of binary monoplets 

Reality:              %0 (or 0P) = 0,3283;               %1 (or 1P) = 0,6717 

Percentages of types of binary doublets  

Reality:      0P0P=0,1088;        0P1P=0,2200;      1P0P=0,2190;      
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1P1P=0,4522. 

Model:        0P0P=0,1078;        0P1P=0,2205;      1P0P=0,2205;      

1P1P=0,4512. 

Percentages of types of binary triplets 

Reality:         0P0P0P=0,0314;   0P0P1P=0,0774;   0P1P0P=0,0705;   

0P1P1P=0,1484;  

              1P0P0P=0,0778;   1P0P1P=0,1419;   1P1P0P=0,1490;   

1P1P1P=0,3036. 

Model:           0P0P0P=0,0354;   0P0P1P=0,0724;   0P1P0P=0,0724;   

0P1P1P=0,1481;  

              1P0P0P=0,0724;   1P0P1P=0,1481;   1P1P0P=0,1481;   

1P1P1P=0,3031. 

Percentages of types of binary tetraplets 

Reality:  0P0P0P0P=0,0096;  0P0P0P1P=0,0220;  0P0P1P0P=0,0250; 

0P0P1P1P=0,0521;  

               0P1P0P0P=0,0234;  0P1P0P1P=0,0474;  0P1P1P0P=0,0504; 

0P1P1P1P=0,0988;  

               1P0P0P0P=0,0214; 1P0P0P1P=0,0562;   1P0P1P0P=0,0451; 

1P0P1P1P=0,0966;  

               1P1P0P0P=0,0546;  1P1P0P1P=0,0943;  1P1P1P0P=0,0984; 

1P1P1P1P=0,2049. 

Model:   0P0P0P0P=0,0116;  0P0P0P1P=0,0238;  0P0P1P0P=0,0238; 

0P0P1P1P=0,0486;  

                0P1P0P0P=0,0238;  0P1P0P1P=0,0486;  0P1P1P0P=0,0486; 

0P1P1P1P=0,0995;  

                1P0P0P0P=0,0238;  1P0P0P1P=0,0486;  1P0P1P0P=0,0486; 

1P0P1P1P=0,0995;  

                1P1P0P0P=0,0486;  1P1P0P1P=0,0995;  1P1P1P0P=0,0995; 

1P1P1P1P=0,2036. 

 

Fig. 11.6. Numeric analysis results of the novel “War and Peace” 

(Book 1) by Leo Tolstoy (the original literary text was accessed from 

http://samolit.com/books/64/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representation of this novel are 

shown. All values are rounded to four decimal places. Blue numbers 

correspond to phenomenologic values of percentages for cases named 

in tabular sections, while red numbers correspond to model values of 

these percentages calculated as coordinates of 2n-dimensional    hyper-
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bolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages 

of monoplets     0 and 1; (n) refers to tensor powers. Denotations 0p and 

1p are used as equivalents of denotations %0 and %1.  

 

 

 

F.M. Dostoevsky «Crime and Punishment» (818099 letters) 

  Percentages of      

2 monoplets  

(0, 1) 

Percentages of         

4 doublets  

(00, 01, 10, 11) 

Percentages of 

8 triplets  

(000, 001, 010, …, 111) 

Percentages of 

16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3420845 

%1= 0,6579155 

   

 
%0= 0,3420845 

%1= 0,6579155 

 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.7. Graphical analysis results of the novel “Crime and Pun-

ishment” by F.M. Dostoevsky (the original literary text was accessed 

from http://samolit.com/books/57/). Percentages of all the types of bi-

nary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel 

are shown.  Blue points correspond to phenomenologic values of the 
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percentages of hydrogen n-plets, while red points correspond to model 

values of the percentages calculated as coordinates of the 2n-

dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and 

%1 are percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

 

 

 

F.M. Dostoevsky «Crime and Punishment» (818099 letters) 

Percentages of types of binary monoplets 

Reality:              %0 (or 0P) = 0,3421;                 %1 (or 1P) = 0,6579 

Percentages of members in the alphabet of binary doublets 

Reality:   0P0P = 0,1203;       0P1P = 0,2219;     1P0P = 0,2216;       1P1P 

= 0,4362. 

Model:    0P0P = 0,1170;        0P1P = 0,2251;     1P0P = 0,2251;       

1P1P = 0,4329. 

Percentages of types of binary triplets 

Reality:    0P0P0P=0,0370;    0P0P1P=0,0843;    0P1P0P=0,0738;     

0P1P1P=0,1464;  

         1P0P0P=0,0838;    1P0P1P=0,1377;     1P1P0P=0,1472;     

1P1P1P=0,2897. 

Model:     0P0P0P=0,0400;    0P0P1P=0,0770;    0P1P0P=0,0770;     

0P1P1P=0,1481;  

         1P0P0P=0,0760;    1P0P1P=0,1481;    1P1P0P=0,1481;     

1P1P1P=0,2848. 

Percentages of types of binary tetraplets 

Reality:    0P0P0P0P=0,0119; 0P0P0P1P=0,0258; 0P0P1P0P=0,0284; 

0P0P1P1P=0,0551;  

                 0P1P0P0P=0,0265; 0P1P0P1P=0,0467; 0P1P1P0P=0,0535; 

0P1P1P1P=0,0954;  

                 1P0P0P0P=0,0249; 1P0P0P1P=0,0594; 1P0P1P0P=0,0458; 

1P0P1P1P=0,0900;  

                 1P1P0P0P=0,0560; 1P1P0P1P=0,0898; 1P1P1P0P=0,0952; 

1P1P1P1P=0,1954. 

Model:     0P0P0P0P=0,0137;  0P0P0P1P=0,0263; 0P0P1P0P=0,0263; 

0P0P1P1P=0,0507;  

                0P1P0P0P=0,0263;  0P1P0P1P=0,0507;  0P1P1P0P=0,0507; 
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0P1P1P1P=0,0974;  

                1P0P0P0P=0,0263;  1P0P0P1P=0,0507;  1P0P1P0P=0,0507; 

1P0P1P1P=0,0974;  

                1P1P0P0P=0,0507;  1P1P0P1P=0,0974;  1P1P1P0P=0,0974; 

1P1P1P1P=0,1874.  

 

Fig. 11.8. Numeric analysis results of the novel “Crime and Punish-

ment” by F.M. Dostoevsky (the original literary text was accessed from 

http://samolit.com/books/57/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representation of this novel are 

shown. All values are rounded to four decimal places. Blue numbers 

correspond to phenomenologic values of percentages for cases named 

in tabular sections, while red numbers correspond to model values of 

these percentages calculated as coordinates of the 2n-dimensional hy-

perbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percent-

ages of monoplets 0 and 1; (n) refers to tensor powers. Denotations 0p 

and 1p are used as equivalents of denotations %0 and %1.  

 

F.M. Dostoevsky «Idiot» (1001129 letters) 

  Percentages of      

2 monoplets  

(0, 1) 

Percentages of         

4 doublets  

(00, 01, 10, 11) 

Percentages of 

8 triplets  

(000, 001, 010, …, 111) 

Percentages of 

16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3459674 

%1= 0,6540326 
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%0= 0,3459674 

%1= 0,6540326 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.9. Graphical analysis results of the novel “Idiot” by F.M. 

Dostoevsky (the original literary text was accessed from 

http://samolit.com/books/56/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representations of this novel are 

shown.  Blue points correspond to phenomenologic values of the per-

centages of hydrogen n-plets, while red points correspond to model 

values of the percentages calculated as coordinates of the 2n-

dimensional hyperbolic numbers [%0,%1; %1,%0](n), where %0 and 

%1 are percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

 

F.M. Dostoevsky «Idiot» (1001129 letters) 

Percentages of types of binary monoplets 

Reality:               %0 (or 0P) = 0,3460;                     %1 (or 1P) = 

0,6540 

Percentages of types of binary doublets 

Reality:   0P0P=0,1208;       0P1P=0,2251;      1P0P=0,2252;      

1P1P=0,4289. 

Model:    0P0P=0,1197;        0P1P=0,2263;      1P0P=0,2263;      

1P1P=0,4278. 

Percentages of types of binary triplets 

Reality:   0P0P0P=0,0367;     0P0P1P=0,0845;     0P1P0P=0,0792;     

0P1P1P=0,1449;  

                1P0P0P=0,0847;     1P0P1P=0,1405;     1P1P0P=0,1405;     

1P1P1P=0,2839. 

Model:    0P0P0P=0,0414;     0P0P1P=0,0783;     0P1P0P=0,0783;     
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0P1P1P=0,1480;           

                1P0P0P=0,0783;     1P0P1P=0,1480;     1P1P0P=0,1480;      

1P1P1P=0,2798. 

Percentages of types of binary tetraplets 

Reality:     0P0P0P0P=0,0118;  0P0P0P1P=0,0251;  0P0P1P0P=0,0290;  

0P0P1P1P=0,0545;  

                  0P1P0P0P=0,0276;  0P1P0P1P=0,0517;  0P1P1P0P=0,0519;  

0P1P1P1P=0,0941;  

                  1P0P0P0P=0,0249;  1P0P0P1P=0,0597;  1P0P1P0P=0,0505;  

1P0P1P1P=0,0909;  

                  1P1P0P0P=0,0570;  1P1P0P1P=0,0885;  1P1P1P0P=0,0931;  

1P1P1P1P=0,1899. 

Model:      0P0P0P0P=0,0143;  0P0P0P1P=0,0271;  0P0P1P0P=0,0271;  

0P0P1P1P=0,0512;  

                  0P1P0P0P=0,0271;  0P1P0P1P=0,0512;  0P1P1P0P=0,0512;  

0P1P1P1P=0,0968;  

                  1P0P0P0P=0,0271;  1P0P0P1P=0,0512;  1P0P1P0P=0,0512;  

1P0P1P1P=0,0968;  

                  1P1P0P0P=0,0512;  1P1P0P1P=0,0968;  1P1P1P0P=0,0968;  

1P1P1P1P=0,1830.  

 

Fig. 11.10. Numeric analysis results of the novel “Idiot” by F.M. 

Dostoevsky (the original literary text was accessed from 

http://samolit.com/books/56/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representation of this novel are 

shown. All values are rounded to four decimal places. Blue numbers 

correspond to phenomenologic values of the percentages for cases 

named in tabular sections, while red numbers correspond to model val-

ues of these percentages calculated as coordinates of the 2n-dimensional 

hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are per-

centages of monoplets 0 and 1; (n) refers to tensor powers. Denotations 

0p and 1p are used as equivalents of denotations %0 and %1.  

 

 

 

A.S. Pushkin «Evgenij Onegin» (107146 letters) 
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  Percentages of      

2 monoplets  

(0, 1) 

Percentages of         

4 doublets  

(00, 01, 10, 11) 

Percentages of 

8 triplets  

(000, 001, 010, …, 111) 

Percentages of 

16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3277771 

%1= 0,6722229 

   

 
%0= 0,3277771 

%1= 0,6722229 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.11. Graphical analysis results of the novel “Evgenij Onegin” 

by A.S. Pushkin (the original literary text was accessed from 

http://tululu.org/b57798/). Percentages of all the types of binary n-plets 

(n = 1, 2, 3, 4) from the binary representations of this novel are shown.  

Blue points correspond to phenomenologic values of the percentages of 

hydrogen n-plets, while red points correspond to model values of the 

percentages calculated as coordinates of the 2n-dimensional hyperbolic 

numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of  

monoplets 0 and 1; (n) refers to tensor powers.   
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A.S. Pushkin «Evgenij Onegin» (107146 letters) 

Percentages of types of binary monoplets 

Reality:                %0 (or 0P) = 0,3278;                     %1 (or 1P) = 

0,6722 

Percentages of members in the alphabet of binary doublets 

Reality:   0P0P = 0,1090;       0P1P = 0,2189;      1P0P = 0,2187;      1P1P 

= 0,4534. 

Model:    0P0P = 0,1074;       0P1P = 0,2203;      1P0P = 0,2203;      1P1P 

= 0,4519. 

Percentages of types of binary triplets 

Reality:     0P0P0P=0,0316;     0P0P1P=0,0789;     0P1P0P=0,0738;      

0P1P1P=0,1428;  

          1P0P0P=0,0769;     1P0P1P=0,1389;     1P1P0P=0,1476;      

1P1P1P=0,3095. 

Model:       0P0P0P=0,0352;     0P0P1P=0,0722;     0P1P0P=0,0722;     

0P1P1P=0,1481;  

           1P0P0P=0,0722;     1P0P1P=0,1481;     1P1P0P=0,1481;     

1P1P1P=0,3038. 

Percentages of types of binary tetraplets 

Reality:    0P0P0P0P=0,0098; 0P0P0P1P=0,0223;  0P0P1P0P=0,0272;  

0P0P1P1P=0,0509;  

                 0P1P0P0P=0,0251; 0P1P0P1P=0,0457;  0P1P1P0P=0,0500;  

0P1P1P1P=0,0974;  

                 1P0P0P0P=0,0217; 1P0P0P1P=0,0588;  1P0P1P0P=0,0457;  

1P0P1P1P=0,0930;  

                 1P1P0P0P=0,0513; 1P1P0P1P=0,0928;  1P1P1P0P=0,0953;  

1P1P1P1P=0,2131. 

Model:     0P0P0P0P=0,0115;  0P0P0P1P=0,0237;  0P0P1P0P=0,0237;  

0P0P1P1P=0,0485;  

                 0P1P0P0P=0,0237;  0P1P0P1P=0,0485;  0P1P1P0P=0,0485;  

0P1P1P1P=0,0996;  

                 1P0P0P0P=0,0237;  1P0P0P1P=0,0485;  1P0P1P0P=0,0485;  

1P0P1P1P=0,0996 ;  

                 1P1P0P0P=0,0485;  1P1P0P1P=0,0996;  1P1P1P0P=0,0996;  

1P1P1P1P=0,2042.  
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Fig. 11.12. Numeric analysis results of the novel “Evgenij Onegin” 

by A.S. Pushkin (the original literary text was accessed from 

http://tululu.org/b57798/). Percentages of all the types of binary n-plets 

(n = 1, 2, 3, 4) from the binary representation of this novel are shown. 

All values are rounded to four decimal places. Blue numbers corre-

spond to phenomenologic values of the percentages for cases named in 

tabular sections, while red numbers correspond to model values of 

these percentages calculated as coordinates of the 2n-dimensional hy-

perbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percent-

ages of monoplets 0 and 1; (n) refers to tensor powers. Denotations 0p 

and 1p are used as equivalents of denotations %0 and %1.  

 

 

 

 

 

A.S. Pushkin «Dubrovsky» (106891 letters) 

  Percentages of      

2 monoplets  

(0, 1) 

Percentages of         

4 doublets  

(00, 01, 10, 11) 

Percentages of 

8 triplets  

(000, 001, 010, …, 111) 

Percentages of 

16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3259021 

%1= 0,6740979 
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%0= 0,3259021 

%1= 0,6740979 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.13. Graphical analysis results of the novel “Dubrovsky” by 

A.S. Pushkin (the original literary text was accessed from 

http://samolit.com/books/61/ ). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representations of this novel are 

shown.  Blue points correspond to phenomenologic values of the per-

centages of hydrogen n-plets, while red points correspond to model 

values of the percentages calculated as coordinates of the 2n-

dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and 

%1 are percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

  

 

 

A.S. Pushkin «Dubrovsky» (106891 letters) 

Percentages of types of binary monoplets 

Reality:                 %0 (or 0P) = 0,3259;                 %1 (or 1P) = 

0,6741  

Percentages of types of binary doublets 

Reality:   0P0P = 0,1100;       0P1P = 0,2152;      1P0P = 0,2166;      1P1P 

= 0,4582. 

Model:    0P0P = 0,1062;        0P1P = 0,2197;      1P0P = 0,2197;      

1P1P = 0,4544. 

Percentages of types of binary triplets 

Reality:     0P0P0P=0,0295;   0P0P1P=0,0816;    0P1P0P=0,0671;    

0P1P1P=0,1491;  

                  1P0P0P=0,0784;   1P0P1P=0,1358;    1P1P0P=0,1503;    
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1P1P1P=0,3083. 

Model:      0P0P0P=0,0346;   0P0P1P=0,0716;    0P1P0P=0,0716;    

0P1P1P=0,1481;     

                 1P0P0P=0,0716;   1P0P1P=0,1481;    1P1P0P=0,1481;    

1P1P1P=0,3063. 

Percentages of types of binary tetraplets 

Reality:  0P0P0P0P=0,0081;  0P0P0P1P=0,0223;  0P0P1P0P=0,0257;  

0P0P1P1P=0,0549;  

               0P1P0P0P=0,0234;  0P1P0P1P=0,0459;  0P1P1P0P=0,0506;  

0P1P1P1P=0,0952;  

               1P0P0P0P=0,0211;  1P0P0P1P=0,0553;   1P0P1P0P=0,0437;  

1P0P1P1P=0,0971;  

               1P1P0P0P=0,0564;  1P1P0P1P=0,0916;   1P1P1P0P=0,0959;  

1P1P1P1P=0,2127. 

Model:   0P0P0P0P=0,0113;  0P0P0P1P=0,0233;   0P0P1P0P=0,0233;  

0P0P1P1P=0,0483;  

               0P1P0P0P=0,0233;  0P1P0P1P=0,0483;   0P1P1P0P=0,0483;  

0P1P1P1P=0,0998;  

               1P0P0P0P=0,0233;  1P0P0P1P=0,0483;   1P0P1P0P=0,0483;  

1P0P1P1P=0,0998;  

               1P1P0P0P=0,0483;  1P1P0P1P=0,0998;   1P1P1P0P=0,0998;  

1P1P1P1P=0,2065.  

 

Fig. 11.14. Numeric analysis results of the novel “Dubrovsky” by 

A.S. Pushkin (the original literary text was accessed from 

http://samolit.com/books/61/). Percentages of all the types of binary n-

plets (n = 1, 2, 3, 4) from the binary representation of this novel are 

shown. All values are rounded to four decimal places. Blue numbers 

correspond to phenomenologic values of the percentages for cases 

named in tabular sections, while red numbers correspond to model val-

ues of these percentages calculated as coordinates of the 2n-dimensional 

hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are per-

centages of monoplets 0 and 1; (n) refers to tensor powers. Denotations 

0p and 1p are used as equivalents of denotations %0 and %1.  

 

Russian Bible (3122489 letters) 

  Percentages of      Percentages of         Percentages of Percentages of 
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2 monoplets  

(0, 1) 

4 doublets  

(00, 01, 10, 11) 

8 triplets  

(000, 001, 010, …, 111) 

16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3279771 

%1= 0,6720229 

   

 
%0= 0,3279771 

%1= 0,6720229 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.15. Graphical analysis results of the Russian Bible (the origi-

nal literary text was accessed from http://petoukhov.com/bible.zip). 

Percentages of all the types of binary n-plets (n = 1, 2, 3, 4) from the 

binary representations of this novel are shown.  Blue points correspond 

to phenomenologic values of the percentages of hydrogen n-plets, while 

red points correspond to model values of the percentages calculated as 

coordinates of the 2n-dimensional hyperbolic numbers [%0, %1; %1, 

%0](n), where %0 and %1 are percentages of monoplets        0 and 1; (n) 

refers to tensor powers.   

 

 

Russian Bible (3122489 letters) 

Percentages of types of binary monoplets 
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 Reality:                 %0 (or 0P) = 0,3280;                  %1 (or 1P) = 

0,6720 

Percentages of types of binary doublets 

Reality:   0P0P = 0,1107;     0P1P = 0,2171;    1P0P = 0,2174;    1P1P = 

0,4548. 

Model:    0P0P = 0,1076;      0P1P = 0,2204;    1P0P = 0,2204;    1P1P = 

0,4516. 

Percentages of types of binary triplets 

Reality:       0P0P0P = 0,0318;  0P0P1P = 0,0789;  0P1P0P = 0,0678;  

0P1P1P = 0,1484;  

                1P0P0P = 0,0794;   1P0P1P = 0,1386;  1P1P0P = 0,1493;  

1P1P1P  = 0,3058. 

Model:        0P0P0P=0,0353;     0P0P1P=0,0723;    0P1P0P=0,0723;    

0P1P1P=0,1481;  

               1P0P0P=0,0723;     1P0P1P=0,1481;    1P1P0P=0,1481;    

1P1P1P=0,3035.  

Percentages of types of binary tetraplets 

Reality: 0P0P0P0P=0,0099;  0P0P0P1P=0,0222;  0P0P1P0P=0,0245; 

0P0P1P1P=0,0543;  

              0P1P0P0P=0,0232;  0P1P0P1P=0,0448;  0P1P1P0P=0,0493; 

0P1P1P1P=0,0995;  

              1P0P0P0P=0,0222;  1P0P0P1P=0,0568;  1P0P1P0P=0,0438; 

1P0P1P1P=0,0948;  

              1P1P0P0P=0,0552;  1P1P0P1P=0,0937;  1P1P1P0P=0,0997; 

1P1P1P1P=0,2063. 

Model:    0P0P0P0P=0,0116;  0P0P0P1P=0,0237;  0P0P1P0P=0,0237; 

0P0P1P1P=0,0486;  

               0P1P0P0P=0,0237;  0P1P0P1P=0,0486;  0P1P1P0P=0,0486; 

0P1P1P1P=0,0995;  

               1P0P0P0P=0,0237;  1P0P0P1P=0,0486;  1P0P1P0P=0,0486; 

1P0P1P1P=0,0995;  

               1P1P0P0P=0,0486;  1P1P0P1P=0,0995;  1P1P1P0P=0,0995; 

1P1P1P1P=0,2040.  

 

Fig. 11.16. Numeric analysis results of the Russian Bible (the origi-

nal literary text was accessed from http://petoukhov.com/bible.zip). 

Percentages of all the types of binary n-plets (n = 1, 2, 3, 4) from the 
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binary representation of this novel are shown. All values are rounded to 

four decimal places. Blue numbers correspond to phenomenologic val-

ues of the percentages for cases named in tabular sections, while red 

numbers correspond to model values of these percentages calculated as 

coordinates of the 2n-dimensional hyperbolic numbers [%0, %1; %1, 

%0](n), where %0 and %1 are percentages of monoplets 0 and 1; (n) 

refers to tensor powers. Denotations 0p and 1p are used as equivalents 

of denotations %0 and %1.  

 

Presented results show that the described properties of long Russian 

literary texts reflect, first of all, the deep specifics of Russian language 

and not the particular literary style of a particular writer. It can be as-

sumed that any long literary text in a foreign language, translated into 

Russian, will demonstrate similar properties. It will be interesting to 

study if there are similar patterns in the texts of other languages with 

differing alphabets and differing phonetic features.  

Presented results reveal such analogies between long genetic texts 

and and long Russian literary texts, which are related with their binary-

oppositional structures, percentage features of texts and 2n-dimensional 

hyperbolic numbers [%0, %1; %1, %0](n). 

 

 

 

12      Doubly stochastic matrices and tensor families of hyperbolic 

numbers 

 

 

A square matrix is called doubly stochastic if all entries of the 

matrix are nonnegative and the sum of the elements in each row and 

each column is unity [Prasolov, 1994]. In previous Sections 10 and 11 

we studied phenomenologic long binary sequences like as 01101001… 

. We simulated phenomenologic percentages (or frequencies) of their 

doublets 00, 01, 10, 11, of their triplets 000, 001, 010,…110, 111 and 

of their other n-plets by means of coordinates of 2n-dimensional 

hyperbolic numbers [p, q; q, p](n), where p refers precentages %0 of 

monoplets 0, and q refers percentages %1 of monoplets 1 (in binary 
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sequences, the sum of percentages of monoplets 0 and 1 is equal to 

unity: p + q = 1).  

It is easy to check that each matrix of this tensor family [p, q; q, 

p](n) (Fig. 12.1) is doubly stochastic matrix since it is nonegative and 

the sum of its entries in each row and each column is unity. For 

example, the sum of entries in each row and in each column in the    

(4*4)-matrix M(2) is equal to unity: pp + pq + qp + qq = p(p + q) + q(p 

+ q)= p + q =1. 

 

 

 

 

 

 

 

 

 
 

Fig. 12.1. Three first members of the tensor family [p, q; q, p](n) of 

bisymmetric doubly  

                 stochastic matrices for percentages p and q (where p+q=1) 

are shown. 

 

The revealed connections of bisymmetric doubly stochastic 

matrices with structures of long genetic and literary texts (described in 

Sections 10 and 11) are interesting since doubly stochastic matrices 

have essential applications in many scientific fields: linear 

programming and planing, theory of games and optimization, forming 

of coalitions, models for oncology study, economy, etc. Some algebraic 

simulations of genetic and biologic materials in this article can be also 

considered as models on basis of bisymmetric doubly stochastic 

matrices. In addition, the Hardy-Weinberg law, which is called in 

biologic literature as the basis of mathematical constructions in 

population genetics and contemporary evolutionary theory, is simulated 

on the basis of the tensor family [p, q; q, p](n) of bisymmetric doubly 

stochastic matrices where p + q = 1 [Petoukhov, 2018, doi: 

10.20944/preprints201804.0131.v2]. On the way of further applications 

of doubly stochastic matrices for analysis of biologic structures, many 

interesting studies and results are possible, which are related, in 
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particular, with using the Darwinian concept of natural selection. The 

author plans to publish a few of such results some later. 

13  Regarding Punnett squares for the trait inheritance in 

Mendelian genetics 

According to Mendel's law of independent assortment of inherited 

traits, information from microworld of genetic molecules dictates 

macrostructures of living organisms, despite of strong noise and inter-

ference, through many independent channels (for instance, colors of 

hair, eye and skin are inherited independently from each other). This 

determinism is carried out by means of unknown algorithms of multi-

channel noise-immunity coding. Consequently, every organism is an 

algorithmic machine of multi-channel noise-immunity coding. 

In genetics from 1906 year, Punnett squares represent Mendel's laws 

of inheritance of traits under poly-hybrid crosses. In Punnet squares, 

combinations of dominant and recessive alleles of genes from parent 

reproductive cells – gametes – are represented (Fig. 13.1).  

 

 

 

 

Fig. 13.1.  Examples of Punnett squares for monohybrid and dihy-

brid crosses of organisms under the laws of Mendel. Abbreviations 

«pat. sp.» and «pat. gam.» mean «paternal spectrum» and «paternal 

gametes». 

 

Punnett squares have strong analogies with square «tables of tensor 

inheritance» of eigenvalues of original matrices (or «parental» matri-

ces), which were introduced in [Petoukhov, 2016]. Let us say on this in 

more details in relation to bisymmetric matrices and their tensor (or 

Kronecker) product. 
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As known, doubly stochastic matrices and bisymmetric matrix repre-

sentations of                 2n-hyperbolic numbers have real eigenvalues. 

The operation of the tensor product of any two square matrices V and 

W have the following property: the eigenvalues of matrix VW are 

equal to a product of ci*dj, where ci and dj are eigenvalues of the matri-

ces V and W. This feature of the tensor inheritance of eigenvalues of 

the original matrices (or "parental" matrices) V and W in the result of 

their tensor product can be conveniently represented in the form of "ta-

bles of inheritance". Fig. 13.2 shows the example of two simplest cases, 

conventionally referred to as monohybrid and dihybrid cases of a tensor 

hybridization of two bisymmetric matrices (for example, two doubly 

stochastic matrices or two matrices representing 2-dimensional hyper-

bolic numbers). In the first case, the tensor product of two bisymmetric 

(2*2)-matrices V and W, which have the same spectrum of real eigen-

values A and a, gives the (4*4)-matrix Q=VW with its 4 eigenvalues 

A*A, A*a, A*a, a*a. In the second case, the tensor product of (4*4)-

matrices, having the same spectrum of real eigenvalues AB, Ab, aB, ab, 

gives (16*16)-matrix with 16 eigenvalues, represented in the tabular 

form.  
 

 
 

Fig. 13.2. Examples of tables of inheritance of eigenvalues under the 

tensor product in cases   

                of bisymmetric (2*2)-matrices and (4*4)-matrices. 

This formal analogy - between Punnett squares of combinations 

of alleles and tables of tensor inheritance of eigenvalues of the consid-

ered bisymmetric matrices - generates the following idea:  

• alleles of genes and their combinations can be interpreted as 

eigenvalues of                

            (2n*2n)-matrices from tensor families of considered bisymmet-

ric matrices.  
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14     Fractal-like multi-dimensional configurational spaces of 

hyperbolic types 

This Section is devoted to the use of 2n-dimensional hyperbolic 

numbers for modeling       heritable fractal-like biostructures, which are 

developing step by step in ontogenesis of       biological bodies.  

Living bodies in a course of their ontogenesis from the embryonic 

state to the mature state gradually increase the number of body parts. 

Accordingly, the number of parameters,          characterizing the devel-

oping body, increases. This leads to appropriate phased increasing a 

dimensionality of a configurational space of parameters of the body. In 

many cases of such ontogenetic development one can see the following 

iterative process: body structural         elements, which exist at a previ-

ous stage of ontogenesis, produce - at the next step of        ontogenesis - 

new elements with similar structures (Fig. 14.1). In the result, after 

some       repetitions of this ontogenetic procedure, complex fractal-like 

structure of the multi-level body appears. A multidimensional configu-

rational space of parameters of such body has a fractal-like system of 

its different subspaces having similar patterns of parametric states. One 

of many examples of such phased producing a fractal-like structure of 

multi-level body is ontogenetic producing new and new dichotomic 

branches in some plants (Fig.  14.1, left). 

 
 

 

 

 

   

 

Fig. 14.1. Illustrations for the phased ontogenetic development of 

fractal-like biological structures (from 

https://studbooks.net/2365314/tehnika/istoriya_poyavleniya_razvitiya). 

 

Regarding the theme of fractal-like structures in biological bodies, 

one can note a great number of publications is devoted to algorithmic 

creation of fractal-like geometric figures in spaces of a fixed (!) dimen-

sionality, first of all, in 2-dimensional complex plane. There are also 

known works devoted to constructions of fractal geometric patterns on 
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the plane of     hyperbolic (or double) numbers [Pavlov, Panchelyuga, 

Panchelyuga, 2009a,b].  

In contrast to these works, the author proposes an approach to model 

an algorithmic reproduction of patterns, which are similar each other, 

not in a space of a fixed dimensionality but in different subspaces of 

multidimensional configurational spaces of parameters of multi-level 

bodies under their phased ontogenetic development. Due to similarity 

of parametric structures in its different subspaces, each of considered 

configurational spaces becomes a fractal-like space in the whole. 

The author notes the following possibility of modelling such multi-

step ontogenetic        development of biological objects and their con-

figurational spaces, which receive new and new parameters and dimen-

sionalities step by step. Let us take the matrix representation of hyper-

bolic number [f1(t), f2(t); f2(t), f1(t)] whose components f1(t) and f2(t) 

are functions of time. Fig. 14.2 shows that if this (2*2)-matrix is tensor 

multiplied on the left by a hyperbolic number [1, 1; 1, 1], which acts as 

a generator of additional dimensionalities of the configurational space, 

the result is (4*4)-matrix representing 4-dimensional hyperbolic num-

ber f1(t)*e0 + f2(t)*e1 + f1(t)*e2 + f2(t)*e3. This 4-dimensional configura-

tional space repeats in its subspaces (namely the first plane on the basis 

vectors e0 and e1, and the second plane on the basis vectors e2 and e3) 

the same functions f1(t) and f2(t), which were in the initial 2-

dimensional space. 

 

Fig. 14.2. An initial step of a generation of a fractal-like 2n-dimensional 

space whose subspaces have identical contents. Here e0, e1, e2 and e3 

are basis units from Fig. 2.5. 

Repeating the required number of times this operation of the 

tensor multiplication on the left using the generator [1, 1; 1, 1], we 

obtain a hierarchical tree of 2n-dimensional hyperbolic numbers and 

their corresponding 2n-dimensional configurational spaces for 

algorithmic modelling multi-step onthogenesis of a fractal-like 

morphogenetic construction. Different levels of this tree have 
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subspaces with the same functions f1(t) and f2(t), which were in the 

initial 2-dimensional space; in this sense one can speech about a fractal-

like structure of this hierarchy of multi-dimensional configurational 

spaces of parameters.                             

We briefly note that the noted generator [1, 1; 1, 1] (Fig. 14.2) 

can be used in a more complicated form if its components are some 

functions of time gi(t), for example [g1(t), g2(t); g2(t), g1(t)]. For 

modeling biological cyclic processes based on such fractal-like sets of 

subspaces, the case, in which the functions f1(t), f2(t), g1(t) and g2(t) are 

cyclic functions of time, is especially interesting. 

 

15     Pythagoras and the importance of the concept of number 

 

The notion of “number” is the main notion of mathematics and math-

ematical natural      sciences. Pythagoras has formulated the famous 

idea: “Numbers rule the world” or “All things are numbers”. This Py-

thagorean slogan arose not because that the number can express a quan-

tity of objects. Pythagoras was engaged in figured numbers associated 

with geometric figures: triangular, square, 5-angled, 12-angled, etc. 

Seeing that different numbers can dictate different geometric shapes, he 

came up with the idea that numbers have an internal structure and able 

to organize the outside world according to their properties. In view of 

this idea,    natural phenomena should be explained by means of sys-

tems of numbers; the systems of numbers play a role of the beginning 

for uniting all things and for expressing the harmony of nature [Kline, 

1980]. For the Pythagoreans, the number expressed the "essence" of             

everything, and therefore the phenomena should be explained only with 

the help of numbers; it was numerical relations that served as the unify-

ing principle of all things and expressed the harmony and order of na-

ture.  

Many prominent scientists and thinkers were supporters of this Py-

thagorean standpoint or of one similar to it. As W. Heisenberg noted, 

modern physics, where matrices are used as a higher form of numbers, 

is moving along the same path along which the Pythagoreans walked 

[Heisenberg, 1958]. Not without reason B. Russell noted that he did not 

know any other person who could exert such influence on the thinking 
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of people as Pythagoras [Russell, 1945]. Taking this into account, one 

can believe that there is no more fundamental scientific idea in the 

world than this idea about a basic meaning of numbers. 

Our research results and the proposed approach can be considered as 

a further development of this fundamental idea of Pythagoras in con-

nection with the structural organization of the genetic system and inher-

ited biological phenomena. 

16  The hypothesis of an analogue of the Weber-Fechner law 

related to the transmission of information along single nerve 

fibres 

In Section 5 above, the connection of hyperbolic rotations with the 

basic psychophysical Weber-Fechner law, which has a logarithmic 

character, was shown. This law is equally applicable to the perception 

of sensory information through a variety of sensory channels and it can 

be considered as the law of not only the nervous system, but "the law of 

protoplasm” in accordance with known data [Schulz, 1916]. In the 

nervous system, sensory information associated with this logarithmic 

law is transmitted through single nerve fibers in the form of special 

series of spikes (nervous impulses). It can be assumed that the 

transmission of information through single nerve fibers is itself 

associated with some analogue of the Weber-Fechner logarithmic law. 

This Section contains the author's thoughts on this topic. 

As known, the magnitude of the action potential set up in any single  

nerve fibre is independent of the strength of the exciting stimulus, pro-

vided the latter is adequate. An  electrical stimulus below threshold 

strength fails to elicit a propagated spike potential. If it is of threshold 

strength or over, a spike (a nervous impulse or an action potential) of 

maximum magnitude is set up. Either the single fibre does not respond 

with spike production, or it responds to the utmost of its ability under 

the conditions at the moment. This property of single nerve fibres is 

termed the all-or-none law (see, for example, [Kalat, 2016]).  After 

generating each spike, each neuron has a refractory period t0, when it is 

incapable of generating a new spike. 
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Electrical spikes in brain neurons are produced by using a flow 

of Na+ and K+ ions, which is provided by so called Na+/K+ pump 

[Hodgkin and Huxley, 1952]. It should be noted that the generation of 

each nervous spike is connected with the same numbers 3 and 2, which 

were mentioned above many times: the Na+/K+ pump uses the energy 

of one ATP molecule to exchange 3 intracellular Na+ ions for 2 extra-

cellular K+ ions [Glitsch, 2001]. Some publications claim that function-

al features of the Na+/K+ pump can be used for brain computations 

[Forrest, 2014]. In pevious Sections, we have interpreted numbers 3 

and 2 as two different parts of the single hyperbolic number 3+2j1 (Fig. 

2.4, etc). Meeting now this pair of numbers 3 and 2 in generating nerv-

ous spikes, one can think that the hyperbolic number 3+2j1 plays a cer-

tain role in brain computations on the basis of such spike generatings.  

(The author here expresses special thanks to Professor Matthew He 

from USA, who told him 2 years ago on publications about these num-

bers 3 and 2 when generating spikes in neurons). 

In the sequence of spikes running along the nerve fiber, the time 

intervals «t» between adjacent spikes are - in a general case - not equal 

to each other, but can differ significantly. These changes of the time 

intervals between spikes carry information transmitted over the nerve 

fiber. Taking into account all the data on the Weber-Fechner law 

described above, the author hypothesizes on the existence of the 

following analogue of the Wever-Fechner law in nervous systems: 

- in single nerve fibers, the information significance (or the 

intensity of information perception) of a interpulse interval for 

the nervous system is a logarithmic function of the duration of 

this interval in accordance with the following equation: 

 

                                                          p = k*ln(t/t0)                                                            

(15.1) 

 

where «p» is the information significance of the interpulse interval for 

the nervous system, «t» is a duration of the interpulse interval, «t0» is a 

refractory period (time threshold) of the neuron,  ln – natural logarithm, 
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k – a weight factor. Fig. 16.1 compares formulations of the Weber-

Fechner law and its supposed analoque for neurons. 

 

The Weber-Fechner law 

for sensory perceptions 

The supposed analoque of the Weber-

Fechner law 

for time sequences of spikes in single 

nerve fibers 

p = k*ln(x/x0) p = k*ln(t/t0) 

p - the intensity of percep-

tion 

p - the information significance of the 

interpulse   

     interval for the nervous system  

x – stimulus intensity t - a duration of the interpulse interval  

x0 - threshold stimulus              t0 - is a refractory period (time threshold)    

ln – natural logarithm ln – natural logarithm  

k – a weight factor k – a weight factor 

 

Fig. 16.1. Comparing formulations of the Weber-Fechner law and its 

supposed analoque for  

                 neurons. 

 

 From the standpoint of proposed approach to transmitting in-

formation along single nerve fibers, these information processes are 

also related with hyperbolic numbers and with hyperbolic rotations as 

their particular cases. 

 

17      The hyperbolic rule in the oligomer cooperative organiza-

tion of genomes.  

 

The traditional term “oligomer” refers to a molecular complex of 

chemical that consists of a few repeating units. Nucleotides A, T, C, 

and G serve as such repeating units in DNA      oligomers, which can 

have different lengths and which can be also called n-plets, where n 

refers to the oligomer length. Each of nucleotide sequences in eukaryot-

ic and prokaryotic genomes can be considered as a sequence of mono-

mers (like as A-C-A-T-G-T-…), or a sequence of doublets (like as AC-
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AT-GT-GG-…), or a sequence of triplets (like as ACA-TGT-GGA-…), 

etc. Regarding the quantitative analysis of DNA sequences, researches 

usually study quantities and percentages (or probability, or frequencies) 

of separate kinds of n-plets. For example, the well-known second 

Chargaff rule concerns percentages of separate kinds of nucleotides A, 

T, C and G in long single-stranded DNA. In contrast to such studies, 

the author suggested analyzing - in DNA and RNA sequences – charac-

terizations of their cooperative forms of organization such as the total 

amounts of those oligomers of the same length, which belong to the 

same equivalence class, defined by some their general trait [Petoukhov, 

2018c; Petoukhov, Petukhova, Svirin, 2019]. Below this approach is 

explained. 

Let us return for a moment to the tensor family of genetic matri-

ces [C, A; T, G](n), whose first three members are shown in Fig. 2.2. 

One can see in such (2n*2n)-matrices that each of their (2n-1*2n-1)-

quadrants contains only those 4(n-1) oligomers (or n-plets), which begin 

with the same nucleotide C, A, T, or G. One can denote such quadrant 

sets of n-plets as classes (or cooperative groupings) of C1-oligomers, 

A1-oligomers, T1-oligomers, and          G1-oligomers correspondingly 

(their index 1 indicates that this nucleotide occupies the first position in 

oligomers). For example, the class of A1-doublets contains 4 members 

(AA, AT, AC, and AG); the class of A1-triplets contains 16 members 

(AAA, ATA, ACA, AGA, AAT, ATT, ACT, AGT, AAC, ATC, ACC, 

AGC, AAG, ATG, ACG, and AGG), etc. The same is true for the clas-

ses of T1-oligomers, C1-oligomers, G1-oligomers.  

Do these genetic (2n*2n)-matrices from their tensor family have 

anything to do with the quantitative characterizations of DNA sequenc-

es in eukaryotic and prokaryotic genomes? The results obtained by the 

author give a positive answer to this question, discovering the existence 

of those quantitative rules in DNA sequences that are associated with 

these genetic matrices and complete sets of n-plets in their separate 

quadrants. These rules of genomic DNA sequences concern - in each of 

them - the total amounts of n-plets from appropriate classes of C1-

oligomers, A1-oligomers, T1-oligomers, or G1-oligomers. In other 

words, they concern total amounts of DNA oligomers (or n-plets) hav-

ing the fixed length n and beginning with the same nucleotide A, T, C, 

or G. 

Below a few results of the study of the total amounts of n-plets 

from such cooperative groupings in eukaryotic and prokaryotic ge-
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nomes are briefly presented. The author's method for such a study is 

called the oligomeric sum method (abbreviation, OS-method). The to-

tality of data obtained by analyzing a nucleotide sequence by thе OS-

method is called its OS-representation or its OS-portrait. 

In this representation the following denotations are used: 

• SA, ST, SC, and SG refer to quantities of monomers A, T, C, and 

G in the analyzed nucleotide sequence correspondingly; 

• ΣA,n,1, ΣT,n,1, ΣC,n,1, and ΣG,n,1 refer to total amounts of all n-plets 

having the letter A, T, C, and G in their first position corre-

spondingly. 

One can remind here that genomic sequences on the GenBank sites 

usually contain some letters N, indicating that there can be any nucleo-

tide in this place (https://www.ncbi.nlm.nih.gov/books/NBK21136/). 

By this reason, the total amount of all monomers A, T, C, G (that is the 

sum SA + ST + SC + SG), calculated for the sequence from the GenBank 

data, is slightly less than the complete length of the DNA sequence, 

which is indicated in the GenBank. But practically this is not essential 

for the results of the application of the OS-method to analyze genomic 

sequences. 

Let us consider for instance the human chromosome № 1 whose 

DNA sequence contains about 250 million nucleotides. The initial data 

on the DNA sequences of this chromosome was taken from the Gen-

Bank: https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11. The ap-

plication of the OS-method to the analysis of the human chromosome 

№1 includes the  following steps, which are typical also for cases of 

other DNA and RNA sequences: 

• Firstly, one should calculate phenomenological quantities of 

monomers A, T, C, and G in the considered nucleotide se-

quence. In the case of the human chromosome № 1, the follow-

ing quantities are calculated: SA = 67070277,  ST = 67244164,                    

SC = 48055043, SG = 48111528; 

• Secondly, one should calculate the total amounts ΣA,n,1, ΣT,n,1, 

ΣC,n,1, and ΣG,n,1 of       n-plets in classes of A1-oligomers, T1-

oligomers, C1-oligomers, and G1-oligomers under n = 1, 2, 3, …  

(for analysis of human chromosomes and various eukaryotic 

and prokaryotic genomes, the author usually takes n = 1, 2, 3, 

… , 19, 20 or, in special cases, n = 1, 2, 3, …, 99, 100). 
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For human chromosome № 1, phenomenological values of the total 

amounts of n-plets from the class C1-oligomers are shown in the graph-

ical form for n = 1, 2, 3, …, 20 in Fig.17.1, left (in blue). Here the ab-

scissa axis represents the values of n, and the ordinate axis represents 

the values of the total amounts ΣA,n,1 of n-plets, having the nucleotide A 

in their first position. 

The first amazing result is that all 20 phenomenological points [n, 

ΣA,n,1] lie - with a high level of accuracy - along the hyperbola HA,1 = 

SA/n = 67070277/n shown in red in Fig. 17.1,middle. Deviations of 

phenomenological quantities ΣA,n,1 from model values SA/n lie in the 

range -0.030%÷0.024%, that is, they comprise only hundredths of a 

percent. 
 

   

 

Fig. 17.1. The case of the human chromosome №1. In all 3 graphs, 

the abscissa axis represents the values of n = 1, 2, 3, …, 20. Left: the 

set of phenomenological values ΣA,n,1 of the total amount of n-plets hav-

ing the nucleotide A in their first position. The ordinate axis represents 

the values of the total amounts ΣA,n,1 of such n-plets. Middle: the mod-

eling hyperbola with points HA,1 = SA/n; the ordinate axis represents its 

values SA/n = 67070277/n. Right: this modeling points HA,1 = SA/n (in 

red) almost completely closes the points of phenomenological quanti-

ties ΣA,n,1 (in blue) since both kinds of points practically coincide. 

 

One should remind that the total quantities of different kinds of n-

plets, belong to the class of A1-oligomers, under fixed n is equal to 22(n-

1). For example, if n = 20 then you have a huge number 238 different 

kinds of 20-plets of the class of A1-oligomers. Of course, not all kinds 

of the mentioned 20-plets are represented in the human chromosome 

№1, but the total quantity of those 20-plets, which exist in this chromo-

some, is practically equal to SA/20 with a high level of accuracy shown 

below. 
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Similar results were obtained when studying in this chromosome 

the total amounts of     n-plets having in their first position the nucleo-

tide T (Fig. 17.2, at left), and the nucleotide C (Fig. 17.2, at middle), 

and the nucleotide G (Fig. 17.2, at right). The sets of phenomenological 

values of the total amounts ΣT,n,1, ΣC,n,1, and ΣG,n,1 of n-plets are also 

modeled effectively by appropriate hyperbolas  HT,1,  HC,1, HG,1 (17.1), 

which differ from each other only by their numerators ST, SC, and SG: 

 

  HT,1=ST/n=67244164/n,    HC,1=SC/n=48055043/n,   

HG,1=SG/n=48111528/n     (17.1) 

 
 

   

 

Fig. 17.2. Additional graph data to the OS-representation of the 

human chromosome №1. Model values  HT,1(n),  HC,1(n), and HG,1(n) 

(in red) from expressions (17.1) practically coincide phenomenological 

values ΣT,n,1, ΣC,n,1, and ΣG,n,1 of the total amount of n-plets having in 

their first position the nucleotide T (at left), the nucleotide C (at mid-

dle), and the nucleotide G (at the right graph). The numerical data on 

this coincidence is shown below. 
 

Fig. 17.3 shows real (that is phenomenological) and model values 

for the OS-portrait of the human chromosome №1. The model values to 

the total amounts of      n-plets (n = 1, 2, 3,…, 20), having in their first 

position a certain nucleotide (A, T, C, or G), are calculated correspond-

ingly through the points of the hyperbolas HA,1 = SA/n = 67070277/n, 

HT,1=ST/n=67244164/n, HC,1=SC/n=48055043/n, and  

HG,1=SG/n=48111528/n. Deviations Δ% of phenomenological quanti-

ties from model values are also shown in percent (model value is taken 

as 100%). One can see that these deviations are much lesser than 0,2% 

in all cases. 
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N 1 2 3 4 5 6 7 8 9 10 

A           

Real 67070277 33537501 22360413 16768845 13413532 11179286 9584038 8383461 7453552 6706672 
Model 67070277 33535139 22356759 16767569 13414055 11178380 9581468 8383785 7452253 6707028 

Δ%A 0.000 -0.007 -0.016 -0.008 0.004 -0.008 -0.027 0.004 -0.017 0.005 

T           
Real 67244164 33620498 22412993 16808862 13445360 11207274 9606748 8405040 7470145 6724359 

Model 67244164 33622082 22414721 16811041 13448833 11207361 9606309 8405521 7471574 6724416 

Δ%T 0.000 0.005 0.008 0.013 0.026 0.001 -0.005 0.006 0.019 0.001 

C           
Real 48055043 24024903 16012711 12013624 9612227 8005708 6865944 6008215 5336968 4803919 

Model 48055043 24027522 16018348 12013761 9611009 8009174 6865006 6006880 5339449 4805504 

Δ%C 0.000 0.011 0.035 0.001 -0.013 0.043 -0.014 -0.022 0.046 0.033 

G           

Real 48111528 24057606 16040889 12028924 9625086 8021235 6869132 6013412 5348337 4813156 

Model 48111528 24055764 16037176 12027882 9622306 8018588 6873075 6013941 5345725 4811153 
Δ%G 0.000 -0.008 -0.023 -0.009 -0.029 -0.033 0.057 0.009 -0.049 -0.042 

 

n 11 12 13 14 15 16 17 18 19 20 

A           

Real 6095821 5588773 5160139 4792078 4472245 4192017 3946422 3726860 3531067 3354107 

Model 6097298 5589190 5159252 4790734 4471352 4191892 3945310 3726127 3530015 3353514 
Δ%A 0.024 0.007 -0.017 -0.028 -0.020 -0.003 -0.028 -0.020 -0.030 -0.018 

T           

Real 6111970 5601854 5173904 4801395 4479492 4202773 3954021 3735327 3535288 3360459 
Model 6113106 5603680 5172628 4803155 4482944 4202760 3955539 3735787 3539167 3362208 

Δ%T 0.019 0.033 -0.025 0.037 0.077 0.000 0.038 0.012 0.110 0.052 

C           
Real 4370502 4002753 3694018 3433636 3202830 3003511 2826568 2668499 2531448 2402186 

Model 4368640 4004587 3696542 3432503 3203670 3003440 2826767 2669725 2529213 2402752 

Δ%C -0.043 0.046 0.068 -0.033 0.026 -0.002 0.007 0.046 -0.088 0.024 

G           
Real 4374518 4013372 3701250 3435824 3210839 3006763 2830698 2673815 2532772 2407301 

Model 4373775 4009294 3700887 3436538 3207435 3006971 2830090 2672863 2532186 2405576 

Δ%G -0.017 -0.102 -0.010 0.021 -0.106 0.007 -0.021 -0.036 -0.023 -0.072 

 

     Fig. 17.3. Real and model values to the OS-representation of the 

human chromosome №1.  The real total amounts of n-plets (n = 1, 2, 

…, 20) having in their first position a certain       nucleotide (A, T, C, or 

G) are shown (in blue) jointly with their model values (in red).       De-

viations Δ% of real quantities from model values are also shown in per-

cent (model value is taken as 100%). 

 

The described modeling hyperbolas HA,1 = SA/n, HT,1 = ST/n, HC,1 = 

SC/n, and  HG,1 = SG/n serve as mathematical standards for the phenom-
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enological rule. These hyperbolas differ from each other only in the 

magnitude of their numerators, and therefore they can be specified by 

the general expression (17.2): 

 

                                             HN,1(n) = SN/n,                                               

(17.2) 

    

where N refers to any of nucleotides A, T, C, or G; SN refers to the 

number of corresponding monomers A, T, C, or G in the analyzed nu-

cleotide sequence. If you know the total quantity  

 

 

 

SN of the monomer N, you can predict - with a high level of accuracy - 

the total amounts of n-plets belonging to the class N1-oligomers by us-

ing the general expression (17.2). This     phenomenological fact testi-

fies in favor of the cooperative entity of the nucleotide sequence in the 

human chromosome №1. 

Obviously, by the corresponding compression of the ordinate axis 

in these cartesian coordinate systems (that is by appropriate scaling of 

numerators SA, ST, SC, and SG), each of these four hyperbolas 

HA,1=SA/n, HT,1=ST/n, HC,1=SC/n, and  HG,1=SG/n reduces to the hyper-

bola (17.3): 

 

                                                              Y = 1/x,                                              

(17.3) 

 

which we call the canonical (or reference) hyperbola of OS-

representations (or OS-portraits) of nucleotide sequences. This canoni-

cal hyperbola (17.3) has already met above as the basis of the hyperbol-

ic model of the main psychophysical Weber-Fechner law in Section 5 

(Fig. 5.1). The author thinks that the principles of organizing sensory 

informatics according to Weber-Fechner law are structurally coordinat-

ed with the principles of informatics of DNA sequences. The transfor-

mation of one hyperbola point to another point is determined by the 

hyperbolic rotation, by which the hyperbole glides along itself. 

The results presented indicate, at least for the human chromosome 

№1, that there exists a general hyperbolic rule on the total amounts of 
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n-plets having a specific nucleotide in their first position (A, T, C, or 

G):  

• for any of classes A1-, T1-, C1-, or G1-oligomers, the total quan-

tities ΣN,n,1(n) of their n-plets, corresponding different n, are in-

terrelated each other through the general expression ΣN,n,1 ≈ 

SN/n with a high level of accuracy (here N means any of nucleo-

tides A, T, C, or G). The phenomenological points with coordi-

nates [n, ΣN,n,1] practically lie on the hyperbola HN,1 = SN/n.                                                

 

It should be noted that here not only each of the classes of A1-, T1-, 

C1-, and G1-oligomers shows separately the cooperative form of their 

organization associated with hyperbolas, but also all these four classes 

of N1-oligomers are consistent with each other. This is confirmed by 

analyzing their summary deviations from the model magnitudes. As 

Fig. 17.4 shows, the sum of deviations ΣΔ% = Δ%A + Δ%T + Δ%C + 

Δ%G, each of which is taken from Fig. 17.3, is close to zero, that is, 

these deviations in the aggregate compensate each other to a noticeable 

extent. 

 

 

Fig. 17.4. In classes of А1-, T1-, C1-, and G1-oligomers, deviations 

Δ%A, Δ%T, Δ%C, and Δ%G (from Fig. 17.3) of real values from mod-

el ones are correlated with each other so that they significantly com-

pensate each other: the sum ΣΔ% = Δ%A + Δ%T + Δ%C + Δ%G of all 

four deviations for each kind of n-plets is significantly less than the 

maximum in them and is close to zero. 
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  But the human genome contains 22 autosomes and 2 sex chromo-

somes X and Y, which are very different from each other in length, mo-

lecular weight, gene content, etc. What can be said about the other 23 

human chromosomes? Is there a similar rule for them? Yes, the author 

has got a positive answer to this question. For each of 24 human chro-

mosomes, knowing its quantity SN of the monomer N (that is A, T, C, 

or G) allows you to calculate the total amounts of n-plets, belonging to 

the class of N1-oligomers, with a high level of accuracy by using the 

general expression (17.2).  Fig. 17.5 shows confirmational results of 

studying all 24 human chromosomes. Appendix II contains more de-

tailed data on parameters of the              OS-representations of all hu-

man chromosomes with the indication of the GenBank sites, where ini-

tial data were taken from for analysis by the OS-method. 

The author has obtained similar results for many other eukaryotic 

and prokaryotic genomes by the described OS-method. Their OS-

representations (that is their OS-portraits) are also modeled with hyper-

bolas, which differ from the canonical hyperbola (17.3) only by their 

dilatations along the ordinate axis (that is only by numerators in their 

general expression (17.2)). The obtained results will be published soon 

in separate articles. 

These results testify in favor of the existence of a general ge-

nomic rule, which at this stage of researches is a candidacy for the role 

of a universal genomic rule on the total amounts of n-plets having a 

specific nucleotide A, T, C, or G in their first position  (much more ge-

nomes should be studied else for the confirmation of its universality): 

• for any of classes A1-, T1-, C1-, or G1-oligomers in eukaryotic 

and prokaryotic genomes, the total quantities ΣN,n,1(n) of their n-

plets, corresponding different n, are interrelated each other 

through the general expression ΣN,n,1 ≈ SN/n with a high level of 

accuracy (here N means any of nucleotides A, T, C, or G). The 

phenomenological points with coordinates [n, ΣN,n,1] practically 

lie on the hyperbola HN,1 = SN/n.                                                

Let us call it the hyperbolic rule.  
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Fig. 17.5.  For each of all 24 human chromosomes, quantities SA, ST, 

SC, and SG of monomers A, T, C, and G are shown to define the model-

ing hyperbolas (17.2). The columns «Range %) show in percentages 

ranges of deviations of real total amounts of corresponding n-plets (n = 

1, 2, …, 20) from their model values (in each case, an appropriate mod-

el value is taken as 100%). 

 

In the frame of this hyperbolic rule, if you know for any analyzed 

eukaryotic or prokaryotic genome its total quantity SN of the monomer 

N, you can predict – with a high level of accuracy – the total amounts 

of   n-plets, belonging to the class of N1-oligomers, by using the general 

expression (17.2). This rule indicates the existence of a genomic invari-

ant of biological evolution. Preliminary author's results testify in favor 

that analogous rules are true in cases of classes of N2-oligomers (and 

also of N3-oligomers) that is for the total amounts of n-plets having the 

identical nucleotide N in their second position (and in their third posi-

tion correspondingly).  

  The proposed OS-method gives interesting results in its application 

for analysis not only very long nucleotide sequences in genomes of dif-

ferent species but also relatively short sequences, for example, of virus-

es, bacteriophages, and separate genes. For instance, the application of 

the OS-method to some genes has discovered an unexpected phenome-

non of regular rhythmic (wave-like) deviations of the real cooperative 

parameters of these genes from the corresponding values of reference 

hyperbolas (17.2) in their modeling OS-representations. Fig. 17.6 

shows an example of such rhythmic deviations in the OS-

representations of the TTN gene, whose DNA sequence contains 81940 

nucleotides. The TTN gene provides instructions for making a very 

large protein called titin. This protein plays an important role in mus-

cles the body uses for movement (skeletal muscles) and in heart (cardi-

ac) muscle. Initial data on the TTN gene were accessed in the Gen-

Bank: https://www.ncbi.nlm.nih.gov/nuccore/X90568.1. 
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      Fig. 17.6. Some results of the analysis of the TTN gene by 

the OS-method.   

        Left: blue curves represent the real total amounts of n-plets, 

having in their first     

        position the nucleotide T (up) and the nucleotide G (at bottom); 

red curves  

        represent the modeling hyperbolas  HT,1(n) = 19569/n and 

HG,1(n) = 18901/n,  

        corresponding  the expression (17.2). On right: rhythmic devia-

tions of the real      

        total amounts of such n-plets from the modeling values 19569/n 

and 18901/n, in  

        percentages. Here n = 1, 2, 3, …, 20. 

 

Numeric features of such rhythmic deviations are related to tri-

plets and bear important information about the genetic code system. 

The wide set of results, which are produced by the application of the 

OS-method to analyze DNA- and RNA-sequences, are systematically 

studied now by the author and his team. This new author's approach 

and its results are discussed at the International interdisciplinary semi-
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nar "Algebraic Biology and System Theory" (Moscow, Russia, 

https://www.youtube.com/channel/UC8JLsuRzzPsRiHwrwEjMCtw). 

The OS- allows you to see DNA sequences not as chaotic col-

lections of individual types of oligomers, but as cooperative entities, 

built on the cooperative long-range coordination of many vast classes 

of oligomers. One can note that the considered above quantities 4(n-1) of 

kinds of n-plets with the first nucleotide N (that is the nucleotide A, or 

T, or C, and or G) correspond not only to quantities of members of the 

quadrants of the (2n*2n)-matrices of the tensor family [C, A; T, G](n) in 

Fig. 2.2 but also to quantities of such n-plets in the tensor families of 

vectors [C, T, G, A](n).  

Can any model be proposed for the formulated above hyperbolic rule 

of the eukaryotic and prokaryotic genomes? Using and developing his 

information-algorithmic model of probabilities of components in long 

DNA sequences, the author offers the following informational-

algorithmic model of this hyperbolic rule. The previously published 

model introduced the notion “genetic qubits" formed based on different 

pairs of binary-oppositional indicators of adenine A, guanine G, cyto-

sine C, and thymine T (see above Fig. 2.1). Appropriate 2n-qubit sys-

tems in so-called separable pure states were constructed, where nucleo-

tides A, T, C, and G (and also DNA doublets and other n-plets) were 

represented by appropriate computational basis states [Petoukhov, 

2018c; Petoukhov, Petukhova, Svirin, 2019]. For example, cytosine C 

was represented as the computational basis state |00> of the 2-qubit 

system, thymine T - as the computational basis state |01>, guanine G – 

as the computational basis state |10>, and adenine A - as the computa-

tional basis state |11> of the same 2-qubit system.  

That model has shown that in such represented long DNA sequences, 

the individual probability (or percentage) P(A) of monomers A is equal 

to the following collective probabilities: 

• The total probability P2(A1) of all 4 doublets beginning with the 

nucleotide A; 

• The total probability P3(A1) of all 16 triplets beginning with A; 

• … The total probability Pn(A1) of all 4n-1 n-plets also beginning 

with A. 

The same is true for interrelations between individual probabilities of 

each nucleotide T, or C, or G and collective probabilities of n-plets be-

ginning with such nucleotide. This is expressed by the following equa-

tions:  
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                   P(A) = Pn(A1),   P(T) = Pn(T1),    P(T) = Pn(T1),    P(G) = 

Pn(G1)            (17.4) 

 

Knowing initially the quantities SA, ST, SC, SG of monomers A, 

T, C, G and also their sum S=SA+ST+SC+SG in the analyzed DNA, one 

can calculate percentages of individual monomers P(A)=SA/S, 

P(T)=ST/S, P(C)=SC/S, and P(G)=SG/S, which are represented in equa-

tions (17.4) and whose sum is equal to 1 (percentages are calculated in 

fractions of the unit). The number of doublets in this DNA will be half 

that the number S of monomers, i.e., equal to S/2. Under different val-

ues n, the total number of n-plets will be equal to S/n.       According to 

equalities (17.4), in this total number S/n of n-plets, the fractions of all 

n-plets with the first nucleotides A, T, C, and G are determined respec-

tively by the quantities P(A)*S/n, P (T)*S/n, P(C)*S/n, and P(G)*S/n. 

These expressions determine those points of hyperbolas, which, as was 

shown above, model phenomenological data in OS-representations of 

genomes with high accuracy. 

These calculations can be additionally explained by an example 

of the human chromosome №1, which was analyzed above (Figs. 17.2 

and 17.3). It was determined that this chromosome contains the follow-

ing quantities of monomers A, T, C, and G: SA = 67070277, ST = 

67244164,    SC = 48055043/, and SG = 48111528. Their sum S = 

230481012. Correspondingly, percentage, for example, of nucleotide A 

in this chromosome is determined by the expression P(A) = SA/S. In 

agreement with the equations (17.4), the total amount of all  4n-1 n-

plets, which begin with the nucleotide A, is equal to Pn(A1)*S/n = 

P(A)*S/n = (SA/S)*S/n = SA/n. But just this ratio determines the model-

ing points HA,1 = SA/n in Figs. 17.1 and 17.3. The similar considera-

tions in cases of nucleotides T, C, and G lead to modeling expressions 

HT,1=ST/n, HC,1=SC/n, and  HG,1=SG/n used in Figs. 17.2-17.4. 

From thе proposed quantum-information model of the hyperbol-

ic rule of genomes, the transition from the genome of one species of 

organisms to the genome of another species appears as a transition of 

the corresponding 2n-qubit system from one separable pure state to 

another separable pure state. At the same time, wave-like rhythmic de-

viations from the base hyperbola, which are found in relatively short 

sequences of the Titin gene type (Fig. 17.6), can also be considered in 

connection with separable pure states of DNA and their violations. 
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Returning to author's information-algorithmic model, which was 

published early [Petoukhov, 2018c; Petoukhov, Petukhova, Svirin, 

2019], the author emphasizes that that model allows deducing or prog-

nosis the existence of the phenomenological hyperbolic rule, whose 

discovery is repre-sented above. It can be considered as an example of 

usefulness of algebraic modeling in biology. 

It should be noted that the genomic hyperbolic rule is funda-

mentally different from well-known hyperbolic Zipf's law. Zipf's law 

was originally formulated in terms of quantitative linguistics, stating 

that given some corpus of natural language utterances, the frequency of 

any word is inversely proportional to its rank in the frequency table 

(see, for example,   [Fagan,  Gençay, 2010]. In linguistics, Zipf's law 

speaks on the frequency of encounter of single words. In contrast, the 

genomic hyperbolic rule speaks on the total amounts of n-plets belong-

ing to a numerous class of  4n-1 n-plets that are identical by their first 

position. 

 

18.      Regarding hyperbolic spectra for music timbres 

  There is a distant structural analogy between the described co-

operative organization of genomes associated with the hyperbolic rule 

and the structure of vibrations of tensioned strings, having harmonic 

overtones. In a series of harmonic overtones, each of the overtone fre-

quencies is n times less than the fundamental frequency. The timbre of 

a musical instrument is determined by which overtones it emphasizes.  

Music can influence the state of the body and has different ap-

plications, including in music therapy [Shushardzhan, Petoukhov, 

2020]. As known, living cells create sound. This discovery was made 

by J. Gimzewski in 2002 [Pelling, Sehati, Gralla, Valentine, Gim-

zewski, 2004]. Surprisingly, the sounds lie in the audible range. Gim-

zewski discovered that a yeast cell produced about 1,000 vibrations a 

second. «When he amplified the signal, a musical hum filled the room. 

"It wasn't at all what I expected," he recalls. "It sounded beautiful"» 

[Thompson, 2004].  

Cell physiology is genetically inherited, and the fact that the 

sounds emitted by the cells are in the nature of a beautiful musical hum 

suggests that this genetically inherited hum is endowed with harmony. 

This harmony and its relationship with the concept of multi-resonance 

genetics [Petoukhov, 2016] should be studied in the future. The discov-
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ery of Gimzewski gave rise to a new scientific field called sonocytolo-

gy. In particular, sonocytology is associated with the creation of new s 

for diagnosing cancer since harmony of cell sounds becomes cacopho-

ny when healthy cells become cancerous. A promising approach for 

such diagnostics on the basis of a CymaScope instrument is described 

in [Reid, Park, Ji, 2019]. 

In this regard, the question of the relative physiological activity 

of various types of timbres is interesting. Nowadays, computer technol-

ogy allows you to synthesize a variety of timbres for each of the fun-

damental frequencies of musical notes. Considering the available data 

on the role of hyperbolic numbers, hyperbolic rotations and hyperbolic 

rules in different biological phenomena, the author puts forward the 

following hypothesis:  

• Timbres having spectrum consisted of harmonic over-

tones, whose amplitudes decrease according to the hyperbolic rule An = 

A1/n, have a special physiological activity. 

One can think such “hyperbolic timbres” can be useful for en-

hancing the aesthetic perception of music and the effectiveness of mu-

sic therapy. These timbres can be easily synthesized on a computer for 

each of the fundamental frequencies in any musical system (equal tem-

perament, Pythagorean, Fibonacci-stages, etc.). Fig. 18.1 shows an ex-

ample of such hyperbolic dependence of amplitudes of harmonic over-

tones from their serial number n for any possible fundamental frequen-

cy. 

 
 

 

Fig. 18.1. For any fundamental frequency f1, an example of hyper-

bolic spectra is shown. It represents the hyperbolic dependence 

Vn=V1/n of relative volumes Vn of their harmonic overtones from their 
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serial numbers n = 1, 2, 3, ..., 12. The abscissa axis shows the serial 

numbers n of overtones, having frequencies nf1. The ordinate axis 

shows the relative volumes Vn of these overtones. The relative volume 

V1 of the fundamental frequency f1 is taken as 1. 

 

Oscillations with hyperbolic spectra can be useful not only in 

musical acoustics and its applications. It seems necessary to study the 

physiological effects of vibrational, electrical, magnetic, optical and 

other vibrations having a hyperbolic spectrum. 

 

19     Some concluding remarks 

 

The development of modern mathematical natural sciences is based 

on the use of certain mathematical tools. Mathematical tools of theoret-

ical research can be compared with glasses for a visually impaired per-

son: adequate glasses provide a person with a clear and beautiful pic-

ture of reality, which he had previously seen as blurred and hidden by 

fog. Darwin once wrote: “I have deeply regretted that I did not proceed 

far enough at least to understand   something of the great leading prin-

ciples of mathematics; for men thus endowed seem to have an extra 

sense” (this quotation is taken from [May, 2004]). 

The presented article gives additional materials to the question about 

the dictatorial influence of genetic molecules DNA and RNA on the 

entire organism and about some algebraic rules of this influence. Here 

one can remind that else G.Mendel in his experiments on the crossing 

of organisms discovered that the inheritance of these characters occurs 

according to algebraic rules, despite the colossal heterogeneity of the 

molecular structure of bodies. 

This article attracts attention of researches to an important role of 

hyperbolic numbers and their matrix representations in algebraic mod-

elling structural features of genetic phenomena (see also [Petoukhov, 

2019 c]). The author puts forward the hypothesis that hyper-alphabets 

of eigenvectors of matrix representations of basis units of 2n-

dimensional hyperbolic numbers play a key role in transmitting 

biological information and that they can be considered as one of 
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foundations of coding information at different levels of biological 

organization. He believes that corresponding languages using such 

hyper-alphabets define many inherited phenomenological structures in 

biology including molecular genetic structures. In particular, using 

these hyper-alphabets gives new algebraic tools to study 

phenomenologic rules in genetics, long literary texts (at least, in 

Russian language) and also harmony of musical pieces. The proposed 

algebraic approach is connected with the theme of a grammar of 

biology mentioned above.  

The described method of oligomeric sum, which allowed to discover 

the hyperbolic rule of the cooperative form of oligomeric organization 

of DNA sequences in genomes, gives new opportunities to study 

genetic systems and to discuss the problem of invariants in biological 

evolution. 

In the author’s opinion, the proposed kind of mathematics is 

beautiful and it can be used for further developing of algebraic biology 

and informatics in accordance with the famous statement by P. Dirac, 

who taught that a creation of a physical theory must begin with the 

beautiful mathematical theory: “If this theory is really beautiful, then it 

necessarily will appear as a fine model of important physical 

phenomena. It is necessary to search for these phenomena to develop 

applications of the beautiful mathematical theory and to interpret them 

as predictions of new laws of  physics” (this quotation is taken from 

[Arnold, 2007]). According to Dirac, all new physics, including 

relativistic and quantum, are developing in this way. One can suppose 

that this statement is also true for mathematical biology. 

 

 

Appendix I. Dyadic groups of binary numbers, modulo-2 addition 

and matrices of          

                      dyadic shifts 

 

This article has repeatedly used a special decomposition of bisymmetric 

(2n*2n)-matrices, which represented them as a sum of 2n sparse matri-
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ces, defining multiplication tables of    corresponing algebras (Figs. 2.3, 

2.4, 7.2, 8.3). Just these sparce matrices represented the basic units of 

hyperbolic numbers. This Appendix explains what this special kind of          

decomposition is.    

Bisymmetric matrix representations of 2n-dimensional hyperbolic 

numbers have the        peculiarity that the set of numbers of the first 

row of the matrix is completely repeated in each subsequent row with 

some permutation or "shift". This permutation is called the dyadic shift 

and is associated with the well-known operation of modulo-2 addition 

described below. Matrices constructed by this principle are called dyad-

ic shift matrices. Matrix representations of 2n-dimensional hyperbolic 

numbers are constructed by analogy with dyadic shift matrices. De-

compositions of such matrices provide that each of appearing sparse 

matrices contain  only one identical non-zero number in each row (Figs. 

2.3, 2.4, 7.2, 8.3). 

 

Modulo-2 addition is utilized broadly in the theory of discrete signal 

processing as a fundamental operation for binary variables. By defini-

tion, the modulo-2 addition of two numbers written in binary notation 

is made in a bitwise manner in accordance with the following rules: 

 

                               0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0                                         

(A1) 

 

     For example, modulo-2 addition of two binary numbers 110 and 

101, which are equal to   6 and 5 respectively in decimal notation, gives 

the result 110⊕101 = 011, which is equal to 3 in decimal notation (⊕is 

the symbol for modulo-2 addition). The set of binary numbers 

 

                               000, 001, 010, 011, 100, 101, 110, 111                                           

(A2) 

 

forms a dyadic group with 8 members, in which modulo-2 addition 

serves as the group         operation [Harmuth, 1989]. By analogy dyadic 

groups of binary numbers with 2n members can be presented. The dis-

tance in this symmetry group is known as the Hamming distance. Since 

the Hamming distance satisfies the conditions of a metric group, the 
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dyadic group is a metric group. The modulo-2 addition of any two bina-

ry numbers from (A2) always gives a new number from the same se-

ries. The number 000 serves as the unit element of this group: for ex-

ample, 010⊕000 = 010. The reverse element for any number in this 

group is the      number itself: for example, 010⊕010 = 000. Each 

member from (A2) possesses its inverse-symmetrical partner (or a mat-

ing number), which arises if the binary symbol of the member is trans-

formed by the inverse replacements 0→1 and 1→0. For example, bina-

ry numbers 010 and 101 give an example of such pair of mating num-

bers. 

The series (A2) is transformed by modulo-2 addition with the binary 

number 001 into a new series (A3) of the same numbers: 

           

                           001, 000, 011, 010, 101, 100, 111, 110                                           

(A3) 

 

Such changes in the initial binary sequence, produced by modulo-2 

addition of its members with any binary numbers (A2), are termed dy-

adic shifts [Ahmed and Rao, 1975; Harmuth, 1989]. If any system of 

elements demonstrates its connection with dyadic shifts, it indicates 

that the structural organization of its system is related to the logic of 

modulo-2 addition. The article shows additionally that the structural 

organization of genetic systems is related to logic of modulo-2 addition. 

By means of dyadic groups, a special family of (2n*2n)-matrices can 

be constructed which are termed “matrices of dyadic shifts” and which 

are used widely in technology of discrete signal processing [Ahmed, 

Rao, 1975; Harmuth, 1977, §1.2.6]. Fig. A1 shows examples of bi-

symmetric matrices of dyadic shifts. In these matrices their rows and 

columns are             numerated by means of binary numbers of an ap-

propriate dyadic group. All matrix cells are numerated by means of bi-

nary numbers of the same dyadic group in such way that a binary nu-

meration of each cell is a result of modulo-2 addition of binary numera-

tions of its column and its row. For example, the cell from the column 

110 and the row 101 obtains the binary numeration 011 by means of 

such addition. Such numerations of matrix cells are termed   “dyadic-

shift numerations” (or simply “dyadic numeration”).  

 

 

   00 (0) 01 (1) 10 (2) 11 (3) 
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 0 1   00 (0) 00 (0) 01 (1) 10 (2) 11 (3) 

0 0 1 ;  01 (1) 01 (1) 00 (0) 11 (3) 10 (2) 

1 1 0   10 (2) 10 (2) 11 (3) 00 (0) 01 (1) 

 11 (3) 11 (3) 10 (2) 01 (1) 00 (0) 

 

 

 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

000 (0) 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

001 (1) 001 (1) 000 (0) 011 (3) 010 (2) 101 (5) 100 (4) 111 (7) 110 (6) 

010 (2) 010 (2) 011 (3) 000 (0) 001 (1) 110 (6) 111 (7) 100 (4) 101 (5) 

011 (3) 011 (3) 010 (2) 001 (1) 000 (0) 111 (7) 110 (6) 101 (5) 100 (4) 

100 (4) 100 (4) 101 (5) 110 (6) 111 (7) 000 (0) 001 (1) 010 (2) 011 (3) 

101 (5) 101 (5) 100 (4) 111 (7) 110 (6) 001 (1) 000 (0) 011 (3) 010 (2) 

110 (6) 110 (6) 111 (7) 100 (4) 101 (5) 010 (2) 011 (3) 000 (0) 001 (1) 

111 (7) 111 (7) 110 (6) 101 (5) 100 (4) 011 (3) 010 (2) 001 (1) 000 (0) 

 

Fig. A1. The examples of matrices of dyadic shifts. Parentheses con-

tain expressions of the   

               numbers in decimal notation. 

 

 

Appendix II. The representations of human chromosomes by  

                        the oligomeric sum method 

 

This Appendix shows more details from the author's results of 

the analysis of all 24 human chromosomes in addition to data shown 

above in Figs. 17.3-17.5. The results confirm the hyperbolic rule of the 

oligomer cooperative organization of genomes, formulated above in 

Section 17. By this rule, knowing the quantity SN of the monomer N 

(that is A, T, C, or G) in any of human chromosomes allows you to cal-

culate the total amounts of n-plets, belonging to  

the class of N1-oligomers, with a high level of accuracy by using the 

general expression (17.2): HN,1(n) = SN/n. Initial data on all human 

chromosomes were taken in the GenBank:  

№1 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11;  

№2- https://www.ncbi.nlm.nih.gov/nuccore/NC_000002.12; 

№3- https://www.ncbi.nlm.nih.gov/nuccore/NC_000003.12; 
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№4- https://www.ncbi.nlm.nih.gov/nuccore/NC_000004.12; 

№5 – https://www.ncbi.nlm.nih.gov/nuccore/NC_000005.10; 

№6 - https://www.ncbi.nlm.nih.gov/nuccore/CM000257.1; 

№7 -  https://www.ncbi.nlm.nih.gov/nuccore/NC_000007.14; 

№8 -  https://www.ncbi.nlm.nih.gov/nuccore/NC_018919.2; 

№9 -  https://www.ncbi.nlm.nih.gov/nuccore/CM000260.1; 

№10 -  https://www.ncbi.nlm.nih.gov/nuccore/NC_000010.11; 

№11 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000011.10; 

№12 -  https://www.ncbi.nlm.nih.gov/nuccore/NC_000012.12; 

№13 - https://www.ncbi.nlm.nih.gov/nuccore/CM000264.1; 

№14 - https://www.ncbi.nlm.nih.gov/nuccore/CM000265.1; 

№15 -  https://www.ncbi.nlm.nih.gov/nuccore/NC_000015.10; 

№16 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000016.10; 

№17 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000017.11; 

№18 - https://www.ncbi.nlm.nih.gov/nuccore/CM000269.1; 

№19 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000019.10; 

№20 - https://www.ncbi.nlm.nih.gov/nuccore/CM000271.1; 

№21 - https://www.ncbi.nlm.nih.gov/nuccore/BA000005; 

№22 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000022.11; 

X - https://www.ncbi.nlm.nih.gov/nuccore/NC_000023.11; 

Y - https://www.ncbi.nlm.nih.gov/nuccore/NC_000024.10. 

 

Below in all tables of this Appendix, the following data are 

shown:   

- The real total amounts of n-plets (n = 1, 2, …, 20) having in 

their first position a certain nucleotide (A, T, C, or G) are shown (in 

blue) jointly with their model values (in red);  

- Deviations Δ% of real quantities from model values in percent 

(model value is taken as 100%); 

- n = 1, 2, 3, … , 20. 

In the columns with n = 1, deviations Δ% is equal to zero for all 

chromosomes since the real quantity of any nucleotide is taken as the 

first value for the appropriate model hyperbola in the method of OS-

representations. 
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Appendix III. Matrix representations of basis units of 32-

dimensional hyperbolic           

                       numbers 

 

The Appendix contains matrix representations of basis units e0, e1, e2, 

…, e31 of                   32-dimensional hyperbolic numbers 

a0e0+a1e1+a2e2+….+a31e31. Each of these matrices is a permutation ma-

trix having in each row and in each column onle one entry 1, all other 

matrix cells contain zero. Each of matrices is a matric of dyadic shifts 

described above in the       Appendix I. 

 

e0  (the unit matrix): 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

 

 

e1 : 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

 

e2 : 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

e17 : 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

e19 : 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

e20 : 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

e21 : 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

e31 : 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Acknowledgments 
 

Some results of this paper have been possible due to a long-term coop-

eration between       Russian and Hungarian Academies of Sciences on 

the theme “Non-linear models and      symmetrologic analysis in bio-

mechanics, bioinformatics, and the theory of selforganizing systems”, 

where the author was a scientific chief from the Russian Academy of 

Sciences. The author is grateful to G. Darvas, E. Fimmel, A.A. Ko-

blyakov, M. He, Z.B. Hu, Yu.I. Manin, D.G. Pavlov, I.S. Soshinsky, 

I.V. Stepanyan, V.I. Svirin and G.K. Tolokonnikov for their collabora-

tion. 

 

References 

 

Ahmed, N.U., Rao, K.R. Orthogonal transforms for digital signal 

processing. Springer-      

   Verlag New York, Inc. (1975). 

Apel W. Harvard Dictionary of Music. Cambridge, Massachusetts: 

Harvard University Press  

      (1969).  ISBN 978-0-674-37501-7. 

Arnold V. A complexity of the finite sequences of zeros and units and 

geometry of the finite  

      functional spaces. Lecture at the session of the Moscow 

Mathematical Society, (May 13,  

      2007), http://elementy.ru/lib/430178/430281. 

Bailey Ch.-J.N. (1982). On the Ying and Yang Nature of Language. 

Ann Arbor: Karoma. 

Baines A. Woodwind Instruments and Their History. New York: Cou-

rier Dover Publications  

      (1991), ISBN 978-0-486-26885-9]. 

 Ballonoff P. Some Properties of Transforms in Cultural Theory. - Int J 

Theor Phy, 49, pp.   

       2998–3004 (2010), DOI 10.1007/s10773-010-0438-7. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints201908.0284.v4

http://elementy.ru/lib/430178/430281
https://doi.org/10.20944/preprints201908.0284.v4


174 

Balonin N.A. New course on the theory of motion control (Novyi kurs 

teorii upravleniia  

      dvizheniem). Saint Petersburg State University, Saint Petersburg 

(2000) (in Russian). 

Bellman R. Introduction to Matrix Analysis. N-Y: Mcgraw-Hill Book 

Comp.  (1960)] 

Bodnar O.Ya. Geometry of phyllotaxis. Reports of the Academy of 

Sciences of Ukraine,  

     №9, pp. 9-15 (1992). 

Bodnar O.Ya. Golden Ratio and Non-Euclidean Geometry in Nature 

and Art. Lviv:  

      Publishing House "Sweet" (1994). 

Chargaff E. Preface to a Grammar of Biology: A hundred years of 

nucleic acid research. –  

      Science, 172, 637-642 (1971). 

Christidis A.-F., Arapopoulou M., Christi M. A History of Ancient 

Greek: From the       

      Beginnings to Late Antiquity. Cambridge: Cambridge University 

Press (2007). ISBN  

      978-0-521-83307-3. 

Gladwell G.M.L. Inverse Problems in Vibration. London, Kluwer Ac-

ademic Publishers,  

      (2004). 

Collins Concise Dictionary, 4th edition, HarperCollins, Glasgow 

(1999). ISBN 0 00  

     472257 4. 

Day-O'Connell J. Pentatonicism from the Eighteenth Century to De-

bussy. Rochester:         

     University Rochester Press (2007). ISBN 978-1-58046-248-8. 

Fagan S., Gençay R. "An introduction to textual econometrics", in 

Ullah, Aman; Giles, David E. A. (eds.), Handbook of Empirical Eco-

nomics and Finance, CRC Press, pp. 133–153, (2010), 

ISBN 9781420070361 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2020                   doi:10.20944/preprints201908.0284.v4

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781420070361
https://doi.org/10.20944/preprints201908.0284.v4


175 
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