Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

Hyperbolic Numbers in Modeling Genetic Phenomena

Sergey V. Petoukhov!

1. Mechanical Engineering Research Institute of Russian Academy of
Sciences. Russia,

101990, Moscow, M. Kharitonievskiy pereulok, 4,
http://eng.imash.ru/, info@imash.ru

Comment: Some elements of this article were presented by the au-
thor in his keynote speeches at the following conferences: the Interna-
tional Belgrade Bioinformatics Conference 2018 (Belgrade, Serbia, 18-
22 June 2018, http://belbi.bg.ac.rs/); the 2nd International Confer-
ence Artificial Intelligence, Medical Engineering, Education (Moscow,
Russia, 1-3 October 2019); the 3" International Conference on Com-
puter Science, Engineering and Education Applications (Kiev, Ukraine,
21-22 January 2020). Also an author's presentation with elements of
this article was done at the 6th International Conference in Code Biolo-
ay (Friedrichsdorf, Germany, 3-7 June 2019,
http://www.codebiology.org/conferences/Friedrichsdorf2019/).

Abstract. The article is devoted to applications of 2-dimensional
hyperbolic numbers and their algebraic 2"-dimensional extensions in
modeling some genetic and cultural phenomena. Mathematical
properties of hyperbolic numbers and their bisymmetric matrix
representations are described in a connection with their application to
analyze the following structures: alphabets of DNA nucleobases;
inherited phyllotaxis phenomena; Punnett squares in Mendelian
genetics; the psychophysical Weber-Fechner law; long literary Russian
texts (in their special binary representations). New methods of algebraic
analysis of the harmony of musical works are proposed, taking into
account the innate predisposition of people to music. The hypothesis is
put forward that sets of eigenvectors of matrix representations of basis
units of 2"-dimensional hyperbolic numbers play an important role in
transmitting biological information. A general hyperbolic rule
regarding the oligomer cooperative organization of different genomes is
described jointly with its quantum-information model. Besides, the
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hypothesis about some analog of the Weber-Fechner law for sequences
of spikes in single nerve fibers is formulated. The proposed algebraic
approach is connected with the theme of the grammar of biology and
applications of bisymmetric doubly stochastic matrices. Applications of
hyperbolic numbers reveal hidden interrelations between structures of
different biological and physical phenomena. They lead to new
approaches in mathematical modeling genetic phenomena and innate
biological structures.

Keywords: hyperbolic numbers, matrix, eigenvectors, genetics,
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doubly stochastic matrices

Contents

1. Introduction

Matrix representations of DNA alphabets and hyperbolic num-

bers

Hyperbolic and Fibonacci numbers in phyllotaxis modeling

Fibonacci sequences of 2"-dimensional hyperbolic numbers

Hyperbolic numbers and the Weber-Fechner law

The alphabets of orthogonal vector bases associated with basis

units of 2"-dimensional hyperbolic numbers

7. Quint ratios in DNA parameters and musical harmony

8. Applications of algebras of 2"-dimensional hyperbolic humbers
in musicology

9. Advantages of matrix representations of hyperbolic numbers

10. 2"-dimensional hyperbolic numbers and phenomenologic rules of
percentages in genetics

11. 2"-dimensional hyperbolic numbers and phenomenologic rules of
percentages in long literary texts

12. Hyperbolic numbers and doubly stochastic matrices

13. Bisymmetric matrices and Punnet squares of the Mendelian ge-

N

o ks W

netics
14. Fractal-like multi-dimensional configurational spaces of hyper-
bolic types

15. Pythagoras and the importance of the concept of number
16. The hypothesis of an analogue of the Weber-Fechner law related
to the transmission of information along single nerve fibres


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

17. The hyperbolic rule in the oligomer cooperative organization of
genomes
18. Regarding hyperbolic spectra for music timbres
19. Some concluding remarks
Appendix I. Dyadic groups of binary numbers and matrices of
dyadic shifts
Appendix Il. The representations of human chromosomes by the
oligomeric sum
method
Appendix [1l. Matrix representations of basis units of 32-
dimensional hyperbolic
numbers
Acknowledgments
References

1 Introduction

Living bodies are a huge number of various molecules interconnected
by quantum-mechanical and stochastic relationships. These sets of
molecules have an amazing ability to inherit the biological characteris-
tics of organisms to the next generations. G. Mendel, in his experiments
with plant hybrids, found that the transmission of traits during the
crossing of organisms occurs by certain algebraic rules, despite the co-
lossal heterogeneity of molecular structures of their bodies. In genetics
textbooks, these algebraic rules of polyhybrid crossbreeding are pre-
sented since 1906 in the form of Punnett squares resembling mathemat-
ical square matrices in their structure. Mendel also proposed a model
for explanation of the observed rules, introducing the idea of binary-
oppositional forms of the existence of factors of inheritance of traits:
dominant and recessive forms.

This article continues the search for algebraic models of the natural
features of genetic structures and inherited macrobiological phenome-
na. As known, the key difference between living and inanimate objects
is as follows: inanimate objects are controlled by the average random
movement of millions of their particles, while in a living organism, ge-
netic molecules have a dictatorial effect on the entire living organism
[McFadden, Al-Khalili, 2018]. For this reason, the author focuses on
studying the system of genetic alphabets and the genetic code in the
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form of mathematical matrices constructed on binary-oppositional fea-
tures of DNA alphabets.

In this way, the article addresses the issues of coding information in
the genetic system. In a broad sense, code is usually understood as cor-
respondence between two sets of characters. For example, from this
point of view, a usual phone book can be considered as a coding sys-
tem, in which its phone numbers encode names of people. But this arti-
cle considers analogies of the genetic code with more complex kinds of
codes termed as algebraic codes and algebra-geometric codes, which
are widely used in modern communication technologies for algorithmic
providing a noise-immunity transfer of information. The genetic coding
of information has noise immunity, which allows the transfer of genetic
information from ancestors to descendants along the generation chain
through very difficult and different living conditions of organisms. The
study of possible algorithms for noise-immunity transfer of genetic in-
formation is an important scientific task, the successful solution of
which can give a lot of useful for engineering, medical, biotechnologi-
cal and other sciences. It is about unraveling the bioinformatical patents
of living matter.

This article draws special attention to structural analogies of the
molecular system of genetic coding with one of the known types of
multidimensional hypercomplex numbers commonly called hyperbolic
numbers (although other their names are also used in the literature:
double numbers, Lorentz numbers, etc.). As known, this type of hyper-
complex numbers can be represented by bisymmetric matrices, which -
in special cases - are doubly stochastic matrices having many applica-
tions in linear programming, the theory of games and optimizations,
etc. and interesting for their application in algebraic biology.

The main task of mathematical natural sciences is the creation of
mathematical models of natural systems. The development of models
and formalized theories depends highly on those mathematical notions
and instruments, on which they are based. Modern science knows that
different natural systems could possess their own individual geometries
and their own individual arithmetic [Kline, 1982]. Various kinds of
multi-dimensional numbers — complex numbers, hyperbolic numbers,
dual numbers, quaternions, and other hypercomplex numbers — are used
in different branches of modern science. They have played the role of
the magic tool for the development of theories and calculations in prob-
lems of heat, light, sounds, fluctuations, elasticity, gravitation, mag-
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netism, electricity, current of liquids, quantum-mechanical phenomena,
special theory of relativity, nuclear physics, etc. For example, in phys-
ics, thousands of works - only in XX century — were devoted to quater-
nions of Hamilton (their bibliography is in [Gsponer, Hurni, 2008].

The idea about special mathematical peculiarities of living matter
exists long ago. For example V.1. Vernadsky put forward the hypothe-
sis on a non-Euclidean geometry of living nature [Vernadsky, 1965]. It
seems an important task to investigate what systems of multi-
dimensional numbers are connected or can be connected with ensem-
bles of parameters of the genetic code and inherited biological peculiar-
ities. Some results of such investigation are presented in this article.
They are connected with hyperbolic numbers and their algebraic exten-
sions, matrix forms of which give a new class of mathematical models
in biology. Author’s results described in this article are related in
particular to works by O. Bodnar who noted that ontogenetic transfor-
mations of phyllotaxis lattices in plants can be formally modeled by
hyperbolic rotations, which are particular cases of hyperbolic numbers
and are well known in the special theory of relativity (Lorentz trans-
formations) [Bodnar, 1992, 1994]. On this basis, he stated that the ge-
ometry of living bodies has structural relations with Minkovsky geome-
try. Another evidence in favor of structural relations of inherited bio-
logical phenomena with hyperbolic rotations was shown in the work
[Smolyaninov, 2000], which analyzed problems of locomotion control
and put forward ideas of the “locomotor theory of relativity”.

All physiological systems must be argued with a genetic coding sys-
tem to be genetically encoded for their survival and inheritance into the
next generations. For this reason, the structural organization of physio-
logical systems can bear the imprint of the structural features of molec-
ular genetic systems. Our study aims to identify such relationships of
inherited physiological structures with the molecular genetic system.
Taking into account known data about ratios of musical harmony in the
parametric organization of DNA molecules, new algebraic approaches
are proposed for analyzing the hidden harmony of musical pieces.

2 Matrix representations of DNA alphabets and hyperbolic num-
bers

In DNA molecules DNA genetic information is written in sequences of
4 kinds of nucleobases: adenine A, cytosine C, guanine G, and

do0i:10.20944/preprints201908.0284.v4
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thymine T. They form a DNA alphabet of 4 monoplets. Besides, DNA
alphabets of 16 doublets and 64 triplets also exist. It is known [Fimmel,
Danielli, Striingmann, 2013; Petoukhov, 2008; Petoukhov, He, 2010;
Stambuk, 1999] that these four nucleobases A, C, G, and T are interre-
lated due to their symmetrical peculiarities into the united molecular
ensemble with its three pairs of binary-oppositional traits or indicators
(Fig. 2.1):

1) Two letters are purines (A and G), and the other two are pyrim-
idines (C and T). From the standpoint of these binary-oppositional
traitsone candenote C=T=0,A=G =1,

2) Two letters are amino-molecules (A and C) and the other two are
keto-molecules (G and T). From the standpoint of these traits one
can designate A=C=0,G=T=1;

3) The pairs of complementary letters, A-T and C-G, are linked by 2
and 3 hydrogen bonds, respectively. From the standpoint of these

binary traits, one can denote C =G =0, A=T=1
3o N\ Ne Binary Symbols C|A|G|TU
/_T prov \.i§ . 1 | 0.— pyrimidines O1|11]11] O1
b 11— purines

~z

/2

[
=

3 | 03— three hydrogen bonds; | 03 | 13 | 03 | 13
13— two hydrogen onds

» 2 | 02— amino 020212 12
g 12— keto

Fig. 2.1. Left: the four nitrogenous bases of DNA: adenine A, gua-
nine G, cytosine C, and thymine T. Right: three binary sub-alphabets
of the genetic alphabet based on three pairs of binary-oppositional
traits or indicators.

Taking into account the phenomenological fact that each of DNA-
letters C, A, T, and G is uniquely defined by any two kinds of men-
tioned binary-oppositional indicators (Fig. 2.1), these genetic letters can
be represented through corresponding pairs of binary symbols, for ex-
ample, from the standpoint of two first binary-oppositional indicators.
It is convenient for us - for the further description - use at the first posi-
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tion of each of letters its binary symbol from the second pair of binary-
oppositional indicators (the indicator "amino or keto": C=A=0, T=G=1)
and at the second positions of each of letters its binary symbol from the
first pair of binary-oppositional indicators (the indicator "pyrimidine or
purine”: C=T=0, A=G=1). In this case, the letter C is represented by the
binary symbol 0,0: (that is as 2-bit binary number), A — by the symbol
0211, T — by the symbol 1,01, G — by the symbol 1,1:. Using these rep-
resentations of separate letters, each of 16 doublets is represented as the
concatenation of the binary symbols of its letters (that is as 4-bit binary
number): for example, the doublet CC is represented as a 4-bit binary
number 02010201, the doublet CA — as a 4-bit binary number 02010211,
etc. By analogy, each of 64 triplets is represented as the concatenation
of the binary symbols of its letters (that is as 6-bit binary number): for
example, the triplet CCC is represented as a 6-bit binary number
020102010201, the triplet CCA — as 6-bit binary number 020102010211,
etc. In general, each of n-plets is represented as the concatenation of the
binary symbols of its letters (below we will not show these indexes 2
and 1 of separate letters in binary representations of n-plets but will
remember that each of positions corresponds to its own kind of indica-
tors from the first or from the second set of indicators in Fig. 2.1).

It is convenient to represent DNA-alphabets of 4 nucleotides, 16
doublets, 64 triplets, ... 4" n-plets in a form of appropriate square tables
(Fig. 2.2), which rows and columns are  enumerated by binary sym-
bols in line with the following principle. Entries of each column are
enumerated by binary symbols in line with the first set of binary-
oppositional indicators in Fig. 2.1 (for example, the triplet CAG and all
other triplets in the same column are the combination “pyrimidine-
purine-purine” and so this column is correspondingly enumerated 011).
By contrast, entries of each of rows are enumerated by binary numbers
in line with the second set of indicators (for example, the same triplet
CAG and all other triplets in the same row are the combination “amino-
amino-keto” and so this row is correspondingly numerated 001). In
such tables (Fig. 2.2), each of 4 letters, 16 doublets, 64 triplets, ... takes
automatically its own individual place and all of them are arranged in a
strict order.

These 3 separate genetic tables form the joint tensor family of ma-
trices since they are interrelated by the known operation of the tensor
(or Kronecker) product of matrices [Bellman, 1960]. So they are not
simple tables but matrices. By definition, under tensor multiplication of
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two matrices, each of the entries of the first matrix is multiplied with
the whole second matrix. The second tensor power of the (2*2)-matrix
[C, A; T, G] of 4 DNA-letters gives automatically the (4*4)-matrix of
16 doublets; the third tensor power of the same (2*2)-matrix of 4 DNA-
letters gives the (8*8)-matrix of 64 triplets with the same strict ar-
rangement of entries as in Fig. 2.2. In this tensor construction of the
tensor family of genetic matrices, data about binary-oppositional traits
of genetic letters C, A, T, and G are not used at all. So, the structural
organization of the system of DNA-alphabets is connected with the
algebraic operation of the tensor product. It is important since the oper-
ation of the tensor product is well known in mathematics, physics, and
informatics, where it gives a way of putting vector spaces together to
form larger vector spaces. The following quotation speaks about the
crucial meaning of the tensor product: «This construction is crucial to
understanding the quantum mechanics of multiparticle systems» [Niel-
sen, Chuang, 2010, p. 71].

00011011

0 00JCcC|CAJAC|AA

0 01 | CT | CG | AT | AG
11T |G 10 | TC | TA| GC | GA
11]TT | TG| GT | GG

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

000 J CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
001 J CCT | CCG | CAT | CAG | ACT | ACG | AAT | AAG
010 J CTC | CTA | CGC | CGA | ATC | ATA | AGC | AGA
011 § CTT | CTG | CGT | CGG | ATT | ATG | AGT | AGG
100 § TCC | TCA | TAC | TAA | GCC | GCA | GAC | GAA
101 § TCT | TCG | TAT | TAG | GCT | GCG | GAT | GAG
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110|TTC TTA | TGC | TGA | GTC | GTA | GGC GGAI
111|TTT TTG | TGT | TGG | GTT | GTG | GGT GGGI

Fig. 2.2. The square tables of DNA-alphabets of 4 nucleotides, 16 dou-
blets and 64 triplets with a strict arrangement of all components. Each
of the tables is constructed in line with the principle of binary numera-
tion of its column and rows based on binary-oppositional traits of the
nitrogenous bases (see explanations in the text).

In the DNA double helix, complementary nucleobases C and G are
connected by 3 hydrogen bonds and complementary nucleobases A and
T are connected by 2 hydrogen bonds. One can denote their typical
connections with hydrogen bonds by expressions C=G=3 and A=T=2.
Replacing in the (2*2)-matrix [C, A; T, G] (Fig. 2.2) symbols C, A, T
and G by their numbers of hydrogen bonds 3 and 2, a numeric matrix
[3, 2; 2, 3] appears (Fig. 2.3). The second and the third tensor powers of
this matrix [3, 2; 2, 3]™, where n = 2, 3, generate numeric (4*4)- and
(8*8)-matrices in Fig. 2.3, which automatically represent symbolic ma-
trices of 16 doublets and 64 triplets in Fig. 2.2 from the standpoint of
the product of their numbers of hydrogen bonds. For example, the dou-
blet CA is replaced by number 3*2=6 and the triplet AGT is replaced
by number 2*3*2=12. These genetic matrices are closely connected by
their structures with so-called matrices of dyadic shifts, which are
known in digital information technology of noise immune coding and
which are described below in the Appendix I. See also some thematic
details and argumentations for using 2"-dimensional hyperbolic num-
bers and dyadic shifts in matrix genetics and algebraic biology in ([Pe-
toukhov, 2019 c]).

T |
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Fig. 2.3. Numeric representations of the tensor family of symbolic
matrices (Fig. 2.2) of 4 monoplets, 16 doublets and 64 triplets from
the standpoint of their numeric characteristics of hydrogen bonds
C=G=3 and A=T=2.

Fig. 2.4 shows that the matrix [3, 2; 2, 3] is decomposed into
sum of two sparse  matrices, one of which is the identity matrix (jo =
[1, 0; 0, 1]) and the second matrix j1=10,1;1,1])
represents imaginary unit of hyperbolic numbers since ji2 = jo. The set
of these matrices jo and ji is closed relative to multiplication and
defines the multiplication table of the algebra of hyperbolic numbers
(Fig. 2.4, right).

3,2 1,
2,3[=3*|0,

i 1
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Fig. 2.4. The decomposition of the matrix [3, 2; 2, 3] into two sparse
matrices, where  matrices jo and j1 are matrix representations of real
and imaginary units of the algebra of hyperbolic numbers with the
shown multiplication table of these units.

Here we should remind that two-dimensional hyperbolic numbers are
written in linear notation as my = a*1+b*j (where 1 is the real unit; j is
the imaginary unit with the property j#+1lbutj?=1;a,bare real
coefficients). These numbers are used in physics and mathematics and
they have also synonymical names: "split-complex numbers”, “double
numbers” and "perplex numbers". The collection of all hyperbolic
numbers forms algebra over the field of real numbers [Harkin, Harkin,
2004; Kantor, Solodovnikov, 1989]. The algebra is not a division
algebra or field since it contains zero divisors. Addition and multiplica-
tionof  hyperbolic numbers are defined by (2.1):

(xHjy)+(utjv)=(x+u)+j(y+v);
(x+y)(utjv)=(xu+yv)+j(xv+yu) (2.1)

This multiplication is commutative, associative and distributes over
addition.

A hyperbolic number has its matrix form of representation: [a,
b; b, a] = a*[1, 0; 0, 1] +b*[0, 1; 1, 0] where [1, 0; O, 1] is the identity
matrix representing real basis unit; [0, 1; 1, 0] represents imaginary
basis unit. Fig. 2.4 shows the matrix representation of hyperbolic num-
bers a*1+b*j for the case a = 3 and b = 2. The symmetric matrices [1,
0; 0, 1] and [0, 1; 1, O] representing these real and imaginary unites are
orthogonal matrices.

If a®-b? = 1, then the matrix [a, b; b, a] defines hyperbolic rota-
tions known in the  special theory of relativity as Lorentz transfor-
mations. Hyperbolic rotations are usually  expressed by a symmetric
matrix (2.2) through hyperbolic cosine «cosh» and hyperbolic sine
«sinh» since cosh?x— sinh?x= 1 [Collins Concise Dictionary, 1999;
Shervatov, 1954; Stakhov, 2009]:

| cosh  x, |
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sinh x
sinh X, | (2.2)
cosh x

Symmetric matrices that represent hyperbolic numbers have real
eigenvalues and orthogonal eigenvectors (which distinguishes them
from non-symmetric matrix representations of complex numbers). Such
symmetric matrices form the basis of the theory of resonances of
oscillatory systems with many degrees of freedom and are also metric
tensors from Riemannian geometry.

The second tensor power of the bisymmetric matrix [a, b; b, a],
which represents  hyperbolic numbers, is decomposed into 4 sparse
matrices eo, e1, e2 and es with real coefficients aa, ab ba and bb
(Fig. 2.5). The used decomposition is based on the known principle of
dyadic shifts described below in the Appendix I.

The set of matrices e, e1, €2 and ez is closed relative to multi-
plication and satisfies to the multiplication table in Fig. 2.5. The set of
these (4x4)-matrices corresponds to algebra of 4-dimensional numbers
aa*eg + ab*e; + ba*e, + bb*es, where the matrix eo represents the real
unit 1 and matrices e1, e and ez represent imaginary units. These 4-
dimensional numbers are algebraic extensions of 2-dimensional hyper-
bolic numbers and for simplicity they can be termed “4-dimensional
hyperbolic numbers” (in our previous publications we termed them
“hyperbolic matrions” [Petoukhov, 2008; Petoukhov, He, 2010]). Each
of matrices eo, e1, €2 and ez is an orthogonal matrix with its determinant
+1.

By comparing Fig. 2.3 and Fig. 2.5, one can see that the numeric
(4*4)-matrix of hydrogen bonds in Fig. 2.3 represents 4-dimensional
hyperbolic number 9eo+6e1+6e>+4e3 where ey is the identity matrix rep-
resenting real unit 1. By analogy, the numeric (8*8)-matrix in Fig. 2.3
represents 8-dimensional hyperbolic number
27jo+18j1+18]o+12j3+18ja+12j5+12j6+8j7 Where jk are basis units of 8-
dimensional hyperbolic numbers.
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2) aa, ab, ba, bb 1000 0100 0010
a, b = | ab, aa, bb,ba | =aa | 0100 | +ab | 1000 | +ba | 0001 | +
b, a ba, bb, aa, ab 0010 0001 1000
bb, ba, ab, aa 0001 0010 0100
0001 *11 e el e
+bb | 0010 | =aa*l + ab*e, + ba*e, + bb*e; . 111 e | e e
0100 €11 € 1 € | €
1000 €1 €| € 1 €

C3 €S| € | € 1

Fig. 2.5. The decomposition of the matrix [a, b; b, a]®, representing 4-
dimensional hyperbolic numbers, into 4 sparse matrices, the
set of which is closed relative to multiplication. The multi-
plication table for this set is shown at the right. The symbol 1 de-
notes the identity matrix eo.

In a general case, 2"-dimensional hyperbolic (or double) numbers are
hypercomplex numbers and they possess, by definition, the following
features. They contain 2" basis units ex (one real unit and 2"-1 imagi-
nary units), which are interrelated by a symmetric table of their mutual
multiplication where all e = +1 (k =0, 1, 2,..., 2"-1).

By analogy with Figs. 2.4 and 2.5, the higher tensor powers n = 3, 4,
5, ... of the bisymmetric matrix [a, b; b, a] produce bisymmetric matri-
ces [a, b; b, a]™, which can be also  decomposed into 2" sparse matri-
ces, the set of which is closed relative to multiplication and which de-
fine appropriate multiplication tables of algebras of 2"-dimensional hy-
percomplex numbers mn (which were termed “hyperbolic matrions” of
the order n in our previous publications [Petoukhov 2008; Pe-
toukhov, He, 2010]). These decompositions use a structural similarity
of the matrices [a, b; b, a]™ with matrices of dyadic shifts described
below in the Appendix I.

It is useful to rewrite the multiplication table in Fig. 2.5 into a form
where all decimal indexes of basis units eo, e1, €2 and es are shown in
their binary notations: eqo, €01, €10 and e11 (Fig. 2.6).

* | €oo | €o1 | €10 | €11

€00 ] €00 | €01 | €10 | €11
€01 ] €01 | €00 | €11 | €10
€10 ] €10 | €11 | €00 | €01
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‘ €11 | €11 ‘ €10 ‘ €01 ‘ 600|

Fig. 2.6. The multiplication table in algebra of 4-dimensional hyperbol-
ic numbers where indexes of basis units are shown in their binary no-
tations eoo, €01, €10 and e11 in contrast to their decimal notations e, €1, €2
and ez in Fig. 2.5.

One can see from Fig. 2.6 that in all cases a result of the product of
two basis units (ep*ex = es) is equal to that basis unit es whose bina-
ry index s is equal to a result of modulo-2 addition for binary indexes p
and k of the factors e, and ex (under the operation of modulo-2 addition
the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1). In other
words the  following equation (2.3) for bimary indexes is true:

ep*ek = €p-+k
2.3)

For example, a result of the product e>*es is equal to ez since decimal
indexes 2 and 3 are expressed by binary numbers 10 and 11 whose
modulo-2 addition gives the binary number 01 refered to decimal num-
ber 1. This method of binary operations with indexes to calculate a re-
sult of the product of any two basis units is true not only for 4-
dimensional hyperbolic numbers but also for other 2"-dimensional hy-
perbolic numbers. The equation (2.3) is especially useful in cases of
high values n when it is difficult to address to multiplication tables hav-
ing 2"*2" sizes each time when you need to know a result es of the
product of basis units e,*ex = es. (For example, the Appendix Il con-
tains matrix representations of basis units of 32-dimensional hyperbolic
numbers, which are useful for mathematical musicology).

For this you should represent indexes p and k in their binary notation
(inside a complete set of n-bit binary numbers) and calculate their bina-
ry sum p+k on the basis of the known operation of modulo-2 addition
where the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1. The
result of such modulo-2 addition is a searched index s in its binary no-
tation. For example, if you multiplicate two 23-dimensional hyperbolic
numbers each other, the complete set of 3-bit binary numbers is the
following: 000, 001, 010, 011, 100, 101, 110, 111 (they correspond
decimal numbers 0, 1, 2, 3, 4, 5, 6, 7). To calculate a result of multupli-
cation of basis units es*es, you take decimal indexes 3 and 5 in their
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binary notation 011 and 101. Their modulo-2 addition gives binary
number 110, which corresponds decimal number 6. In such way we get
the search result: ez*es=es.

3 Hyperbolic and Fibonacci numbers in phyllotaxis modeling

Fibonacci numbers Fn form an additive sequence such that each number
is the sum of the two preceding ones: Fn = Fn.1 + Fn2 (Table 3.1).

Table 3.1. The Fibonacci sequence.
n (1|/2(3]4|5|6|7 |8 |9 |10
Fa|1|1]2(3|5|8|13|21|34|55

Fibonacci numbers are strongly related to the golden ratio ¢ =
(1+5%°)/2. Binet’s formula (3.1) expresses the nth Fibonacci number in
terms of n and the golden ratio, and implies that the ratio of two con-
secutive Fibonacci numbers tends to the golden ratio as n increases:

N T )
(3.1)

In biology, it has long been known that, for example, in many plant
objects the spiral arrangement of their bioorganisms form ordered
patterns (shoots of plants and trees, seeds in the heads of sunflowers,
scales of coniferous cones and pineapples, etc.). These patterns are de-
termined by overlapping left and right oriented spiral lines - parasti-
chies. To characterize phyllotaxis of such botanical objects, usually
indicate two parameters: number of left spirals and number of right spi-
rals, which are observed on the surface of phyllotaxis objects.  Phyl-
lotaxis of structures with such patterns is described by ratios of neigh-
boring Fibonacci numbers:

Frea/Fn o 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, ...
(3.2)
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(Fn+1/Fn) — (Fn+2/Fn+1): 2/1 — 3/2 — 5/3 — 8/5 — 13/8 —
2113 ...  (3.3)

The sequence (3.2) is termed the “parastichic sequence” [Jean ,2006;
Petoukhov, 1981]. It seems natural to use 2-dimensional hyperbolic
numbers for modeling these 2-parametric patterns in phyllotaxis objects
and their ontogenetic transformations. In this approach, proposed by the
author, the sequence (3.2) of phyllotaxis ratios is transformed into addi-
tive sequences (3.4, 3.5) reflecting linear notation of appropriate hy-
perbolic numbers and their matrix representations (we call sequences
(3.4, 3.5) as parastichic sequences of hyperbolic numbers):

Fre1+ jFn: 2+, 3 +j2,5+ 3j, 8 + 5j, 13 +8j, 21 + 13j, 34 + 21,
(3.4)

Fn+1, Fn 2! 1
Fn, Fn+1 11,2

3,2 5,3
2,3 |, |35

In this approach, to define a hyperbolic number u+jv, which transforms
a hyperbolic number Fn+1 + jFq into its neighboring hyperbolic number
Fn+2 + jFn+1 from the sequence (3.4), the  following simple equation
(3.6) should be solved:

8,5‘ ‘13,8 ’
58 |,

, (3.5)

(Fn+1 + JFn)(U + JV) = (Fn+2 + an+1)
(3.6)

The solution to this equation (3.6) gives the following expressions (3.7)
for components of the desired hyperbolic number u + jv:

u= Fn+1/Fn + ('1)n+l*Fn-1/ (Fn*(Fn2 — Fn-lz)), V= ('1)” / (Fn2 —
Fn-1%) (3.7)

In the case of such components (3.7), u? — v? # 1 and the appropriate
matrix [u, v; v, u] does not present a hyperbolic rotation in the sense of
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expression (2.2). But this matrix can be  rewriting into the form (10)
where the matrix of a hyperbolic rotation (in the sense of expres-
sion (2.2)) is multiplied by a coefficient (u? - v2)°->:

vl = (U - VA5 [u(u? - v2) 03, w(u? - v2)O%; v(u? - v?)0%,
uw -v)°*  (38)

Now let us describe results of the author’s study of eigenvalues
of the symmetric matrices in the parastichic sequence (3.5). Each of
these matrices [Fn+1, Fn; Fn, Fn+1] has two eigenvalues, which are equal
to two Fibonacci numbers again: Fn+2 and Fn.1. One can noted that these
eigenvalues are the sum and the difference of the Fibonacci compo-
nents of the original hyperbolic number Fn+1t+ jFn since Fn2 = Fne1 + F
and Fn1 = Fn+1 - Fn. The ratio Fn+2/Fn-1 of such eigenvalues defines a
new sequence (11) of Fibonacci ratios, which tend to ¢® as n increases:

Fne2/Fna: 311, 5/1, 8/2, 13/3, 21/5, 34/8, 55/13,
(3.9)

By analogy with expressions (3.2, 3.4, 3.5) such pair of eigenvalues
Fn+2 and Fn.1 can be  considered as components of a new hyperbolic
number Fn+2 + jFn1. In this case the sequence of ratios (3.9) is trans-
formed into additive sequences (3.10, 3.11) reflecting linear notation of
appropriate hyperbolic numbers and their matrix presentations:

Frea+ jFn1: 3+),5+),8+j2,13+)3,21+5,34+j8,55

+i13,....  (3.10)
Fne2, Frt 3,1 5,1 8,2 13,3 21,5
Foo, Fre2 | ]1,3 |, /1,5 |, |28 |, |313 |, | 521 (3.11)

Each of symmetric matrices [Fn+2, Fn1; Fn1, Fn+2] Of the sequence
(3.11) has two eigenvalues, which are again equal to two Fibonacci
numbers multiplied by a factor 2 (twice the Fibonacci numbers): 2Fn+1
and 2F,. Ratios 2Fn+1/2F, of such eigenvalues form a sequence, which
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is identical to the initial parastichic sequence (3.2). Using the Binet’s
formula (3.1), all members of these sequences can be additionally ex-
pressed through the golden ratio ¢ in integer powers. This procedure of
analysis of the eigenvalues of new and new sequences of symmet-
ric matrices, representing hyperbolic numbers by analogy with se-
quences (3.4, 3.5, 3.10, 3.11), can be repeated as long as desired, ob-
taining a hierarchy of eigenvalues of the matrices based on Fibonacci
numbers multiplied by a factor 2 at corresponding steps of the iterative
procesure.

The following important point should be emphasized. In con-
trast to the traditional additive series of one-dimensional Fibonacci
numbers, the author introduces an additive series of two-dimensional
hyperbolic numbers and an additive series of (2*2)-matrices repre-
senting these numbers and defining an additional additive series of ei-
genvalues of these matrices (3.4, 3.5, 3.10, 3.11). As far as we know,
such Fibonacci series of two-dimensional numbers have not been de-
scribed in the literature by anyone, and therefore they can be  consid-
ered new in the extensive subject matter of Fibonacci numbers and their
applications (some of author's results of the study of additive series of
4-dimensional hyperbolic Fibonacci numbers will be presented below).

Similar results are obtained by considering the additive series of
two-dimensional hyperbolic Lucas numbers and the additive series of
their matrix representations, which  determine the additive series of
eigenvalues of these symmetric matrices (these results are been pub-
lishing in a separate article). Here one can remind that one-dimensional
Lucas numbers form the series Ln+2=Ln +Ln+1: 2, 1, 3, 4,7, 11, 18, ...,
which is also known in phyllotaxis laws [Jean, 2006]. A study of addi-
tive series of complex numbers, whose components are Fibonacci
numbers, and of their ordinary representations by non-symmetric
matrices gives also interesting additive series of their eigenvalues but in
form of complex numbers.

It should be noted that the study of the eigenvalues of symmetric
matrices has special meaning due to the fact that in the theory of oscil-
lations symmetric matrices are matrix representations of oscillatory
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systems with many degrees of freedom. Moreover, the eigenval-
ues of such a matrix determine the resonant frequencies of the corre-
sponding oscillatory system. The described results on the proper-
ties of inherited phyllotaxis phenomena with their Fibonacci
ratios, represented by symmetric matrices and their matrix
eigenvalues, are important, in particular, for the concept of multi-
resonance genetics, which connects structural features of molecular-
genetic systems with resonances of oscillatory  systems [Petoukhov,
2016].

4 Fibonacci sequences of 2"-dimensional hyperbolic numbers

This Section continues the theme of additive series of hyperbolic num-
bers, coordinates of which are Fibonacci numbers. Now we turn to al-
gebraic extensions of hyperbolic numbers in forms of 2"-dimensional
hyperbolic numbers. Let us consider an additive sequence (4.1) of  4-
dimensional hyperbolic numbers Fn+3e0+Fn+2€1+Fn+1€2+Fnes with Fibo-
nacci coordinates from (Table 3.1). In this sequence, each member is
equal to the sum of two previous  members:

3ep+2e1+ler+les; 5e0+3e1+2ex+1es; 8ep+5e1+3ex+2es;
13e0+8e1+5e2+3e3; ...  (4.1)

A corresponding matrix representation of each member from (4.1) has
4 eigenvalues, which can be considered again as coordinates of a new
4-dimensional hyperbolic number. The author reveals that these new 4-
dimensional hyperbolic numbers form a new additive sequence (4.2):

leo+lei+3ex+7es; leo+3e1+5ex+11es; 2eo0+4e1+8e,+18es;
3eot+7e1+13e,+29es3;. .. 4.2)

The sequence (4.2) combines Fibonacci and Lucas sequences in the
following sense. In its  4-dimensional hyperbolic numbers, coordi-
nates of basis elements eg and e> are Fibonacci numbers and coordi-
nates of basis elements e1 and ez are Lucas numbers: 3, 1, 4, 7, 11, 18,
29, ... . Such aggregation of Fibonacci and Lucas numbers resembles a
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phyllotaxis-like locations of amino acid residues in the helices of poly-
peptides for various molecular chains - 11/3, 18/5, 29/8, 47/13; here
fraction numerators are Lucas numbers and fraction denominators are
Fibonacci numbers. These bio-molecular phenomena of polypeptides
configurations are described in the fundamental book [Frey-Wissling,
Mubhlethaler, 1965].

A matrix representation of each member of the sequence (4.2)
has 4 eigenvalues, which can be considered again as coordinates of a
new 4-dimensional hyperbolic number. These 4-dimensional hyperbol-
ic numbers form a new additive sequence (4.3):

-8ep-4e1t+4er+12e3; -12e0-8e1+4e2+20e3; -20e0-12e1+8e2+32e3; -32€0-
20e1+12e5+32e3;.. (4.3)

Comparing sequences (4.1) and (4.3) reveals that a set of coordinates
of each member of the sequence (4.3) repeats - with a factor 4 - a set of
coordinates of the corresponding member of the sequence (4.1) with
accuracy up to signs and a cyclic permutation of coordinates. For ex-
ample, the first member of (4.1) contains coordinates 3, 2, 1, 1 and the
first member of (4.3) contains coordinates -4*2, -4*1, 4*1, 4*3. This
procedure of calculating repeating additive sequences of 4-dimensional
hyperbolic numbers associated with Fibonacci and Lucas numbers can
be repeated as long as desired. Similar results are received for additive
sequences of 2"-dimensional hyperbolic numbers with Fibonacci coor-
dinatesincasesn=3,4, ....

5 Hyperbolic numbers and the Weber-Fechner law

It is profitable for an organism, which is a single whole, to have the
same typical algorithms at different levels of its functioning for
a mutual optimal coordination of its parts. By this reason we study pos-
sibilities to simulate differentinnate phenomena on the general basis of
hyperbolic numbers and its algebraic extensions. This Section is devot-
ed to the main psychophysical law by Weber-Fechner and its struc-
tural connection with phyllotaxis laws through hyperbolic numbers.
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The innate Weber-Fechner law states that the intensity of the perception
Is proportional to the logarithm of stimulus intensity; it is expressed by
the  equation (5.1):

p = k*In(x/xo) = k*{In(x) - In(xo0)}
(5.1)

where p - the intensity of perception, x — stimulus intensity, Xo - thresh-
old stimulus, In — natural logarithm, k — a weight factor. It is
known that different types of inherited sensory perception are sub-
ordinated to this law: sight, hearing, smell, touch, taste, etc. Be-
cause of this law, the power of sound in physics and engineering tech-
nologies is measured on a logarithmic scale in decibels.

One can suppose that the innate Weber—Fechner law is the law espe-
cially for nervous  system. But it is not so since its meaning is much
wider because it holds true in many kinds of lower organisms without a
nervous system in them: “this law is applicable to chemo-tropical, he-
lio-tropical and geo-tropical movements of bacteria, fungi and anther-
ozoids of ferns, mosses and phanerogams ... . The Weber-Fechner law,
therefore, is not the law of the nervous system and its centers, but the
law of protoplasm in general and its ability to respond to stimuli”
[Shults, 1916, p.126]

Let us show that hyperbolic numbers are related to the Weber-
Fechner law, which is based on the natural logarithm (5.1). Historically
the natural logarithm was formerly termed the hyperbolic logarithm, as
it corresponds to the area under a hyperbola [Klein, 2004; Sherva-
tov, 1954]. History of hyperbolic logarithms is described for example
in the book [Klein, 2004]. As known, the natural logarithm can be de-
fined for any positive real number “a” as the area under the hyperbola 'y
= 1/x from 1 to a (Fig. 5.1, left). It means that two points of the hyper-
bola with their coordinates (x, 1/x) and (Xo, 1/Xo), where x > 1 and Xo >
1, define values of natural logarithms In(x) and In(xo). Subtraction In(x)
— In(xo0) = In(X/x0)  expresses the intensity of perception p in the ex-
pression (5.1) of the Weber—Fechner law  (Fig. 5.1, right). A change
of a stimulus intensity x; into a new stimulus intensity x> corresponds
to a hyperbolic rotation, which transforms points of this hyperbola each
into other and defines an appropriate change of intensity of perception:
Ap = k*In(x2/x1). One can add that each point (x, 1/x) of this
hyperbola, where x>1, can be naturally interpreted as hyperbolic num-
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ber with positive coordinates x+x%j, which is represented by a bisym-
metric matrix With positive entries (such matrices coincide with doubly
stochastic matrices under an appropriate matrix normalization; see be-
low Section 12 on doubly stochastic matrices and their applications).

. y=1/x i y=1/x

In(a) ' In(x/x,)

0 1 a o Xo X

Fig. 5.1. Natural logarithm as the area under the hyperbola y = 1/x.
Left: In(a) is equal to the area under the hyperbola from 1 to a. Right:
In(x/xo) is equal to the area under the hyperbola from Xo to x.

Hyperbolic rotations are particular cases of 2-dimensional hyperbolic
numbers. This analysis gives evidences that our sensory percep-
tion obeys the same structural principles as morphogenesis with its
phyllotaxis laws and that these principles can be effectively modelling
on the basis of hyperbolic numbers.

Phyllotaxis laws are related with the golden ratio (or the golden sec-
tion) ¢ = (1+5%%)/2 = 1,618... . Here one can attract attention to the
well-known phenomenon of human visual perception, which consists in
the aesthetic preference for proportions of the golden ratio. People are
endowed with an aesthetic feeling that allows them to prefer certain
proportions and forms in specific situations (review materials can be
found in the book [Petoukhov, 1981, Appendix 1]). A classic example
is given by the proportion of the golden section, which is featured for a
long time in architecture and theoretical works on aesthetics, although
it sometimes causes criticism due to the efforts of some authors to ab-
solutize its significance. The famous American neurophysiologist and
one of the founders of cybernetics McCalloch specially studied the aes-
thetics of this proportion [McCulloch, 1965, c. 395]. He wrote that he
spent two years measuring the person’s ability to bring an adjustable
oblong object to a preferred shape, because he did not believe that hu-
man persons prefer the golden ratio or that they could recognize it.
They prefer and they can! In repeated experimental constructing the
most pleasant forms, human persons come to the preference of the
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golden ratio and they can establish it. As McCulloch concluded one
who is able to detect a difference in the twentieth of the length, area or
volume, exposes this difference to 1:1,618, and not to 1:1,617 or
1:1,619.

Obviously, if in the ratio 1:1,618 for the smaller and larger sides of
a rectangle, the length of the larger side is redenoted as 1, then the rela-
tive length of the smaller side will become equal to ¢*=0,618. In other
words, these values ¢ and ¢ in the aesthetics of proportions for our
visual perception always go in pairs and therefore they can be consid-
ered - in the frame of our approach - as two parts of the single hyper-
bolic number @+j*@* whose matrix presentation is [¢, ¢%; o2, ¢]. But
this hyperbolic number ¢+j*¢™* is related with hyperbolic number
3+j*2, which was shown above as connected with the molecular-
genetic system (see Figs. 2.3 and 2.4). Really, (p+j*¢™)? = 3+j*2 or in
their matrix presentations:

0, o'|2

%0

Fig. 5.2. The relation of 2-dimensional hyperbolic numbers @+j*¢*
and 3+j*2

Below we’ll meet again the hyperbolic number 3+j*2 in Sections on
relations of hyperbolic numbers with musical harmony and the quint
ratio 3/2 (or the pure perfect fifth).

The end of this article contains one additional paragraph with the hy-
pothesis that some analogue of the Weber-Fechner law exists in single
nervous fibers for encoding time intervals among action potentials,
whose sequences carry information in nervous system.

6  The alphabets of orthogonal vector bases associated with basis
units of
2"-dimensional hyperbolic numbers

Let us remind the essence of the eigenvalues and eigenvectors
by means of the matrix A on Fig. 6.1, which acts on vectors [x, y]. In
this case almost any vector is transformed into a new vector [Xx, y]*A
with changing its direction. The exceptions are those vectors [X, y],
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which belong to two orthogonal dotted lines and are called “eigenvec-
tors" of the matrix A; they conserve their direction under action of the
matrix A, but their lengths are scaled with factors Ai, which are called
“eigenvalues” of the matrix A (each eigenvalue corresponds to its own
direction of eigenvectors).

A=|4, 0.6
0.6 2

Fig. 6.1. lllustration of actions of the matrix A on vectors [x, y] (from
[Zharov, 2002])

Each basis unit of 2"-hyperbolic numbers is represented by a corre-
sponding symmetric (2"*2")-matrix, which is an orthogonal matrix and
has its own set of orthogonal eigenvectors. This orthogonal set is a cor-
responding vector basis of 2"-dimensional space. For example in the
case of any 2-dimensional hyperbolic number a*jo +b*j:1 (Fig. 2.4) its
real component ajo is presented by the matrix a*[1, 0; 0 1], which has
two orthogonal eigenvectors [1, 0] and [0, 1] independently on value
of the coefficient a (a = 0). This pair of eigenvectors defines the first
vector basis of the 2-dimensional space of existance of hyperbolic
numbers. The imaginary term bj: is presented by the matrix b*[0,
1; 1, 0] (Fig. 2.4), which has another pair of orthogonal eigenvectors [-
205 2051 1295 2957 independently on value of the coefficient b (b #
0). This pair of eigenvectors defines the second vector basis of the con-
sidered 2-dimensional space. In other words, the pairs of eigen-
vectors are determined only by basis units jo and j1. These two pairs of
eigenvector bases can be considered as a two-term vector alphabet of
basis units of hyperbolic numbers in case of 2-dimensional space.

A similar situation is true for cases of other 2"-dimensional hyperbol-
ic numbers and eigenvectors of their matrix representations. For
example, in the case of 4-dimensional hyperbolic numbers aeo +
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b*e; + c*ez + d*es, matrix representations of their basis units (see Fig.
2.5) have the following eigenvectors:

e The (4*4)-matrix [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0, 1] rep-
resenting the real unit eo has 4 eigenvectors [1, 0, 0, 0], [0, 1, 0,
0],[0,0,1,0],[0,0,0, 1];

e The (4*4)-matrix [0,1,00;1,0,0,0;0,0,0, 1; 0,0, 1, 0] rep-
resenting the first imaginary unit e; has 4 eigenvectors [-
205 2050,0], [0, 0, -2°9°, 2:99], [0, 0, 2705, 209,
[2-0.5, 2-0.51 01 0];

e The (4*4)-matrix [0,0, 1,0;0,0,0,1;1,0,0,0; 0, 1, 0, 0] rep-
resenting the second imaginary unit e, has 4 eigenvectors [-2°9,
O, 2-0.5’ 0]’ [0, 2-0.51 O, _2-0.5]’ [0’ 2-0.5’ 0, 2-0.5], [_2-0.5’
0,-29% 0];

e The (4*4)-matrix [0,0,0,1;0,0,1,0;0,1,0,0; 1, 0,0, 0] rep-
resenting the third imaginary unit ez has 4 eigenvectors [0, -2°
0.5' 2-0.5’ O], [2-0.5’ O, O, _2-0.5]’ [2-0.5’ 0’ O, 2-0.5]' [0,
2-0.51 2-0.5, 0]

Correspondingly in the case of 4-dimensional hyperbolic numbers
and their space, the 4-term eigenvector alphabet of their 4 basis
units exists. In a general case of 2"-dimensional hyperbolic numbers,
the 2"-term eigenvector alphabet of their 2" basis units exists. Each
member of such alphabet is a set of 2" orthogonal vectors. The author
briefly calls such alphabets of eigenvector bases of matrix
representations of basis units of 2"-dimensional hyperbolic numbers
as «hyperbolic eigenvector alphabets» or simply «hyper-alphabets».
Here the prefix "hyper" is the beginning of the word "hyperbolic" and
its use is additionally justified by the fact that each member of such
hyper-alphabet contains in itself 2" eigenvectors, each of which can be
considered — in special cases - as a member of another alphabet of the
lower level.

Any transition from one such eigenvector basis into another (that is
a transition of one member of such a hyper-alphabet into another) is
carried out by means of an orthogonal matrix (orthogonal operator),
that is, a real unitary matrix (previously, the structural connection of
DNA alphabets with orthogonal matrices was shown by the author in
[Petoukhov, 2018a]; unitary operators play a great role in quantum
mechanics and quantum computing; for example, all calculations in
guantum computers are based on unitary operators). Orthogonal
operators preserve the space metric and define transformations of
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proper and improper rotations. Any sequence of basis units (or their
sums) of 2"-dimensional hyperbolic numbers corresponds to a certain
sequence of eigenvector bases of these units, and also to a sequence of
orthogonal matrices transforming successively these bases. Such
algebraic sequences can be used for transmitting information. Taking
into account some results of his previous published studies, the author
supposes that genetic sequences are related with such algebraic
sequences.

Moreover, the author puts forward the hypothesis that alphabets of
eigenvectors of matrix representations of basis units of 2"-dimensional
hyperbolic numbers play a key role in transmitting biological infor-
mation and that they can be considered as a foundation of coding
information at different levels of biological organization. The
corresponding languages using such alphabets define many inherited
phenomenological structures in biology including molecular-genetic
structures.

As known, the principle of transmitting information in the form of
certain texts composed on the basis of certain “alphabets™ is widely
used in living organisms: genetic information is recorded in DNA
molecules in the form of texts based on the DNA alphabet; music is a
sequence of sound frequencies of one or another musical scale (that is,
the "alphabet™ of note sound frequencies of one octave); literary texts
are written on the basis of literary alphabets, etc. The author believes
that various alphabets and texts in these bioinformational fields can be
effectively modeled and studied on the basis of the presented hidden
algebraic alphabets as their joint algebraic foundation. This approach
is connected with the theme of a «grammar of biology», which term
was introduced by E.Chargaff in the title of his article on DNA
peculiarities «Preface to a Grammar of Biology» [Chargaff, 1971]
(see also the book [Yamagishi, 2017]).

Since alphabets are used as foundations of corresponding
languages, each algebraic hyper-alphabet in 2"-dimensional spaces
with a concrete number n can be considered as a foundation of a
corresponding algebraic language. From this point of view, many such
algebraic languages using these hyper-alphabets exist in biology.

Quint ratios in DNA parameters and musical harmony

do0i:10.20944/preprints201908.0284.v4
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As known, thoughts about the key significance of musical harmony
in the organization of the world exist from ancient time. For example,
one can quote here a classical work of  Chinese literature “Spring and
Autumn” by Lu Bu We about the fundamental role of music and num-
bers 3 and 2 as numbers of Heaven and Earth: “The origins of music lie
far back in the past. Music arises from Measure and is rooted in the
great Oneness. ... Music is founded on the harmony between Heaven
and Earth” (this citation is taken from the book [Hesse, 2002]. In An-
cient China the ratio 3/2, traditionally termed as the quint ratio (or the
pure  perfect fifth), was used as the fundament of quint music scales.
After Ancient Chinese,  Pythagoreans also considered numbers 2 and
3 as the female and male numbers (or Yin and Yang numbers), which
can give birth to new musical tones in their interconnection. Ancient
Greeks attached an extraordinary significance to search of the quint 3:2
in natural systems because of their thoughts about musical harmony in
the organization of the world. For example, Archimedes considered as
the best result of his life a detection of the quint 3/2 between volumes
and surfaces of a cylinder and a sphere entered in it.

Science has been dealing with the physiological mechanisms of mu-
sic perception for a long time [Weinberger, 2004]. There is no special-
ized center of music in the human brain, a sense of love for music can
be considered dispersed throughout the body, similar to the disper-
sion of genetic DNA molecules throughout all of its cells. More than 30
thousand years ago, long before the advent of arithmetic, our ancestors
already played stone flutes and bone harps. For example, the bone flute
found in France is at least 32 thousand years old. The  enjoyment of
music is usually explained by the fact that it gives rise to emotions and
feelings. Aristotle tried to understand how rhythms and melodies, being
only sounds, resemble states of mind. Available data indicate that our
affinity for music and musical creativity is biological in nature and the
sense of musical harmony is based on innate mechanisms. Therefore,
one should look for a connection between the genetic system and musi-

cal harmony.
For Europeans the idea of musical harmony is basically connect-
ed with the name Pythagoras. The Pythagorean musical scales,

which are based on the quint ratio 3/2, played the main role in the Py-
thagorean’s doctrine about a cosmic meaning of musical harmony. Fig.
7.1 shows the known interconnection of sound frequencies of notes of
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Pythagorean 7-stages scale (a heptatonic scale) on the basis of the ratio
3/2 when notes are spaced in the appropriate octaves.

fa (F) | do (C) | sol (G) | re (DY) | la (AY) | mi (E?) | si (B?)
87 130 196 293 440 660 990
(323 | (3122 | (312)% | (312)° | (312)F | (3122 | (3/2)?

Fig. 7.1. The quint sequence of the 7 notes of the Pythagorean musical
scale is presented. The upper row shows the notes. The second row
shows their frequencies. The third row shows the ratios between the
frequencies of these notes to the frequency 293 Hz of the note  re (DY).
The designation of notes is given on Helmholtz system. Values of fre-
quencies are approximated to integers.

Pythagoras created the mathematical foundations of ancient Greek
music, borrowing in a certian degree some ancient knowledge on musi-
cal harmony. His theory used the discovery that the frequency of a vi-
brating string is inversely proportional to its length and that musical
consonances can be represented by the ratios of small integer numbers,
first of all the octave ratio 2:1 and the quint ratio 3:2. These ideas be-
came the basic fundamental ones of all music theory from antiquity to
even modern times. For most Europeans from antiquity, quint scales in
music are connected with this Pythagorean mathematical theory of mu-
sical harmony and with divisions of vibrating strings in the quint ratio
3:2.

In a general case, the Pythagorean scale is any scale, which can be
constructed from only quint ratios 3:2 and octaves 2:1 [Sethares, 2005,
p. 163]. One of known Pythagorean scales isa pentatonical scale,
which is a five-stages music scale, all the sounds of which can be ar-
ranged in quint ratios. Its example is the set of the following 5 notes
with their sound frequencies from Fig. 7.1: do(C)-sol(G)-re(D?)-
la(AY)-mi(E?) or respectedly 130-196-293-440-660 Hz. Other examples
of Pythagorean scales are tetratonic and tritonic scales, which are corre-
spondingly 4-stages and 3-stages music scales, all the sounds of which
can be arranged by the quint ratio, for instance, 130-196-293-440 Hz
for the tetratonic scale and 130-196-293 Hz for the tritonic scale.

The historical fact is that these Pythagorean musical scales on the ba-
sis of the quint ratio were used by different civilisations around the
world long before Pythagoras without knowledge of any mathematical
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laws [Apel, 1969; Day-O'Connell, 2007; Christidis, Arapopoulou,
Christi, 2007; Olsen, Sheehy, 1998; Todd Titon, 1996]. For example,
the pentatonical scale is the foundation of traditional music of the
Chinese, Vietnamese, Mongols, Turkic peoples (Bashkirs, Tatars,
Chuvashes, etc.), the Inca Empire and the peoples of the South Andes
in general. Pentatonics is also found in European musical folklore and
in the oldest layers of the Russian folk song (especially in the so-called
calendar ritual songs). Tetratonic music was noted as common in Poly-
nesia and Melanesia. Tetratonic scales were known for example among
the Plains Indians, the Arapaho, Blackfoot, Crow, Omaha, Kiowa,
Pawnee, Sioux, some Plateau tribes, the Creek Indians, and in the Great
Basin region among the Washo, Ute, Paiute, and Shoshone. In the
Southwest, the Navajo people also largely used the pentatonic and tet-
ratonic, occasionally also tritonic scales. Tetratonic, as well as tritonic
scales, were commonly used by the tribal peoples of India, such as the
Juang and Bhuyan of Orissa state [Sudhibhushan Bhattacharya, 1968].
Tetratonic scales are generally associated with prehistoric music
[Baines, 1991].

G.Leibniz declared that music is arithmetic of soul, which computes
without being aware of it. But what is there in living organisms that
determines the special attraction of musical scales on the basis of the
quint ratio 3/2 for representatives of various civilizations and epochs?
A possible answer lies in the structural features of DNA molecules that
are carriers of genetic information in humans and other living organ-
isms. The author has paid attention to the fact that the parametric struc-
ture of DNA molecules is connected in many ways with the quint ratio
3/2 and with numbers 3 and 2 at various levels of their parametric or-
ganization [Petoukhov, 2008; Petoukhov, He, 2010]. Let us briefly say
now about this relation between the musical harmony and structures of
genetic molecules.

Molecules of heredity - DNA and RNA — contain sequences of 4
“letters” or nucleobases: adenine (A), cytosine (C), guanine (G), thy-
mine (T) (or uracil U in RNA). Letters A-T(U) and C-G form comple-
mentary pairs with 2 and 3 hydrogen bonds in them, respectively. From
the standpoint of its sequence of two and three hydrogen bonds, each
DNA molecule is a long chain of numbers 2 and 3 of a type 32232332

The genetic code encodes sequences of 20 amino acids in proteins by
means of 64 triplets (three-letter words) that represent all possible com-
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binations of these four letters (ATC, TTA, ...). Since A=T=2,C=G
= 3, each triplet has a numeric representation as a product of number of
hydrogen bonds of its constituent letters. For example, the triplet ACT
IS represented by number 2*3*2 = 12. Each of 64 triplets is
represented by one of such numbers of hydrogen bonds 23=8, 22*3=12,
2*3%2=18, 3%=27, the pairwise relations between which are equal to the
quint 3/2 in varying integer degrees (by analogy with music tetratonic
scales), for example, 27/8 = (3/2)3, 18/8 = (3/2)?, etc.

Under considering pairs of adjacent triplets, then DNA molecule ap-

pears as a quint sequence of 7 kinds of numbers of hydrogen
bonds with the following numeric representation: 2%=64, 25*3=96,
24*32=144, 2%%33=216, 2%*3=324, 2*3°=486, 3°=729. Pairwise

ratios in this series of numbers are equal to the quint 3/2 in the same
powers as in the Pythagoras 7-stage scale in Fig. 7.1. If, for example,
the frequency of 87 Hz of the note "F" is compared with the first num-
ber 64 of this series, then all other numbers of this series will corre-
spond precisely to the other frequencies of the Pythagoras scale. Then
any sequence of triplets (eg, insulin gene GGC-ATC-GTT-GAA-CAG-
TGT- ...) can be associated uniquely with a sequence of notes of Py-
thagoras 7-stages scale (figuratively speaking, we have “music of genes
in the Pythagoras scale”).

Accordingly, each DNA molecule as a chain of hydrogen bonds is
characterized by its own sequences of the quint 3/2 in different integer
degrees. By analogy with quint musical scales, depending on the cho-
sen lengths of nucleobase fragments of DNA, we have — on the basis of
considered hydrogen bonds - various systems for transmitting infor-
mation signals with quint-power relations between signals.

The quint ratios are realized in DNA not only for the hydrogen bonds
of complementary nucleobases, but also for several other parameters,
such as sums of atoms in the rings of  purines and pyrimidines (num-
bers 9 and 6 with their ratio 3/2), or sums of protons in the rings of
complementary nitrogenous bases (numbers 60 and 40 with their ratio
3/2),and  others. Chains of these parameters in DNA form their own
sequences of quint ratios, which are similar to sequences of note fre-
guencies in quint scales of music. In other words, Nature created DNA
as a plexus of various sequences of quint ratios (“a quint polyphony of
DNA”). The harmony of the parametric organization of the genetic sys-
tem is akin to the musical harmony of the Pythagorean scales.
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As it was reminded above, over the centuries from Ancient China to
antiquity, the numbers 2 and 3 were considered respectively as female
and male numbers (that is as Yin and Yang numbers) forming the im-
portant pair. The author proposes their consideration not as separate
one-dimensional numbers but as two separate parts of two-dimensional
number. Mathematics knows 3 main kinds of two-dimensional num-
bers: complex numbers, hyperbolic (or double) numbers and dual num-
bers [Kantor, Solodovnikov, 1989]. Taking into account a set of our
results on relations of genetic system and inherited physiological phe-
nomena with hyperbolic numbers, we choice namely hyperbolic num-
bers for a presentation of these historically known numbers 3 and 2 as

two interrelated parts of single two-dimensional number G2 =
3+2j, where j is imaginary unit with its features j # =1, j> = +1; the in-
dex 2 refers 2-dimensionality of the number Gz. This

hyperbolic number can be expressed as a point or a vector on a hyper-
bolic plane with Cartesian coordinates, in which the axis of abcissus is
considered the axis of Yang-numbers, and the axis of ordinates is con-
sidered the axis of Yin-numbers. Fig. 7.2 shows this coordinate
system and also the matrix form of presentation of hyperbolic numbers
with its decomposition into 2 sparse matrices playing the role of real
and imaginary basis units of hyperbolic numbers. This matrix [3, 2; 2,
3] is conditionally termed “quint matrix” since its components 3 and 2
give the ratio 3/2. (The same quint matrix [3, 2; 2, 3] appears un-
der a consideration of DNA alphabet C, A, T, G and its three binary
sub-alphabets [Petoukhov, 2008, Chapter 2; Petoukhov, He, 2010,

Chapter 4]).
Yin ¥ 1 jl
z 3,2 1,0 011 1 1 j]
—me G2=[23|=3<|01[+2x[10|; ;i1

Fig. 7.2. The graphical and matrix presentation of 2-dimensional hy-
perbolic number G2 = 3 + 2j1 (by analogy with Fig. 2.4). The
first sparse matrix [1, 0; O, 1] is the identity =~ matrix, the second sparse
matrix [0, 1; 1, O] presents imaginary unit j1 having the property
[0, 1; 1, 0] = [1, 0; 0, 1]. The multiplication table of these sparse ma-
trices, where 1 refers the matrix [1, 0; 0, 1], is also shown at right.
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8  Applications of matrix representations of 2"-dimensional hy-
perbolic numbers in
musicology

In the Introduction to this article, the important role of hypercomplex
numbers in many fields of science has already been mentioned. This
Section is devoted to the author’s proposal to use in musicology 2"-
dimensional hyperbolic numbers and their matrix representations to
study the laws of harmony of the development of themes in musical
works (or in other words, the harmony of the plasticity of a musical
work). As is known in musicology, the musical theme of a musical
work is the basis of its development, the core of the formation of its
form. Sometimes a theme is defined as any element, motive, or small
musical construction, which is the basis for the further development of
musical material. The structure of musical works has a clear logic of
construction. Some masterpieces of world classics are literally calculat-
ed mathematically. It is no accident that in Ancient Greece, music was
included in a number of mathematical sciences.

In musicology, to date, only one-dimensional numbers are used to
express sound frequencies and durations of individual notes. The crea-
tive possibilities of the language of multidimensional numbers are just
waiting for their use in musicology. Music acts on the listener as an
operator, changing his state. And this operator’s action is determined
not by individual notes, but by harmony in the sequence of elements of
a musical work (“harmony of plasticity” in music). How to mathemati-
cally explore this harmony of plasticity?

For this, the author proposes to use 2"-dimensional hyperbolic
numbers and their matrix representations, which are related with the
alphabetic structures of genetic DNA molecules and many inherited
physiological structures. The proposed use allows us to represent the
sequence of elements of a musical work in the form of:

e a sequence of vectors (or points) of the vector metric space of
2"-dimensional numbers;

e a sequence of corresponding matrix representations (or matrix
operators) of 2"-dimensional numbers.

Let us explain the scheme of this approach using a simplified example
of a conditional musical fragment written on the basis of a musical
scale having only three notes, for example, C (doY), E (mi}), G
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(sol) of the first octave (Fig. 8.1). Sound frequencies of these notes
will be expressed in relative values as usual for the piano keyboard with
its equal-tempered scale: 1, 2¥12 22 Durations of notes are tradi-
tionally given by the values 1, 271, 22 23 24 ...

S E———

J © o

Fig. 8.1. A conditional musical fragment written on the basis of the
musical scale having only
three kinds of musical notes.

In our approach, for the vector analysis of this musical frag-
ment, it is enough to use 4-dimensional vectors Z = aoéo + a1€1 + a8 +
ases of 4-dimensional hyperbolic numbers. In the Cartesian coordinate
system of the corresponding 4-dimensional space, we will consider &o,
€1, &, €3 as unit vectors of 4 coordinate axes. In this case, the note C
with its relative frequency 1 is represented by the unit vector & of one
coordinate axis, the note E with its frequency 2¥'? - by the vector
24128, of the second axis, the note G with its frequency 272 - by the
vector 27"1%g; of the third axis. Durations 1, 2, 22, 2%, ... are represent-
ed by vectors of the fourth axis: &, 2%, 2280, 27320, etc.

In elements of musical works, the pitch of each note is not separable
from its duration. In our approach, this symbiosis of “frequency + dura-
tion” of a musical element is represented by the sum of the named vec-
tors. We also present chords as the sum of the vectors of their sound
components and duration. Correspondingly four musical measures of
the presented fragment (Fig. 8.1) are been recording as a sequence of
vectors of a given 4-dimensional discrete space (Fig. 8.2):

| &te: | 0,58+ 291%, 5 0, 258, + 271%; ; 0, 258+ 2917, | epte + 2412+ 2717, | gpte, |

Fig. 8.2. The representation of the sequence of elements of the musical
fragments from
Fig. 8.1 as the sequence of their vectors.
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But for any two vectors, there is a difference vector between them.
Therefore, in the described approach, the sequence of musical
elements appears additionally as a sequence of 4-
dimensional difference vectors of transition from the vector of the pre-
vious musical element to the vector of the next musical element. Each
such transition vector has a length and a conjugation angle with a sub-
sequent transition vector. A metric analysis of their sequence allows
you to study the harmony of the plasticity of a musical work, taking
into account the symbiosis of its tonal and temporal organization. Mu-
sical works become the subject of metric vector analysis.

Such a vector analysis is possible not only for sequences of separate
elements in musical works, but also for sequences of musical measures,
periods, etc. This vector approach is suitable for musical works written
in a wide variety of musical systems, for example, in 7-stage Pythago-
rean scale, 12-stages tempered musical scale and in any microchromatic
scales. The difference is only in the choice of the corresponding 2"-
dimensional vectors for such vector analysis. For example, for a 7-stage
system, it is sufficient to use the vectors of 8-dimensional hyperbolic
numbers (seven coordinates are assigned to its 7 stages and one coordi-
nate to durations); for a 12-stage system one can use vectors of 16-
dimensional hyperbolic numbers (you assign 12 coordinates to its 12
stages and one coordinate to durations, taking zero values for other 3
coordinates).

In the case of using the described multi-dimensional numbers, cardi-
nally new mathematical personages come into play in musicology: ma-
trix operators, orthogonal bases of multidimensional spaces and or-
thogonal transformations of such bases related with hyper-alphabets
described above in Section 6. These new personages allow significantly
encreasing analytical possibilities in musicology by means of those
mathematical tools, which are effectively used in many scientific and
technology fields.

Now let us turn to using in musicology bisymmetric (2"*2")-
matrices, which represent 2"-dimensional hyperbolic numbers (see
above the Section 2). In this case, a musical work is considered as a
sequence of matrix operators. For example, a 4-dimensional hyperbolic
number ag€o + ai&1 + ag> + asés is represented by the (4*4)-matrix,
which is the sum of 4 sparse bisymmetric matrices representing 4 basic
units eo, e1, e, e3 (Fig. 8.3):
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apa; a a3 1000 0100 0010 0001
a; ag a3 a, 0100 1000 0001 0010
A243390a41 | T Q 0Q10 + a; OQQI + a, IOQQ + aj OIO_Q
a3 2, a; ag 0001 0010 0100 1000

Fig. 8.3. The decomposition of the matrix representation of 4-
dimensional hyperbolic number ao&o + a1&1 + a-&> + asés.

Under analyzing this musical fragment, one can replace the vector
representations of the basic units eo, e1, €2, es (in Fig. 8.2) with their
matrix representations (from Fig. 8.3). In this case you pass to a repre-
sentation of the musical fragment as a sequence of matrices (matrix
operators). This introduces into musicology the ideology of matrix
analysis from physics, where the action of the matrix operator on the
state vector of a system determines a change in its state vector, etc.

Each of bisymmetric (4*4)-matrices, representing eo, €1, €2, €3 Or
their linear combinations, has a set of 4 orthogonal eigenvectors (a
“hedgehog” set of vectors). Therefore, this musical fragment has a con-
ditional artistic representation in the form of a sequence of “hedgehogs”
carrying such 4 orthogonal vectors (Fig. 8.4):

—
23 s

e - <> -~
| &+e; | 0,580+ 241%; 5 0,258, + 27123 ; 0, 256+ 24176, | Bgve+ 291%e,+ 271%; | eyte, |
(&LI/ \LL/ ML/ AL/
B N 4 D
- ‘\ "’ C *>—e ( L S ] ( - "
_ Y :mm$=«9/- §\_</7

Fig. 8.4. The artistic image of the sequence of sets of 4 orthogonal
eigenvectors of
bisymmetric matrices, which represent elements of the mu-
sical fragment.

The transition from a set of orthogonal eigenvectors of a matrix rep-
resenting some element of a given musical fragment to a set of orthog-
onal eigenvectors of a matrix representing a subsequent musical ele-
ment is determined by a new matrix of corresponding orthogonal trans-


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

36

formation. Therefore, a sequence of elements of a musical play corre-
sponds to a sequence of matrices of orthogonal transformations, which
transform the said sets of orthogonal eigenvectors into each other. The
matrix of each of these orthogonal transformations, in turn, has its own
set of orthogonal eigenvectors. Transitions between orthogonal sets of
eigenvectors of neighboring matrices of the named sequence are again
determined by matrices of some orthogonal transformations, which is
accompanied by the appearance of a new - shortened - sequence of ma-
trices of orthogonal transformations with their orthogonal sets of eigen-
vectors. As a result of repeating this procedure, for each new sequence
of matrices of orthogonal transformations that arises, a tree of orthogo-
nal transformations arises (Fig. 8.5). Since orthogonal transformations
represent proper and improper rotations in appropriate vector spaces,
the development of a musical play from element to element can be ar-
tistically imaged as the spinning of dance couples in such multidimen-
sional space.
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Fig. 8.5. The artistic image of the tree, whose levels show sequences
of sets of
4 orthogonal eigenvectors of matrices of orthogonal trans-
formations, which are
hiddenly related with the sequence of elements of the musi-
cal fragment.

Apparently, ingenious composers intuitively feel the algebraic tonal-
temporal harmony of music. Not without reason G.Leibniz argued that
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music is mathematics of soul, which computes without being aware
of it. The deep interest to numerology by 1.S. Bach is known, in con-
nection with which some musicologists study the connection of his
works with numerology.

A special place in the theme “Music and Mathematics” is occupied
by the famous book “Bead Game” by H. Hesse. This book deeply
speculates on time, when «the analytical study of musical values had
led to the reduction of musical events to physical and mathematical
formulas» and when there were invented «the principles of a new lan-
guage, a language of symbols and formulas, in which mathematics and
music played an equal part, so that it became possible to combine as-
tronomical and musical formulas, to reduce mathematics and music to
a common denominator». At its core, the “bead game” is the art of
composing a metatext, a synthesis of all branches of art into one, uni-
versal art.

Described in this article searches of an adequate system of multidi-
mensional numbers and matrix operators for the analysis and synthesis
of musical works can be considered as a continuation of thoughts and
beliefs of many musicians and thinkers about the connection between
music and mathematics (with an author’s addition of modern
knowledge on algebraic features of the genetic coding in human and
other living organisms). We believe that genetic DNA texts are those
metatexts, in the image of which biological texts of various natures are
built. This article jointly with the article [Petoukhov, 2019c] show the
structural connections of genetic texts with 2"-dimensional hyperbolic
numbers. Taking all of these materials into account, the author propos-
es to look at music as a bead game with its basis on hyperbolic numbers
and corresponding matrix operators.

9 Advantages of matrix representations of hyperbolic hum-
bers

The matrix forms of presentation of 2"-dimensional hyperbolic num-
bers deserve a special attention since they have the following useful
properties:

1. This presentation form is based on symmetric matrices, which
are closely related with the theory of resonances of oscillatory
systems, having many degrees of freedom, [Petoukhov, 2015,
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2016]. Symmetrical matrices are related with the theory of reso-
nance of L. Pauling whose book [Pauling, 1940] about this the-
ory in structural chemistry is the most quoted among scientific
books of the XX century. The actual molecule, as Pauling pro-
posed, is a sort of hybrid, a structure that resonates between
the two alternative extremes; and whenever there is a resonance
between the two forms, the structure is stabilized. Pauling
claimed that living organisms are chemical in nature, and reso-
nances in their molecules should be very essential for biologi-
cal phenomena. In general, quantum mechanics was emerged
and developed largely as a science about resonances in mi-
croworld. Thus, the concept of system-resonance genetics (or
spectral-resonance genetics) creates models of genetic phenom-
ena on the same language of frequencies and resonances, on
which models in quantum mechanics are based. In addition to
this, it uses the same matrix language, on which “matrix me-
chanics” of Werher Heisenberg has been created: it was histori-
cally the first form of quantum mechanics, which retains its val-
ue to this day.

These symmetric matrices are Hermitian (self-adjoint) matrices,
which play an important role in quantum mechanics. By this
reason they can be used in development of applications of ideas
and methods of quantum mechanics and quantum informatics in
the field of bioinformatics and algebraic biology. In this con-
nection some of author’s works [Petoukhov, 2018a,b,
2019a,b; Petoukhov, Petukhova, Svirin, 2019] are devoted to
using formalisms of quantum mechanics and quantum informat-
ics in bioinformatics and algebraic biology including analysis of
long genetic and and literary texts. For example, in long
DNA sequences of nucleobases, where complementary
nucleobases C and G (A and T) are linked by 3 (2) hydrogen
bonds, 2"-dimensional hyperbolic numbers [%3, %2; %2, %3]™
(where %3 and %2 denote percentages of numbers 3 and 2 of
hydrogen bonds in the analyzed DNA sequence; n =2, 3, 4,
5) effectively models percentages of monoplets, doublets, tri-
plets, tetraplets and pentaplets of these numbers 3 and 2 of hy-
drogen bonds [Petoukhov, 2018].

These symmetric matrices can be interpreted as metric tensors,
which are main invariants in Riemanian geometry and

do0i:10.20944/preprints201908.0284.v4


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020

39

which can be used in the theory of morpho-resonance
morphogenesis [Petoukhov, 2008, 2015, 2016];

4. These symmetric matrices are related with hyperbolic rotations
[ch X, sh x; sh X, ch x], which are particular cases of hyperbolic
numbers and are connected with the theory of biological phyllo-
taxis laws [Bodnar, 1992, 1994; Stakhov, 2009], with problems
of locomotion control [Smolyaninov, 2000], with the main psy-
chophysical law of Weber-Fechner (see above and also in
[Petoukhov, 2016]), with Lorenz transformations
in the special theory of relativity;

5. These bisymmeric matrices are related with doubly stochastic
matrices (under an appropriate normalization of bisymmetric
matrices), whose using for genetics is described below;

6. These symmetric matrices are related with the theory of solitons
of sine-Gordon equation [Petoukhov, 1999, 2008; Petoukhov,
He, 2009]. Such solitons are the only relativistic type of soli-
tons; they were put forward for the role of the fundamental type
of solitons of living matter in the book [Petoukhov, 1999].

Symmetric matrices possess a wonderful property to express

resonances [Bellman, 1960; Balonin, 2000]. The expression y = A*S
models the transmission of a signal S via an acoustic system A,
represented by a relevant matrix A. If an input signal is a resonant tone,
then the output signal will repeat it with a precision up to a scale factor
y = A*S by analogy with a situation when a musical string sounds in
unison with the neighboring vibrating string. In the case of a matrix A,
its number of resonant tones S; corresponds to its size. They are termed
its eigenvectors, and the scale factors Ai with them are termed its
eigenvalues or, briefly, spectrum A. One of the main tasks of the theory
of oscillations is a determination of natural frequencies
(mathematically, eigenvalues of operators) and the natural forms of
oscillations of bodies. To find all the eigenvalues A; and eigenvectors of
the matrix A, which are defined by the matrix equation A*s = A*s, the
“characteristic equation” of the matrix A is analyzed: det(A — E) = 0,
where E — the identity matrix (see more in [Petoukhov, 2016]).
Matrices, which are relevant to the various problems of the theory of
oscillations, are usually symmetric real matrices [Gladwell, 2004].
Such matrices have real eigenvalues and their eigenvectors are
orthogonal.
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Symmetric  matrices representing hyperbolic numbers are
simultaneously metric tensors by their structure. Metric tensors are
main invariants of Riemanian geometry, which can be used for
modelling inherited curvilinear forms of biological bodies. By
definition, the metric tensor in the n-dimensional affine space with the
scalar multiplication introduced is defined by the nondegenerate matrix
llgijll under the condition of symmetry gij = gji [Rashevskij, 1964],
which is satisfied by the structure of bisymmetric matrices of
hyperbolic numbers. The coordinates gi; of the metric tensor are the
pairwise scalar products of vectors of the frame, on which it is built. If
we extract the square root from a bisymmetric matrix, we get a square
matrix whose columns are vectors of this frame. It is interesting that the
extraction of the square root from quint matrices of 2"-dimensional hy-
perbolic numbers [3, 2; 2, 3]™, which has integer components, get
square matrices of 2"-dimensional hyperbolic numbers [0, 07
o, ¢]™ whose components are irrational numbers of the golden
section o = (1+5%%)/2 = 1,618... in integer powers; the
golden section ¢ is famous in the aesthetics of proportions and
described by many authors in a series of inherited physiological
systems [Petoukhov, 2008; Petoukhov, He, 2010]. It means that metric
tensors, having forms of quint matrices of hyperbolic numbers, are built
on a frame of "golden” vectors, all components of which are equal to
the golden sections in integer powers.

10 2"-dimensional hyperbolic numbers and phenomenologic rules
of percentages in genetics

The author revealed that in some cases it is possible to use 2"-
dimensional hyperbolic numbers and their matrix representations for
modeling some phenomenological rules in biology, first of all, in
genetics. In this cases the tensor family of symmetric matrices
[%S, %W; %W, %S]™ is under consideration, where %S and %W refer
to percentages of biological realisation of some events denoted by
symbols S and W (%W+%S=100%).

This tensor family contains matrix representations of 2-dimensional
hyperbolic numbers %S + %W%*j;; of 4-dimensional hyperbolic
numbers %S*%S + %S*%W*j1 + %W*%S*j, + %W*%W*js; of 8-
dimensional hyperbolic numbers, etc. Expressions like as %S*%S,
%S*%W, %W*%W can be considered as percentages of realisation of

do0i:10.20944/preprints201908.0284.v4


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

41

doublets SS, SW, WW in chains of these events. Let us show some
concrete phenomenologic data.

Any long DNA sequence contains many millions of nucleotides A, C,
G, T. For example a DNA filament of the first chromosome of the hu-
man genome contains about 250 millions of these letters. In DNA dou-
ble helixes, nitrogenous bases C-G and A-T form complementary pairs
by means of 3 and 2 hydrogen bonds (it can be denoted as C=G=3 and
A=T=2). Correspondingly, any DNA sequence contains a long chain of
numbers 2 and 3 of hydrogen bonds, for example, 33223223233... .
We term such number chains of hydrogen bonds as ‘“hydrogen bond
sequences” (briefly, “hydrogen texts”). The author analysed the proper-
ties of such long hydrogen bond sequences for many different organ-
isms (here the term “long” means DNA sequences containing > 100000
letters).

Studying such binary “hydrogen texts” 33223223233... of a
wide number of various genomes, the author discovered that percent-
ages (or frequencies) of hydrogen monoplets (3, 2), doublets (33, 32,
23, 22), triplets (333, 332, 323, 322, 233, 232, 223, 222), tetraplets and
pentaplets in them are subordinated to hidden rules: percentages of
monoplets (values %3 and %2) are strongly interrelated with percent-
ages of other H-n-plets (n = 2, 3, 4, 5). These interrelations are effec-
tively described by a tensor family of matrices [%3, %2; %2, %3]™
representing 2"-dimensional hyperbolic numbers:

o %3+ %2*] (when n=1);

o 903*%3 +%3*%2*e1+%2*%3*e+%2*%2*e3 (When n=2);

e etc.
Fig. 10.1 shows one example of matrices from this tensor family: the
second tensor power of the percentage matrix [%3, %2; %2, %3]?,
which represents 4-dimensional hyperbolic number %3*%3
+%3*%2*e1+%2*%3*e2+%2*%2*e3.

) 063%063, %63*%2, %2*%3, %2*%62
%3, %2 063*%62, %3*%3, %2*%2, %2*%3
%2, %3 = 062%%3, %2*%2, %3*%3, %3*%2

%2*%2, %2*%3, %3*%2, %3*%3

Fig. 10.1. The second tensor power of the percentage matrix [%3, %2;
%2, %3] represents


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

42

4-dimensional hyperbolic number
%3*%3*e0+%3*%2*e1+%2*%3*e2+%2*%2* e3.

As it turned out, coefficients of these hyperbolic numbers effectively
model percentages of corresponding n-plets in long DNA sequences:
for example, the value %3*%2 models the percentage of doublets 32,
and the value %2*%3*%3 models the percentage of triplets 233.
Knowing only percentages of monoplets %3 and %2, you can predict
percentages of dozens of hydrogen n-plets in long DNA.

For an illustration of this statement, Fig. 10.2 shows - in a
graphical form - an example of phenomenological values of probabili-
ties of all members of alphabets of hydrogen n-plets (n=1, 2, 3,4, 5)
in the case of the DNA sequence of the first chromosome of the plant
Arabidopsis thaliana, which contains 30427671 nucleotide pairs. Sim-
ultaneously, Fig. 10.2 shows model values of these percentages as
components of 2"-dimensional hyperbolic numbers [q, p; p, q]™, where
q=0,35873552 and p=0,64126448,n=1, 2, 3, 4, 5.

Percentages Percentages Percentages Percentages Percentages
of 2 monoplets of 4 doublets of 8 triplets of 16 tetraplets of 32 pentaplets
3,2 (33,32,23,22) | (333,332,...,222) (3333, 3332, ...,2222) (33333, 33332,...,22222)
09 045 045 0.45 0.45

0s 0a

08 035 o 0.4
03s s

07 035

03 03
03
o6 0s 2 015 4 03
05 v 02 025
oa . o1s 02 0.25
P /'\
01 \f

hd 015 0.2

Zz 005 ‘“2 v/-_- o1 M ‘/‘J 015

o L IR acs M 01

0 s e h e wnn U 005 M
1 2 0

q:O,35873552 13 5 7 91113151719 21 23 25 27 29 31 33}
p=0,64126448 ] ]
Uui: nn;: o ;7-4
03 03 : 038 0.35
e v AL s 1o
4=0,35873552 o - Y 4 I
p=0,64126448 A I ;.u.:;d‘-““-j\.w o1 f
e 0.05
, ; : (2) . (3) 12345 -6 78 910111213141516 o
[q p p q] [ql p1 p1 q] [q: p, p, q](4) 13 5 7 911131517 1921 23 25 27 29 31 3.

[g.p; p, q]®

Fig. 10.2. The graphic representation of percentages of all kinds of hy-
drogen n-plets (n =1, 2, 3, 4, 5) in the DNA sequence of the first chro-
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mosome of the plant Arabidopsis thaliana (initial data relating to this
chromosome were accessed from
https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9). Blue points in
the graphs show phenomenological percentages of n-plets of numbers
of hydrogen bonds, while red points show model values of these proba-
bilities as components of 2"-dimensional hyperbolic numbers [a, p;
p, q]™, where g and p are percentages of hydrogen bonds 3 and 2 in
this DNA.

Fig. 10.3 shows phenomenological and model values of per-
centages of all members of hydrogen n-plet alphabets (n =1, 2, 3, 4) for
the same DNA sequence as in Fig. 10.2. It can be seen that these model
values reproduce phenomenological values with the level of accuracy,
which one can see in Fig. 10.2.

Percentages of hydrogen monoplets 3 and 2
Reality: q = [3] = 0,3587; p = [2] = 0,6413

Probabilities of hydrogen doublets (4 kinds of doublets: 33, 32, 23, 22)
Reality: [33] = 0,1198; [32] = 0,2390; [23] = 0,2389; [22] =
0,4023.
Model:  [33] = 0,1287; [32] = 0,2300; [23] = 0,2300; [22] =
0,4112.

Percentages of hydrogen triplets
(8 kinds of triplets: 333, 332, 323, 322, 233, 232, 223, 222)
Reality: [333]= 0,0385; [332]= 0,0812; [323]= 0,0880; [322]=
0,1507;

[233]= 0,0812; [232]= 0,1577;  [223]= 0,1514; [222]=
0,2512.
Model:  [333]=0,0462; [332]=0,0825; [323]=0,0825; [322]=0,1475;
[233]=0,0825; [232]=0,1475; [223]=0,1475; [222]=0,2637.

Percentages of hydrogen tetraplets
(16 kinds of tetraplets: 3333, 3332, 3323, 3322, 3233, 3232, 3223, 3222,
2333, 2332, 2323, 2322, 2233, 2232, 2223, 2222)
Reality: [3333]=0,0132; [3332]=0,0253; [3323]=0,0310; [3322]=0,0502;

[3233]=0,0311; [3232]=0,0570; [3223]=0,0601;
[3222]=0,0906;

[2333]=0,0253; [2332]=0,0560; [2323]=0,0570;
[2322]=0,1007;

[2233]=0,0502; [2232]=0,1008; [2223]=0,0907;

[2222]=0,1607.
Model: [3333]=0,0166;  [3332]=0,0296; [3323]=0,0296;
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[3322]=0,0529;

[3233]=0,0296; [3232]=0,0529; [3223]=0,0529;
[3222]=0,0946;

[2333]=0,0296; [2332]=0,0529; [2323]=0,0529;
[2322]=0,0946;

[2233]=0,0529; [2232]=0,0946; [2223]=0,0946;
[2222]=0,1691.

Fig. 10.3. Phenomenological values (in blue color) and model values
(in red color) of percentages of all kinds of hydrogen n-plets (n =1, 2,
3, 4) in the DNA sequence of the first chromosome of Arabidopsis tha-
liana (appropriate graphs are shown in Fig. 10.2; initial data relating to
this chromosome were accessed from
https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9). Numbers in
square brackets refer to percentages of corresponding hydrogen n-plets
(for example, the symbol [323] refers to the percentage of the hydrogen
triplet 323 in the hydrogen sequence of this DNA like 322-232-233-
...). All values are rounded to the fourth decimal place.

Similar results have been obtained in our analysis of the plant,
Arabidopsis thaliana; nematode, Caenorhabditis elegans; fruit fly,
Drosophila melanogaster; house mouse, Mus musculus; and Homo
Sapiens, drawing on nuclear chromosome data and DNA sequence data
obtained from GenBank.

The author has also calculated percentages of all kinds of n-
plets (n=1,2,3,4,5)in 19 genomes of bacteria and archaea from
the full list in the article [Rapoport, Trifonov, 2012, p. 2]: “Aquifex ae-
olicus, Acidobacteria bacterium, Bradyrhizobium japonicum, Bacillus
subtilis, Chlamydia trachomatis, Chromobacterium violaceum, Deha-
lococcoides ethenogenes, Escherichia coli, Flavobacterium psy-
chrophilum, Gloeobacter violaceus, Helicobacter pilory, Methano-
sarcina acetivorans, Nanoarchaeum equitans, Syntrophus aciditrophi-
cus, Streptomyces coelicolor, Sulfolobus solfataricus, Treponema
denticola, Thermotoga maritima and Thermus thermophiles”. The cal-
culated sets of these percentages were also modelled on the basis of sets
of coordinates of appropriate 2"-dimensional hyperbolic numbers
[0, p; p, q]™. These results confirm that the proposed model approach
on the basis of 2"-dimensional hyperbolic numbers [q, p; p, q]™
can be used to obtain idealized models of percentages of all kinds of n-
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plets in actual long DNA sequences (n =1, 2, 3, 4, ... is much less than
the length of such sequences).

The proposed application of 2"-dimensional hyperbolic numbers
allows the prediction of percentages of all kinds of considered
hydrogen n-plets in long DNA sequences with a high level of accuracy,
using knowledge of percentages of only two numbers - 3 and 2 — of
hydrogen bonds in the DNA sequence.

11 2"-dimensional hyperbolic numbers and phenomenologic
rules of percentages in long literary texts

Impressive recent discoveries in genetics have borrowed terminology
from linguistics and the theory of communications. As experts in mo-
lecular genetics note, “the more we understand laws of coding of the
genetic information, the more strongly we are surprised by their simi-
larity to principles of linguistics of human and computer languages”
[Ratner, 2002, p. 203].

Leading experts in the field of structural linguistics have long be-
lieved that languages of human dialogue were formed as a continuation
of genetic language or, are, at least, closely connected with genetic lan-
guage. Analogies between systems of genetic and linguistic information
are of wide and important scientific interest, which this article briefly
illustrates. Some relevant concepts will be referred to by R. Jakobson
[1987, 1999], one of the most famous lingusitics experts and author of
an in-depth theory of binary lingustic oppositions. Jointly with F. Ja-
cob, Nobel Prize winner in molecular genetics, and with other linguistic
specialists holding the same views, Jakobson proposed that genetic lan-
guage is the structural basis of linguistic languages [Jacob et al., 1968;
Jakobson, 1985]. In particular, according to Jakobson, all relations
among linguistic phonemes are decomposed into a series of binary op-
positions of elementary differential attributes (or traits). By analogy,
the set of four letters of the genetic alphabet contains the three binary
sub-alphabets, which allow creating new mathematical models in mo-
lecular genetics [Petoukhov, 2017, 2018a]. As Jakobson wrote, the ge-
netic code system is the basic simulator, which underlies all verbal
codes of human languages. “The heredity in itself is the fundamental
form of communications ... Perhaps, the bases of language structures,


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020

46

which are imposed on molecular communications, have been con-
structed by its structural principles directly” [Jakobson, 1985, p. 396].
These questions had arisen to Jakobson as consequence of his long-
term research into the connections between linguistics, biology and
physics. Such connections were considered at a united seminar of phys-
icists and linguists, organized by Niels Bohr and Roman Jakobson,
jointly, at the Massachusetts Institute of Technology.

“Jakobson reveals distinctly a binary opposition of sound attributes
as underlying each system of phonemes... The subject of phonology has
changed by him: the phonology considered phonemes (as the main sub-
ject) earlier, but now Jakobson has offered that distinctive attributes
should be considered as “quantums” (or elementary units of lan-
guage)... Jakobson was interested especially in the general analogies
of language structures with the genetic code, and he considered these
analogies as indubitable” [Ivanov, 1985]. We are reminded also of the
title of the monograph "On the Yin and Yang nature of language"
[Bailey, 1982], which is characteristic for the theme of binary
oppositions in linguistics.

F. Jacob, Nobel Prize winner in molecular genetics, also considered
the relationship between genetics and linguistic languages in connec-
tion with the principle of binary oppositions, systematically described
in the Ancient Chinese book “I-Ching”. He wrote: « C’est peut-étre |
Ching qu’il faudrait étudier pour saisir les relations entre hérédité et
langage» (In English: To understand the relationship between genetics
and language, perhaps it would be necessary to study the Ancient Chi-
nese “I Ching”) [Jacob, 1974, p. 205].

This connection between linguistics and the genetic code interests
many researchers, and some even perceive linguistic language as a liv-
ing organism. In his book, “Linguistic Genetics”, Makovsky says: "A
look at language as a living organism, subject to the natural laws of
nature,, ascends fo a deep antiquity ... Research of a nature, of disposi-
tion and of reasons of isomorphism between genetic and linguistic reg-
ularities is one of the most important fundamental problems for linguis-
tics of our time" [Makovsky, 1992].

In this Section the author describes the structural analogies be-
tween long DNA-‘texts’ and long literary works in Russian. The repre-
sented analysis of long literary Russian texts uses binary-oppositional
phonetic features of the Russian alphabet, whose importances were ac-
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cented by R.Jakobson and which have similarities with binary-
oppositional features of genetic lanquage.

The DNA alphabet of nucleobases A, C, G and T has the binary-
oppositional structure in accordance with their molecular traits (Fig.
11.1 left): it contains the sub-alphabet of purines (A, G), each of which
has two rings in its molecular structure, and the sub-alphabet of pyrim-
idines (T, C), each of which has only one ring. Each of these sub-
alphabets possesses its own binary-oppositional structure since it con-
tains two sub-sub-alphabets defined by 2 or 3 hydrogen bonds: in the
sub-alphabet of purines, adenine A has 2 hydrogen bonds and guanine
G has 3 hydrogen bonds; in the sub-alphabet of pyrimidines, cytosine C
has 3 hydrogen bonds and thymine T has 2 hydrogen bonds (Fig. 11. 1

right).
. DNA
} é . ,»f"‘""*p alphabet
| }'t o A} ) }({
Purine Pyrimidine
}w - § A G T, C
llllll _\ - NJ' / \ /\
;\‘I -
i "\ 2 H.bonds | |3 H. bonds 3 H.bonds | |2 H| bonds
A G C T

Fig. 11.1. Left: the DNA alphabet of 4 nucleobases A, C, G and T.
Right: the scheme of
binary-oppositional structure of this DNA alphabet.

The Russian alphabet has also a binary-oppositional phonetic
structure since it has two binary-oppositional sub-alphabets: the sub-
alphabet of vowels and the sub-alphabet of consonants. Each of these
sub-alphabets also has its own binary-oppositional structure: the sub-
alphabet of vowels consists of the sub-sub-alphabet of long vowels and
the sub-sub-alphabet of short (or iotated) vowels; the sub-alphabet of
consonants consists of the sub-sub-alphabet of voiced consonants and
the sub-sub-alphabet of deaf consonants (Fig. 11.2 right). The soft sign
“p” and the hard sign “s” in the Russian alphabet do not convey any
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sound and therefore they are not taken into account in its phonologic

structure.
DNA Russian
alphabet alphabet
(A, C.GT)
/\ [Vowels | | Consonants |
Purine Pyrimidine R
AG T, C M -
Long Short Deaf Voiced
/ \ /\ vowels:| | (iotated) consonants: | | consonants:
2 H.bonds | | 3 H. bonds 3 H.bonds | |2 H.bonds a,m,0, | | vowels: n, ¢, k, T,m,| | 0,B,T,1, %3,
A G C T Y, b, 3. | | &0, 8. X, I, 4, 1L | | i, J1, M, H, P

Fig. 11.2. The similarity of binary-oppositional structures of the DNA
alphabet (left) and the alphabet of Russian lanquage (right).

For analyzing long literary Russian texts, let us introduce two cor-
responding classes of equivalency for letters of the Russian alphabet (in
Fig. 11.2 the first class is marked by  yellow and the second class is
marked by green):

1. The first class of equivalency combines all short (iotated)
vowels and all deaf consonants: e, é, 1o, s, 1, ¢, K, T, 111, C, X,
1, 4, . We denote all the 14 members of this class by the
common symbol 0;

2. The second class of equivalency combines all long vowels
and all voiced consonants: a, u, 0, y, b, 3, 0, B, T, 11, )X, 3, i,
1, M, H, p. We denote all the 17 members of this class by the
common symbol 1.

Leaving only these letters in the literary text, and replacing each letter
with the symbol of its equivalence class 0 or 1, we obtain the represen-
tation of the text by a binary sequence of the type 100101100....

In such binary representation of long literary texts, let us denote
percentages of letters from classes of equivalency 0 and 1 by symbols
%0 and %1 correspondingly. Then consider the bisymmetric matrix of
percentages [%0, %1; %1, %0], representing 2-dimensional hyper-
bolic number, and the matrix tensor family [%0, %1; %1, %0]™, repre-
senting 2"-dimensional hyperbolic numbers:
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o %0%eo+ %1%ey (if n = 1);
o %0*%0%eo + %0*%1*e; + %1*%60%e, + %1*%1*es (if n = 2),

e etc.
The author studied percentages %0 and %1 of letters of these two
classes in long literary texts by L.N.Tolstoy, A.S.Pushkin,

F.M.Dostoevsky, etc. More precisely, for each fixed n, the author
analyzed percentage of each type of n-plets inside the mentioned binary
representation of any long Russian language literary text (or a long lit-
erary text of any other language translated into Russian). Under a fixed
value n, each of these percentages is equal to the ratio: “the total quanti-
ty of a corresponding type of n-plets” divided by “the total quantity of
these binary n-plets”. For example, in the text of the work "Anna
Karenina”, by Leo Tolstoy, in its binary representation there are
654523 doublets 00, 01, 10 and 11. This number includes 75895
doublets 00, 142504 doublets 01, 142547 doublets 10 and 293577
doublets 11. Correspondingly, the percentage of doublets 00 is equal to
75895/654523 = 0,115954672; the percentage of doublets 01 is equal to
142504/654523 = 0,217721914; the percentage of doublets 10 is equal
to 142547/654523 = 0,21778761; the percentage of doublets 11 is equal
to 293577/654523 = 0,448535804 (such values of percentages are
shown below rounded to four decimal places).

By analogy with binary sequences of hydrogen bonds
32232223... in long DNA, it turned out - in the case of these literary
texts - that knowing only percentages of monoplets %0 and %1 in such
binary representation of a long Russian text, one can predict percent-
ages of dozens of types of n-plets in it. Coordinates of 2"-hyperbolic
numbers [%0,%1; %1,%0]™ effectively model percentages of corre-
sponding types of n-plets in long Russian texts: for example, the prod-
uct of values %1*%0*%1 models the percentage of binary triplets 101,
etc.

Figs. 11.3 and 11.4 represent results — in graphical and tabular
forms - of the analysis of the novel «Anna Karenina» of Leo Tolstoy by
the above described approach. Significant correspondences can be seen
between phenomenologic values of percentages (blue points in graphs
in Fig. 11.3) of all considered types of n-plets, and model values (red
points in graphs), represented by coordinates of 2"-dimensional hyper-
bolic numbers [%0, %1; %1, %0]™, n = 2, 3, 4. These graphs reveal
that the model points of red color are almost exactly superimposed on
the phenomenologic points of blue color. Fig. 11.4 shows the proximity


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

50

of the numerical phenomenological and model values of the studied
percentages. All values are rounded to four decimal places. Therefore,
knowing only two percentages %0 and %1 of monoplets 0 and 1 in the
binary n-plet representation of this well known novel, percentages of all
other considered types of n-plets can be predicted. We presume that a
similar model correspondence also holds true for n =5, 6, ... (if nis
much less than the length of the considered literary text) but this should
be studied in future research.

L.N. Tolstoy «Anna Karenina» (1309047 letters)

Percentages of Percentages of Percentages of Percentages of
2 monoplets 4 doublets 8 triplets 16 tetraplets
(0, 1) (00, 01, 10, 11) | (000, 001, 010, ..., 111) (0000, 0001, ..., 1111)

%0= 0,3337092
%1=0,6662908

09 05 0.45 0.45

038 045 0.4 0.4

0.7 o4 0.35 0.35

0.35 N

0.6 03 0.3
0.3

05 035 025 0.25

0.4 0.2 0.2 0.2

0.3 . Q.15 0.15 - 0.15

02 01 0.1 01
0.05

0.1 0.05 0.05

0 .
[ 1 2 3 4 0 0
1 2 1 2 3 4 5 6 7 8 12345678 910111213141516

%0=0,3337092 | ro/0 041+ 01 0AM®
%1= 0,6662908 [%60.91; 961,%0] [%0,%1; %1,90]© [%60,%1; %1,060]®

Fig. 11.3. Graphical analysis results of the novel “Anna Karenina”
by Leo Tolstoy (the original literary text was accessed from
http://samolit.com/books/62/). Percentages of all the types of binary n-
plets (n = 1, 2, 3, 4) from the binary representations of this novel are
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shown. Blue points correspond to phenomenologic values of the per-
centages of hydrogen n-plets, while red points correspond to model
values of the percentages calculated as coordinates of the 2"-
dimensional hyperbolic numbers [%0,%1; %1,%0]®™, where %0 and
%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers.

L.N. Tolstoy «Anna Karenina» (1309047 letters)
Percentages of types of monoplets

Reality: %0 (or 0p)= 0,3337; %1 (or 1p) =
0,6663
Percentages of types of binary doublets
Reality: 0p0p=0,1160; 0p1p=0,2177; 1p0p=0,2178;
1p1p=0,4485.
Model: 0p0p=0,1114; 0p1p=0,2223; 1p0p=0,2223,;
1p1p=0,4439.
Percentages of types of binary triplets
Reality: 0r0p0P=0,0348;  0p0p1p=0,0818; 0p1p0p=0,0708;
Oplp1p=0,1481;
1p0p0r=0,0808; 1p0p1p=0,1353; 1p1p0p=0,1465;
1p1p1p=0,3019.
Model: 0p0p0P=0,0372;  0p0p1p=0,0742; 0p1lp0p=0,0742;

Op1p1p=0,1481;
1p0p0p=0,0742; 1p0p1p=0,1481; 1p1p0p=0,1481;
1p1p1p=0,2958.

Percentages of types of binary tetraplets

Reality:  0p0p0p0p=0,0114; 0p0p0p1p=0,0232; 0p0p1p0p=0,0257;
0pOp1p1p=0,0559;

Op1p0p0p=0,0247; 0plp0plp=0,0460; 0p1p1p0p=0,0505;
0Opl1p1p1p=0,0970:;

1p0p0p0p=0,0231; 1p0p0p1p=0,0582; 1p0p1p0p=0,0446;
1p0p1p1p=0,0914:

1p1p0p0p=0,0565; 1p1p0p1p=0,0899; 1p1p1p0p=0,0975;
1p1p1p1p=0,2045.
Model: 0r0p0P0P=0,0124; 0p0pOp1p=0,0248; 0p0p1p0p=0,0248;
0pOp1p1p=0,0494;

0p1p0p0p=0,0248; 0pl1p0plp=0,0494; 0p1p1p0p=0,0494;
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Opl1p1p1p=0,0987;

1p0p0p0p=0,0248; 1p0p0p1p=0,0494: 1p0plp0p=0,0494:
1p0p1p1p=0,0987;

1p1p0p0p=0,0494: 1p1p0p1p=0,0987; 1p1p1lp0p=0,0987;
1P1P1P1P:0,1971.

Fig. 11.4. The numeric representation of the analysis of the novel
“Anna Karenina” by Leo Tolstoy (the original literary text was ac-
cessed from http://samolit.com/books/62/). Percentages of all the types
of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this
novel are shown. All values are rounded to four decimal places. Blue
numbers correspond to phenomenologic values of the percentages for
cases named in tabular sections, while red numbers correspond to mod-
el values of these percentages calculated as coordinates of the 2"-
dimensional hyperbolic numbers [%0, %1; %1, %0]™, where %0 and
%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers.
Denotations 0, and 1, are used as equivalents of denotations %0 and
%1.

Below the author shows some results received by similar analysis
of famous Russian literary works: L.N. Tolstoy «War and Peace»; F.M.
Dostoevsky «Crime and Punishment» and «ldiot»; A.S. Pushkin
«Evgenij Onegin» and «Dubrovsky»; the Russian Bible. All these re-
sults are similar to those described for the novel «Anna Karenina»
(Figs. 11.3 and 11.4): they confirm that percentages of binary n-plets (n
=1, 2, 3, 4) are, to some degree, interrelated to each other and that this
interrelation can be effectively modeled on the basis of 2"-
dimensional hyperbolic numbers [%0, %1; %1, %0]™, where n = 1, 2,
3, 4. The computer program for the analysis of literary texts was creat-
ed by our graduate student V.I. Svirin.

L.N. Tolstoy «War and Peace», Book | (1068479 letters)
Percentages of Percentages of Percentages of Percentages of
2 monoplets 4 doublets 8 triplets 16 tetraplets
0,1) (00, 01, 10, 11) (000, 001, 010, ..., 111) (0000, 0001, ..., 1111)
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Fig. 11.5. Graphical analysis results of the novel “War and Peace”
(Book 1) by Leo Tolstoy (the original literary text was accessed from
http://samolit.com/books/64/). Percentages of all the types of binary n-
plets (n = 1, 2, 3, 4) from the binary representations of this novel are
shown. Blue points correspond to phenomenologic values of the per-
centages of hydrogen n-plets, while red points correspond to model
values of the percentages calculated as coordinates of the 2"-
dimensional hyperbolic numbers [%0, %1; %1, %0]™, where %0 and
%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers.

L.N. Tolstoy «War and Peace», Book | (1068479 letters)

Percentages of types of binary monoplets
Reality: %0 (or Op) = 0,3283; %1 (or 1p) =0,6717

Percentages of types of binary doublets
Reality: 0p0p=0,1088; 0p1p=0,2200; 1p0p=0,2190;
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1p1p=0,4522.
Model: 0p0p=0,1078; 0p1p=0,2205; 1p0p=0,2205;
1p1p=0,4512.

Percentages of types of binary triplets
Reality: 0p0p0p=0,0314; 0p0p1p=0,0774; 0plp0p=0,0705;
Op1p1p=0,1484;

1p0p0p=0,0778; 1p0p1p=0,1419; 1p1p0p=0,1490:;
1p1p1p=0,3036.
Model: 0p0p0p=0,0354; 0p0p1p=0,0724; 0plp0p=0,0724;
0Op1p1p=0,1481,

1p0p0p=0,0724; 1p0p1p=0,1481; 1p1p0p=0,1481;
1p1p1p=0,3031.

Percentages of types of binary tetraplets

Reality: 0p0p0P0P=0,0096; 0pO0POP1p=0,0220; 0pO0p1p0p=0,0250;
0pOp1p1p=0,0521;

0p1p0p0p=0,0234; 0p1p0p1p=0,0474; Op1p1p0p=0,0504;
0Opl1p1p1p=0,0988:;

1p0p0p0p=0,0214: 1p0p0p1p=0,0562; 1p0p1p0p=0,0451;
1p0p1p1p=0,0966;

1p1p0p0p=0,0546:  1p1p0p1p=0,0943:  1p1p1p0p=0,0984:
1p1p1p1p=0,2049.
Model: 0p0pOP0P=0,0116; 0pO0POP1p=0,0238; 0pO0p1p0p=0,0238;
0prOr1p1p=0,0486;

0p1p0p0p=0,0238; 0p1p0p1p=0,0486; 0p1p1p0p=0,0486;
0p1p1p1p=0,0995;

1p0p0p0p=0,0238; 1p0p0p1p=0,0486; 1p0p1p0p=0,0486;
1p0p1p1p=0,0995;

1p1p0p0p=0,0486; 1p1p0p1p=0,0995; 1p1p1p0p=0,0995;
1p1p1p1p=0,2036.

Fig. 11.6. Numeric analysis results of the novel “War and Peace”
(Book 1) by Leo Tolstoy (the original literary text was accessed from
http://samolit.com/books/64/). Percentages of all the types of binary n-
plets (n = 1, 2, 3, 4) from the binary representation of this novel are
shown. All values are rounded to four decimal places. Blue numbers
correspond to phenomenologic values of percentages for cases named
in tabular sections, while red numbers correspond to model values of
these percentages calculated as coordinates of 2"-dimensional  hyper-
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bolic numbers [%0, %1; %1, %0]™, where %0 and %1 are percentages
of monoplets 0 and 1; (n) refers to tensor powers. Denotations 0, and
1, are used as equivalents of denotations %0 and %1.

F.M. Dostoevsky «Crime and Punishment» (818099 letters)
Percentages of Percentages of Percentages of Percentages of
2 monoplets 4 doublets 8 triplets 16 tetraplets
0,1) (00, 01, 10, 11) | (000, 001, 010, ..., 111) (0000, 0001, ..., 1111)
o:a °-4>5 ;M ;3.4
0.7 o4 0.3s 035
. / e » "
0.3 0.15 015 0.15
0.2 0.1 0.1 0.1
0 L ) 1 2 3 4 a 1 2 a2 4 s & 7 8 12345678 910111213141516
%0=0,3420845
%1=0,6579155
0s o
023 ’ ou; 0.1.5 oqls
9%0=0,3420845 | o o 0
%1= 0,6579155 | [700.%1; %1,%0] [960,%1; %1,%0]) [960,%1; %1,%60]“

Fig. 11.7. Graphical analysis results of the novel “Crime and Pun-
ishment” by F.M. Dostoevsky (the original literary text was accessed
from http://samolit.com/books/57/). Percentages of all the types of bi-
nary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel
are shown. Blue points correspond to phenomenologic values of the
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percentages of hydrogen n-plets, while red points correspond to model
values of the percentages calculated as coordinates of the 2"-
dimensional hyperbolic numbers [%0, %1; %1, %0]™, where %0 and
%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers.

F.M. Dostoevsky «Crime and Punishment» (818099 letters)

Percentages of types of binary monoplets
Reality: %0 (or Op) = 0,3421; %1 (or 1p) = 0,6579

Percentages of members in the alphabet of binary doublets
Reality: 0p0p=0,1203; 0plp=0,2219; 1p0p=0,2216; 1plp
=0,4362.
Model:  0p0p = 0,1170; Oplp = 0,2251; 1p0p = 0,2251;
1p1p = 0,4329.

Percentages of types of binary triplets
Reality: 0r0p0p=0,0370; 0p0p1p=0,0843; 0p1p0p=0,0738;
Oplplp=0,1464:
1p0p0p=0,0838; 1p0p1p=0,1377; 1plp0p=0,1472;
1p1p1p=0,2897.
Model: 0r0p0pP=0,0400; 0p0p1p=0,0770; 0r1p0p=0,0770;
Op1p1p=0,1481;
1p0p0p=0,0760; 1p0p1p=0,1481; 1p1p0p=0,1481;
1p1p1p=0,2848.

Percentages of types of binary tetraplets

Reality: 0p0p0pP0P=0,0119; 0pOPOP1p=0,0258; 0pOp1p0p=0,0284;
0pOp1p1p=0,0551;

0p1p0p0p=0,0265; 0plpOplp=0,0467; 0plplp0p=0,0535;
0Oplplp1p=0,0954;

1p0p0p0p=0,0249; 1p0p0p1p=0,0594; 1p0p1p0p=0,0458;
1p0p1p1p=0,0900;

1p1p0p0p=0,0560; 1p1p0p1p=0,0898; 1pl1plp0p=0,0952;
1p1p1p1p=0,1954.
Model: 0p0p0p0p=0,0137; 0p0pOpR1p=0,0263; 0p0p1p0p=0,0263;
0pOp1p1p=0,0507;

0p1p0p0p=0,0263; 0p1p0p1p=0,0507; Oplplp0p=0,0507;
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Op1pl1p1p=0,0974;

1p0p0p0p=0,0263;  1p0p0p1p=0,0507; 1p0p1p0p=0,0507;
1p0p1p1p=0,0974;

1p1p0p0p=0,0507; 1p1p0p1p=0,0974; 1p1plp0p=0,0974;
1P1P1P1P:O,1874.

Fig. 11.8. Numeric analysis results of the novel “Crime and Punish-
ment” by F.M. Dostoevsky (the original literary text was accessed from
http://samolit.com/books/57/). Percentages of all the types of binary n-
plets (n = 1, 2, 3, 4) from the binary representation of this novel are
shown. All values are rounded to four decimal places. Blue numbers
correspond to phenomenologic values of percentages for cases named
in tabular sections, while red numbers correspond to model values of
these percentages calculated as coordinates of the 2"-dimensional hy-
perbolic numbers [%0, %1; %1, %0]™, where %0 and %1 are percent-
ages of monoplets 0 and 1; (n) refers to tensor powers. Denotations Op
and 1p are used as equivalents of denotations %0 and %1.

F.M. Dostoevsky «ldiot» (1001129 letters)

Percentages of Percentages of Percentages of Percentages of
2 monoplets 4 doublets 8 triplets 16 tetraplets
0,1) (00,01, 10, 11) | (000, 001, 010, ..., 111) (0000, 0001, ..., 1111)
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Fig. 11.9. Graphical analysis results of the novel “Idiot” by F.M.
Dostoevsky (the original literary text was accessed from
http://samolit.com/books/56/). Percentages of all the types of binary n-
plets (n =1, 2, 3, 4) from the binary representations of this novel are
shown. Blue points correspond to phenomenologic values of the per-
centages of hydrogen n-plets, while red points correspond to model
values of the percentages calculated as coordinates of the 2"-
dimensional hyperbolic numbers [%0,%1; %1,%0]®™, where %0 and
%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers.

F.M. Dostoevsky «ldiot» (1001129 letters)
Percentages of types of binary monoplets

Reality: %0 (or Op) = 0,3460; %1 (or 1p) =
0,6540
Percentages of types of binary doublets
Reality:  0p0p=0,1208; 0p1p=0,2251; 1p0p=0,2252;
1p1p=0,4289.
Model: 0pr0p=0,1197,; 0p1p=0,2263; 1p0p=0,2263;
1p1p=0,4278.

Percentages of types of binary triplets
Reality:  0p0p0p=0,0367; 0pOp1p=0,0845; 0p1p0p=0,0792;
0p1p1p=0,1449;
1p0p0p=0,0847; 1p0p1p=0,1405; 1p1p0p=0,1405;
1Plp1|:>:0,2839.
Model: 0p0p0p=0,0414; 0p0p1p=0,0783; 0p1p0p=0,0783;
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0Op1p1p=0,1480;
1p0p0p=0,0783; 1r0p1p=0,1480; 1p1p0p=0,1480;
1p1p1p=0,2798.

Percentages of types of binary tetraplets

Reality: 0p0p0pP0P=0,0118; 0p0pOP1p=0,0251; 0p0p1p0p=0,0290:;
0pOp1p1p=0,0545;

0p1p0p0p=0,0276; 0p1pOp1p=0,0517; 0plplp0p=0,0519;
Oplplp1p=0,0941;

1p0p0p0p=0,0249; 1p0p0p1p=0,0597;: 1p0pl1lp0p=0,0505;
1p0p1p1p=0,0909:

1p1p0p0p=0,0570; 1p1p0p1p=0,0885;: 1p1plp0p=0,0931;
1p1p1p1p=0,1899.
Model: 0p0p0p0P=0,0143; 0p0pO0P1p=0,0271; 0pOp1p0p=0,0271;
0p0p1p1p=0,0512;

0p1p0p0p=0,0271; 0plp0p1p=0,0512; 0plp1p0p=0,0512;
0p1p1p1p=0,0968;

1p0p0p0p=0,0271; 1p0p0p1p=0,0512; 1p0p1lp0p=0,0512;
1p0p1p1p=0,0968;

1p1p0p0p=0,0512; 1p1p0p1p=0,0968; 1p1plp0p=0,0968;
1p1p1p1p=0,1830.

Fig. 11.10. Numeric analysis results of the novel “Idiot” by F.M.
Dostoevsky (the original literary text was accessed from
http://samolit.com/books/56/). Percentages of all the types of binary n-
plets (n = 1, 2, 3, 4) from the binary representation of this novel are
shown. All values are rounded to four decimal places. Blue numbers
correspond to phenomenologic values of the percentages for cases
named in tabular sections, while red numbers correspond to model val-
ues of these percentages calculated as coordinates of the 2"-dimensional
hyperbolic numbers [%0, %1; %1, %0]™, where %0 and %1 are per-
centages of monoplets 0 and 1; (n) refers to tensor powers. Denotations
0p and 1 are used as equivalents of denotations %0 and %1.

A.S. Pushkin «Evgenij Onegin» (107146 letters)
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Fig. 11.11. Graphical analysis results of the novel “Evgenij Onegin”
by A.S. Pushkin (the original literary text was accessed from
http://tululu.org/b57798/). Percentages of all the types of binary n-plets
(n=1, 2, 3, 4) from the binary representations of this novel are shown.
Blue points correspond to phenomenologic values of the percentages of
hydrogen n-plets, while red points correspond to model values of the
percentages calculated as coordinates of the 2"-dimensional hyperbolic
numbers [%0, %1; %1, %0]™, where %0 and %1 are percentages of
monoplets 0 and 1; (n) refers to tensor powers.
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A.S. Pushkin «Evgenij Oneginx» (107146 letters)

Percentages of types of binary monoplets
Reality: %0 (or Op) = 0,3278; %1 (or 1p) =
0,6722

Percentages of members in the alphabet of binary doublets
Reality: 0pOp = 0,1090; 0plp=10,2189; 1p0p=0,2187; 1plp
=0,4534.
Model: 0p0p=0,1074;  0p1p=0,2203; 1p0p=0,2203; 1plp
=0,4519.

Percentages of types of binary triplets
Reality: 0r0p0p=0,0316; 0p0p1p=0,0789; 0p1p0p=0,0738;
0p1p1p=0,1428;
1p0p0p=0,0769; 1p0p1p=0,1389; 1p1p0p=0,1476;
1p1p1p=0,3095.
Model: 0p0p0p=0,0352; 0p0p1p=0,0722; 0p1p0p=0,0722;
0p1p1p=0,1481;
1p0p0p=0,0722; 1p0p1p=0,1481; 1p1p0p=0,1481;
1p1p1p=0,3038.

Percentages of types of binary tetraplets
Reality: 0p0p0P0P=0,0098; 0p0p0P1p=0,0223; 0p0p1p0p=0,0272;
0pO0p1p1p=0,0509;
OP1P0P0P20,0251; OPlPOPlP:0,0457; OP1P1POP:0,0500;
0p1p1p1p=0,0974;
1p0p0p0p=0,0217; 1p0p0p1p=0,0588; 1p0p1p0p=0,0457;
1p0p1p1p=0,0930;
1p1p0p0p=0,0513; 1p1p0p1p=0,0928:; 1p1p1p0p=0,0953;
1p1p1p1p=0,2131.
Model: 0p0p0P0P=0,0115; 0p0pOP1p=0,0237; 0p0p1p0p=0,0237;
0pOp1p1p=0,0485;
0P1P0P0P20,0237; 0P1POP1P:0,0485; OP1P1POP:0,0485;
Oplp1p1p=0,0996;
1p0p0p0p=0,0237; 1p0p0p1p=0,0485; 1p0p1lp0p=0,0485;
1p0p1p1p=0,0996 ;
1p1p0p0p=0,0485; 1p1p0p1p=0,0996; 1p1p1p0p=0,0996;
1p1p1p1p=0,2042.
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Fig. 11.12. Numeric analysis results of the novel “Evgenij Onegin”
by A.S. Pushkin (the original literary text was accessed from
http://tululu.org/b57798/). Percentages of all the types of binary n-plets
(n =1, 2, 3, 4) from the binary representation of this novel are shown.
All values are rounded to four decimal places. Blue numbers corre-
spond to phenomenologic values of the percentages for cases named in
tabular sections, while red numbers correspond to model values of
these percentages calculated as coordinates of the 2"-dimensional hy-
perbolic numbers [%0, %1; %1, %0]™, where %0 and %1 are percent-
ages of monoplets 0 and 1; (n) refers to tensor powers. Denotations Op
and 1, are used as equivalents of denotations %0 and %1.

A.S. Pushkin «Dubrovsky» (106891 letters)
Percentages of Percentages of Percentages of Percentages of
2 monoplets 4 doublets 8 triplets 16 tetraplets
0,1) (00, 01, 10, 11) | (000, 001, 010, ..., 111) (0000, 0001, ..., 1111)
%0= 0,3259021
%1=0,6740979
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Fig. 11.13. Graphical analysis results of the novel “Dubrovsky” by
A.S. Pushkin (the original literary text was accessed from
http://samolit.com/books/61/ ). Percentages of all the types of binary n-
plets (n =1, 2, 3, 4) from the binary representations of this novel are
shown. Blue points correspond to phenomenologic values of the per-
centages of hydrogen n-plets, while red points correspond to model
values of the percentages calculated as coordinates of the 2"-
dimensional hyperbolic numbers [%0, %1; %1, %0]™, where %0 and
%1 are percentages of monoplets 0 and 1; (n) refers to tensor powers.

A.S. Pushkin «Dubrovsky» (106891 letters)

Percentages of types of binary monoplets
Reality: %0 (or Op) = 0,3259; %1 (or 1p) =
0,6741

Percentages of types of binary doublets
Reality: 0p0p=0,1100; Oplp=0,2152; 1p0p=0,2166; 1plp

=0,4582.
Model:  0pOp = 0,1062; Oplp = 0,2197; 1p0p = 0,2197;
1p1p = 0,4544.

Percentages of types of binary triplets
Reality: 0p0p0p=0,0295; 0pOp1p=0,0816; Op1p0p=0,0671;
0p1p1,=0,1491,
1p0p0p=0,0784; 1p0p1p=0,1358; 1p1p0p=0,1503;
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1p1p1p=0,3083.
Model: 0p0p0p=0,0346;  0pO0p1p=0,0716; 0p1p0p=0,0716;

0Oplp1p=0,1481;
1p0p0p=0,0716; 1p0p1p=0,1481; 1p1p0p=0,1481;

1p1p1p=0,3063.

Percentages of types of binary tetraplets

Reality:  0p0p0p0p=0,0081; 0p0p0p1p=0,0223; 0p0p1p0p=0,0257;
0pOp1p1p=0,0549;

0p1p0p0p=0,0234; 0p1p0p1p=0,0459; Op1p1p0p=0,0506;
Oplplp1p=0,0952;

1p0p0p0p=0,0211; 1p0pOpl1p=0,0553; 1r0p1p0p=0,0437;
1p0p1p1p=0,0971;

1p1p0p0p=0,0564; 1p1p0p1p=0,0916; 1p1p1p0p=0,0959;
1p1p1p1p=0,2127.
Model:  0p0p0p0p=0,0113; 0p0pOp1p=0,0233; 0pO0p1p0p=0,0233;
0pOp1p1p=0,0483;

0p1p0p0p=0,0233; 0plpOplp=0,0483: 0p1p1p0p=0,0483:
Opl1p1p1p=0,0998:;

1p0p0p0p=0,0233;  1p0p0p1p=0,0483; 1p0p1p0p=0,0483;
1p0p1p1p=0,0998;

1p1p0p0p=0,0483; 1p1p0p1p=0,0998; 1p1p1p0p=0,0998:;
1P1P1P1P:O,2065.

Fig. 11.14. Numeric analysis results of the novel “Dubrovsky” by
A.S. Pushkin (the original literary text was accessed from
http://samolit.com/books/61/). Percentages of all the types of binary n-
plets (n = 1, 2, 3, 4) from the binary representation of this novel are
shown. All values are rounded to four decimal places. Blue numbers
correspond to phenomenologic values of the percentages for cases
named in tabular sections, while red numbers correspond to model val-
ues of these percentages calculated as coordinates of the 2"-dimensional
hyperbolic numbers [%0, %1; %1, %0]™, where %0 and %1 are per-
centages of monoplets 0 and 1; (n) refers to tensor powers. Denotations
0p and 1 are used as equivalents of denotations %0 and %1.

Russian Bible (3122489 letters)
Percentages of |  Percentages of | Percentages of | Percentages of
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2 monoplets 4 doublets 8 triplets 16 tetraplets
0,1) (00, 01, 10, 11) | (000, 001, 010, ..., 111) (0000, 0001, ..., 1111)
027 003-'; 035 0.35
0.6 ('13 03 03
023 0.15 0.15 0.15
01 0.1 01
0.2 0.05 0.05 0.05
D~1 EPE 0 0
0+ 1 2 3 4 5 6 7 8 12345678 910111213141516
1 2
%0=0,3279771
%1=0,6720229
o = o o
o: . MZ 005 ooz
o+ 1 2 3 4 0 1 2 3 4 5 6 7 8 12345678 910111213141516
%0=0,3279771 [960,%1; %1 %0](2)
! 701, ' . 3) 050 %1° %1 9%01@
%1= 06720229 [%60,%1; %1,%0] [%60,%1; %1,%0]

Fig. 11.15. Graphical analysis results of the Russian Bible (the origi-
nal literary text was accessed from http://petoukhov.com/bible.zip).
Percentages of all the types of binary n-plets (n = 1, 2, 3, 4) from the
binary representations of this novel are shown. Blue points correspond
to phenomenologic values of the percentages of hydrogen n-plets, while
red points correspond to model values of the percentages calculated as
coordinates of the 2"-dimensional hyperbolic numbers [%0, %1; %1,
%0]™, where %0 and %1 are percentages of monoplets 0and 1; (n)
refers to tensor powers.

Russian Bible (3122489 letters)
Percentages of types of binary monoplets
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Reality: %0 (or Op) = 0,3280; %1 (or 1p) =
0,6720

Percentages of types of binary doublets
Reality: 0p0p = 0,1107; 0plp=0,2171; 1p0p=0,2174; 1plp=
0,4548.
Model: 0p0p=0,1076;  Oplp=0,2204; 1p0rp=0,2204; 1plp=
0,4516.

Percentages of types of binary triplets
Reality: 0r0pOp = 0,0318; 0p0plp = 0,0789; 0plpOp = 0,0678;
Oplplp=0,1484;
1p0p0p = 0,0794; 1p0p1lp=0,1386; 1p1p0p=0,1493;
1plplp = 0,3058.
Model: 0p0p0pP=0,0353; 0rp0p1p=0,0723;  0p1p0p=0,0723;
0p1p1p=0,1481;

1p0p0p=0,0723; 1p0p1p=0,1481; 1p1p0p=0,1481;
1p1p1p=0,3035.

Percentages of types of binary tetraplets
Reality: 0p0p0p0p=0,0099; 0p0p0p1p=0,0222;  0p0p1lp0p=0,0245;
0pOp1p1p=0,0543;
0p1p0p0p=0,0232;  0p1p0p1p=0,0448;  0plplp0p=0,0493;
Opl1plp1p=0,0995;
1p0p0p0p=0,0222; 1p0p0p1p=0,0568; 1p0p1p0p=0,0438:;
1p0p1p1p=0,0948;
1p1p0p0p=0,0552; 1p1p0p1p=0,0937; 1p1p1p0p=0,0997;
1P1P1P1P:O,2063.
Model: 0p0p0P0P=0,0116; 0p0pOpP1p=0,0237; 0pOp1p0p=0,0237;
0pOp1p1p=0,0486;
0p1p0p0p=0,0237;  0p1lpOplp=0,0486; 0plplp0p=0,0486;
Opl1plp1p=0,0995;
1p0p0p0p=0,0237;  1p0p0p1p=0,0486: 1p0p1p0p=0,0486;
1p0p1p1p=0,0995;
1p1p0p0p=0,0486;  1p1p0p1p=0,0995;  1p1p1p0p=0,0995;
1p1p1p1p=0,2040.

Fig. 11.16. Numeric analysis results of the Russian Bible (the origi-
nal literary text was accessed from http://petoukhov.com/bible.zip).
Percentages of all the types of binary n-plets (n = 1, 2, 3, 4) from the
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binary representation of this novel are shown. All values are rounded to
four decimal places. Blue numbers correspond to phenomenologic val-
ues of the percentages for cases named in tabular sections, while red
numbers correspond to model values of these percentages calculated as
coordinates of the 2"-dimensional hyperbolic numbers [%0, %1; %1,
%0]™, where %0 and %1 are percentages of monoplets 0 and 1; (n)
refers to tensor powers. Denotations Op and 1, are used as equivalents
of denotations %0 and %!1.

Presented results show that the described properties of long Russian
literary texts reflect, first of all, the deep specifics of Russian language
and not the particular literary style of a particular writer. It can be as-
sumed that any long literary text in a foreign language, translated into
Russian, will demonstrate similar properties. It will be interesting to
study if there are similar patterns in the texts of other languages with
differing alphabets and differing phonetic features.

Presented results reveal such analogies between long genetic texts
and and long Russian literary texts, which are related with their binary-
oppositional structures, percentage features of texts and 2"-dimensional
hyperbolic numbers [%0, %1; %1, %0]™.

12 Doubly stochastic matrices and tensor families of hyperbolic
numbers

A square matrix is called doubly stochastic if all entries of the
matrix are nonnegative and the sum of the elements in each row and
each column is unity [Prasolov, 1994]. In previous Sections 10 and 11
we studied phenomenologic long binary sequences like as 01101001...
. We simulated phenomenologic percentages (or frequencies) of their
doublets 00, 01, 10, 11, of their triplets 000, 001, 010,...110, 111 and
of their other n-plets by means of coordinates of 2"-dimensional
hyperbolic numbers [p, q; q, p]™, where p refers precentages %0 of
monoplets 0, and g refers percentages %1 of monoplets 1 (in binary
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sequences, the sum of percentages of monoplets 0 and 1 is equal to
unity:p+q=1).

It is easy to check that each matrix of this tensor family [p, q; q,
p]™ (Fig. 12.1) is doubly stochastic matrix since it is nonegative and
the sum of its entries in each row and each column is unity. For
example, the sum of entries in each row and in each column in the
(4*4)-matrix M@ is equal to unity: pp + pq +qp + qq = p(p + q) + q(p

ta)=p+q=L
PPP; PPY; PAP; P4q; 4PP; APY; 49P; 499
PP4. PPP; P4, PAP; 4Pds 9PP; 999, 49P
PP, P9, 9P, 99 Pap, P44, PPP, PP4; 99P; 494, 9PP; 4Pq
Pa| Moo | oo db AR 1 pag, pap, ppd, ppp, 499, 99, 4pd; PP
M= q,p‘ =0T 9P 99, PP, P4 | MO = | qpp, qpd, qqp, 499, PPP> PP, PAP, PAq
99 ap, P9, PP qpd. PP, 499, 99p; PP, PPP, P44, PAP
qdp, 999, 4PP; 9P9, PAP; P44, PPP; PP]
449, 99> 4pd, 9PP: P44, PAP; PPA, PPP

Fig. 12.1. Three first members of the tensor family [p, q; g, p]™ of
bisymmetric doubly

stochastic matrices for percentages p and g (where p+g=1)
are shown.

The revealed connections of bisymmetric doubly stochastic
matrices with structures of long genetic and literary texts (described in
Sections 10 and 11) are interesting since doubly stochastic matrices
have essential applications in many scientific fields: linear
programming and planing, theory of games and optimization, forming
of coalitions, models for oncology study, economy, etc. Some algebraic
simulations of genetic and biologic materials in this article can be also
considered as models on basis of bisymmetric doubly stochastic
matrices. In addition, the Hardy-Weinberg law, which is called in
biologic literature as the basis of mathematical constructions in
population genetics and contemporary evolutionary theory, is simulated
on the basis of the tensor family [p, g; g, p]™ of bisymmetric doubly
stochastic matrices where p + g = 1 [Petoukhov, 2018, doi:
10.20944/preprints201804.0131.v2]. On the way of further applications
of doubly stochastic matrices for analysis of biologic structures, many
interesting studies and results are possible, which are related, in
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particular, with using the Darwinian concept of natural selection. The
author plans to publish a few of such results some later.

13 Regarding Punnett squares for the trait inheritance in
Mendelian genetics

According to Mendel's law of independent assortment of inherited
traits, information from microworld of genetic molecules dictates
macrostructures of living organisms, despite of strong noise and inter-
ference, through many independent channels (for instance, colors of
hair, eye and skin are inherited independently from each other). This
determinism is carried out by means of unknown algorithms of multi-
channel noise-immunity coding. Consequently, every organism is an
algorithmic machine of multi-channel noise-immunity coding.

In genetics from 1906 year, Punnett squares represent Mendel's laws
of inheritance of traits under poly-hybrid crosses. In Punnet squares,
combinations of dominant and recessive alleles of genes from parent
reproductive cells — gametes — are represented (Fig. 13.1).

maternal maternal spectrum
spectrum AB Ab aB ab
A | a | AB | AABB | AABD | AaBB | AaBb
paternal | A| AA | Aa & | Ab | AABb | AADbb | AaBb | Aabb
spectrum al] aA | aa ‘é aB | AaBB | AaBb | aaBB | aaBb
ab | AaBb | Aabb  aaBb | aabb

Fig. 13.1. Examples of Punnett squares for monohybrid and dihy-
brid crosses of organisms under the laws of Mendel. Abbreviations
«pat. sp.» and «pat. gam.» mean «paternal spectrum» and «paternal
gametes».

Punnett squares have strong analogies with square «tables of tensor
inheritance» of eigenvalues of original matrices (or «parental» matri-
ces), which were introduced in [Petoukhov, 2016]. Let us say on this in
more details in relation to bisymmetric matrices and their tensor (or
Kronecker) product.
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As known, doubly stochastic matrices and bisymmetric matrix repre-
sentations of 2"-hyperbolic numbers have real eigenvalues.
The operation of the tensor product of any two square matrices V and
W have the following property: the eigenvalues of matrix V®W are
equal to a product of ci*dj, where ci and d; are eigenvalues of the matri-
ces V and W. This feature of the tensor inheritance of eigenvalues of
the original matrices (or "parental™ matrices) V and W in the result of
their tensor product can be conveniently represented in the form of "ta-
bles of inheritance™. Fig. 13.2 shows the example of two simplest cases,
conventionally referred to as monohybrid and dihybrid cases of a tensor
hybridization of two bisymmetric matrices (for example, two doubly
stochastic matrices or two matrices representing 2-dimensional hyper-
bolic numbers). In the first case, the tensor product of two bisymmetric
(2*2)-matrices V and W, which have the same spectrum of real eigen-
values A and a, gives the (4*4)-matrix Q=V®W with its 4 eigenvalues
A*A, A*a, A*a, a*a. In the second case, the tensor product of (4*4)-
matrices, having the same spectrum of real eigenvalues AB, Ab, aB, ab,
gives (16*16)-matrix with 16 eigenvalues, represented in the tabular

form.
maternal maternal spectrum
spectrum AB Ab 32 ab
A | a | AB | AABB | AABb | AaBB | AaBb
paternal Al AA | Aa % | Ab | AABb | AAbb | AaBb | Aabb
spectrum al] aA | aa é aB | AaBB | AaBb | aaBB | aaBb
ab | AaBb | Aabb | aaBb aabb

Fig. 13.2. Examples of tables of inheritance of eigenvalues under the
tensor product in cases
of bisymmetric (2*2)-matrices and (4*4)-matrices.

This formal analogy - between Punnett squares of combinations
of alleles and tables of tensor inheritance of eigenvalues of the consid-
ered bisymmetric matrices - generates the following idea:

. alleles of genes and their combinations can be interpreted as
eigenvalues of

(2"*2")-matrices from tensor families of considered bisymmet-
ric matrices.


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

71

14 Fractal-like multi-dimensional configurational spaces of
hyperbolic types

This Section is devoted to the use of 2"-dimensional hyperbolic
numbers for modeling heritable fractal-like biostructures, which are
developing step by step in ontogenesis of  biological bodies.

Living bodies in a course of their ontogenesis from the embryonic
state to the mature state gradually increase the number of body parts.
Accordingly, the number of parameters, characterizing the devel-
oping body, increases. This leads to appropriate phased increasing a
dimensionality of a configurational space of parameters of the body. In
many cases of such ontogenetic development one can see the following
iterative process: body structural elements, which exist at a previ-
ous stage of ontogenesis, produce - at the next step of ontogenesis -
new elements with similar structures (Fig. 14.1). In the result, after
some repetitions of this ontogenetic procedure, complex fractal-like
structure of the multi-level body appears. A multidimensional configu-
rational space of parameters of such body has a fractal-like system of
its different subspaces having similar patterns of parametric states. One
of many examples of such phased producing a fractal-like structure of
multi-level body is ontogenetic producing new and new dichotomic
branches in some plants (Fig. 14.1, left).

T4 )

Fig. 14.1. Illustrations for the phased ontogenetic development of
fractal-like biological structures (from
https://studbooks.net/2365314/tehnika/istoriya_poyavleniya razvitiya).

Regarding the theme of fractal-like structures in biological bodies,
one can note a great number of publications is devoted to algorithmic
creation of fractal-like geometric figures in spaces of a fixed () dimen-
sionality, first of all, in 2-dimensional complex plane. There are also
known works devoted to constructions of fractal geometric patterns on
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the plane of  hyperbolic (or double) numbers [Pavlov, Panchelyuga,
Panchelyuga, 2009a,b].

In contrast to these works, the author proposes an approach to model
an algorithmic reproduction of patterns, which are similar each other,
not in a space of a fixed dimensionality but in different subspaces of
multidimensional configurational spaces of parameters of multi-level
bodies under their phased ontogenetic development. Due to similarity
of parametric structures in its different subspaces, each of considered
configurational spaces becomes a fractal-like space in the whole.

The author notes the following possibility of modelling such multi-
step ontogenetic development of biological objects and their con-
figurational spaces, which receive new and new parameters and dimen-
sionalities step by step. Let us take the matrix representation of hyper-
bolic number [fi(t), f2(t); f2(t), fi(t)] whose components fi(t) and fo(t)
are functions of time. Fig. 14.2 shows that if this (2*2)-matrix is tensor
multiplied on the left by a hyperbolic number [1, 1; 1, 1], which acts as
a generator of additional dimensionalities of the configurational space,
the result is (4*4)-matrix representing 4-dimensional hyperbolic num-
ber fi(t)*eo + fo(t)*e1 + f1(t)*e2 + f2(t)*es. This 4-dimensional configura-
tional space repeats in its subspaces (namely the first plane on the basis
vectors ep and e1, and the second plane on the basis vectors e; and e3)
the same functions fi(t) and fz(t), which were in the initial 2-
dimensional space.

fi(®), f(1), fi(1), (1)

® | filt), L) | = | £(1), fi(t), K1), fi(t) | = fi(D)*eo+ () *er + fi(t)*er + fi(t) *es
f(t), fi(t) fi(t), £(1), fi(t), £2(t)
B(1), fi(t), (1), fi(t)

—_ =
[ =

Fig. 14.2. An initial step of a generation of a fractal-like 2"-dimensional
space whose subspaces have identical contents. Here eo, €1, €2 and es
are basis units from Fig. 2.5.

Repeating the required number of times this operation of the
tensor multiplication on the left using the generator [1, 1; 1, 1], we
obtain a hierarchical tree of 2"-dimensional hyperbolic numbers and
their corresponding 2"-dimensional configurational spaces for
algorithmic modelling multi-step onthogenesis of a fractal-like
morphogenetic construction. Different levels of this tree have
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subspaces with the same functions fi(t) and f2(t), which were in the
initial 2-dimensional space; in this sense one can speech about a fractal-
like structure of this hierarchy of multi-dimensional configurational
spaces of parameters.

We briefly note that the noted generator [1, 1; 1, 1] (Fig. 14.2)
can be used in a more complicated form if its components are some
functions of time gi(t), for example [gi(t), g2(t); g2(t), gu(t)]. For
modeling biological cyclic processes based on such fractal-like sets of
subspaces, the case, in which the functions fi(t), f2(t), gi(t) and ga(t) are
cyclic functions of time, is especially interesting.

15 Pythagoras and the importance of the concept of number

The notion of “number” is the main notion of mathematics and math-
ematical natural sciences. Pythagoras has formulated the famous
idea: “Numbers rule the world” or “All things are numbers”. This Py-
thagorean slogan arose not because that the number can express a quan-
tity of objects. Pythagoras was engaged in figured numbers associated
with geometric figures: triangular, square, 5-angled, 12-angled, etc.
Seeing that different numbers can dictate different geometric shapes, he
came up with the idea that numbers have an internal structure and able
to organize the outside world according to their properties. In view of
this idea,  natural phenomena should be explained by means of sys-
tems of numbers; the systems of numbers play a role of the beginning
for uniting all things and for expressing the harmony of nature [Kline,
1980]. For the Pythagoreans, the number expressed the "essence" of
everything, and therefore the phenomena should be explained only with
the help of numbers; it was numerical relations that served as the unify-
ing principle of all things and expressed the harmony and order of na-
ture.

Many prominent scientists and thinkers were supporters of this Py-
thagorean standpoint or of one similar to it. As W. Heisenberg noted,
modern physics, where matrices are used as a higher form of numbers,
iIs moving along the same path along which the Pythagoreans walked
[Heisenberg, 1958]. Not without reason B. Russell noted that he did not
know any other person who could exert such influence on the thinking
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of people as Pythagoras [Russell, 1945]. Taking this into account, one
can believe that there is no more fundamental scientific idea in the
world than this idea about a basic meaning of numbers.

Our research results and the proposed approach can be considered as

a further development of this fundamental idea of Pythagoras in con-
nection with the structural organization of the genetic system and inher-
ited biological phenomena.

16 The hypothesis of an analogue of the Weber-Fechner law
related to the transmission of information along single nerve
fibres

In Section 5 above, the connection of hyperbolic rotations with the
basic psychophysical Weber-Fechner law, which has a logarithmic
character, was shown. This law is equally applicable to the perception
of sensory information through a variety of sensory channels and it can
be considered as the law of not only the nervous system, but "the law of
protoplasm” in accordance with known data [Schulz, 1916]. In the
nervous system, sensory information associated with this logarithmic
law is transmitted through single nerve fibers in the form of special
series of spikes (nervous impulses). It can be assumed that the
transmission of information through single nerve fibers is itself
associated with some analogue of the Weber-Fechner logarithmic law.
This Section contains the author's thoughts on this topic.

As known, the magnitude of the action potential set up in any single
nerve fibre is independent of the strength of the exciting stimulus, pro-
vided the latter is adequate. An electrical stimulus below threshold
strength fails to elicit a propagated spike potential. If it is of threshold
strength or over, a spike (a nervous impulse or an action potential) of
maximum magnitude is set up. Either the single fibre does not respond
with spike production, or it responds to the utmost of its ability under
the conditions at the moment. This property of single nerve fibres is
termed the all-or-none law (see, for example, [Kalat, 2016]). After
generating each spike, each neuron has a refractory period to, when it is
incapable of generating a new spike.
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Electrical spikes in brain neurons are produced by using a flow
of Na*and K*ions, which is provided by so called Na*/K" pump
[Hodgkin and Huxley, 1952]. It should be noted that the generation of
each nervous spike is connected with the same numbers 3 and 2, which
were mentioned above many times: the Na*/K* pump uses the energy
of one ATP molecule to exchange 3 intracellular Na* ions for 2 extra-
cellular K* ions [Glitsch, 2001]. Some publications claim that function-
al features of the Na"/K*" pump can be used for brain computations
[Forrest, 2014]. In pevious Sections, we have interpreted numbers 3
and 2 as two different parts of the single hyperbolic number 3+2j1 (Fig.
2.4, etc). Meeting now this pair of numbers 3 and 2 in generating nerv-
ous spikes, one can think that the hyperbolic number 3+2j; plays a cer-
tain role in brain computations on the basis of such spike generatings.
(The author here expresses special thanks to Professor Matthew He
from USA, who told him 2 years ago on publications about these num-
bers 3 and 2 when generating spikes in neurons).

In the sequence of spikes running along the nerve fiber, the time
intervals «t» between adjacent spikes are - in a general case - not equal
to each other, but can differ significantly. These changes of the time
intervals between spikes carry information transmitted over the nerve
fiber. Taking into account all the data on the Weber-Fechner law
described above, the author hypothesizes on the existence of the
following analogue of the Wever-Fechner law in nervous systems:

- in single nerve fibers, the information significance (or the
intensity of information perception) of a interpulse interval for
the nervous system is a logarithmic function of the duration of
this interval in accordance with the following equation:

p = k*In(t/to)
(15.1)

where «p» is the information significance of the interpulse interval for
the nervous system, «t» is a duration of the interpulse interval, «to» is a
refractory period (time threshold) of the neuron, In — natural logarithm,
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k — a weight factor. Fig. 16.1 compares formulations of the Weber-
Fechner law and its supposed analoque for neurons.

The Weber-Fechner law The supposed analoque of the Weber-
for sensory perceptions Fechner law

for time sequences of spikes in single

nerve fibers
p = k*In(x/Xo) p = k*In(t/to)
p - the intensity of percep- | p - the information significance of the
tion interpulse

interval for the nervous system

X — stimulus intensity t - a duration of the interpulse interval
Xo - threshold stimulus to - is a refractory period (time threshold)
In — natural logarithm In — natural logarithm
k —a weight factor k —a weight factor

Fig. 16.1. Comparing formulations of the Weber-Fechner law and its
supposed analoque for
neurons.

From the standpoint of proposed approach to transmitting in-
formation along single nerve fibers, these information processes are
also related with hyperbolic numbers and with hyperbolic rotations as
their particular cases.

17 The hyperbolic rule in the oligomer cooperative organiza-
tion of genomes.

The traditional term “oligomer” refers to a molecular complex of
chemical that consists of a few repeating units. Nucleotides A, T, C,
and G serve as such repeating units in DNA oligomers, which can
have different lengths and which can be also called n-plets, where n
refers to the oligomer length. Each of nucleotide sequences in eukaryot-
ic and prokaryotic genomes can be considered as a sequence of mono-
mers (like as A-C-A-T-G-T-...), or a sequence of doublets (like as AC-
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AT-GT-GG-...), or a sequence of triplets (like as ACA-TGT-GGA-...),
etc. Regarding the quantitative analysis of DNA sequences, researches
usually study quantities and percentages (or probability, or frequencies)
of separate kinds of n-plets. For example, the well-known second
Chargaff rule concerns percentages of separate kinds of nucleotides A,
T, C and G in long single-stranded DNA. In contrast to such studies,
the author suggested analyzing - in DNA and RNA sequences — charac-
terizations of their cooperative forms of organization such as the total
amounts of those oligomers of the same length, which belong to the
same equivalence class, defined by some their general trait [Petoukhov,
2018c; Petoukhov, Petukhova, Svirin, 2019]. Below this approach is
explained.

Let us return for a moment to the tensor family of genetic matri-
ces [C, A; T, G]™, whose first three members are shown in Fig. 2.2.
One can see in such (2"2")-matrices that each of their (2"1*2"1)-
quadrants contains only those 4"V oligomers (or n-plets), which begin
with the same nucleotide C, A, T, or G. One can denote such quadrant
sets of n-plets as classes (or cooperative groupings) of Ci-oligomers,
Az-oligomers, Ti-oligomers, and Gz-oligomers correspondingly
(their index 1 indicates that this nucleotide occupies the first position in
oligomers). For example, the class of Ai-doublets contains 4 members
(AA, AT, AC, and AG); the class of As-triplets contains 16 members
(AAA, ATA, ACA, AGA, AAT, ATT, ACT, AGT, AAC, ATC, ACC,
AGC, AAG, ATG, ACG, and AGG), etc. The same is true for the clas-
ses of T1-oligomers, Ci-oligomers, Gi-oligomers.

Do these genetic (2"*2")-matrices from their tensor family have
anything to do with the quantitative characterizations of DNA sequenc-
es in eukaryotic and prokaryotic genomes? The results obtained by the
author give a positive answer to this question, discovering the existence
of those quantitative rules in DNA sequences that are associated with
these genetic matrices and complete sets of n-plets in their separate
quadrants. These rules of genomic DNA sequences concern - in each of
them - the total amounts of n-plets from appropriate classes of Ci-
oligomers, As-oligomers, Ti-oligomers, or Gi-oligomers. In other
words, they concern total amounts of DNA oligomers (or n-plets) hav-
ing the fixed length n and beginning with the same nucleotide A, T, C,
or G.

Below a few results of the study of the total amounts of n-plets
from such cooperative groupings in eukaryotic and prokaryotic ge-
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nomes are briefly presented. The author's method for such a study is
called the oligomeric sum method (abbreviation, OS-method). The to-
tality of data obtained by analyzing a nucleotide sequence by the OS-
method is called its OS-representation or its OS-portrait.

In this representation the following denotations are used:

e Sa, St, Sc, and Sg refer to quantities of monomers A, T, C, and
G in the analyzed nucleotide sequence correspondingly;

e Yan1, XTnl, Xcnl, and g1 refer to total amounts of all n-plets
having the letter A, T, C, and G in their first position corre-
spondingly.

One can remind here that genomic sequences on the GenBank sites
usually contain some letters N, indicating that there can be any nucleo-
tide in this place (https://www.ncbi.nlm.nih.gov/books/NBK21136/).
By this reason, the total amount of all monomers A, T, C, G (that is the
sum Sa + St + Sc + Sg), calculated for the sequence from the GenBank
data, is slightly less than the complete length of the DNA sequence,
which is indicated in the GenBank. But practically this is not essential
for the results of the application of the OS-method to analyze genomic
sequences.

Let us consider for instance the human chromosome Ne 1 whose
DNA sequence contains about 250 million nucleotides. The initial data
on the DNA sequences of this chromosome was taken from the Gen-
Bank: https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11. The ap-
plication of the OS-method to the analysis of the human chromosome
Nel includes the following steps, which are typical also for cases of
other DNA and RNA sequences:

e Firstly, one should calculate phenomenological quantities of
monomers A, T, C, and G in the considered nucleotide se-
quence. In the case of the human chromosome Ne 1, the follow-
ing quantities are calculated: Sa = 67070277, St = 67244164,
Sc =48055043, Sg = 48111528;

e Secondly, one should calculate the total amounts Zan1, 11,
Ycnt1, and g1 of n-plets in classes of Ai-oligomers, Ti-
oligomers, Ci-oligomers, and Gi-oligomers undern=1, 2, 3, ...
(for analysis of human chromosomes and various eukaryotic
and prokaryotic genomes, the author usually takes n = 1, 2, 3,
..., 19,20 or, in special cases,n=1, 2, 3, ..., 99, 100).
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For human chromosome Ne 1, phenomenological values of the total
amounts of n-plets from the class Ci-oligomers are shown in the graph-
ical form forn=1, 2, 3, ..., 20 in Fig.17.1, left (in blue). Here the ab-
scissa axis represents the values of n, and the ordinate axis represents
the values of the total amounts Za 1 0f n-plets, having the nucleotide A
in their first position.

The first amazing result is that all 20 phenomenological points [n,
>an1] lie - with a high level of accuracy - along the hyperbola Ha1 =
Sa/n = 67070277/n shown in red in Fig. 17.1,middle. Deviations of
phenomenological quantities Xan1 from model values Sa/n lie in the
range -0.030%+0.024%, that is, they comprise only hundredths of a
percent.

70000000 70000000 70000000 —
60000000 60000000 60000000
50000000 50000000 50000000
40000000 40000000 40000000 “Series]
30000000 30000000 30000000

20000000 20000000 20000000

10000000 10000000 10000000
0 0 0

0 5 10 hs 0 5 10 15 12345678 91011121314151617181900

Fig. 17.1. The case of the human chromosome Nel. In all 3 graphs,
the abscissa axis represents the values of n =1, 2, 3, ..., 20. Left: the
set of phenomenological values a1 of the total amount of n-plets hav-
ing the nucleotide A in their first position. The ordinate axis represents
the values of the total amounts Xan1 of such n-plets. Middle: the mod-
eling hyperbola with points Ha1 = Sa/n; the ordinate axis represents its
values Sa/n = 67070277/n. Right: this modeling points Ha1 = Sa/n (in
red) almost completely closes the points of phenomenological quanti-
ties Zan,1 (in blue) since both kinds of points practically coincide.

One should remind that the total quantities of different kinds of n-
plets, belong to the class of Ai-oligomers, under fixed n is equal to 22(™
. For example, if n = 20 then you have a huge number 2% different
kinds of 20-plets of the class of Ai-oligomers. Of course, not all kinds
of the mentioned 20-plets are represented in the human chromosome
Nel, but the total quantity of those 20-plets, which exist in this chromo-
some, is practically equal to Sa/20 with a high level of accuracy shown
below.
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Similar results were obtained when studying in this chromosome
the total amounts of  n-plets having in their first position the nucleo-
tide T (Fig. 17.2, at left), and the nucleotide C (Fig. 17.2, at middle),
and the nucleotide G (Fig. 17.2, at right). The sets of phenomenological
values of the total amounts Xtn1, Zcn1, and Zgn1 Of n-plets are also
modeled effectively by appropriate hyperbolas Ht1, Hcz1, He1 (17.1),
which differ from each other only by their numerators S+, Sc, and Se:

Hrt1=S1/n=67244164/n, Hc.1=Sc/n=48055043/n,
He1=Se/n=48111528/n  (17.1)

70000000 50000000 50000000

60000000
40000000 40000000
50000000

40000000 30000000 30000000
30000000 20000000 20000000

20000000
10000000 » 10000000

] 0 v}

o 5 10 15 o 5 10 13 o 5 10 1 20

10000000

Fig. 17.2. Additional graph data to the OS-representation of the
human chromosome Nel. Model values Hr1(n), Hci(n), and Hg,1(n)
(in red) from expressions (17.1) practically coincide phenomenological
values Xtn1, Xcn1, and Xgn1 Of the total amount of n-plets having in
their first position the nucleotide T (at left), the nucleotide C (at mid-
dle), and the nucleotide G (at the right graph). The numerical data on
this coincidence is shown below.

Fig. 17.3 shows real (that is phenomenological) and model values
for the OS-portrait of the human chromosome Nel. The model values to
the total amounts of  n-plets (n =1, 2, 3,..., 20), having in their first
position a certain nucleotide (A, T, C, or G), are calculated correspond-
ingly through the points of the hyperbolas Ha1 = Sa/n = 67070277/n,
Ht,1=S1/n=67244164/n, Hc,1=Sc/n=48055043/n, and
He,1=Se/n=48111528/n. Deviations A% of phenomenological quanti-
ties from model values are also shown in percent (model value is taken
as 100%). One can see that these deviations are much lesser than 0,2%
in all cases.
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A

| Real || 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 9584038 | 8383461 | 7453552 | 6706672 ||

| ModeTl || 67070277 | 33535139 | 22356759 | 16767569 | 13414055 | 11178380 | 9581468 | 8383785 | 7452253 | 6707028 |f
A%A 0.000 -0.007 -0.016 -0.008 0.004 -0.008 -0.027 0.004 -0.017 0.005

|N 1 2 3 4 5 6 7 8 9 10

|| Real || 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359 ||
|l Model || 67244164 | 33622082 | 22414721 | 16811041 | 13448833 | 11207361 | 9606309 | 8405521 | 7471574 | 6724416 ||
A%T 0.000 0.005 0.008 0.013 0.026 0.001 -0.005 0.006 0.019 0.001

C
| Real || 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919 ||
|| Model || 48055043 | 24027522 | 16018348 | 12013761 | 9611009 | 8009174 | 6865006 | 6006880 | 5339449 | 4805504 ||

A%C 0.000 0.011 0.035 0.001 -0.013 0.043 -0.014 -0.022 0.046 0.033

| Real || 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156 ||
Il Model || 48111528 | 24055764 | 16037176 | 12027882 | 9622306 | 8018588 | 6873075 | 6013941 | 5345725 | 4811153 ||

0.000 -0.008 -0.023 -0.009 -0.029 -0.033 0.057 0.009 -0.049 -0.042

n 11 12 13 14 15 16 17 18 19 20

A
|| Real || 6095821 | 5588773 | 5160139 | 4792078 | 4472245 | 4192017 | 3946422 | 3726860 | 3531067 | 3354107 ||
Il Model || 6097298 | 5589190 | 5159252 | 4790734 | 4471352 | 4191892 | 3945310 | 3726127 | 3530015 | 3353514 ||
| A%A 0.024 0.007 -0.017 -0.028 -0.020 -0.003 -0.028 -0.020 -0.030 -0.018 |

Il Real || 6111970 | 5601854 | 5173904 | 4801395 | 4479492 | 4202773 | 3954021 | 3735327 | 3535288 | 3360459 ||
|| Model || 6113106 | 5603680 | 5172628 | 4803155 | 4482944 | 4202760 | 3955539 | 3735787 | 3539167 | 3362208 ||
A%T 0.019 0.033 -0.025 0.037 0.077 0.000 0.038 0.012 0.110 0.052

C
|| Real || 4370502 | 4002753 | 3694018 | 3433636 | 3202830 | 3003511 | 2826568 | 2668499 | 2531448 | 2402186 ||
Il Model || 4368640 | 4004587 | 3696542 | 3432503 | 3203670 | 3003440 | 2826767 | 2669725 | 2529213 | 2402752 ||

A%C -0.043 0.046 0.068 -0.033 0.026 -0.002 0.007 0.046 -0.088 0.024

| Real || 4374518 | 4013372 | 3701250 | 3435824 | 3210839 | 3006763 | 2830698 | 2673815 | 2532772 | 2407301 ||
|l Model || 4373775 | 4009294 | 3700887 | 3436538 | 3207435 | 3006971 | 2830090 | 2672863 | 2532186 | 2405576 ||
I A%G |[ -0.017 | -0.102 | -0.010 0.021 -0.106 0.007 0021 | -0.036 | -0.023 | -0.072 |f

Fig. 17.3. Real and model values to the OS-representation of the
human chromosome Nel. The real total amounts of n-plets (n =1, 2,
..., 20) having in their first position a certain nucleotide (A, T, C, or
G) are shown (in blue) jointly with their model values (in red). De-
viations A% of real quantities from model values are also shown in per-
cent (model value is taken as 100%).

The described modeling hyperbolas Ha,1 = Sa/n, Ht,1 = St/n, He1 =
Sc/n, and Hg1 = Sc/n serve as mathematical standards for the phenom-
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enological rule. These hyperbolas differ from each other only in the
magnitude of their numerators, and therefore they can be specified by
the general expression (17.2):

Hn,1(n) Sn/n,

(17.2)

where N refers to any of nucleotides A, T, C, or G; Sn refers to the
number of corresponding monomers A, T, C, or G in the analyzed nu-
cleotide sequence. If you know the total quantity

Sn of the monomer N, you can predict - with a high level of accuracy -
the total amounts of n-plets belonging to the class Ni-oligomers by us-
ing the general expression (17.2). This  phenomenological fact testi-
fies in favor of the cooperative entity of the nucleotide sequence in the
human chromosome Nel.

Obviously, by the corresponding compression of the ordinate axis
in these cartesian coordinate systems (that is by appropriate scaling of
numerators Sa, St, Sc, and Sg), each of these four hyperbolas
Ha,1=Sa/n, Ht1=St/n, Hc1=Sc/n, and Hg 1=Sc/n reduces to the hyper-
bola (17.3):

Y =1/x,
(17.3)

which we call the canonical (or reference) hyperbola of OS-
representations (or OS-portraits) of nucleotide sequences. This canoni-
cal hyperbola (17.3) has already met above as the basis of the hyperbol-
ic model of the main psychophysical Weber-Fechner law in Section 5
(Fig. 5.1). The author thinks that the principles of organizing sensory
informatics according to Weber-Fechner law are structurally coordinat-
ed with the principles of informatics of DNA sequences. The transfor-
mation of one hyperbola point to another point is determined by the
hyperbolic rotation, by which the hyperbole glides along itself.

The results presented indicate, at least for the human chromosome
Nel, that there exists a general hyperbolic rule on the total amounts of
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n-plets having a specific nucleotide in their first position (A, T, C, or
G):

o for any of classes Ai-, Ti-, C1-, or Gi-oligomers, the total quan-
tities Xn,n,1(n) of their n-plets, corresponding different n, are in-
terrelated each other through the general expression Xnn1 =
Sn/n with a high level of accuracy (here N means any of nucleo-
tides A, T, C, or G). The phenomenological points with coordi-
nates [n, Zn,n,1] practically lie on the hyperbola Hn,1 = Sn/n.

It should be noted that here not only each of the classes of Ai-, Ti-,
C:-, and Gsi-oligomers shows separately the cooperative form of their
organization associated with hyperbolas, but also all these four classes
of Ni-oligomers are consistent with each other. This is confirmed by
analyzing their summary deviations from the model magnitudes. As
Fig. 17.4 shows, the sum of deviations £A% = A%A + A%T + A%C +
A%G, each of which is taken from Fig. 17.3, is close to zero, that is,
these deviations in the aggregate compensate each other to a noticeable
extent.

do0i:10.20944/preprints201908.0284.v4

N 2 3 4 5 6 7 8

10

A%A | -0.007 | -0.016 | -0.008 | 0.004 | -0.008 | -0.027 | 0.004

-0.017

0.005

A%T | 0.005 | 0.008 | 0.013 | 0.026 | 0.001 | -0.005 | 0.006

0.019

0.001

A%C | 0.011 | 0.035 | 0.001 | -0.013 | 0.043 | -0.014 | -0.022

0.046

0.033

A%G | -0.008 | -0.023 | -0.009 | -0.029 | -0.033 | 0.057 | 0.009

-0.049 | -0.042

XA% | 0.001 | 0.003 | -0.002 | -0.012 | 0.003 | 0.012 | -0.004

-0.001

0.001

n 11 12 13 14 15 16 17 18

19

20

A%A | 0.024 | 0.007 | -0.017 | -0.028 | -0.020 | -0.003 | -0.028 | -0.020

-0.030 | -0.018

A%T | 0.019 | 0.033 | -0.025 | 0.037 | 0.077 | 0.000 | 0.038 | 0.012 | 0.11

0 | 0.052

A%C | -0.043 | 0.046 | 0.068 | -0.033 | 0.026 | -0.002 | 0.007 | 0.046

-0.088 | 0.024

A%G | -0.017 | -0.102 | -0.010 | 0.021 | -0.106 | 0.007 | -0.021 | -0.036

-0.023 | -0.072

XA% | -0.017 | -0.016 | 0.017 | -0.004 | -0.023 | 0.001 | -0.004 | 0.003

-0.032 | -0.014

Fig. 17.4. In classes of Al-, T1-, C1-, and G1-oligomers, deviations
A%A, A%T, A%C, and A%G (from Fig. 17.3) of real values from mod-
el ones are correlated with each other so that they significantly com-
pensate each other: the sum A% = A%A + A%T + A%C + A%G of all
four deviations for each kind of n-plets is significantly less than the
maximum in them and is close to zero.



https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 d0i:10.20944/preprints201908.0284.v4

84

But the human genome contains 22 autosomes and 2 sex chromo-
somes X and Y, which are very different from each other in length, mo-
lecular weight, gene content, etc. What can be said about the other 23
human chromosomes? Is there a similar rule for them? Yes, the author
has got a positive answer to this question. For each of 24 human chro-
mosomes, knowing its quantity Sy of the monomer N (that is A, T, C,
or G) allows you to calculate the total amounts of n-plets, belonging to
the class of Ni-oligomers, with a high level of accuracy by using the
general expression (17.2). Fig. 17.5 shows confirmational results of
studying all 24 human chromosomes. Appendix Il contains more de-
tailed data on parameters of the OS-representations of all hu-
man chromosomes with the indication of the GenBank sites, where ini-
tial data were taken from for analysis by the OS-method.

The author has obtained similar results for many other eukaryotic
and prokaryotic genomes by the described OS-method. Their OS-
representations (that is their OS-portraits) are also modeled with hyper-
bolas, which differ from the canonical hyperbola (17.3) only by their
dilatations along the ordinate axis (that is only by numerators in their
general expression (17.2)). The obtained results will be published soon
in separate articles.

These results testify in favor of the existence of a general ge-
nomic rule, which at this stage of researches is a candidacy for the role
of a universal genomic rule on the total amounts of n-plets having a
specific nucleotide A, T, C, or G in their first position (much more ge-
nomes should be studied else for the confirmation of its universality):

e for any of classes Ai-, T1-, Ci-, or Gz-oligomers in eukaryotic
and prokaryotic genomes, the total quantities Xnn,1(n) of their n-
plets, corresponding different n, are interrelated each other
through the general expression Xnn1 =~ Sn/n with a high level of
accuracy (here N means any of nucleotides A, T, C, or G). The
phenomenological points with coordinates [n, Xnn1] practically
lie on the hyperbola Hn,1 = Sn/n.

Let us call it the hyperbolic rule.
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Na Sa Range % St Range % S¢ Range % S, Range %
1 | 67070277 -0.030 67244164 -0.025 48055043 -0.088 48111528 -0.106
0,024 +0.110 0,068 +0.057
2 | 71791213 -0.079 71987932 -0.075 48318180 -0.097 43450903 -0.105
H0LOBT +0.095 H0.072 H0.141
3 | 59689091 -0.021 50833302 -0.097 39233483 -0.130 39344259 -0.034
H0.045 +0.098 +0.081 +0.08S
4 | 58561236 -0.065 58623430 -0.036 36236976 -0.039 36331025 -0.117
0,044 +0.128 0,127 0,075
5 | 54699094 -0.052 54955010 -0.071 35731600 -0.012 35879674 -0.103
0,040 +0.078 +0.132 +0.085
6 | 51160489 -0.039 51151754 -0.049 33520786 -0.092 33516767 -0.029
H0.057 +0.022 =0.061 =0.069
T | 47058248 -0.104 47215040 -0.061 32317984 -0.086 32378859 -0.076
=0.040 +0.030 0,091 ~0.069
8 | 42641072 -0.061 42581941 -0.111 28600559 -0.110 28600963 -0.068
0,068 +0.071 =0.069 =0.050
9 | 31752642 -0.134 31733822 -0.083 22487631 -0.099 22470915 -0.079
+0.090 +0.065 H0.141 H0.143
10 | 38875926 -0.081 39027555 -0.067 27639505 -0.058 27719976 -0.118
0,052 +0.099 +0.085 +0.085
11 | 39286730 -0.032 39361954 -0.062 27903257 -0.139 27981801 -0.086
~0.084 +0.042 =0.056 0,112
12 | 39370109 -0.096 39492225 -0.097 27092804 -0.076 27182678 -0.073
H0.056 +0.094 +0.078 0,105
13 | 20224840 -0.067 29320872 -0.107 18341128 -0.107 18346620 -0.130
0077 +0.069 0,141 +0.065
14 | 25606393 -0.109 25819249 -0.040 17733667 -0.137 17782016 -0.056
=0.100 +0.086 0,077 +0.142
15 | 24508669 -0.085 24553812 -0.127 17752941 -0.090 17825903 -0.067
H0.179 +0.088 H0.162 0,113
16 | 22558319 -0.122 22774906 -0.143 18172742 -0.146 18299976 -0.146
~0.080 +0.104 0,074 0,173
17 | 22639499 -0.141 22705261 -0.146 187230944 -0.134 18851500 -0.144
“0.105 +0.070 +0.072 0,105
18 | 22087028 -0.160 22109347 -0.169 14574701 -0.090 14594335 -0.160
=0.071 +0.121 +0.134 =0.210
19 | 15142203 -0.160 15282753 -0.062 13954580 -0.103 14061132 -0.057
H0.024 +0.062 H0.097 H0.226
20 | 16455618 -0.106 16643030 -0.099 13037092 -0.062 13098788 -0.092
+0.129 +0.089 0,116 +0.155
21| 9943435 -0.161 9882679 -0.206 6864570 -0.134 6852178 -0.373
~0.083 +0.173 +0.277 +0.219
22| 10382214 -0.175 10370725 -0.036 9160652 -0.258 9246186 -0.143
0,084 +0.209 H0.155 +0.235
X | 46754807 -0.078 46916701 -0.102 30523780 -0.116 30697741 -0.135
+0.084 +0.055 0,179 ~0.067
Y| T8R6192 -0.244 7956168 -0.063 5285789 -0.181 5286894 -0.247
=0.097 +0.185 0,407 +(.142
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Fig. 17.5. For each of all 24 human chromosomes, quantities Sa, Sr,
Sc, and Sg of monomers A, T, C, and G are shown to define the model-
ing hyperbolas (17.2). The columns «Range %) show in percentages
ranges of deviations of real total amounts of corresponding n-plets (n =
1,2, ..., 20) from their model values (in each case, an appropriate mod-
el value is taken as 100%).

In the frame of this hyperbolic rule, if you know for any analyzed
eukaryotic or prokaryotic genome its total quantity Sy of the monomer
N, you can predict — with a high level of accuracy — the total amounts
of n-plets, belonging to the class of Ni-oligomers, by using the general
expression (17.2). This rule indicates the existence of a genomic invari-
ant of biological evolution. Preliminary author's results testify in favor
that analogous rules are true in cases of classes of N2-oligomers (and
also of Nz-oligomers) that is for the total amounts of n-plets having the
identical nucleotide N in their second position (and in their third posi-
tion correspondingly).

The proposed OS-method gives interesting results in its application
for analysis not only very long nucleotide sequences in genomes of dif-
ferent species but also relatively short sequences, for example, of virus-
es, bacteriophages, and separate genes. For instance, the application of
the OS-method to some genes has discovered an unexpected phenome-
non of regular rhythmic (wave-like) deviations of the real cooperative
parameters of these genes from the corresponding values of reference
hyperbolas (17.2) in their modeling OS-representations. Fig. 17.6
shows an example of such rhythmic deviations in the OS-
representations of the TTN gene, whose DNA sequence contains 81940
nucleotides. The TTN gene provides instructions for making a very
large protein called titin. This protein plays an important role in mus-
cles the body uses for movement (skeletal muscles) and in heart (cardi-
ac) muscle. Initial data on the TTN gene were accessed in the Gen-
Bank: https://www.ncbi.nlm.nih.gov/nuccore/X90568.1.
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Fig. 17.6. Some results of the analysis of the TTN gene by

the OS-method.

Left: blue curves represent the real total amounts of n-plets,
having in their first

position the nucleotide T (up) and the nucleotide G (at bottom);
red curves

represent the modeling hyperbolas Hrt1(n) = 19569/n and
Hg,1(n) = 18901/n,

corresponding the expression (17.2). On right: rhythmic devia-
tions of the real

total amounts of such n-plets from the modeling values 19569/n
and 18901/n, in

percentages. Heren=1, 2, 3, ..., 20.

Numeric features of such rhythmic deviations are related to tri-
plets and bear important information about the genetic code system.
The wide set of results, which are produced by the application of the
OS-method to analyze DNA- and RNA-sequences, are systematically
studied now by the author and his team. This new author's approach
and its results are discussed at the International interdisciplinary semi-
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nar "Algebraic Biology and System Theory" (Moscow, Russia,
https://www.youtube.com/channel/UC8JLsuRzzPsRiHwWrwEjMCtw).

The OS- allows you to see DNA sequences not as chaotic col-
lections of individual types of oligomers, but as cooperative entities,
built on the cooperative long-range coordination of many vast classes
of oligomers. One can note that the considered above quantities 4V of
kinds of n-plets with the first nucleotide N (that is the nucleotide A, or
T, or C, and or G) correspond not only to quantities of members of the
quadrants of the (2"*2")-matrices of the tensor family [C, A; T, G]™ in
Fig. 2.2 but also to quantities of such n-plets in the tensor families of
vectors [C, T, G, A]™.

Can any model be proposed for the formulated above hyperbolic rule
of the eukaryotic and prokaryotic genomes? Using and developing his
information-algorithmic model of probabilities of components in long
DNA sequences, the author offers the following informational-
algorithmic model of this hyperbolic rule. The previously published
model introduced the notion “genetic qubits" formed based on different
pairs of binary-oppositional indicators of adenine A, guanine G, cyto-
sine C, and thymine T (see above Fig. 2.1). Appropriate 2n-qubit sys-
tems in so-called separable pure states were constructed, where nucleo-
tides A, T, C, and G (and also DNA doublets and other n-plets) were
represented by appropriate computational basis states [Petoukhov,
2018c; Petoukhov, Petukhova, Svirin, 2019]. For example, cytosine C
was represented as the computational basis state |00> of the 2-qubit
system, thymine T - as the computational basis state |01>, guanine G —
as the computational basis state |[10>, and adenine A - as the computa-
tional basis state |11> of the same 2-qubit system.

That model has shown that in such represented long DNA sequences,
the individual probability (or percentage) P(A) of monomers A is equal
to the following collective probabilities:

«  The total probability P2(A1) of all 4 doublets beginning with the
nucleotide A;

»  The total probability P3(A1) of all 16 triplets beginning with A,

« ... The total probability Pn(A1) of all 4™ n-plets also beginning
with A.

The same is true for interrelations between individual probabilities of
each nucleotide T, or C, or G and collective probabilities of n-plets be-
ginning with such nucleotide. This is expressed by the following equa-
tions:

do0i:10.20944/preprints201908.0284.v4
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P(A) = Pn(A1), P(T)=Pn(T1), P(T)=Pn(T1), P(G)=
Pn(G1) (17.4)

Knowing initially the quantities Sa, St, Sc, Sc of monomers A,
T, C, G and also their sum S=Sa+St+Sc+Sc in the analyzed DNA, one
can calculate percentages of individual monomers P(A)=Sa/S,
P(T)=S+/S, P(C)=Sc/S, and P(G)=Sc/S, which are represented in equa-
tions (17.4) and whose sum is equal to 1 (percentages are calculated in
fractions of the unit). The number of doublets in this DNA will be half
that the number S of monomers, i.e., equal to S/2. Under different val-
ues n, the total number of n-plets will be equal to S/n. According to
equalities (17.4), in this total number S/n of n-plets, the fractions of all
n-plets with the first nucleotides A, T, C, and G are determined respec-
tively by the gquantities P(A)*S/n, P (T)*S/n, P(C)*S/n, and P(G)*S/n.
These expressions determine those points of hyperbolas, which, as was
shown above, model phenomenological data in OS-representations of
genomes with high accuracy.

These calculations can be additionally explained by an example
of the human chromosome Nel, which was analyzed above (Figs. 17.2
and 17.3). It was determined that this chromosome contains the follow-
ing quantities of monomers A, T, C, and G: Sa = 67070277, St =
67244164,  Sc = 48055043/, and Sg = 48111528. Their sum S =
230481012. Correspondingly, percentage, for example, of nucleotide A
in this chromosome is determined by the expression P(A) = Sa/S. In
agreement with the equations (17.4), the total amount of all 4" n-
plets, which begin with the nucleotide A, is equal to Pn(A1)*S/n =
P(A)*S/n = (Sa/S)*S/n = Sa/n. But just this ratio determines the model-
ing points Ha1 = Sa/n in Figs. 17.1 and 17.3. The similar considera-
tions in cases of nucleotides T, C, and G lead to modeling expressions
Ht1=St/n, Hc1=Sc/n, and Hg1=Sc/n used in Figs. 17.2-17.4.

From the proposed quantum-information model of the hyperbol-
ic rule of genomes, the transition from the genome of one species of
organisms to the genome of another species appears as a transition of
the corresponding 2n-qubit system from one separable pure state to
another separable pure state. At the same time, wave-like rhythmic de-
viations from the base hyperbola, which are found in relatively short
sequences of the Titin gene type (Fig. 17.6), can also be considered in
connection with separable pure states of DNA and their violations.
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Returning to author's information-algorithmic model, which was
published early [Petoukhov, 2018c; Petoukhov, Petukhova, Svirin,
2019], the author emphasizes that that model allows deducing or prog-
nosis the existence of the phenomenological hyperbolic rule, whose
discovery is repre-sented above. It can be considered as an example of
usefulness of algebraic modeling in biology.

It should be noted that the genomic hyperbolic rule is funda-
mentally different from well-known hyperbolic Zipf's law. Zipf's law
was originally formulated in terms of quantitative linguistics, stating
that given some corpus of natural language utterances, the frequency of
any word is inversely proportional to its rank in the frequency table
(see, for example, [Fagan, Gengay, 2010]. In linguistics, Zipf's law
speaks on the frequency of encounter of single words. In contrast, the
genomic hyperbolic rule speaks on the total amounts of n-plets belong-
ing to a numerous class of 4" n-plets that are identical by their first
position.

18.  Regarding hyperbolic spectra for music timbres

There is a distant structural analogy between the described co-
operative organization of genomes associated with the hyperbolic rule
and the structure of vibrations of tensioned strings, having harmonic
overtones. In a series of harmonic overtones, each of the overtone fre-
guencies is n times less than the fundamental frequency. The timbre of
a musical instrument is determined by which overtones it emphasizes.

Music can influence the state of the body and has different ap-
plications, including in music therapy [Shushardzhan, Petoukhov,
2020]. As known, living cells create sound. This discovery was made
by J. Gimzewski in 2002 [Pelling, Sehati, Gralla, Valentine, Gim-
zewski, 2004]. Surprisingly, the sounds lie in the audible range. Gim-
zewski discovered that a yeast cell produced about 1,000 vibrations a
second. «When he amplified the signal, a musical hum filled the room.
"It wasn't at all what | expected,” he recalls. "It sounded beautiful™»
[Thompson, 2004].

Cell physiology is genetically inherited, and the fact that the
sounds emitted by the cells are in the nature of a beautiful musical hum
suggests that this genetically inherited hum is endowed with harmony.
This harmony and its relationship with the concept of multi-resonance
genetics [Petoukhov, 2016] should be studied in the future. The discov-
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ery of Gimzewski gave rise to a new scientific field called sonocytolo-
gy. In particular, sonocytology is associated with the creation of new s
for diagnosing cancer since harmony of cell sounds becomes cacopho-
ny when healthy cells become cancerous. A promising approach for
such diagnostics on the basis of a CymaScope instrument is described
in [Reid, Park, Ji, 2019].

In this regard, the question of the relative physiological activity
of various types of timbres is interesting. Nowadays, computer technol-
ogy allows you to synthesize a variety of timbres for each of the fun-
damental frequencies of musical notes. Considering the available data
on the role of hyperbolic numbers, hyperbolic rotations and hyperbolic
rules in different biological phenomena, the author puts forward the
following hypothesis:

. Timbres having spectrum consisted of harmonic over-
tones, whose amplitudes decrease according to the hyperbolic rule A, =
Aui/n, have a special physiological activity.

One can think such “hyperbolic timbres” can be useful for en-
hancing the aesthetic perception of music and the effectiveness of mu-
sic therapy. These timbres can be easily synthesized on a computer for
each of the fundamental frequencies in any musical system (equal tem-
perament, Pythagorean, Fibonacci-stages, etc.). Fig. 18.1 shows an ex-
ample of such hyperbolic dependence of amplitudes of harmonic over-
tones from their serial number n for any possible fundamental frequen-

cy.

0.8
0.6
0.4
0.2

0
0 2 4 6 8 10 12

Fig. 18.1. For any fundamental frequency fi1, an example of hyper-
bolic spectra is shown. It represents the hyperbolic dependence
Vn=V1/n of relative volumes V, of their harmonic overtones from their
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serial numbers n = 1, 2, 3, ..., 12. The abscissa axis shows the serial
numbers n of overtones, having frequencies nf;. The ordinate axis
shows the relative volumes V, of these overtones. The relative volume
V1 of the fundamental frequency f is taken as 1.

Oscillations with hyperbolic spectra can be useful not only in
musical acoustics and its applications. It seems necessary to study the
physiological effects of vibrational, electrical, magnetic, optical and
other vibrations having a hyperbolic spectrum.

19  Some concluding remarks

The development of modern mathematical natural sciences is based
on the use of certain mathematical tools. Mathematical tools of theoret-
ical research can be compared with glasses for a visually impaired per-
son: adequate glasses provide a person with a clear and beautiful pic-
ture of reality, which he had previously seen as blurred and hidden by
fog. Darwin once wrote: “I have deeply regretted that I did not proceed
far enough at least to understand something of the great leading prin-
ciples of mathematics; for men thus endowed seem to have an extra
sense” (this quotation is taken from [May, 2004]).

The presented article gives additional materials to the question about
the dictatorial influence of genetic molecules DNA and RNA on the
entire organism and about some algebraic rules of this influence. Here
one can remind that else G.Mendel in his experiments on the crossing
of organisms discovered that the inheritance of these characters occurs
according to algebraic rules, despite the colossal heterogeneity of the
molecular structure of bodies.

This article attracts attention of researches to an important role of
hyperbolic numbers and their matrix representations in algebraic mod-
elling structural features of genetic phenomena (see also [Petoukhov,
2019 c]). The author puts forward the hypothesis that hyper-alphabets
of eigenvectors of matrix representations of basis units of 2"-
dimensional hyperbolic numbers play a key role in transmitting
biological information and that they can be considered as one of
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foundations of coding information at different levels of biological
organization. He believes that corresponding languages using such
hyper-alphabets define many inherited phenomenological structures in
biology including molecular genetic structures. In particular, using
these hyper-alphabets gives new algebraic tools to study
phenomenologic rules in genetics, long literary texts (at least, in
Russian language) and also harmony of musical pieces. The proposed
algebraic approach is connected with the theme of a grammar of
biology mentioned above.

The described method of oligomeric sum, which allowed to discover
the hyperbolic rule of the cooperative form of oligomeric organization
of DNA sequences in genomes, gives new opportunities to study
genetic systems and to discuss the problem of invariants in biological
evolution.

In the author’s opinion, the proposed kind of mathematics is
beautiful and it can be used for further developing of algebraic biology
and informatics in accordance with the famous statement by P. Dirac,
who taught that a creation of a physical theory must begin with the
beautiful mathematical theory: “If this theory is really beautiful, then it
necessarily will appear as a fine model of important physical
phenomena. It is necessary to search for these phenomena to develop
applications of the beautiful mathematical theory and to interpret them
as predictions of new laws of physics” (this quotation is taken from
[Arnold, 2007]). According to Dirac, all new physics, including
relativistic and quantum, are developing in this way. One can suppose
that this statement is also true for mathematical biology.

Appendix I. Dyadic groups of binary numbers, modulo-2 addition
and matrices of
dyadic shifts

This article has repeatedly used a special decomposition of bisymmetric
(2"*2"-matrices, which represented them as a sum of 2" sparse matri-
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ces, defining multiplication tables of  corresponing algebras (Figs. 2.3,
2.4, 7.2, 8.3). Just these sparce matrices represented the basic units of
hyperbolic numbers. This Appendix explains what this special kind of
decomposition is.

Bisymmetric matrix representations of 2"-dimensional hyperbolic
numbers have the peculiarity that the set of numbers of the first
row of the matrix is completely repeated in each subsequent row with
some permutation or "shift". This permutation is called the dyadic shift
and is associated with the well-known operation of modulo-2 addition
described below. Matrices constructed by this principle are called dyad-
ic shift matrices. Matrix representations of 2"-dimensional hyperbolic
numbers are constructed by analogy with dyadic shift matrices. De-
compositions of such matrices provide that each of appearing sparse
matrices contain only one identical non-zero number in each row (Figs.
2.3,2.4,7.2,8.3).

Modulo-2 addition is utilized broadly in the theory of discrete signal
processing as a fundamental operation for binary variables. By defini-
tion, the modulo-2 addition of two numbers written in binary notation
is made in a bitwise manner in accordance with the following rules:

0+0=00+1=11+0=11+1=0
(A1)

For example, modulo-2 addition of two binary numbers 110 and
101, which are equal to 6 and 5 respectively in decimal notation, gives
the result 1109101 = 011, which is equal to 3 in decimal notation (Pis
the symbol for modulo-2 addition). The set of binary numbers

000, 001, 010, 011, 100, 101, 110, 111
(A2)

forms a dyadic group with 8 members, in which modulo-2 addition
serves as the group operation [Harmuth, 1989]. By analogy dyadic
groups of binary numbers with 2" members can be presented. The dis-
tance in this symmetry group is known as the Hamming distance. Since
the Hamming distance satisfies the conditions of a metric group, the
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dyadic group is a metric group. The modulo-2 addition of any two bina-
ry numbers from (A2) always gives a new number from the same se-
ries. The number 000 serves as the unit element of this group: for ex-
ample, 010000 = 010. The reverse element for any number in this
group is the number itself: for example, 01069010 = 000. Each
member from (A2) possesses its inverse-symmetrical partner (or a mat-
ing number), which arises if the binary symbol of the member is trans-
formed by the inverse replacements 0—1 and 1—0. For example, bina-
ry numbers 010 and 101 give an example of such pair of mating num-
bers.

The series (A2) is transformed by modulo-2 addition with the binary
number 001 into a new series (A3) of the same numbers:

001, 000, 011, 010, 101, 100, 111, 110
(A3)

Such changes in the initial binary sequence, produced by modulo-2
addition of its members with any binary numbers (A2), are termed dy-
adic shifts [Ahmed and Rao, 1975; Harmuth, 1989]. If any system of
elements demonstrates its connection with dyadic shifts, it indicates
that the structural organization of its system is related to the logic of
modulo-2 addition. The article shows additionally that the structural
organization of genetic systems is related to logic of modulo-2 addition.

By means of dyadic groups, a special family of (2"*2")-matrices can
be constructed which are termed “matrices of dyadic shifts” and which
are used widely in technology of discrete signal processing [Ahmed,
Rao, 1975; Harmuth, 1977, §1.2.6]. Fig. Al shows examples of bi-
symmetric matrices of dyadic shifts. In these matrices their rows and
columns are numerated by means of binary numbers of an ap-
propriate dyadic group. All matrix cells are numerated by means of bi-
nary numbers of the same dyadic group in such way that a binary nu-
meration of each cell is a result of modulo-2 addition of binary numera-
tions of its column and its row. For example, the cell from the column
110 and the row 101 obtains the binary numeration 011 by means of
such addition. Such numerations of matrix cells are termed “dyadic-
shift numerations” (or simply “dyadic numeration”).

|00(0)[01(1)[10() [11(3) ]
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o]1] Joo@foo@Tor@T1002 11 @3)
ofo|1] 01 (1) | 01 (1) | 00 (0) J 11 (3) | 10 (2)
li]o] [20@lo@Te) oo o
1130110310201 |00 (0)

000 (0) [ 001 (1) [010(2) |011(3) |100(4) |101(5) |110(6) |111(7)
000 (0) J000(0) [001(1) |010(2) |011(3) |100(4) [101(5) |110(6) |111(7)
001 (1) Joo1(1) [000(0) |011(3) |010(2) |101(5) | 100(4) | 111(7) |110(6)
010 (2) Jo1o(2) J011(3) |000(0) |o001(1) |110(6) |111(7) |100(4) |101(5)
011 (3) J011(3) [010(2) |001(1) |000(0) N111(7) | 110(6) | 101 (5) | 100 (4)
100 (4) | 100(4) [101(5) |110(6) |111(7) J000 (0) |001(1) |010(2) |01l (3)
101 (5) J101(5) [ 100(4) |111(7) |110(6) J001(1) |000(0) |011(3) | 010(2)
110 (6) | 110(6) | 111(7) | 100(4) |101(5) J010(2) |011(3) | 000 (0) | 001 (1)
111 (7) J111@) [110(6) [101(5) [100(4) Jo11(3) |010(2) | 001 (1) | 000 (0)

Fig. Al. The examples of matrices of dyadic shifts. Parentheses con-
tain expressions of the
numbers in decimal notation.

Appendix Il. The representations of human chromosomes by
the oligomeric sum method

This Appendix shows more details from the author's results of
the analysis of all 24 human chromosomes in addition to data shown
above in Figs. 17.3-17.5. The results confirm the hyperbolic rule of the
oligomer cooperative organization of genomes, formulated above in
Section 17. By this rule, knowing the quantity Sn of the monomer N
(thatis A, T, C, or G) in any of human chromosomes allows you to cal-
culate the total amounts of n-plets, belonging to
the class of Ni-oligomers, with a high level of accuracy by using the
general expression (17.2): Hnai(n) = Sn/n. Initial data on all human
chromosomes were taken in the GenBank:

Nel - https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11;
Ne2- https://www.ncbi.nlm.nih.gov/nuccore/NC_000002.12;
Ne3- https://www.ncbi.nlm.nih.gov/nuccore/NC_000003.12;
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Ned- https://www.ncbi.nlm.nih.gov/nuccore/NC_000004.12;
Ne5 — https://www.ncbi.nlm.nih.gov/nuccore/NC_000005.10;
Ne6 - https://www.ncbi.nlm.nih.gov/nuccore/CM000257.1;
Ne7 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000007.14;
Ne - https://www.ncbi.nlm.nih.gov/nuccore/NC_018919.2;
Ne9 - https://www.ncbi.nlm.nih.gov/nuccore/CM000260.1;
Nel0 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000010.11;
Nel1 - https://www.ncbi.nIm.nih.gov/nuccore/NC_000011.10;
Nel2 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000012.12;
Nel3 - https://www.ncbi.nlm.nih.gov/nuccore/CM000264.1;
Nel4 - https://lwww.ncbi.nIm.nih.gov/nuccore/CM000265.1;
Nel5 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000015.10;
Ne16 - https://www.ncbi.nIm.nih.gov/nuccore/NC_000016.10;
Nel7 - https://www.ncbi.nlm.nih.gov/nuccore/NC_000017.11;
Nel18 - https://www.ncbi.nIm.nih.gov/nuccore/CM000269.1;
Ne19 - https://www.ncbi.nIm.nih.gov/nuccore/NC_000019.10;
Ne20 - https://www.ncbi.nIm.nih.gov/nuccore/CM000271.1;
Ne21 - https://www.ncbi.nlm.nih.gov/nuccore/BA000005;
Ne22 - https://www.ncbi.nIm.nih.gov/nuccore/NC_000022.11;
X - https://www.ncbi.nlm.nih.gov/nuccore/NC_000023.11;

Y - https://www.ncbi.nlm.nih.gov/nuccore/NC_000024.10.

Below in all tables of this Appendix, the following data are
shown:

- The real total amounts of n-plets (n = 1, 2, ..., 20) having in
their first position a certain nucleotide (A, T, C, or G) are shown (in
blue) jointly with their model values (in red);

- Deviations A% of real quantities from model values in percent
(model value is taken as 100%);

- n=1,2,3,...,20.

In the columns with n = 1, deviations A% is equal to zero for all
chromosomes since the real quantity of any nucleotide is taken as the
first value for the appropriate model hyperbola in the method of OS-
representations.
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HUMAN CHROMOSOME e 1:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 9584038 | 8383461 | 7453552 | 6706672
Model || 67070277 | 33535139 | 22356759 | 16767569 | 13414055 | 11178380 | 9581468 | 8383785 | 7452253 | 6707028
A% 0.000 -0.007 -0.016 -0.008 0.004 -0.008 | 0027 | 0004 | -0.017 0.005
T
Real | 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359
Model || 67244164 | 33622082 | 22414721 | 16811041 | 13448833 | 11207361 | 9606309 | 8405521 | 7471574 | 6724416
A% 0.000 0.005 0.008 0.013 0.026 0.001 -0.005 | 0.006 | 0.019 0.001
C
Real || 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919
Model || 48055043 | 24027522 | 16018348 | 12013761 | 9611009 | 8009174 | 6865006 | 6006880 | 5339449 | 4805504
A% 0.000 0.011 0.035 0.001 -0.013 0.043 -0.014 | -0.022 | 0.046 0.033
G
Real | 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156
Model || 48111528 | 24055764 | 16037176 | 12027882 | 9622306 | 8018588 | 6873075 | 6013941 | 5345725 | 4811153
A% 0.000 -0.008 -0.023 -0.009 -0.029 -0.033 0.057 | 0009 | -0.049 | -0.042
n 11 12 13 14 15 16 17 18 19 20
A
Real || 6095821 | 5588773 | 5160139 | 4792078 | 4472245 | 4192017 | 3946422 | 3726860 | 3531067 | 3354107
Model || 6097298 | 5589190 | 5159252 | 4790734 | 4471352 | 4191892 | 3945310 | 3726127 | 3530015 | 3353514
A% 0.024 0.007 0017 | -0028 | -0.020 -0.003 -0.028 -0.020 -0.030 -0.018
T
Real | 6111970 | 5601854 | 5173904 | 4801395 | 4479492 | 4202773 | 3954021 | 3735327 | 3535288 | 3360459
Model || 6113106 | 5603680 | 5172628 | 4803155 | 4482944 | 4202760 | 3955539 | 3735787 | 3539167 | 3362208
A% 0.019 0.033 0.025 0.037 0.077 0.000 0.038 0.012 0.110 0.052
C
Real || 4370502 | 4002753 | 3694018 | 3433636 | 3202830 | 3003511 | 2826568 @ 2668499 | 2531448 | 2402186
Model || 4368640 | 4004587 | 3696542 | 3432503 | 3203670 | 3003440 | 2826767 | 2669725 | 2529213 | 2402752
A% 0.043 0.046 0.068 -0.033 0.026 0.002 0.007 0.046 -0.088 0.024
G
Real || 4374518 | 4013372 | 3701250 | 3435824 | 3210839 | 3006763 | 2830698 | 2673815 | 2532772 | 2407301
Model || 4373775 | 4009294 | 3700887 | 3436538 | 3207435 | 3006971 | 2830090 | 2672863 | 2532186 | 2405576
A% 0017 | 0102 | -0.010 0.021 -0.106 0.007 0.021 0.036 -0.023 -0.072
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HUMAN CHROMOSOME Ne 2:
n 1 2 3 4 5 6 7 8 9 10
A

Real | 71791213 | 35902934 | 23921769 | 17950960 | 14364606 | 11968957 | 10257354 | 8978505 | 7969867 | 7183064
Model | 71791213 | 35895607 | 23930404 | 17947803 | 14358243 | 11965202 | 10255888 | 8973902 | 7976801 | 7179121
A% 0.000 -0.020 0.036 -0.018 -0.044 -0.031 -0.014 -0.051 | 0.087 | -0.055

Real | 71987932 | 35986207 | 24000110 | 17989591 | 14395955 | 11995893 | 10279954 | 8993208 | 8003110 | 7194491
Model | 71987932 | 35993966 | 23995977 | 17996983 | 14397586 | 11997989 | 10283990 | 8998492 | 7998659 | 7198793
A% 0.000 0.022 -0.017 0.041 0.011 0.017 0.039 0059 | -0.056 | 0.060

Real | 48318180 | 24157058 | 16108935 | 12077328 | 9660736 | 8052378 | 6905316 | 6037234 | 5368701 | 4831639
Model | 48318180 | 24159090 | 16106060 | 12079545 | 9663636 | 8053030 | 6902597 | 6039773 | 5368687 | 4831818
A% 0.000 0.008 -0.018 0.018 0.030 0.008 -0.039 0.042 0.000 0.004

Real | 48450903 | 24227914 | 16151923 | 12119179 | 9688348 | 8074145 | 6921412 | 6059586 | 5385899 | 4845629
Model | 48450903 | 24225452 | 16150301 | 12112726 | 9690181 | 8075151 | 6921558 | 6056363 | 5383434 | 4845090
A% 0 -0.010 -0.010 -0.053 0.019 0.012 0.002 -0.053 | -0.046 | -0.011

n 11 12 13 14 15 16 17 18 15 20

Real | 6529923 | 5983118 | 5522158 | 5129586 | 4787102 | 4489515 | 4221092 | 3987350 | 3777514 | 3592381
Model | 6526474 | 5982601 | 5522401 | 5127944 | 4786081 | 4486951 | 4223013 | 3988401 | 3778485 | 3589561
A% | -0.053 | -0009 | 0004 | -0.032 | -0.021 | -0.057 | 0.045 | 0.026 | 0026 | -0.079

Real | 6343873 | 5995454 | 5537418 | 5138664 | 4798045 | 4497286 | 4237749 | 4002055 | 3789051 | 3595961
Model | 6544357 | 5998994 | 5537533 | 5141995 | 4799195 | 4499246 | 4234584 | 3999330 | 3788839 | 3599397
A% | 0007 | 0059 | 0002 | 0065 | 0024 | 0044 | -0.075 | -0.068 | -0.006 | 0.095

Real | 4392191 | 4025318 | 3714356 | 3450916 | 3222061 | 3017709 | 2845008 | 2683355 | 2542985 | 2415881
Model | 4392562 | 4026515 | 3716783 | 3451299 | 3221212 | 3019886 | 2842246 | 2684343 | 2543062 | 2415909
A% | 0008 | 0030 | 0065 | 0011 | -0.026 | 0072 | -0.097 | 0.037 | 0.003 | 0.001

Real | 4402032 | 4041798 | 3729777 | 3462852 | 3229338 | 3029757 | 2846046 | 2691030 | 2550885 | 2423189
Model | 4404628 | 4037575 | 3726993 | 3460779 | 3230060 | 3028181 | 2850053 | 2691717 | 2550048 | 2422545
A% | 0059 | -0.105 | -0.075 | -0.060 | 0022 | -0.05 | 0141 | 0026 | -0.033 | -0.027
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HUMAN CHROMOSOME e 3:
n 1 2 3 4 5 6 7 8 9 10
A

Real | 59689091 | 29842467 | 19894622 | 14923443 | 11936984 | 9948767 | 8526840 | 7462677 | 6630316 | 5567608
Model | 59689091 | 29844546 | 19896364 | 14922273 | 11937818 | 9948182 | 8527013 | 7461136 | 6632121 | 5968909
A% 0.000 0.007 0.003 -0.008 0.007 -0.006 | 0.002 | -0.021 | 0.027 0.022

T

Real | 59833302 | 29916949 | 19953191 | 14957472 | 11967488 | 9976541 | 8545125 | 7476889 | 6653630 | 5582588

Model | 59833302 | 29916651 | 19944434 | 14958326 | 11966660 | 9972217 | 8547615 | 7479163 | 6648145 | 5983330
A% 0.000 -0.001 -0.044 0.006 -0.007 | -0.043 | 0.028 0.030 | -0.083 | 0.012

C

Real | 39233483 | 19618919 | 13070698 | 9811281 | 7845439 | 6533612 | 5607340 | 4906443 | 4356506 | 3524168

Model | 39233483 | 19616742 | 13077828 | 9808371 | 7846697 | 6538914 | 5604783 | 4904185 | 4359276 | 3923348
A% 0.000 -0.011 0.055 -0.030 0.016 0.081 | -0.046 | -0.046 | 0.064 | -0.021

Real | 39344259 | 19671733 | 13114869 | 9832839 | 7870114 | 6557767 | 5620716 | 4916508 | 4370673 | 3535648
Model | 39344259 | 19672130 | 13114753 | 9836065 | 7868852 | 6557377 | 5620608 | 4918032 | 4371584 | 3934426
A% 0.000 0.002 -0.001 0.033 -0016 | -0.006 | -0.002 | 0.031 0.021 | -0.031

n 11 12 13 14 15 16 17 18 19 20

Real | 5424387 | 4975057 | 4591954 | 4262899 | 3977476 | 3730186 | 3511401 | 3315812 | 3140856 | 2984905
Model | 5426281 | 4974091 | 4591469 | 4263507 | 3979273 | 3730568 | 3511123 | 3316061 | 3141531 | 2984455
A% | 0035 | -0019 | -0.011 | 0.014 0.045 0.010 | -0.008 | 0.007 0.021 | -0.015

Real | 5439947 | 4988894 | 4600200 | 4271861 | 3990969 | 3739900 | 3519732 | 3327281 | 3149388 | 2988724
Model | 5439391 | 4986109 | 4602562 | 4273807 | 3988887 | 3739581 | 3519606 | 3324072 | 3149121 | 2991665
A% | -0.010 | -0.056 | 0.051 0.046 | -0.05s2 | -0.009 | -0.004 | -0.097 | -0.008 | 0.098

Real | 3566793 | 3266981 | 3019481 | 2804808 | 2614448 | 2454334 | 2308659 | 2178356 | 2066559 | 1964227
Model | 3566680 | 3269457 | 3017960 | 2802392 | 2615566 | 2452093 | 2307852 | 2179638 | 2064920 | 1961674
A% | -0.003 | 0076 | -0.050 | -0.08 | 0043 | -0.091 | -0.035 | 0.059 | -0.079 | -0.130

Real | 3577977 | 3277411 | 3026837 | 2810441 | 2623780 | 2456840 | 2313158 | 2184113 | 2069520 | 1967151
Model | 3576751 | 3278688 | 3026481 | 2810304 | 2622951 | 2459016 | 2314368 | 2185792 | 2070750 | 1967213
A% | -0.034 | 0039 | -0.012 | -0.005 | -0.032 | 0.088 0.052 0.077 0.058 0.003
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HUMAN CHROMOSOME Xt 4:
n 1 2 3 4 5 6 7 8 9 10
A | 58561236 | 29281327 | 19524123 | 14640305 | 11717807 | 9761921 | 8368028 | 7321688 | 6508887 | 5859476
Real | 58561236 | 29280618 | 19520412 | 14640309 | 11712247 | 9760206 | 8365891 | 7320155 | 6506804 | 5856124
Model 0 -0.002 -0.019 0.000 -0.047 -0018 | -0.026 | -0.021 | -0.032 | -0.057
A% | 58561236 | 29281327 | 19524123 | 14640305 | 11717807 | 9761921 | 8368028 | 7321688 | 6508887 | 5859476
I —
T
Real | 58623430 | 29312376 | 19538396 | 14652392 | 11723156 | 9768719 | 8371542 | 7325734 | 6508115 | 5860902
Model | 58623430 | 29311715 | 19541143 | 14655858 | 11724686 | 9770572 | 8374776 | 7327929 | 6513714 | 5862343
A% 0 -0.002 0.014 0.024 0.013 0.019 0.039 0.030 0.086 0.025
T S —
C
Real | 36236976 | 18113883 | 12075760 | 9058046 | 7248267 | 6037840 | 5175536 | 4528800 | 4025140 | 3624506
Model | 36236976 | 18118488 | 12078992 | 9059244 | 7247395 | 6039496 | 5176711 | 4529622 | 4026331 | 3623698
A% 0 0.025 0.027 0.013 -0.012 0.027 0.023 0.018 0.030 -0.022
T —
G
Real | 36331025 | 18168748 | 12112608 | 9087424 | 7261302 | 6056962 | 5192419 | 4542864 | 4041486 | 3630383
Model | 36331025 | 18165513 | 12110342 | 9082756 | 7266205 | 6055171 | 5190146 | 4541378 | 4036781 | 3633103
A% 0 -0.018 -0.019 -0.051 0.067 -0.030 | -0.044 | -0.033 | -0.117 0.075
n 11 12 13 14 15 16 17 18 19 20
A
Real | 5327218 | 4880301 | 4504431 | 4184775 | 3906567 | 3659836 | 3446321 | 3254739 | 3080802 | 2928682
Model | 5323749 | 4880103 | 4504710 | 4182945 | 3904082 | 3660077 | 3444779 | 3253402 | 3082170 | 2928062
A% | -0.065 | -0.004 0.006 -0.044 | -0.064 0.007 0.045 | -0.041 0.044 -0.021
I —
T
Real | 5328126 | 4881613 | 4510878 | 4185353 | 3909619 | 3662881 | 3449618 | 3252679 | 3085817 | 2928841
Model | 5329403 | 4885286 | 4509495 | 4187388 | 3908229 | 3663964 | 3448437 | 3256857 | 3085444 | 2931172
A% 0.024 0.075 -0.031 0.049 -0.036 0.030 -0.034 0.128 -0.012 0.080
I —
C
Real | 3294319 | 3020935 | 2787681 | 2586023 | 2412741 | 2265003 | 2129946 | 2013884 | 1907789 | 1812500
Model | 3294271 | 3019748 | 2787459.692 | 2588355 | 2415798 | 2264811 | 2131587 | 2013165 | 1907209 | 1811849
A% | -0001 | -0.039 -0.008 0.090 0.127 -0.008 0.077 0.036 | -0.030 | -0.036
I —
G
Real | 3300579 | 3029871 | 2793368 | 2597611 | 2421247 | 2271823 | 2136034 | 2020510 | 1912574 | 1817609
Model | 3302820 | 3027585 | 2794694 | 2595073 | 2422068 | 2270689 | 2137119 | 2018390 | 1912159 | 1816551
A% 0.068 -0.075 0.047 -0.098 0.034 -0.050 0.051 0.105 | -0.022 | -0.058



https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 do0i:10.20944/preprints201908.0284.v4

104


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020

d0i:10.20944/preprints201908.0284.v4

105
HUMAN CHROMOSOME X2 5:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 54699094 | 27349201 | 18233370 | 13673573 | 10941267 | 9116388 | 7811014 | 6836959 | 6076042 | 5469235
Model | 54699094 | 27349547 | 18233031 | 13674774 | 10939819 | 9116516 | 7814156 | 6837387 | 6077677 | 5469909
A% 0 0.001 -0.002 0.009 -0.013 0.001 0.040 0.006 0.027 0.012
T
Real | 54955010 | 27479169 | 18315808 | 13740635 | 10989091 | 9159314 | 7853719 | 6869850 | 6107501 | 5496647
Model | 54955010 | 27477505 | 18318337 | 13738753 | 10991002 | 9159168 | 7850716 | 6869376 | 6106112 | 5495501
A% 0 -0.006 0.014 -0.014 0.017 -0.002 -0.038 -0.007 -0.023 -0.021
I —
C
Real | 35731600 | 17867885 | 11909179 | 8935048 | 7143749 | 5954508 | 5103551 | 4467404 | 3971312 | 3571516
Model | 35731600 | 17865800 | 11910533 | 8932900 | 7146320 | 5955267 | 5104514 | 4466450 | 3970178 | 3573160
A% 0 -0.012 0.011 -0.024 0.036 0.013 0.019 -0.021 -0.029 0.046
G
Real | 35879674 | 17936436 | 11963434 | 8967090 | 7178970 | 5980688 | 5126771 | 4483961 | 3985739 | 3589143
Model | 35879674 | 17939837 | 11959891 | 8969919 | 7175935 | 5979946 | 5125668 | 4484959 | 3986630 | 3587967
A% 0 0.019 -0.030 0.032 -0.042 -0.012 -0.022 0.022 0.022 -0.033
n 11 12 13 14 15 16 17 18 19 20
A
Real | 4973852 | 4557691 | 4207081 | 3905897 | 3646914 | 3417315 | 3219256 | 3037636 | 2877734 | 2735393
Model | 4972645 | 4558258 | 4207623 3907078 | 3646606 | 3418693 | 3217594 | 3038839 | 2878500 | 2734955
A% -0.024 0.012 0.013 0.030 -0.008 0.040 -0.052 0.040 0.040 -0.016
T
Real | 4995666 | 4579475 | 4228635 | 3926752 | 3660823 | 3435258 | 3233874 | 3055229 | 2892482 | 2747595
Model | 4995910 | 4579584 | 4227308 | 3925358 | 3663667 | 3434688 | 3232648 | 3053056 | 2892369 | 2747751
A% 0.005 0.002 -0.031 -0.036 0.078 -0.017 -0.038 -0.071 -0.004 0.006
C
Real | 3248776 | 2978774 | 2744952 | 2553097 | 2384078 | 2233507 | 2099761 | 1985819 | 1881323 | 1787061
Model | 3248327 | 2977633 | 2748584.615 | 2552257 | 2382107 | 2233225 | 2101859 | 1985089 | 1880611 | 1786580
A% -0.014 -0.038 0.132 -0.033 -0.083 -0.013 0.100 -0.037 -0.038 -0.027
T —
G
Real | 3260377 | 2989513 | 2762824 | 2561783 | 2392545 | 2243011 | 2109780 | 1991615 | 1888742 | 1793221
Model | 3261789 | 2989973 2759975 2562834 | 2391978 | 2242480 | 2110569 | 1993315 | 1888404 | 1793984
A% 0.043 0.015 -0.103 0.041 -0.024 -0.024 0.037 0.085 -0.018 0.043
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HUMAN CHROMOSOME Xe 6:
n 1 2 ] 4 5 6 l 8 9 10
A

Real | 51160489 | 25580315 | 17051523 | 12788672 | 10232910 | 8526747 | 7311290 | 6393180 | 5684167 | 5115376
Model | 51160489 | 25580245 | 17053496 | 12790122 | 10232098 | 8526748 | 7308641 | 6395061 | 5684499 | 5116049
A% 0 0.000 0.012 0.011 -0.008 0000 | -0.036 | 0029 | 0006 | 0013

Real | 51151754 | 25575618 | 17056499 | 12786603 | 10228151 | 8527823 | 7308684 | 6392743 | 5684184 | 5115669
Model | 51151754 | 25575877 | 17050585 | 12787939 | 10230351 | 8525292 | 7307393 | 6393969 | 5683528 | 5115175
A% 0 0.001 0.035 0.010 0022 | 0030 | 0018 | 0019 | 0012 | -0.010

Real | 33520786 | 16759583 | 11170826 | 8383591 | 6707366 | 5583748 | 4785740 | 4192883 | 3723968 | 3353621
Model | 33520786 | 16760393 | 11173595 | 8380197 | 6704157 | 5586798 | 4788684 | 4190098 | 3724532 | 3352079
A% 0 0.005 0.025 0.041 0.048 0.055 0061 | -0.066 | 0015 | -0.046

Real | 33516767 | 16759384 | 11171080 | 8378580 | 6701534 | 5586643 | 4787118 | 4189922 | 3724321 | 3350313
Model | 33516767 | 16758384 | 11172256 | 8379192 | 6703353 | 5586128 | 4788110 | 4189596 | 3724085 | 3351677

A% 0 0.006 0.011 0.007 0027 | 0009 | 0021 | 0008 | -0.006 | 0.041
n 11 12 13 14 15 16 17 18 19 20
A

Real | 4649707 | 4263573 | 3936945 | 3655426 | 3411647 | 3196348 | 3007732 | 2841340 | 2693710 | 2557561
Model | 4650954 | 4263374 | 3935422 | 3654321 | 3410699 | 3197531 | 3009441 | 2842249 | 2692657 | 2558024
A% 0.027 | 0005 | -0.039 | -0.030 | -0.028 0.037 0.057 0.032 0.039 0.018

Real | 4650508 | 4262761 | 3935263 | 3654213 | 3409923 | 3196365 | 3010400 | 2841860 | 2692655 | 2557660
Model | 4650159 | 4262646 | 3934750 | 3653697 | 3410117 | 3196985 | 3008927 | 2841764 | 2692198 | 2557588
A% | 0007 | 0003 | 0013 | -0.014 0.006 0019 | 0049 | 0003 | -0.017 | -0.003

Real | 3048543 | 2793128 | 2577889 | 2393822 | 2234568 | 2096327 | 1972066 | 1862539 | 1763557 | 1677584
Model | 3047344 | 2793399 | 2578522 | 2394342 | 2234719 | 2095049 | 1971811 | 1862266 | 1764252 | 1676039
A% | 0039 | 0010 0.025 0.022 0007 | -0.061 | -0.013 | -0.015 0039 | -0.092

Real | 3046680 | 2793026 | 2576800 | 2392968 | 2233838 | 2095317 | 1971565 | 1862588 | 1763216 | 1674689
Model | 3046979 | 2793064 | 2578213 | 2394055 | 2234451 | 2094798 | 1971575 | 1862043 | 1764040 | 1675838
A% 0.010 0.001 0.055 0.045 0027 | -0.025 0.000 | -0.029 0.047 0.069
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HUMAN CHROMOSOME Ne 7:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 47058248 | 23530299 | 15686166 | 11764553 | 9411623 | 7840658 | 6723534 | 5880008 | 5229645 | 4707564
Model | 47058248 | 23529124 | 15686083 | 11764562 | 9411650 | 7843041 | 6722607 | 5882281 | 5228694 | 4705825
A% 0 -0.005 -0.001 0.000 0.000 0030 | -0.014 | 0039 | -0.018 | -0.037
e —
T
Real | 47215040 | 23607686 | 15742888 | 11804663 | 9443865 | 7872181 | 6743183 | 5901787 | 5248651 | 4721265
Model | 47215040 | 23607520 | 15738347 | 11803760 | 9443008 | 7869173 | 6745006 | 5901880 | 5246116 | 4721504
A% 0 -0.001 -0.029 0008 | -0.009 | -0.038 0.027 0.002 | -0.048 | 0.005
e —
C
Real | 32317984 | 16158125 | 10768945 | 8076952 | 6460853 | 5384305 | 4617629 | 4040019 | 3589340 | 3230819
Model | 32317984 | 16158992 | 10772661 | 8079496 | 6463597 | 5386331 | 4616855 | 4039748 | 3590887 | 3231798
A% 0 0.005 0.034 0.031 0.042 0038 | -0.017 | -0.007 | 0.043 0.030
e —
G
Real | 32378859 | 16188955 | 10792044 | 8096367 | 6477686 | 5397876 | 4625671 | 4049454 | 3595711 | 3237365
Model | 32378859 | 16189430 | 10792953 | 8094715 | 6475772 | 5396477 | 4625551 | 4047357 | 3597651 | 3237886
A% 0 0.003 0.008 0020 | -0.030 | -0.026 | -0.003 | -0.052 | 0.054 0.016
n 11 12 13 14 15 16 17 18 19 20
A
Real | 4278987 | 3920143 | 3618547 | 3363226 | 3136458 | 2939963 | 2768113 | 2614626 | 2479321 | 2354361
Model | 4278023 | 3921521 | 3619865 | 3361303 | 3137217 | 2941141 | 2768132 | 2614347 | 2476750 | 2352912
A% | -0.023 0.035 0.036 -0.057 | 0.024 0.040 0001 | -0.011 | -0.104 | -0.062
e S —
T
Real | 4294332 | 3936000 | 3634128 | 3371872 | 3149286 | 2950864 | 2776699 | 2624006 | 2484604 | 2360053
Model | 4292276 | 3934587 | 3631926 | 3372503 | 3147669 | 2950940 | 2777355 | 2623058 | 2485002 | 2360752
A% | 0048 | -0.036 -0.061 0019 | -0.051 | 0.003 0024 | -0036 | 0.016 0.030
e S —
C
Real | 2935320 | 2691176 | 2485229 | 2308497 | 2154034 | 2019585 | 1902699 | 1794213 | 1699947 | 1615019
Model | 2937999 | 2693165 | 2485998.769 | 2308427 | 2154532 | 2019874 | 1901058 | 1795444 | 1700947 | 1615899
A% | 0.091 0.074 0.031 -0.003 | 0023 0014 | -0.086 | 0.069 0.059 0.054
e S —
G
Real | 2943192 | 2700193 | 2490567 | 2311412 | 2158232 | 2025222 | 1903672 | 1798830 | 1702977 | 1619073
Model | 2943533 | 2698238 | 2490681 | 2312776 | 2158591 | 2023679 | 1904639 | 1798826 | 1704150 | 1618943
A% | 0012 | 0072 0.005 0.059 0017 | -0.076 0.051 0.000 0069 | -0.008
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111

n
A

1

2

10

Real

42641072

21319741

14212284

10657826

8526586

7106173

6092948

5327368

4736841

4261328

Model

42641072

21320536

14213691

10660268

8528214

7106845

6091582

5330134

4737897

4264107

A%

0

0.004

0.010

0.023

0.019

0.009

0.022

0.052

0.022

0.065

Real

42581941

21295170

14193901

10648381

8518451

7101184

6079846

5327494

4730041

4261733

Model

42581941

21290970.5

14193980

10645485

8516388

7096990

6083134

5322743

4731327

4258194

A%

0

£0.020

0.001

0.027

0.024

0.059

0.054

0.089

0.027

0.083

Real

28600559

14300156

9534608

7150571

5719811

4765622

4086694

3574378

3179023

2860558

Model

28600559

14300279.5

9533520

7150140

5720112

4766760

4085794

3575070

3177840

2860056

A%

0

0.001

-0.011

-0.006

0.005

0.024

-0.022

0019

-0.037

-0.018

Real

28600963

14297203

9534022

7149344

5720043

4764450

4086867

3573810

3179020

1858824

Model

28600963

14300482

9533654

7150241

5720193

4766827

4085852

3575120

3177885

2860096

A%

0

0.023

-0.004

0.013

0.003

0.050

0.025

0,037

0.036

0.044

12

13

14

15

16

17

18

19

20

Real

3874608

3551008

32820838

3045732

2842817

2664222

2508130

2369063

2243965

2130755

Model

3876461

3553423

3280082

3045791

2842738

2665067

2508298

2368948

2244267

2132054

A%

0.048

0.068

0.061

0.002

0.003

0.032

0.007

0.005

0.013

0.061

Real

3868322

3552444

3275805

3040563

2840277

2663163

2504274

2365051

2241113

2130802

Model

3871086

3548495

3275534

3041567

2838796

2661371

2504820

2365663

2241155

2129097

A%

0.071

<0.111

-0.008

0.033

-0.052

-0.067

0.022

0.026

0.002

-0.080

Real

2602901

2381738

2198560

2043118

1905875

1786709

1682504

1589011

1504848

1430302

Model

2600051

2383380

2200043

2042897

1906704

1787535

1682386

1588920

1505293

1430028

A%

-0.110

0.063

0.067

-0.011

0.043

0.046

-0.007

-0.006

0.030

-0.019

Real

2601862

2383526

2199268

2043781

1905993

1787433

1683031

1589352

1506126

1429343

Model

2600088

2383414

2200074

2042926

1906731

1787560

1682410

1588942

1505314

1430048

A%

0.068

0.005

0.037

0.042

0.039

0.007

0.037

0.026

0.054

0.049
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HUMAN CHROMOSOME X: 9:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 31752642 | 15878637 | 10582404 | 7939808 | 6349428 | 5290553 | 4536832 | 3971949 | 3526209 | 3175997
Model | 31752642 | 15876321 | 10584214 | 7938161 | 6350528 | 5292107 | 4536092 | 3969080 | 3528071 | 3175264
A% 0 -0.015 0.017 -0.021 0.017 0.023 | -0.016 | -0.072 0.053 | -0.023
S —
T
Real | 31733822 | 15871181 | 10578031 | 7938407 | 6346757 | 5292185 | 4534911 | 3967788 | 3524690 | 3173731
Model | 31733822 | 15866911 | 10577941 | 7933456 | 6346764 | 5288970 | 4533403 | 3966728 | 3525980 | 3173382
A% 0 -0.027 -0.001 -0.062 0.000 | -0.061 | -0.033 | -0.027 0.037 | -0.011
1 S —
C
Real | 22487631 | 11240118 | 7496094 | 5616960 | 4497621 | 3746338 | 3212089 | 2806998 | 2499785 | 2248072
Model | 22487631 | 11243815.5 | 7495877 | 5621908 | 4497526 | 3747939 | 3212519 | 2810954 | 2498626 | 2248763
A% 0 0.033 -0.003 0.088 | -0.002 0.043 0.013 0.141 | -0.046 0.031
S S—
G
Real | 22470915 | 11232566 | 7491799 | 5616080 | 4495198 | 3745091 | 3208309 | 2808887 | 2498749 | 2246694
Model | 22470915 | 11235458 | 7490305 | 5617729 | 4494183 | 3745153 | 3210131 | 2808864 | 2496768 | 2247092
A% 0 0.026 -0.020 0029 | -0.023 0.002 0.057 | -0.001 | -0.079 0.018
n 11 12 13 14 15 16 17 18 19 20
A
Real | 2886319 | 2644910 | 2441694 | 2269316 | 2114934 | 1985704 | 1868177 | 1763367 | 1670765 | 1589756
Model | 2886604 | 2646054 | 2442511 | 2268046 | 2116843 | 1984540 | 1867802 | 1764036 | 1671192 | 1587632
A% | 0010 0.043 0.033 -0.056 0.090 | -0.059 | -0.020 0.038 0026 | -0.134
T —
T
Real | 2884170 | 2646683 | 2441367 | 2268214 | 2117302 | 1982745 | 1866438 | 1763367 | 1669118 | 1586913
Model | 2884893 | 2644485 | 2441063 | 2266702 | 2115588 | 1983364 | 1866695 | 1762990 | 1670201 | 1586691
A% | 0025 | -0.083 -0.012 -0.067 | -0.081 0.031 0.014 | -0.021 0.065 | -0.014
T —
C
Real | 2045193 | 1871955 | 1729423 | 1605263 | 1499667 | 1405314 | 1321799 | 1249138 | 1184728 | 1123642
Model | 2044330 | 1873969 | 1729817.769 | 1606259 | 1499175 | 1405477 | 1322802 | 1249313 | 1183560 | 1124382
A% | -0.042 0.107 0.023 0062 | -0.033 0.012 0.076 0.014 | -0.099 0.066
T S —
G
Real | 2042951 | 1873526 | 1729437 | 1603276 | 1497763 | 1404053 | 1322702 | 1248847 | 1183021 | 1121937
Model | 2042810 | 1872576 | 1728532 | 1605065 | 1498061 | 1404432 | 1321819 | 1248384 | 1182680 | 1123546
A% | 0007 | -0.051 -0.052 0.111 0.020 0.027 | -0.067 | -0.037 | -0.029 0.143



https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020 do0i:10.20944/preprints201908.0284.v4

114


https://doi.org/10.20944/preprints201908.0284.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2020

d0i:10.20944/preprints201908.0284.v4

115
HUMAN CHROMOSOME X: 10:
n 1 2 3 4 5 6 1 8 9 10
A
Real | 38875926 | 19443685 | 12956218 | 9721728 | 7775819 | 6480654 | 5553092 | 4861979 | 4318362 | 3889657
Model | 38875926 | 19437963 | 12958642 | 9718982 | 7775185 | 6479321 | 5553704 | 4859491 | 4319547 | 3887593
A% 0 -0.029 0.019 0.028 | 0008 | -0.021 | 0011 | -0.051 | 0.027 | -0.053
e —
T
Real | 39027555 | 19512977 | 13010825 | 9755195 | 7802617 | 6503211 | 5571860 | 4877988 | 4339289 | 3899745
Model | 39027555 | 19513777.5 | 13009185 | 9756889 | 7805511 | 6504593 | 5575365 | 4878444 | 4336395 | 3902756
A% 0 0.004 <0.013 0017 | 0037 0021 | 0063 | 0005 | -0067 | 0077
I ———
C
Real | 27639505 | 13815852 | 9214019 | 6910447 | 5528002 | 4606316 | 3949304 | 3454683 | 3070056 | 2763201
Model | 27639505 | 13819752.5 | 9213168 | 6909876 | 5527901 | 4606584 | 3948501 | 3454938 | 3071056 | 2763951
A% 0 0.028 0009 | -0.008 | -0.002 | 0006 | -0.020 | 0007 | 0033 | 0027
1 —
G
Real | 27719976 | 13858969 | 9239926 | 6928371 | 5546156 | 4620314 | 3963311 | 3463219 | 3079286 | 2773695
Model | 27719976 | 13859988 | 9239992 | 6929994 | 5543995 | 4619996 | 3959997 | 3464997 | 3079997 | 2771998
A% 0 0.007 0.001 0023 | 0039 | -0.007 | -0.084 | 0051 | 0023 | -0.061
n 11 12 13 14 15 16 17 13 19 20
A
Real | 3532326 | 3241515 | 2990990 | 2777145 | 2593835 | 2429763 | 2287328 | 2160483 | 2046461 | 1944638
Model | 3534175 | 3239661 | 2990456 | 2776852 | 2591728 | 2429745 | 2286819 | 2159774 | 2046101 | 1943796
A% | 0052 | -0.057 0.018 €011 | 0081 | 0001 | -0.022 | -0.033 | -0.018 | -0.043
S —
T
Real | 3548039 | 3251197 | 3002242 | 2786346 | 2599362 | 2439264 | 2294993 | 2169313 | 2054532 | 1949446
Model | 3547960 | 3252296 | 3002120 | 2787683 | 2601837 | 2439222 | 2295739 | 2168198 | 2054082 | 1951378
A% | 0002 | 0034 0.004 0048 | 0095 | 0002 | 0032 | 0051 | -0.022 | 0.099
T —
C
Real 11 12 13 14 15 16 17 18 19 20
Model | 2513904 | 2304198 | 2124300 | 1972970 | 1843443 | 1728465 | 1626424 | 1534509 | 1455140 | 1382146
A% | 2512682 | 2303292 | 2126115.769 | 1974250 | 1842634 | 1727469 | 1625853 | 1535528 | 1454711 | 1381975
S S —
G
Real | 2520545 | 2308333 | 2133465 | 1982325 | 1847559 | 1731446 | 1630247 | 1539193 | 1457707 | 1386920
Model | 2519998 | 2309998 | 2132306 | 1979998 | 1847998 | 1732499 | 1630587 | 1539999 | 1458946 | 1385999
A% | 0022 | 0072 0.054 0118 | 0024 | 0.061 0021 | 0052 | 0.085 | -0.066
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HUMAN CHROMOSOME N: 11:
n 1 2 3 4 5 b 7 8 9 10
A
Real | 39286730 | 19639369 | 13095063 | 9817484 | 7856874 | 6545830 | 5614211 | 4907052 | 4363348 | 3927062
Model | 39286730 | 19643365 | 13095577 | 9821683 | 7857346 | 6547788 | 5612390 | 4910841 | 4365192 | 3928673
A% 0 0.020 0.004 0.043 | 0.006 0030 | -0.032 | 0077 0042 | 0.041
e —
T
Real | 39361954 | 19682193 | 13116231 | 9842156 | 7873104 | 6558220 | 5622154 | 4921159 | 4372287 | 3937213
Model | 39361954 | 19680977 | 13120651 | 9840489 | 7872391 | 6560326 | 5623136 | 4920244 | 4373550 | 3936195
A% 0 0.006 0.034 0017 | 0009 | 0032 | 0017 | -0.019 | 0029 | -0.026
T ——
C
Real | 27903257 | 13954370 | 9302239 | 6978435 | 5578255 | 4650740 | 3984719 | 3489875 | 3102280 | 2789601
Model | 27903257 | 13951628.5 | 9301086 | 6975814 | 5580651 | 4650543 | 3986180 | 3487907 | 3100362 | 2790326
A% 0 0.020 0012 | 0038 | 0043 | 0004 | 0037 | -0.056 | -0.062 | 0026
S W—
G
Real | 27981801 | 13990939 | 9331049 | 6995362 | 5598516 | 4667502 | 3998020 | 3498631 | 3110281 | 2799499
Model | 27981801 | 13990901 | 9327267 | 6995450 | 5596360 | 4663634 | 3997400 | 3497725 | 3109089 | 2798180
A% 0 0.000 0.041 0001 | -0.039 | -0.083 | -0016 | 0026 | -0.038 | -0.047
n 11 12 13 14 15 16 17 18 19 20
A
Real | 3570154 | 3271475 | 3022297 | 2805914 | 2617723 | 2453975 | 2309047 | 2180924 | 2067228 | 1963354
Model | 3571521 | 3273894 | 3022056 | 2806195 | 2619115 | 2455421 | 2310984 | 2182596 | 2067723 | 1964337
A% | 0038 0.074 -0.008 0.010 | 0.053 | 0.059 0.084 | 0077 | 0.024 0.050
T —
T
Real | 3577554 | 3280509 | 3028297 | 2812286 | 2623952 | 2461014 | 2316844 | 2186486 | 2070821 | 1968921
Model | 3578359 | 3280163 | 3027843 | 2811568 | 2624130 | 2460122 | 2315409 | 2186775 | 2071682 | 1968098
A% | 0023 | 0011 -0.015 0026 | 0007 | -0.03 | -0.062 | 0013 | 0042 | 0.042
e —
C
Real | 2537260 | 2325531 | 2148116 | 1991978 | 1860497 | 1744088 | 1643017 | 1550809 | 1470634 | 1395653
Model | 2536660 | 2325271 | 2146404.385 | 1993090 | 1860217 | 1743954 | 1641368 | 1550181 | 1468592 | 1395163
A% | 0024 | 0011 -0.080 0056 | 0.015 | -0.008 | -0.100 | 0.041 | 0.139 | 0.035
e —
G
Real | 2545372 | 2333633 | 2150039 | 1999373 | 1866746 | 1749283 | 1644843 | 1555881 | 1472041 | 1398760
Model | 2543800 | 2331817 | 2152446 | 1998700 | 1865453 | 1748863 | 1645988 | 1554545 | 1472726 | 1399090
A% | 0062 | -0.078 0112 0034 | 0.069 | -0.024 | 0070 | -0.086 | 0.047 0.024
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n
A

1

2

Real

39370109

19681670

13127127

9844635

7874716

6561545

5623971

4921422

4375081

3936072

Model

39370109

19685055

13123370

9842527

7874022

6561685

5624301

4921264

4374457

3937011

A%

0

0017

-0.029

-0.021

-0.009

0.002

0.006

-0.003

-0.014

0.024

Real

39492225

19746627

13164611

9871129

7899772

6583644

5641418

4937178

4391619

3950054

Model

39492225

19746112.5

13164075

9873056

7898445

6582038

5641746

4936528

4388025

3949223

A%

0

-0.003

-0.004

0.020

-0.017

-0.024

0.006

-0.013

-0.082

-0.021

Real

27092804

13547188

9029476

6773021

5418240

4514513

3870916

3386388

3009188

2708923

Model

27092804

13546402

5030935

6773201

5418561

4515467

3870401

3386601

3010312

2709280

A%

0

-0.006

0.016

0.003

0.006

0.021

-0.013

0.006

0.037

0.013

Real

27182678

13593425

9058057

6795670

5434837

4529932

3883386

3397240

3017203

2718735

Model

271826738

13591339

9060893

6795670

5436536

4530446

3883240

3397835

3020298

2718268

A%

0

-0.015

0.031

0.000

0031

0.011

-0.004

0.018

0.102

-0.017

11

12

13

14

15

16

17

18

19

20

Real

3579052

3281962

3030056

2811233

2626741

2460584

2318120

2185997

2071129

1968383

Model

3579101

3280842

3028470

2812151

2624674

2460632

2315889

2187228

2072111

1968505

A%

0.001

-0.034

-0.052

0.033

-0.079

0.002

-0.0%6

0.056

0.047

0.006

Real

3589516

3290323

3038934

2820732

2633641

2468091

2320877

2196134

2079937

1974181

Model

3590202

3291019

3037863

2820873

2632815

2468264

2323072

2194013

2078538

1974611

A%

0.019

0.021

-0.035

0.005

-0.031

0.007

0.094

-0.097

-0.067

0.022

Real

2708923

2463763

2256749

2082722

1936038

1804770

1692941

1593730

1505326

1427017

Model

2709280

2462982

2257734

2084061.846

1935200

1806187

1693300

1593694

1505156

1425937

A%

0013

-0.032

0.044

0.064

-0.043

0.078

0021

-0.002

-0.011

-0.076

Real

2471107

2265783

2089656

1941841

1810705

1699498

1598908

1509087

1429171

1360125

Model

2471153

2265223

2090975

1941620

1812179

1698917

1598981

1510149

1430667

1359134

A%

0.002

-0.025

0.063

-0.011

0.081

-0.034

0.005

0.070

0.105

0.073
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n
A

1

2

10

Real

29224840

14609701

9740813

7305359

5848600

4869437

4176765

3653520

3246021

2923336

Model

29224840

14612420

9741613

7306210

5844968

4870807

4174977

3653105

3247204

2922484

A%

0

0.019

0.008

0.012

-0.062

0.028

-0.043

-0.011

0.036

-0.029

Real

29320872

14658068

9775410

7328793

5860372

4887057

4187059

3665263

3261374

2930648

Model

29320872

14660436

9773624

7330218

5864174

4886812

41886396

3665109

3257875

2932087

A%

0

0.016

-0.018

0.019

0.065

-0.005

0.039

-0.004

-0.107

0.049

Real

18341128

9174248

6113318

4586059

3666775

3058126

2619260

2292140

2036479

1833225

Model

18341128

9170564

6113709

4585282

3668226

3056855

2620161

2292641

2037903

1834113

A%

0

-0.040

0.006

-0.017

0.040

-0.042

0.034

0.022

0.070

0.048

Real

18346620

9174712

6114944

4588159

3670945

3057621

2621694

2293259

2037612

1836135

Model

18346620

9173310

6115540

4586655

3669324

3057770

2620946

2293328

2038513

1834662

A%

0

-0.015

0.010

-0.033

<0.044

0.005

-0.029

0.003

0.044

-0.080

11

12

13

14

15

16

17

18

19

20

Real

2656650

2433527

2247628

2087855

1948879

1826491

1717987

1622898

1539154

1462224

Model

2656804

2435403

2248065

2087489

1948323

1826553

1719108

1623602

1538149

1461242

A%

0.006

0.077

0.019

-0.018

-0.029

0.003

0.065

0.043

-0.065

-0.067

Real

2664773

2443866

2254356

2092899

1954262

1833345

1724723

1629904

1542565

1465169

Model

2665534

2443406

2255452

2094348

1954725

1832555

1724757

1628937

1543204

1466044

A%

0.029

-0.019

0.049

0.069

0.024

-0.043

0.002

-0.059

0.041

0.060

Real

1667135

1528575

1413297

1309588

1221832

1145462

1079773

1018561

964064

915763

Model

1667375

1528427

1410856

1310081

1222742

1146321

1078890

1018952

965323

917056

A%

0.014

<0.010

0.173

0.038

0.074

0.075

-0.082

0.033

0.130

0.141

Real

1669031

1530151

1410365

1312044

1223930

1146799

1079495

1019381

966507

918519

Model

1667875

1528885

1411278

1310473

1223108

1146664

1079213

1019257

965612

917331

A%

-0.069

-0.083

0.065

-0.120

-0.067

-0.012

-0.026

-0.012

-0.093

-0.130
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HUMAN CHROMOSOME N: 14:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 25606393 | 12799463 | 8536879 | 6398418 | 5121176 | 4268077 | 3659882 | 3198871 | 2844433 | 2561480
Model | 25606393 | 12803197 | 8535464 | 6401598 | 5121279 | 4267732 | 3658056 | 3200799 | 2845155 | 2560639
A% 0 0.029 -0.017 0.050 0.002 | -0.008 | -0.050 0.060 0.025 | -0.033
1 —
T
Real | 25819249 | 12909111 | 8605806 | 6455564 | 5164155 | 4300865 | 3686847 | 3227393 | 2868634 | 2582715
Model | 25819249 | 12909624.5 | 8606416 | 6454812 | 5163850 | 4303208 | 3688464 | 3227406 | 2868805 | 2581925
A% 0 0.004 0.007 | -0.012 | -0.006 0.054 0.044 0.000 0.006 | -0.031
1 —
C
Real | 17733667 | 8871974 | 5912056 | 4435723 | 3546079 | 2958415 | 2534244 | 2217687 | 1971632 | 1772674
Model | 17733667 | 8866833.5 | 5911222 | 4433417 | 3546733 | 2955611 | 2533381 | 2216708 | 1970407 | 1773367
A% 0 -0.058 -0.014 | -0.052 0.018 | -0.095 | -0.034 | -0.044 | -0.062 0.039
1 —
G
Real | 17782016 | 8890114 | 5925692 | 4445622 | 3556858 | 2962863 | 2539216 | 2223714 | 1975450 | 1777268
Model | 17782016 | 8891008 | 5927339 | 4445504 | 3556403 | 2963669 | 2540288 | 2222752 | 1975780 | 1778202
A% 0 0.010 0.028 | -0.003 | -0.013 0.027 0.042 | -0.043 0.017 0.053
n 11 12 13 14 15 16 17 18 19 20
A
Real | 2328958 | 2134374 | 1969599 | 1828781 | 1706342 | 1599657 | 1507905 | 1421156 | 1348571 | 1281424
Model | 2327854 | 2133866 | 1969723 | 1829028 | 1707093 | 1600400 | 1506258 | 1422577 | 1347705 | 1280320
A% | 0.047 | -0.024 0.006 0.014 0.044 0.046 | -0.109 0.100 | -0.064 | -0.086
T —
T
Real | 2346873 | 2150075 | 1986319 | 1843352 | 1720883 | 1612313 | 1518316 | 1434358 | 1358380 | 1291484
Model | 2347204 | 2151604 | 1986096 | 1844232 | 1721283 | 1613703 | 1518779 | 1434403 | 1358908 | 1290962
A% 0.014 0.071 -0.011 0.048 0.023 0.086 0.031 0.003 0.033 | -0.040
T —
C
Real | 1613681 | 1479759 | 1363482 | 1268063 | 1183151 | 1109870 | 1042857 | 986293 | 932633 | 886064
Model | 1612152 | 1477806 | 1364128.231 | 1266691 | 1182244 | 1108354 | 1043157 | 985204 | 933351 | 886683
A% | -0.095 | -0.132 0.047 0.108 | -0.077 | -0.137 0.029 | 0111 0.077 0.070
T —
G
Real | 1614245 | 1480907 | 1368389 | 1269895 | 1185716 | 1111994 | 1045118 | 988265 | 936274 | 888098
Model | 1616547 | 1481835 | 1367847 | 1270144 | 1185468 | 1111376 | 1046001 | 987890 | 935896 | 889101
A% 0.142 0.063 -0.040 0020 | -0.021 | -0.056 0.084 | -0.038 | -0.040 0.113
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HUMAN CHROMOSOME N: 15:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 24508669 | 12257215 | 8173351 | 6127496 | 4901186 | 4086075 | 3500690 | 3063805 | 2725130 | 2449776
Model | 24508669 | 12254335 | 8169556 | 6127167 | 4901734 | 4084778 | 3501238 | 3063584 | 2723185 | 2450867
A% 0 0.024 -0.046 | -0.005 0.011 | -0.032 0.016 | -0.007 | -0.071 0.045
1 —
T
Real | 24553812 | 12277116 | 8182954 | 6139451 | 4911929 | 4093347 | 3510119 | 3069731 | 2725799 | 2458502
Model | 24553812 | 12276906 | 8184604 | 6138453 | 4910762 | 4092302 | 3507687 | 3069227 | 2728201 | 2455381
A% 0 -0.002 0.020 0.016 | -0.024 | -0.026 | -0.069 | -0.016 0.088 0.127
e S —
C
Real | 17752941 | 8875159 | 5918553 | 4439589 | 3550957 | 2957640 | 2535156 | 2219552 | 1972944 | 1775282
Model | 17752941 | 8876470.5 | 5917647 | 4438235 | 3550588 | 2958824 | 2536134 | 2219118 | 1972549 | 1775294
A% 0 0.015 0.015 | -0.031 | -0.010 0.040 0.033 | -0.020 | -0.020 0.001
1 —
G
Real | 17825903 | 8911174 | 5938915 | 4453796 | 3564193 | 2969826 | 2545651 | 2227076 | 1980717 | 1780573
Model | 17825903 | 8912952 | 5941968 | 4456476 | 3565181 | 2970984 | 2546558 | 2228238 | 1980656 | 1782590
A% 0 0.020 0.051 0.060 0.028 0.039 0.036 0.052 | -0.003 0.113
n 11 12 13 14 15 16 17 18 19 20
A
Real | 2224072 | 2043423 | 1885563 | 1750172 | 1635302 | 1531950 | 1441010 | 1361323 | 1288636 | 1224799
Model | 2228061 | 2042389 | 1885282 | 1750619 | 1633911 | 1531792 | 1441686 | 1361593 | 1289930 | 1225433
A% 0179 | -0.051 -0.015 0.026 | -0.085 | -0.010 0.047 0.020 0.100 0.052
T —
T
Real | 2234532 | 2046465 | 1890145 | 1755772 | 1637110 | 1534779 | 1444412 | 1364249 | 1292898 | 1229106
Model | 2232165 | 2046151 | 1888755 | 1753844 | 1636921 | 1534613 | 1444342 | 1364101 | 1292306 | 1227691
A% | 0106 | -0.015 -0.074 0110 | -0.012 | -0.011 | 0005 | -0.011 | -0.046 | -0.115
T S —
C
Real | 1614439 | 1479412 | 1363399 | 1267510 | 1183122 | 1110374 | 1044478 | 986123 | 935203 | 887647
Model | 1613904 | 1479412 | 1365610.846 | 1268067 | 1183529 | 1109559 | 1044291 | 986275 | 934365 | 887647
A% | -0.033 0.000 0.162 0.044 0.034 | 0.073 | -0.018 0.015 | -0.090 0.000
T —
G
Real | 1621622 | 1484144 | 1371763 | 1272355 | 1187220 | 1112980 | 1049005 | 990598 | 938070 | 890515
Model | 1620537 | 1485492 | 1371223 | 1273279 | 1188394 | 1114119 | 1048583 | 990328 | 938205 | 891295
A% | -0.067 0.091 -0.039 0.073 0.093 0102 | -0.040 | -0.027 0.014 0.088
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HUMAN CHROMOSOME N: 16:
n 1 2 3 4 5 6 7 8 9 10
A |
Real | 22558319 | 11276313 | 7520193 | 5639012 | 4511596 | 3759105 | 3223921 | 2821345 | 2508088 | 2254369
Model | 22558319 | 11279160 | 7519440 | 5639580 | 4511664 | 3759720 | 3222617 | 2819790 | 2506480 | 2255832
A% 0 0.025 0010 | 0.010 0.002 0016 | -0.040 | -0.055 | -0.064 | 0.065
1 —
T
Real | 22774906 | 11392435 | 7591638 | 5696104 | 4555284 | 3797040 | 3252955 | 2846589 | 2529069 | 2278531
Model | 22774906 | 11387453 | 7591635 | 5693727 | 4554981 | 3795818 | 3253558 | 2846863 | 2530545 | 2277491
A% 0 -0.044 0000 | -0.042 | 0007 | -0.032 | 0.019 0.010 0058 | -0.046
P e S—
C
Real | 18172742 | 9087743 | 6056202 | 4544425 | 3634337 | 3028789 | 2597284 | 2272410 | 2018809 | 1818837
Model | 18172742 | 9086371 | 6057581 | 4543186 | 3634548 | 3028790 | 2596106 | 2271593 | 2019194 | 1817274
A% 0 -0.015 0023 | -0.027 | 0.006 0000 | -0.045 | 0036 | 0019 | -0.086
P e S—
G
Real | 18299976 | 9146481 | 6100612 | 4571945 | 3659972 | 3049387 | 2612402 | 2285400 | 2033583 | 1828858
Model | 18299976 | 9149988 | 6099992 | 4574994 | 3659995 | 3049996 | 2614282 | 2287497 | 2033331 | 1829998
A% 0 0.038 0010 | 0.067 0.001 0.020 0.072 0052 | -0.012 | 0.062
n 11 12 13 14 15 16 17 18 19 20
A
Real | 2050851 | 1880478 | 1733865 | 1611591 | 1503601 | 1411360 | 1326703 | 1254763 | 1187413 | 1127605
Model | 2050756 | 1879860 | 1735255 | 1611309 | 1503888 | 1409895 | 1326960 | 1253240 | 1187280 | 1127916
A% | 0005 | -0.033 0.080 0018 | 0019 | -0.104 0019 | -0.122 | -0.011 0.028
T —
T
Real | 2069922 | 1897886 | 1754413 | 1627184 | 1518712 | 1422617 | 1338652 | 1265541 | 1197438 | 1139313
Model | 2070446 | 1897909 | 1751916 | 1626779 | 1518327 | 1423432 | 1339700 | 1265273 | 1198679 | 1138745
A% | 0025 0.001 0.143 0025 | 0.025 | 0057 0078 | -0.021 | 0104 | -0.050
S S —
C
Real | 1650838 | 1515238 | 1397538 | 1298309 | 1211787 | 1135601 | 1070110 | 1009041 | 956160 | 909967
Model | 1652067 | 1514395 | 1397903.231 | 1298053 | 1211516 | 1135796 | 1068985 | 1009597 | 956460 | 908637
A% | 0074 | -0.056 0.026 0020 | -0.022 | 0017 | 0105 | 0.055 0031 | -0.146
S S —
G
Real | 1665290 | 1523558 | 1406945 | 1306196 | 1219631 | 1143296 | 1076647 | 1015430 | 964562 | 913413
Model | 1663634 | 1524998 | 1407690 | 1307141 | 1219998 | 1143749 | 1076469 | 1016665 | 963157 | 914999
A% | -0.100 0.094 0.053 0072 0.030 0040 | 0017 | 0122 | -0.146 0173
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HUMAN CHROMOSOME e 17:

n 1 2 3 4 5 6 l 8 9 10

A

Real | 22639499 | 11319059 | 7546872 | 5656791 | 4530288 | 3774212 | 3233070 | 2827679 | 2515252 | 2264946
Model | 22639499 | 11319750 | 7546500 | 5659875 | 4527900 | 3773250 | 3234214 | 2829937 | 2515500 | 2263950

A% 0 0.006 0005 | 0054 | 0053 | 0.025 | 0035 | 0080 | 0010 | -0.044
S —

T

Real | 22705261 | 11355846 | 7571879 | 5676660 | 4539969 | 3786215 | 3244213 | 2839343 | 2523060 | 2270552
Model | 22705261 | 11352630.5 | 7568420 | 5676315 | 4541052 | 3784210 | 3243609 | 2838158 | 2522807 | 2270526

A% 0 0.028 0.046 | 0006 | 0024 | -0.053 | 0019 | -0.042 | -0.010 | -0.001
S —

C

Real | 18723944 | 9358265 | 6241205 | 4680627 | 3743834 | 3118529 | 2674871 | 2339739 | 2080736 | 1871247
Model | 18723944 | 9361972 | 6241315 | 4680986 | 3744789 | 3120657 | 2674849 | 2340493 | 2080438 | 1872394

A% 0 0.040 0002 | 0008 | 0025 | 0068 | -0001 | 0032 | -0.014 | 0061
T —

G

Real | 18851500 | 9426933 | 6280113 | 4715974 | 3769947 | 3141080 | 2693587 | 2358271 | 2094311 | 1885275
Model | 18851500 | 9425750 | 6283833 | 4712875 | 3770300 | 3141917 | 2693071 | 2356438 | 2094611 | 1885150

A% 0 0.013 0059 | 0066 | 0009 | 0027 | 0019 | 0078 | 0014 | -0.007

n 11 12 13 14 15 16 17 18 19 20

A

Real | 2061045 | 1885696 | 1741112 | 1616907 | 1508271 | 1413484 | 1330996 | 1257604 | 1191079 | 1131835
Model | 2058136 | 1886625 | 1741500 | 1617107 | 1509300 | 1414969 | 1331735 | 1257750 | 1191553 | 1131975

A% | 0141 | 0.049 0.022 0012 | 0068 | 0105 005 | 0012 | 0.040 0.012
S —

T

Real | 2062947 | 1892699 | 1745337 | 1623386 | 1515901 | 1419780 | 1334857 | 1261999 | 1195292 | 1134722
Model | 2064115 | 1892105 | 1746559 | 1621804 | 1513684 | 1419079 | 1335604 | 1261403 | 1195014 | 1135263

A% | 0057 | 0031 0.070 0098 | 0146 | 0049 | 0056 | -0.047 | 0.023 | 0048
T —

C

Real | 1702241 | 1560061 | 1442233 | 1336746 | 1247637 | 1170134 | 1101482 | 1039495 | 985747 | 935527
Model | 1702177 | 1560329 | 1440303.385 | 1337425 | 1248263 | 1170247 | 1101408 | 1040219 | 985471 | 936197

A% | -0.004 | 0017 {0.134 0051 | 0050 | 0010 | -0.007 | 0070 | -0.028 | 0.072
T —

G

Real | 1711969 | 1571560 | 1449795 | 1345831 | 1256203 | 1179116 | 1110323 | 1047582 | 992104 | 943928
Model | 1713773 | 1570958 | 1450115 | 1346536 | 1256767 | 1178219 | 1108912 | 1047306 | 992184 | 942575

A% | 0105 | -0.038 0.022 0052 | 0045 | 0076 | 0127 | -0.026 | 0008 | -0.144
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HUMAN CHROMOSOME Nz 18:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 22087028 | 11049099 | 7363151 | 5524275 | 4415580 | 3685073 | 3156485 | 2761565 | 2455849 | 2209991
Model | 22087028 | 11043514 | 7362343 | 5521757 | 4417406 | 3681171 | 3155290 | 2760879 | 2454114 | 2208703
A% 0 0.051 0011 | 0046 | 0041 | 0106 | 0.038 | 0.025 | 0071 | -0.058
e S—
T
Real | 22109347 | 11053769 | 7369923 | 5528493 | 4426314 | 3684363 | 3156935 | 2765073 | 2455495 | 2211975
Model | 22109347 | 11054673.5 | 7369782 | 5527337 | 4421869 | 3684891 | 3158478 | 2763668 | 2456594 | 2210935
A% 0 0.008 0002 | -0.021 | 0101 | 0.014 0049 | -0.051 | 0045 | -0.047
T —
C
Real | 14574701 | 7283090 | 4859734 | 3641818 | 2914111 | 2427781 | 2081248 | 1820311 | 1620861 | 1456680
Model | 14574701 | 7287350.5 | 4858234 | 3643675 | 2914940 | 2429117 | 2082100 | 1821838 | 1619411 | 1457470
A% 0 0.058 0031 | 0.051 0.028 0.055 0.041 0084 | -0.090 | 0.054
e S—
G
Real | 14594335 | 7296744 | 4862343 | 3646792 | 2917064 | 2430361 | 2086099 | 1823746 | 1619525 | 1457882
Model | 14594335 | 7297168 | 4864778 | 3648584 | 2918867 | 2432389 | 2084905 | 1824292 | 1621593 | 1459434
A% 0 0.006 0.050 0.049 0.062 0083 | 0057 | 0.030 0.128 0.106
n 11 12 13 14 15 16 17 18 19 20
A
Real | 2009122 | 1843374 | 1697799 | 1578470 | 1471651 | 1380514 | 1299476 | 1229025 | 1163180 | 1104916
Model | 2007912 | 1840586 | 1699002 | 1577645 | 1472469 | 1380439 | 1299237 | 1227057 | 1162475 | 1104351
A% | 0060 | -0.151 0.071 0.052 | 005 | 0005 | 0018 | -0.160 | -0.061 | -0.051
e S —
T
Real | 2009333 | 1841971 | 1702311 | 1578552 | 1476451 | 1381727 | 1300674 | 1227935 | 1162244 | 1105916
Model | 2009941 | 1842446 | 1700719 | 1579239 | 1473956 | 1381834 | 1300550 | 1228297 | 1163650 | 1105467
A% | 0.030 0.026 -0.094 0044 | -0.169 | 0008 | -0.010 | 0.029 0121 | -0.041
T —
C
Real | 1324115 | 1214443 | 1120714 | 1039657 | 970778 | 910034 | 857501 | 809817 | 766563 | 728705
Model | 1324973 | 1214558 | 1121130.846 | 1041050 | 971647 | 910919 | 857335 | 809706 | 767090 | 728735
A% | 0.065 0.010 0.037 0.134 0.089 0097 | 0019 | -0.014 | 0.069 0.004
e S —
G
Real | 1327030 | 1214002 | 1122685 | 1043713 | 972153 | 913074 | 857965 | 809097 | 769352 | 728731
Model | 1326758 | 1216195 | 1122641 | 1042453 | 972956 | 912146 | 858490 | 810796 | 768123 | 729717
A% | 0021 | 0.180 -0.004 0121 | 0082 | -0.102 | 0.061 0210 | -0.160 | 0135
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HUMAN CHROMOSOME Xt 19:
n ] 2 3 4 5 b 7 8 9 10
A
Real | 15142293 | 7574216 | 5049052 | 3785784 | 3029069 | 2526143 | 2162672 | 1893041 | 1683010 | 1515756
Model | 15142293 | 7571147 | 5047431 | 3785573 | 3028459 | 2523716 | 2163185 | 1892787 | 1682477 | 1514229
A% 0 0.041 0032 | 0.006 | -0.020 | -0.0% 0024 | 0013 | 0.032 | 0.101
S —
T
Real | 15282753 | 7642102 | 5095598 | 3821187 | 3056901 | 2548586 | 2183929 | 1910559 | 1698282 | 1528245
Model | 15282753 | 7641376.5 | 5094251 | 3820688 | 3056551 | 2547126 | 2183250 | 1910344 | 1698084 | 1528275
A% 0 -0.009 0026 | 0013 | 0011 | -0.057 | -0.031 | -0.011 | -0.012 0.002
T ———
C
Real | 13954580 | 6976934 | 4650271 | 3489519 | 2789221 | 2324833 | 1993407 | 1744902 | 1551581 | 1394570
Model | 13954580 | 6977290 | 4651527 | 3488645 | 2790916 | 2325763 | 1993511 | 1744323 | 1550509 | 1395458
A% 0 0.005 0.027 | -0.025 | 0061 0.040 0005 | -0.033 | -0.069 0.064
T —
G
Real | 14061132 | 7027127 | 4685331 | 3513700 | 2812961 | 2340563 | 2008671 | 1756592 | 1560546 | 1405505
Model | 14061132 | 7030566 | 4687044 | 3515283 | 2812226 | 2343522 | 2008733 | 1757642 | 1562348 | 1406113
A% 0 0.049 0.037 0045 | 0026 | 0.126 0.003 0.060 0.115 0.043
n 11 12 13 14 15 16 17 18 19 20
A
Real | 1377415 | 1262596 | 1166660 | 1082823 | 1009795 | 946200 | 891264 | 842158 | 797482 | 758078
Model | 1376572 | 1261858 | 1164792 | 1081592 | 1009486 | 946393 | 890723 | 841239 | 796963 | 757115
A% | 0061 | -0.059 -0.160 0114 | -0.031 | 0020 | -0.061 | -0.109 | -0.065 | -0.127
T —
T
Real | 1388879 | 1274240 | 1175902 | 1091889 | 1018553 | 955193 | 898425 | 849567 | 804361 | 764251
Model | 1389341 | 1273563 | 1175596 | 1091625 | 1018850 | 955172 | 898985 | 849042 | 804355 | 764138
A% | 0033 | -0.053 -0.026 -0.024 | 0029 | -0.002 | 0.062 | -0.062 | -0.001 | -0.015
1 —
C
Real | 1269321 | 1163395 | 1072616 | 995786 | 929903 | 873060 | 820402 | 775579 | 735008 | 697821
Model | 1268598 | 1162882 | 1073429.231 | 996756 | 930305 |872161 | 820858 | 775254 | 734452 | 697729
A% | 0057 | -0.044 0.076 0.097 0.043 | -0.103 | 0.056 | -0.042 | -0.076 | -0.013
1 —
G
Real | 1277181 | 1169833 | 1080265 | 1003841 | 937799 | 878093 | 827601 | 779405 | 738979 | 701888
Model | 1278285 | 1171761 | 1081626 | 1004367 | 937409 | 878821 | 827125 | 781174 | 740060 | 703057
A% | 0086 0.165 0.126 0052 | -0.042 | 0.083 | -0.057 | 0.226 | 0.146 | 0.166
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HUMAN CHROMOSOME Xt 20:

n ] 2 3 4 5 6 7 8 9 10
A

Real | 16455618 | 8229975 | 5484278 | 4115241 | 3289454 | 2742600 | 2350654 | 2057494 | 1828885 | 1645507
Model | 16455618 | 8227809 | 5485206 | 4113905 | 3291124 | 2742603 | 2350803 | 2056952 | 1828402 | 1645562
A% 0 -0.026 0017 | -0.032 0.051 0.000 0.006 | -0.026 | -0.026 0.003
P —
T

Real | 16643030 | 8316491 | 5548589 | 4159012 | 3330684 | 2772383 | 2379936 | 2079142 | 1850401 | 1664869
Model | 16643030 | 8321515 | 5547677 | 4160758 | 3328606 | 2773838 | 2377576 | 2080379 | 1849226 | 1664303
A% 0 0.060 | -0.016 0.042 | -0.062 0.052 | -0.099 0.059 | -0.0e4 | -0.034
P —

C

Real | 13037092 | 6520503 | 4345713 | 3260325 | 2606410 | 2173376 | 1861524 | 1629800 | 1448575 | 1303152
Model | 13037092 | 6518546 | 4345697 | 3259273 | 2607418 | 2172849 | 1862442 | 1629637 | 1448566 | 1303709
A% 0 -0.030 0.000 | -0.032 0.039 | -0.024 0.049 | -0.010 | -0.001 0.043
P —
G

Real | 13098788 | 6550295 | 4366257 | 3274054 | 2620355 | 2184056 | 1869956 | 1637885 | 1453749 | 1309922
Model | 13098788 | 6549394 | 4366263 | 3274697 | 2619758 | 2183131 | 1871255 | 1637349 | 1455421 | 1309879
A% 0 -0.014 0.000 0020 | -0.023 | -0.042 0.069 | -0.033 0115 | -0.003

n 11 12 13 14 15 16 17 18 19 20

A

Real | 1496007 | 1371789 | 1265386 | 1175105 | 1095622 | 1029567 | 968278 | 914478 | 866222 | 823656
Model | 1495965 | 1371302 | 1265817 | 1175401 | 1097041 | 1028476 | 967978 | 914201 | 866085 | 822781
A% | -0.003 | -0.036 0.034 0.025 0129 | -0.106 | -0.031 | -0.030 | -0.016 | -0.106
T —

T

Real | 1512478 | 1385879 | 1279293 | 1188990 | 1110146 | 1039270 | 978127 | 925428 | 875327 | 832115
Model | 1513003 | 1386919 | 1280233 | 1188788 | 1109535 | 1040189 | 979002 | 924613 | 875949 | 832152
A% 0.035 0.075 0.073 -0.017 | -0.055 0.088 | 0.089 | -0.088 | 0.071 | 0.004
T —

C

Real |1185877 | 1086994 | 1003471 931671 | 869195 | 814890 | 766756 | 724319 | 686373 | 651100
Model | 1185190 | 1086424 | 1002853.231 | 931221 | 869139 | 814818 | 766888 | 724283 | 686163 | 651855
A% | -0.058 | -0.052 -0.062 -0.048 | -0.006 | -0.009 | 0017 | -0.005 | -0.031 | 0.116
e S—
G

Real |1190595 | 1091548 | 1008352 935267 | 874004 | 818432 | 771222 | 726582 | 689678 | 654856
Model | 1190799 | 1091566 | 1007599 935628 | 873253 | 818674 | 770517 | 727710 | 683410 | 654939
A% 0.017 0.002 -0.075 0.039 | -0.086 0.030 | -0.032 | 0155 | -0.039 | 0.013
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HUMAN CHROMOSOME Xz 21:

n 1 2 3 4 5 6 7 8 9 10
A

Real | 9943435 | 4970936 | 3313355 | 2487369 | 1989007 | 1656802 | 1421123 | 1244934 | 1104807 | 994803
Model | 9943435 | 4971718 | 3314478 | 2485859 | 1988687 | 1657239 | 1420491 | 1242929 | 1104826 | 994344
A% 0 0.016 0.034 | -0.061 | -0.016 0026 | -0.045 | -0.161 0.002 | -0.046
e —
T

Real | 9882679 | 4943311 | 3294026 | 2470227 | 1974626 | 1646396 | 1410786 | 1234295 | 1097760 | 988154
Model | 9882679 | 4941339.5 | 3294226 | 2470670 | 1976536 | 1647113 | 1411811 | 1235335 | 1098075 | 988268
A% 0 -0.040 0.006 0.018 0.097 0.044 0.073 0.084 0.029 | 0012
e —
C

Real | 6864570 | 3430992 | 2287342 | 1715863 | 1372069 | 1144468 | 980695 | 857828 | 762589 | 684712
Model | 6864570 | 3432285 | 2288190 | 1716143 | 1372914 | 1144095 | 980653 | 858071 | 762730 | 686457
A% 0 0.038 0.037 0.016 0.062 | -0.033 | -0.004 0.028 0.018 | 0.254
e —
G

Real | 6852178 | 3426192 | 2286230 | 1712258 | 1372870 | 1142809 | 979231 | 855800 | 761826 | 686617
Model | 6852178 | 3426089 | 2284059 | 1713045 | 1370436 | 1142030 | 978883 | 856522 | 761353 | 685218
A% 0 -0.003 -0.095 | 0046 | -0178 | -0.068 | -0.036 0.084 | -0.062 | -0.204
n 11 12 13 14 15 16 17 18 19 20

A

Real | 903739 | 829760 764723 | 710220 | 662894 | 621827 | 584835 | 552523 | 522905 | 497692
Model | 903949 | 828620 764880 | 710245 | 662896 | 621465 | 584908 | 552413 | 523339 | 497172

A% | 0023 | -0.138 0.020 0.004 | 0.000 | -0.058 | 0.002 | -0.020 | 0.083 | -0.105
1 —

T

Real | 898955 | 822131 760965 | 705748 | 657856 | 617208 | 581111 | 549253 | 521214 | 493623
Model | 898425 | 823557 760206 | 705906 | 658845 | 617667 | 581334 | 549038 | 520141 | 494134

A% | -0.059 | 0173 -0.100 0022 | 0150 | 0074 | 0.038 | -0.039 | -0.206 | 0.103
e —

C

Real | 623023 | 572393 527261 | 490069 | 456929 | 428977 | 404134 | 381875 | 360969 | 342279
Model | 624052 | 572048 | 528043.8462 | 490326 | 457638 | 429036 | 403798 | 381365 | 361293 | 343229

A% | 0.165 | -0.060 0.148 0053 | 0155 | 0.014 | -0.083 | -0.134 | 0.080 | 0.277
e —

G

Real | 623635 | 570953 527272 | 489883 | 458515 | 428418 | 402966 | 379841 | 360327 | 343548
Model | 622925 | 571015 527091 | 489441 | 456812 | 428261 | 403069 | 380677 | 360641 | 342609

A% | -0.114 | 0011 0.034 0090 | 0373 | 0.037 | 0.026 | 0219 | 0.087 | -0.274
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HUMAN CHROMOSOME Xe 22:
n 1 2 3 4 5 6 7 8 9 10
A
Real | 10382214 | 5190842 | 3459864 | 2595694 | 2077171 | 1731161 | 1483055 | 1299585 | 1153447 | 1038681
Model | 10382214 | 5191107 | 3460738 | 2595554 | 2076443 | 1730369 | 1483173 | 1297777 | 1153579 | 1038221
A% 0 0.005 0.025 | -0.005 | -0.035 | -0.046 0008 | -0.139 | 0.011 | -0.044
T —
T
Real | 10370725 | 5185385 | 3456366 | 2593027 | 2072914 | 1727140 | 1481917 | 1296304 | 1152409 | 1035658
Model | 10370725 | 5185362.5 | 3456908 | 2592681 | 2074145 | 1728454 | 1481532 | 1296341 | 1152303 | 1037073
A% 0 0.000 0016 | -0.013 | 0.059 0076 | -0.026 | 0003 | -0.009 0.136
S —
C
Real | 9160652 | 4579249 | 3054480 | 2290057 | 1832851 | 1526026 | 1308193 | 1144240 | 1018445 | 916325
Model | 9160652 | 4580326 | 3053551 | 2290163 | 1832130 | 1526775 | 1308665 | 1145082 | 1017850 | 916065
A% 0 0.024 -0.030 0005 | -0.039 | 0.043 0.036 0073 | -0.058 | -0.028
T —
G
Real | 9246186 | 4624413 | 3082546 | 2311165 | 1849021 | 1542299 | 1321091 | 1154840 | 1026784 | 925316
Model | 9246186 | 4623093 | 3082062 | 2311547 | 1849237 | 1541031 | 1320884 | 1155773 | 1027354 | 924619
A% 0 -0.029 -0.016 0.017 0012 | -0.082 | -0.016 | 0.081 0.055 | 0.075
n 11 12 13 14 15 16 17 18 19 20
A
Real | 943041 | 865385 799039 | 741397 | 692782 | 650027 | 611022 | 577311 | 547254 | 519683
Model | 943838 | 865185 798632 | 741587 | 692148 | 648888 | 610718 | 576790 | 546432 | 519111
A% | 0084 | 0.023 -0.051 0.026 | -0.092 | -0.175 | -0.050 | -0.090 | -0.150 | -0.110
S S—
T
Real | 942204 | 864308 797990 | 741032 | 690936 | 647455 | 608940 | 575783 | 544903 | 517451
Model | 942793 | 864227 797748 | 740766 | 691382 | 648170 | 610043 | 576151 | 545828 | 518536
A% | 0062 | -0.009 -0.030 -0.036 | 0064 | 0110 | 0.181 | 0.064 | 0169 | 0.209
1 —
C
Real | 832972 | 763117 704336 | 653318 | 610194 | 572505 | 539776 | 508635 | 483384 | 458159
Model | 832787 | 763388 | 704665.5385 | 654332 | 610710 | 572541 | 538862 | 508925 | 482140 | 458033
A% | 0022 | 0035 0.047 0.155 | 0.085 | 0.006 | -0.170 | 0.057 | -0.258 | -0.028
S S—
G
Real | 841763 | 770501 710928 | 661382 | 616739 | 577496 | 543782 | 513809 | 485496 | 462695
Model | 840562 | 770516 711245 | 660442 | 616412 | 577887 | 543893 | 513677 | 486641 | 462309
A% | -0.143 | 0.002 0.045 -0.142 | -0.053 | 0.06e8 | 0.020 | -0.026 | 0235 | -0.083
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HUMAN CHROMOSOME X:

n ] 2 3 4 5 b 7 8 9 10

A

Real | 46754807 | 23379570 | 15586222 | 11691762 | 9347711 | 7796517 | 6678814 | 5842454 | 5195039 | 4676912
Model | 46754807 | 23377404 | 15584936 | 11688702 | 9350961 | 7792468 | 6679258 | 5844351 | 5194979 | 4675481
A% 0 0.009 0.008 0.026 0035 | -0.052 | 0007 | 0032 | 0001 | -0.031
e —

T

Real | 46916701 | 23458854 | 15637186 | 11727912 | 9386193 | 7817480 | 6701049 | 5864619 | 5211521 | 4692629
Model | 46916701 | 23458350.5 | 15638900 | 11729175 | 9383340 | 7819450 | 6702386 | 5864588 | 5212967 | 4691670
A% 0 0.002 0011 0.011 0030 | 0025 | 0020 | 0001 | 0028 | -0.020
e —

C

Real | 30523780 | 15259528 | 10174897 | 7628008 | 6104748 | 5085872 | 4359615 | 3815823 | 3392971 | 3050051
Model | 30523780 | 15261890 | 10174593 | 7630945 | 6104756 | 5087297 | 4360540 | 3815473 | 3391531 | 3052378
A% 0 0.015 -0.003 0.038 0.000 0028 | 0021 | -0009 | -0.042 | 0.076
1 ——

G

Real | 30697741 | 15348565 | 10232706 | 7675576 | 6139953 | 5115637 | 4388099 | 3838736 | 3410804 | 3069712
Model | 30697741 | 15348871 | 10232580 | 7674435 | 6139548 | 5116290 | 4385392 | 3837218 | 3410860 | 3069774
A% 0 0.002 -0.001 0015 | 0007 | 0013 | -0.062 | -0.040 | 0002 | 0.002

n 11 12 13 14 15 16 17 18 19 20

A

Real | 4250061 | 3897979 | 3594446 | 3340416 | 3114934 | 2921407 | 2749805 | 2597296 | 2458714 | 2339575
Model | 4250437 | 3896234 | 3596524 | 3339629 | 3116987 | 2922175 | 2750283 | 2597489 | 2460779 | 2337740
A% | 0009 | -0.045 0.058 0.024 | 0066 | 0026 0017 | 0007 | 0084 | -0.078
e —

T

Real | 4269518 | 3908087 | 3609269 | 3349357 | 3128846 | 2931491 | 2759688 | 2606740 | 2470003 | 2346786
Model | 4265155 | 3909725 | 3608977 | 3351193 | 3127780 | 2932294 | 2759806 | 2606483 | 2469300 | 2345835
A% | 0102 | 0042 -0.008 0055 | -0.034 | 0027 0004 | -0.010 | -0.028 | -0.041
e —

C

Real | 2771659 | 2543281 | 2346589 | 2180109 | 2037286 | 1907746 | 1795586 | 1695309 | 1607013 | 1523460
Model | 2774889 | 2543648 | 2347983.077 | 2180270 | 2034919 | 1907736 | 1795516 | 1695766 | 1606515 | 1526189
A% | 0116 0014 0.053 0007 | 0116 | -0.001 | -0.004 | 0027 | -0.031 | 0179
1 —

G

Real | 2789946 | 2558411 | 2364541 | 2193908 | 2045136 | 1920171 | 1806271 | 1705825 | 1616529 | 1534831
Model | 2790704 | 2558145 | 2361365 | 2192696 | 2046516 | 1918609 | 1805749 | 1705430 | 1615671 | 1534887
A% | 0027 | -0.010 -0.135 0055 | 0067 | -0.081 | -0.029 | -0.023 | -0.053 | 0.004
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HUMAN CHROMOSOME Y:
n 1 2 3 4 5 6 10
A
Real | 7886192 | 3943767 | 2628327 | 1972285 | 1575702 | 1315547 | 1127472 | 986328 | 877065 | 788691
Model | 7886192 | 3943096 | 2628731 | 1971548 | 1577238 | 1314365 | 1126599 | 985774 | 876244 | 788619
A% 0 -0.017 0.015 -0.037 | 0097 | -0.0%0 | -0.078 | -0.056 | -0.094 | -0.009
1 —
T
Real | 7956168 | 3979257 | 2653031 | 1990291 | 1589884 | 1326685 | 1136107 | 994568 | 883575 | 794453
Model | 7956168 | 3978084 | 2652056 | 1989042 | 1591234 | 1326028 | 1136595 | 994521 | 884019 | 795617
A% 0 -0.029 -0.037 | 0063 | 0085 | -0.050 | 0.043 | -0.005 | 0.050 | 0.146
S —
C
Real | 5285789 | 2643050 | 1761782 | 1320660 | 1058536 | 880195 | 755403 | 660391 | 586535 | 529537
Model | 5285789 | 2642894.5 | 1761930 | 1321447 | 1057158 | 880965 | 755113 | 660724 | 587310 | 528579
A% 0 -0.006 0.008 0060 | -0.130 | 0087 | -0.038 | 0050 | 0.132 | -0.181
S —
G
Real | 5286894 | 2641447 | 1761874 | 1320524 | 1058883 | 880083 | 754592 | 660593 | 587831 | 528820
Model | 5286894 | 2643447 | 1762298 | 1321724 | 1057379 | 881149 | 755271 | 660862 | 587433 | 528689
A% 0 0.076 0.024 0091 | -0.142 | 0121 0.090 | 0.041 | -0.068 | -0.025
n 11 12 13 14 15 16 17 18 19 20
A
Real | 716673 | 658783 | 607174 563899 | 525387 | 493101 | 464190 | 439070 | 414918 | 394355
Model | 716927 | 657183 | 606630 563299 | 525746 | 492887 | 463894 | 438122 | 415063 | 354310
A% | 0.035 | -0.244 -0.090 -0.106 | 0.06e8 | -0.043 | -0.064 | -0.216 | 0.035 | -0.012
T E—
T
Real | 723083 | 663210 | 611104 567935 | 529710 | 496740 | 467855 | 441926 | 417973 | 397615
Model | 723288 | 663014 | 612013 568298 | 530411 | 497261 | 468010 | 442009 | 418746 | 397808
A% | 0.028 | -0.030 0.149 0.0e4 | 0132 | 0105 | 0.033 | 0019 | 0.185 | 0.049
T E—
C
Real | 480691 | 439316| 407258 377448 | 352984 | 330530 | 310832 | 292459 | 278430 | 264369
Model | 480526 | 440482 | 406599.1538 | 377556 | 352386 | 330362 | 310929 | 293655 | 278199 | 264289
A% | -0.034 | 0.265 -0.162 0.029 | -0.170 | -0.051 | 0.031 | 0407 | -0.083 | -0.030
1 —
G
Real | 480922 | 439947 | 406383 377501 | 352916 | 330573 | 310943 | 294052 | 278944 | 264408
Model | 480627 | 440575 | 406684 377635 | 352460 | 330431 | 310994 | 293716 | 278258 | 264345
A% | 0.061 | 0.142 0.074 0036 | -0.129 | -0.043 | 0.016 | -0.114 | -0.247 | -0.024
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Matrix representations of basis units of 32-

Appendix

dimensional hyperbolic

numbers

32-dimensional hyperbolic numbers
.+as1e31. Each of these matrices is a permutation ma-

The Appendix contains matrix representations of basis units eo, €1, €2,
trix having in each row and in each column onle one entry 1, all other

..., esr of

do€otaiert+azert...

matrix cells contain zero. Each of matrices is a matric of dyadic shifts

described above in the

Appendix I.

10000000000000000000000000000000
010000000000000000000000000000090
001000000000000000000000000000090
00010000000000000000000000000000
00001000000000000000000000000000
00000100000000000000000000000000
0000001210000000000000000000000000
00000001000000000000000000000000
00000000100000000000000000000000
0000000001710000000000000000000000
000000000017000000000000000000000
00000000000100000000000000000000
00000000000010000000000000000000
0000000000000170000000000000000090
0000000000000017000000000000000090
0000000000000001710000000000000000
0000000000000000100000000000009090
00000000000000000100000000000000
0000000000000000001000000000009090
000000000000000000024000000000000
000000000000000000001000000000090
00000000000000000000010000000000

o (the unit matrix):
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000000000G0000000000000100000900040
000000000G00000000000000100000000
000000000000000000000G000%210000000
000000000G00000000000000002090090000
000000000000000000000G00000210090000
000000000G000000000000000000210000
000000000000000000000G0000000%140090
000000000000000000000G00000000100
000000000G000000000000000000090010
00000000000000000000000000000001

€1

010000000G0000000000000000000900040
10000000000000000000000000000000
00017000000000000000000000000900040
00170000000000000000000000000900040
0000010000000000000000000000009090
00001700000000000000000000000900040
000000017000000000000000000000000
0000001000000000000000000000900040
0000000001710000000000000000000000
0000000017000000000000000000000900
0000000000027000000000000000000040
0000000000171000000000000000000000
000000000G0000200000000000000900040
00000000000010000000000000000000
000000000G0000001000000000000900040
000000000G0000010000000000000900040
000000000000000001000000000000090
000000000G0000000170000000000000040
0000000000000000000100000000009090
000000000G0000000002100000000000040
0000000000000000000001000000009090
000000000G000000000002000000000040
000000000G000000000000001Y000000040
0000000000000000000000150000000090
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000000000G000000000000000020090000
000000000G000000000000000170000000
000000000000000000000G00000010000
000000000G0000000000000000010909000
000000000000000000000G00000000100
000000000G00000000000000000002%000
000000000000000000000G00000000001
000000000000000000000000000000140

€.

00100000000000000000000000000000
000100000000000000000000000000090
10000000000000000000000000000000
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