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Abstract. The article is devoted to applications of 2-dimensional hyperbolic numbers and 
their algebraic 2n-dimensional extensions in modeling some genetic and cultural phenomena. 
Mathematical properties of hyperbolic numbers and of their bisymmetric matrix 
representations are described in a connection with their application to analyze the following 
structures: alphabets of DNA nucleobases; inherited phyllotaxis phenomena; Punnett squares 
in Mendelian genetics; the psychophisical Weber-Fechner law; long literary Russian texts (in 
their special binary representations). New methods of algebraic analysis of the harmony of 
musical works are proposed, taking into account the innate predisposition of people to music. 
The hypothesis is put forward that sets of eigenvectors of matrix representations of basis units 
of 2n-dimensional hyperbolic numbers play an important role in transmitting biological 
information and that they can be considered as one of foundations of coding information at 
different levels of biological organization. In addition, the hypothesis about some analogue of 
the Weber-Fechner law for sequences of spikes in single nerve fibers is formulated. The 
proposed algebraic approach is connected with the theme of a grammar of biology and 
applications of bisymmetric doubly stochastic matrices. Applications of hyperbolic numbers 
reveal hidden interrelations between structures of different biological and physical 
phenomena. They lead to new approaches in mathematical modeling genetic phenomena and 
innate biological structures.  
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1 Introduction  

Living bodies are a huge number of various molecules interconnected by quantum-
mechanical and stochastic relationships. These sets of molecules have an amazing ability to 
inherit the biological characteristics of organisms to next generations. G. Mendel, in his ex-
periments with plant hybrids, found that the transmission of traits during the crossing of or-
ganisms occurs in accordance with certain algebraic rules, despite the colossal heterogeneity 
of molecular structures of their bodies. In genetics textbooks, these algebraic rules of polyhy-
brid crossbreeding are presented since 1906 in the form of Punnett squares resembling math-
ematical square matrices in their structure. Mendel also proposed a model for explanation of 
the observed rules, introducing the idea of binary-oppositional forms of the existence of fac-
tors of inheritance of traits: dominant and recessive forms.                                                               

This article continues the search for algebraic models of the natural features of genetic 
structures and of inherited macrobiological phenomena. As known, the key difference         
between living and inanimate objects is as follows: inanimate objects are controlled by the 
average random movement of millions of their particles, while in a living organism, genetic 
molecules have a dictatorial effect on the entire living organism. By this reason, the author 
focuses on studing of the system of genetic alphabets and of the genetic code in the form of 
mathematical matrices constructed on binary-oppositional features of DNA alphabets. 

On this way the article addresses the issues of coding information in the genetic system. 
In a broad sense, code is usually understood as correspondence between two sets of charac-
ters. For example, from this point of view a usual phone book can be considered as a coding 
system, in which its phone numbers encodes names of people. But this article considers anal-
ogies of the genetic code with more complex kinds of codes termed as algebraic codes and 
algebra-geometric codes, which are widely used in modern communication technologies for 
algorithmic providing a noise-immunity transfer of information. Obviously, the genetic cod-
ing of information has noise immunity, which allows the transfer of genetic information from 
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ancestors to descendants along the generation chain in very difficult and different living con-
ditions of organisms. The study of possible algorithms for noise-immunity transfer of genetic 
information is an important scientific task, the successful solution of which can give a lot of 
useful for engineering, medical, biotechnological and othersciences. It is about unraveling the 
bioinformational patents of living matter. 

This article draws special attention to structural analogies of the molecular system of ge-
netic coding with one of known types of multidimensional hypercomplex numbers commonly 
called hyperbolic numbers (although other their names are also used in the literature: double 
numbers, Lorentz numbers, etc.). As known, this type of hypercomplex numbers can be rep-
resented by bisymmetric matrices, which - in special cases - are doubly stochastic matrices 
having many applications in linear programming, theory of games and optimisations, etc. and 
interesting for their apllication in algebraic biology.  

The main task of mathematical natural sciences is the creation of mathematical models of 
natural systems. Development of models and formalized theories depends highly on those 
mathematical notions and instruments, on which they are based. Modern science knows that 
different natural systems could possess their own individual geometries and their own indi-
vidual arithmetic [Kline, 1982]. Various kinds of multi-dimensional numbers – complex 
numbers, hyperbolic numbers, dual numbers, quaternions and other hypercomplex numbers – 
are used in different branches of modern science. They have played the role of the magic tool 
for development of theories and calculations in problems of heat, light, sounds, fluctuations, 
elasticity, gravitation, magnetism, electricity, current of liquids, quantum-mechanical phe-
nomena, special theory of relativity, nuclear physics, etc. For example, in physics thousands 
of works - only in XX century – were devoted to quaternions of Hamilton (their bibliography 
is in [Gsponer, Hurni, 2008].     

 The idea about special mathematical peculiarities of living matter exists long ago. For   
example V.I. Vernadsky put forward the hypothesis on a non-Euclidean geometry of living 
nature [Vernadsky, 1965]. It seems an important task to investigate what systems of          
multi-dimensional numbers are connected or can be connected with ensembles of parameters 
of the genetic code and inherited biological peculiarities. Some results of such investigation 
are presented in this article. They are connected with hyperbolic numbers and their algebraic 
extensions, matrix forms of which give a new class of mathematical models in biology.     
Author’s results described in this article are related in particularly to works by O. Bodnar 
who noted that ontogenetic transformations of phyllotaxis lattices in plants can be formaly 
modelled by hyperbolic rotations, which are particular cases of hyperbolic numbers and are 
well known in the special theory of relativity (Lorentz transformations) [Bodnar, 1992, 
1994]. On this basis he stated that geometry of living bodies has structural relations with the 
Minkovsky geometry. Another evidence in favor of structural relaltions of inherited biologi-
cal phenomena with hyperbolic rotations was shown in the work [Smolyaninov, 2000], which 
analyzed problems of locomotion control and put forward ideas of the “locomotor theory of 
relativity”. 

It is obvoius that all physiological systems must be argued with a genetic coding system in 
order to be genetically encoded for their survival and inheritance into next generations. For 
this reason, the structural organization of physiological systems can bear the imprint of the 
structural features of molecular genetic systems. Our study aims to identify such relationships 
of inherited physiological structures with the molecular genetic system. Taking into account 
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known data about ratios of musical harmony in parametric organization of DNA molecules, 
new algebraic approaches are proposed for analyzing hidden harmony of musical pieces. 

 
2    Matrix representations of DNA alphabets and hyperbolic numbers 
 
In DNA molecules DNA genetic information is written in sequences of 4 kinds of             
nucleobases: adenine A, cytosine C, guanine G and thymine T. They form a DNA alphabet of 
4 monoplets. In addition, DNA alphabets of 16 doublets and 64 triplets also exist. It is known 
[Fimmel, Danielli, Strüngmann, 2013; Petoukhov, 2008; Petoukhov, He, 2010; Stambuk, 
1999] that these four nucleobases A, C, G and T are interrelated due to their symmetrical  
peculiarities into the united molecular ensemble with its three pairs of binary-oppositional 
traits or indicators (Fig. 2.1):   

1) Two letters are purines (A and G), and the other two are pyrimidines (C and T). From the 
standpoint of these binary-oppositional traits one can denote C = T = 0, A = G = 1; 

2) Two letters are amino-molecules (A and C) and the other two are keto-molecules (G and 
T). From the standpoint of these traits one can designate A = C = 0, G = T = 1;  

3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 hydrogen bonds, 
respectively. From the standpoint of these binary traits, one can denote C = G = 0,          
A = T = 1.  

 

 

№  Binary Symbols   C A G T/U 

1 01 — pyrimidines 
11 — purines  

01 11 11 01 

2 02 — amino 
12 — keto 

02 02 12 12 

3 03 — three hydrogen bonds; 
13 — two hydrogen bonds 

03 13 03 13 
 

	
Fig.	2.1.		Left:	the	four	nitrogenous	bases	of	DNA:	adenine	A,	guanine	G,	cytosine	C,	and	
thymine	 T.	 Right:	 three	 binary	 sub-alphabets	 of	 the	 genetic	 alphabet	 on	 the	 basis	 of	
three	pairs	of	binary-oppositional	traits	or	indicators.		
 

Taking into account the phenomenological fact that each of DNA-letters C, A, T and G is 
uniquely defined by any two kinds of mentioned binary-oppositional indicators (Fig. 2.1), 
these genetic letters can be represented by means of corresponding pairs of binary symbols, 
for example, from the standpoint of two first binary-oppositional indicators. It is convenient 
for us - for the further description - use at the first position of each of letters its binary symbol 
from the second pair of binary-oppositional indicators (the indicator "amino or keto": 
C=A=0, T=G=1) and at the second positions of each of letters its binary symbol from the first 
pair of binary-oppositional indicators (the indicator "pyrimidine or purine": C=T=0, A=G=1). 
In this case the letter C is represented by the binary symbol 0201 (that is as 2-bit binary   
number), A – by the symbol 0211, T – by the symbol 1201, G – by the symbol 1211. Using  
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these representations of separate letters, each of 16 doublets is represented as the concatena-
tion of the binary symbols of its letters (that is as 4-bit binary number): for example, the  
doublet CC is represented as 4-bit binary number 02010201, the doublet CA – as 4-bit binary 
number 02010211, etc. By analogy, each of 64 triplets is represented as the concatenation of 
the binary symbols of its letters (that is as 6-bit binary number): for example, the triplet CCC 
is represented as 6-bit binary number 020102010201, the triplet CCA – as 6-bit binary number 
020102010211, etc. In general, each of n-plets is represented as the concatenation of the binary 
symbols of its letters (below we will not show these indexes 2 and 1 of separate letters in  
binary representations of n-plets but will remember that each of positions corresponds to its 
own kind of indicators from the first or from the second set of indicators in Fig. 2.1). 

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, … 
4n n-plets in a form of appropriate square tables (Fig. 2.2), which rows and columns are    
numerated by binary symbols in line with the following principle. Entries of each column are 
numerated by binary symbols in line with the first set of binary-oppositional indicators in Fig. 
2.1 (for example, the triplet CAG and all other triplets in the same column are the 
combination “pyrimidine-purin-purin” and so this column is correspondingly numerated 
011). By contrast, entries of each of rows are numerated by binary numbers in line with the 
second set of indicators (for example, the same triplet CAG and all other triplets in the same 
row are the combination “amino-amino-keto” and so this row is correspondingly numerated 
001). In such tables (Fig. 2.2), each of 4 letters, 16 doublets, 64 triplets, … takes 
automatically its own individual place and all of them are arranged in a strict order. 

It is essential that these 3 separate genetic tables form the joint tensor family of matrices 
since they are interrelated by the known operation of the tensor (or Kronecker) product of 
matrices [Bellman, 1960]. So they are not simple tables but matrices. By definition, under 
tensor multiplication of two matrices, each of entries of the first matrix is multiplied with the 
whole second matrix. The second tensor power of the (2*2)-matrix [C, A; T, G] of 4 DNA-
letters gives automatically the (4*4)-matrix of 16 doublets; the third tensor power of the same 
(2*2)-matrix of 4 DNA-letters gives the (8*8)-matrix of 64 triplets with the same strict     
arrangement of entries as in Fig. 2.2. In this tensor construction of the tensor family of genet-
ic matrices, data about binary-oppositional traits of genetic letters C, A, T and G are not used 
at all. So, the structural organization of the system of DNA-alphabets is connected with the 
algebraic operation of the tensor product. It is important since the operation of the tensor 
product is well known in mathematics, physics and informatics, where it gives a way of    
putting vector spaces together to form larger vector spaces. The following quotation speaks 
about the crucial meaning of the tensor product: «This construction is crucial to understand-
ing the quantum mechanics of multiparticle systems» [Nielsen, Chuang, 2010, p. 71]. 

 
	

	

	

	
	

	

	

	 0	 1	

0	 C	 A	

1	 T	 G	
	

	 	 00	 01	 10	 11	

00	 CC	 CA	 AC	 AA	

01	 CT	 CG	 AT	 AG	

10	 TC	 TA	 GC	 GA	

11	 TT	 TG	 GT	 GG	
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	 000		 001	 010		 011	 100	 101	 110	 111	

000		 CCC	 CCA	 CAC	 CAA	 ACC	 ACA	 AAC	 AAA	

001		 CCT	 CCG	 CAT	 CAG	 ACT	 ACG	 AAT	 AAG	

010		 CTC	 CTA	 CGC	 CGA	 ATC	 ATA	 AGC	 AGA	

011		 CTT	 CTG	 CGT	 CGG	 ATT	 ATG	 AGT	 AGG	

100		 TCC	 TCA	 TAC	 TAA	 GCC	 GCA	 GAC	 GAA	

101	 TCT	 TCG	 TAT	 TAG	 GCT	 GCG	 GAT	 GAG	

110	 TTC	 TTA	 TGC	 TGA	 GTC	 GTA	 GGC	 GGA	

111	 TTT	 TTG	 TGT	 TGG	 GTT	 GTG	 GGT	 GGG	

	
Fig.	 2.2.	 The	 square	 tables	 of	 DNA-alphabets	 of	 4	 nucleotides,	 16	 doublets	 and																			
64	triplets	with	a	strict	arrangement	of	all	components.	Each	of	tables	is	constructed	in	
line	with	the	principle	of	binary	numeration	of	its	column	and	rows	on	the	basis	of	bina-
ry-oppositional	traits	of	the	nitrogenous	bases	(see	explanations	in	the	text).		

 

In the DNA double helix, complementary nucleobases C and G are connected by 3 hydro-
gen bonds and complementary nucleobases A and T are connected by 2 hydrogen bonds. One 
can denote their typical connections with hydrogen bonds by expressions C=G=3 and 
A=T=2. Replacing in the (2*2)-matrix [C, A; T, G] (Fig. 2.2) symbols C, A, T and G by their 
numbers of hydrogen bonds 3 and 2, a numeric matrix [3, 2; 2, 3] appears (Fig. 2.3). The se-
cond and the third tensor powers of this matrix [3, 2; 2, 3](n), where n = 2, 3, generate numer-
ic (4*4)- and (8*8)-matrices in Fig. 2.3, which automatically represent symbolic matrices of 
16 doublets and 64 triplets in Fig. 2.2 from the standpoint of the product of their numbers of 
hydrogen bonds. For example the doublet CA is replaced by number 3*2=6 and the triplet 
AGT is replaced by number 2*3*2=12. These genetic matrices are closely connected by their 
structures with so called matrices of dyadic shifts, which are known in digital information 
technology of noise immune coding and which are described below in the Appendix I. See 
also some thematic details and argumentations for using 2n-dimensional hyperbolic numbers 
and dyadic shifts in matrix genetics and algebraic biology in ([Petoukhov, 2019 c]). 

 
	

	
	

	

	

3 2 

2 3 
	

	 9 6 6 4 

6 9 4 6 

6 4 9 6 

4 6 6 9 
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27 18 18 12 18 12 12 8 

18 27 12 18 12 18 8 12 

18 12 27 18 12 8 18 12 

12 18 18 27 8 12 12 18 

18 12 12 8 27 18 18 12 

12 18 8 12 18 27 12 18 

12 8 18 12 18 12 27 18 

8 12 12 18 12 18 18 27 

 
Fig. 2.3. Numeric representations of the tensor family of symbolic matrices (Fig. 2.2) of    

4 monoplets, 16 doublets and 64 triplets from the standpoint of their numeric characteristics 
of hydrogen bonds C=G=3 and A=T=2. 
 
 Fig. 2.4 shows that the matrix [3, 2; 2, 3] is decomposed into sum of two sparse     
matrices, one of which is the identity matrix (j0 = [1, 0; 0, 1]) and the second matrix                                
j1 = [0, 1; 1, 1]) represents imaginary unit of hyperbolic numbers since j1

2 = j0. The set of 
these matrices j0 and j1 is closed relative to multiplication and defines the multiplication table 
of algebra of hyperbolic numbers (Fig. 2.4, right). 
 

3, 2 
2, 3 

 
= 3* 

1, 0 
0, 1 

 
+ 2* 

0, 1 
1, 0 

 
= 3*j0 +2*j1; 

 
 
    Fig. 2.4. The decomposition of the matrix [3, 2; 2, 3] into two sparse matrices, where    
matrices j0 and j1 are matrix representations of real and imaginary units of algebra of 
hyperbolic numbers with the shown multiplication table of these units. 
  
    Here we should remind that two-dimensional hyperbolic numbers are written in linear   
notation as m1 = a*1+b*j (where 1 is the real unit; j is the imaginary unit with the property        
j ≠ ±1 but j2 = 1; a, b are real coefficients). These numbers are used in physics and mathemat-
ics and they have also synonimical names: "split-complex numbers", “double numbers” and 
"perplex numbers". The collection of all hyperbolic numbers forms algebra over the field of 
real numbers [Harkin, Harkin, 2004; Kantor, Solodovnikov, 1989]. The algebra is not a      
division algebra or field since it contains zero divisors. Addition and multiplication of       
hyperbolic numbers are defined by (2.1):  
 
                         (x+jy)+(u+jv)=(x+u)+j(y+v);     (x+jy)(u+jv)=(xu+yv)+j(xv+yu)            (2.1)  
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This multiplication is commutative, associative and distributes over addition.  

A hyperbolic number has its matrix form of representation: [a, b; b, a] = a*[1, 0; 0, 1] 
+b*[0, 1; 1, 0] where [1, 0; 0, 1] is the identity matrix representing real basis unit;  [0, 1; 1, 0] 
represents imaginary basis unit. Fig. 2.4 shows the matrix representation of hyperbolic num-
bers a*1+b*j for the case a = 3 and b = 2. The symmetric matrices [1, 0; 0, 1] and [0, 1; 1, 0] 
representing these real and imaginary unites are orthogonal matrices.  

If a2-b2 = 1, then the matrix [a, b; b, a] defines hyperbolic rotations known in the    
special theory of relativity as Lorentz transformations. Hyperbolic rotations are usually     
expressed by a symmetric matrix (2.2) through hyperbolic cosine «cosh» and hyperbolic sine 
«sinh» since cosh2x– sinh2x= 1 [Collins Concise Dictionary, 1999; Shervatov, 1954; Stakhov, 
2009]: 

cosh x,   sinh x 
sinh x,   cosh x 

 
                                            (2.2) 

 
       Symmetric matrices that represent hyperbolic numbers have real eigenvalues and       
orthogonal eigenvectors (which distinguishes them from non-symmetic matrix representa-
tions of complex numbers). Such symmetric matrices form the basis of the theory of          
resonances of oscillatory systems with many degrees of freedom, and are also metric tensors 
from the point of view of Riemannian geometry. 

The second tensor power of the bisymmetric matrix [a, b; b, a], which represents   
hyperbolic numbers, is decomposed into 4 sparse matrices e0, e1, e2 and e3 with real            
coefficients aa, ab ba and bb (Fig. 2.5). The used decomposition is based on the known   
principle of dyadic shifts described below in the Appendix I. 

 The set of matrices e0, e1, e2 and e3 is closed relative to multiplication and satisfies to 
the multiplication table in Fig. 2.5. The set of these (4x4)-matrices corresponds to algebra of 
4-dimensional numbers aa*e0 + ab*e1 + ba*e2 + bb*e3, where the matrix e0 represents the 
real unit 1 and matrices e1, e2 and e3 represent imaginary units. These 4-dimensional numbers 
are algebraic extensions of 2-dimensional hyperbolic numbers and for simplicity they can be 
termed “4-dimensional hyperbolic numbers” (in our previous publications we termed them 
“hyperbolic matrions” [Petoukhov, 2008; Petoukhov, He, 2010]). Each of matrices e0, e1, e2 
and e3 is an orthogonal matrix with its determinant +1. 
    By comparing Fig. 2.3 and Fig. 2.5, one can see that the numeric (4*4)-matrix of hydrogen 
bonds in Fig. 2.3 represents 4-dimensional hyperbolic number 9e0+6e1+6e2+4e3 where e0 is 
the identity matrix representing real unit 1. By analogy, the numeric (8*8)-matrix in Fig. 2.3 
represents 8-dimensional hyperbolic number 27j0+18j1+18j2+12j3+18j4+12j5+12j6+8j7 where 
jk are basis units of 8-dimensional hyperbolic numbers. 
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Fig. 2.5. The decomposition of the matrix [a, b; b, a](2), representing 4-dimensional               
hyperbolic numbers, into 4 sparse matrices, the set of which is closed relative to                    
multiplication. The multiplication table for this set is shown at the right. The symbol 1      
denotes the identity matrix e0. 
 

In a general case, 2n-dimensional hyperbolic (or double) numbers are hypercomplex num-
bers and they possess, by definition, the following features. They contain 2n basis units ek 
(one real unit and 2n-1 imaginary units), which are interrelated by a symmetric table of their 
mutual multiplication where all ek

2 = +1 (k = 0, 1, 2,..., 2n-1). 
By analogy with Figs. 2.4 and 2.5, the higher tensor powers n = 3, 4, 5, … of the bisym-

metric matrix [a, b; b, a] produce bisymmetric matrices [a, b; b, a](n), which can be also     
decomposed into 2n sparse matrices, the set of which is closed relative to multiplication and 
which define appropriate multiplication tables of algebras of 2n-dimensional hypercomplex 
numbers mn (which were termed “hyperbolic matrions” of the order n in our previous           
publications [Petoukhov 2008; Petoukhov, He, 2010]). These decompositions use a structural 
similarity of the matrices [a, b; b, a](n) with matrices of dyadic shifts described below in the 
Appendix I. 

It is useful to rewrite the multiplication table in Fig. 2.5 into a form where all decimal in-
dexes of basis units e0, e1, e2 and e3 are shown in their binary notations: e00, e01, e10 and e11 
(Fig. 2.6).  

 

 
Fig. 2.6. The multiplication table in algebra of 4-dimensional hyperbolic numbers where   
indexes of basis units are shown in their binary notations e00, e01, e10 and e11 in contrast to 
their decimal notations e0, e1, e2 and e3 in Fig. 2.5. 

 
One can see from Fig. 2.6 that in all cases a result of the product of two basis units        

(ep*ek = es) is equal to that basis unit es whose binary index s is equal to a result of modulo-2 
addition for binary indexes p and k of the factors ep and ek (under the operation of modulo-2 

* e00 e01 e10 e11 
e00 e00 e01 e10 e11 
e01 e01 e00 e11 e10 
e10 e10 e11 e00 e01 
e11 e11 e10 e01 e00 
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addition the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1). In other words the    
following equation (2.3) for bimary indexes is true: 

 
                                                        ep*ek = ep+k                                                            (2.3) 

 
For example, a result of the product e2*e3 is equal to e1 since decimal indexes 2 and 3 are 

expressed by binary numbers 10 and 11 whose modulo-2 addition gives the binary number 01 
refered to decimal number 1. This method of binary operations with indexes to calculate a 
result of the product of any two basis units is true not only for 4-dimensional hyperbolic 
numbers but also for other 2n-dimensional hyperbolic numbers. The equation (2.3) is espe-
cially useful in cases of high values n when it is difficult to address to multiplication tables 
having 2n*2n sizes each time when you need to know a result es of the product of basis units 
ep*ek = es. (For example, the Appendix II contains matrix representations of basis units of 32-
dimensional hyperbolic numbers, which are useful for mathematical musicology). 

For this you should represent indexes p and k in their binary notation (inside a complete set 
of n-bit binary numbers) and calculate their binary sum p+k on the basis of the known opera-
tion of modulo-2 addition where the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1. 
The result of such modulo-2 addition is a searched index s in its binary notation. For exam-
ple, if you multiplicate two 23-dimensional hyperbolic numbers each other, the complete set 
of 3-bit binary numbers is the following: 000, 001, 010, 011, 100, 101, 110, 111 (they        
correspond decimal numbers 0, 1, 2, 3, 4, 5, 6, 7). To calculate a result of multuplication of 
basis units e3*e5, you take decimal indexes 3 and 5 in their binary notation 011 and 101. 
Their modulo-2 addition gives binary number 110, which corresponds decimal number 6. In 
such way we get the search result: e3*e5=e6. 
 
3 Hyperbolic and Fibonacci numbers in phyllotaxis modeling 
 
Fibonacci numbers Fn form an additive sequence such that each number is the sum of the two 
preceding ones: Fn = Fn-1 + Fn-2  (Table 3.1).  
 
                                   Table 3.1. The Fibonacci sequence. 

n 1 2 3 4 5 6 7 8 9 10 … 
Fn 1 1 2 3 5 8 13 21 34 55 … 

 
Fibonacci numbers are strongly related to the golden ratio φ = (1+50.5)/2. Binet’s formula 
(3.1) expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that 
the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases: 
 
                                               Fn = (φn – (-φ-1))/50.5                                                            (3.1) 
 
In biology, it has long been known that, for example, in many plant objects the spiral        
arrangement of their bioorganisms form ordered patterns (shoots of plants and trees, seeds in 
the heads of sunflowers, scales of coniferous cones and pineapples, etc.). These patterns are 
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determined by overlapping left and right oriented spiral lines - parastichies. To characterize 
phyllotaxis of such botanical objects, usually indicate two parameters: number of left spirals 
and number of right spirals, which are observed on the surface of phyllotaxis objects.      
Phyllotaxis of structures with such patterns is described by ratios of neighboring Fibonacci 
numbers: 
                             Fn+1/Fn :    2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, …                             (3.2)  
 
                (Fn+1/Fn) → (Fn+2/Fn+1): 2/1 → 3/2 → 5/3 → 8/5 → 13/8 → 21/13 →…         (3.3) 
 
The sequence (3.2) is termed the “parastichic sequence” [Jean ,2006; Petoukhov, 1981]. It 
seems natural to use 2-dimensional hyperbolic numbers for modeling these 2-parametric pat-
terns in phyllotaxis objects and their ontogenetic transformations. In this approach, proposed 
by the author, the sequence (3.2) of phyllotaxis ratios is transformed into additive sequences  
(3.4, 3.5) reflecting linear notation of appropriate hyperbolic numbers and their matrix repre-
sentations (we call sequences (3.4, 3.5) as parastichic sequences of hyperbolic numbers): 
 
           Fn+1 + jFn :  2 + j, 3 +j2, 5 + 3j, 8 + 5j, 13 +8j, 21 + 13j, 34 + 21j, ….                  (3.4)   
 
Fn+1, Fn 
Fn,  Fn+1 

 
: 

2, 1 
1, 2 

 
, 

3, 2 
2, 3 

 
, 

5, 3 
3, 5 

 
, 

8, 5 
5, 8 

 
, 

13, 8 
 8, 13 

 
… 

 
                    (3.5) 

         
In this approach, to define a hyperbolic number u+jv, which transforms a hyperbolic number 
Fn+1 + jFn into its neighboring hyperbolic number Fn+2 + jFn+1 from the sequence (3.4), the    
following simple equation (3.6) should be solved: 
 
                                    (Fn+1 + jFn)(u + jv) = (Fn+2 + jFn+1)                                               (3.6) 
 
The solution to this equation (3.6) gives the following expressions (3.7) for components of 
the desired hyperbolic number u + jv: 
 
           u = Fn+1/Fn + (-1)n+1*Fn-1 / (Fn*(Fn

2 – Fn-1
2)),    v =  (-1)n / (Fn

2 – Fn-1
2)                 (3.7)                                            

 
In the case of such components (3.7), u2 – v2 ≠ 1 and the appropriate matrix [u, v; v, u] does 
not present a hyperbolic rotation in the sense of expression (2.2). But this matrix can be    
rewriting into the form (10) where the matrix of a hyperbolic rotation (in the sense of        
expression (2.2)) is multiplied by a coefficient (u2 - v2)0.5:  
 
        [u, v; v, u] =  (u2 - v2)0.5 [u(u2 - v2)-0.5, v(u2 - v2)-0.5; v(u2 - v2)-0.5, u(u2 - v2)-0.5]        (3.8) 
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Now let us describe results of the author’s study of eigenvalues of the symmetric   

matrices in the parastichic sequence (3.5). Each of these matrices [Fn+1, Fn; Fn, Fn+1] has two 
eigenvalues, which are equal to two Fibonacci numbers again: Fn+2 and Fn-1. One can noted 
that these eigenvalues are the sum and the difference of the Fibonacci components of the 
original hyperbolic number Fn+1+ jFn since Fn+2 = Fn+1 + Fn and Fn-1 = Fn+1 - Fn. The ratio 
Fn+2/Fn-1 of such eigenvalues defines a new sequence (11) of Fibonacci ratios, which tend to 
φ3 as n increases: 
                                    Fn+2/Fn-1 :    3/1, 5/1, 8/2, 13/3, 21/5, 34/8, 55/13, ….                    (3.9) 
   
By analogy with expressions (3.2, 3.4, 3.5) such pair of eigenvalues Fn+2 and Fn-1 can be   
considered as components of a new hyperbolic number Fn+2 + jFn-1. In this case the sequence 
of ratios (3.9) is transformed into additive sequences (3.10, 3.11) reflecting linear notation of 
appropriate hyperbolic numbers and their matrix presentations: 
 
                  Fn+2 + jFn-1 :    3 + j, 5 + j, 8 + j2, 13 + j3, 21 + j5, 34 + j8, 55 + j13, ….        (3.10) 
   

Fn+2, Fn-1 
 Fn-1, Fn+2 

 
: 

3, 1 
1, 3 

 
, 

5, 1 
1, 5 

 
, 

8, 2 
2, 8 

 
, 

13, 3 
3, 13 

 
, 

21, 5 
 5, 21 

 
… 

 
       (3.11) 

                   
Each of symmetric matrices [Fn+2, Fn-1; Fn-1, Fn+2] of the sequence (3.11) has two eigenvalues, 
which are again equal to two Fibonacci numbers multiplied by a factor 2 (twice the Fibonacci 
numbers): 2Fn+1 and 2Fn. Ratios 2Fn+1/2Fn of such eigenvalues form a sequence, which is 
identical to the initial parastichic sequence (3.2). Using the Binet’s formula (3.1), all mem-
bers of these sequences can be additionally expressed through the golden ratio φ in integer 
powers. This procedure of analysis of the eigenvalues of new and new sequences of        
symmetric matrices, representing hyperbolic numbers by analogy with sequences (3.4, 3.5, 
3.10, 3.11), can be repeated as long as desired, obtaining a hierarchy of eigenvalues of the 
matrices based on Fibonacci numbers multiplied by a factor 2 at corresponding steps of the 
iterative procesure.  

The following important point should be emphasized. In contrast to the traditional  
additive series of one-dimensional Fibonacci numbers, the author introduces an additive   
series of two-dimensional hyperbolic numbers and an additive series of (2*2)-matrices      
representing these numbers and defining an additional additive series of eigenvalues of these 
matrices (3.4, 3.5, 3.10, 3.11). As far as we know, such Fibonacci series of two-dimensional 
numbers have not been described in the literature by anyone, and therefore they can be     
considered new in the extensive subject matter of Fibonacci numbers and their applications 
(some of author's results of the study of additive series of 4-dimensional hyperbolic Fibonacci 
numbers will be presented below). 

Similar results are obtained by considering the additive series of two-dimensional   
hyperbolic Lucas numbers and the additive series of their matrix representations, which    
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determine the additive series of eigenvalues of these symmetric matrices (these results are 
been publishing in a separate article). Here one can remind that one-dimensional Lucas   
numbers form the series Ln+2 =Ln +Ln+1: 2, 1, 3, 4, 7, 11, 18, ... , which is also known in   
phyllotaxis laws [Jean, 2006]. А study of additive series of complex numbers, whose      
components are Fibonacci numbers, and of their ordinary representations by non-symmetric        
matrices gives also interesting additive series of their eigenvalues but in form of complex 
numbers. 

It should be noted that the study of the eigenvalues of symmetric matrices has special 
meaning due to the fact that in the theory of oscillations symmetric matrices are matrix      
representations of oscillatory systems with many degrees of freedom. Moreover, the          
eigenvalues of such a matrix determine the resonant frequencies of the corresponding        
oscillatory system. The described results on the properties of inherited phyllotaxis                
phenomena with their Fibonacci ratios, represented by symmetric matrices and their matrix                
eigenvalues, are important, in particular, for the concept of multi-resonance genetics, which 
connects structural features of molecular-genetic systems with resonances of oscillatory    
systems [Petoukhov, 2016]. 

4     Fibonacci sequences of 2n-dimensional hyperbolic numbers 

This Section continues the theme of additive series of hyperbolic numbers, coordinates of 
which are Fibonacci numbers. Now we turn to algebraic extensions of hyperbolic numbers in 
forms of 2n-dimensional hyperbolic numbers. Let us consider an additive sequence (4.1) of      
4-dimensional hyperbolic numbers Fn+3e0+Fn+2e1+Fn+1e2+Fne3 with Fibonacci coordinates 
from (Table 3.1). In this sequence, each member is equal to the sum of two previous      
members: 
             3e0+2e1+1e2+1e3; 5e0+3e1+2e2+1e3; 8e0+5e1+3e2+2e3; 13e0+8e1+5e2+3e3; …      (4.1) 
 
 A corresponding matrix representation of each member from (4.1) has 4 eigenvalues, which 
can be considered again as coordinates of a new 4-dimensional hyperbolic number. The au-
thor reveals that these new 4-dimensional hyperbolic numbers form a new additive sequence 
(4.2): 
      1e0+1e1+3e2+7e3; 1e0+3e1+5e2+11e3; 2e0+4e1+8e2+18e3; 3e0+7e1+13e2+29e3;…        (4.2) 
 
    The sequence (4.2) combines Fibonacci and Lucas sequences in the following sense. In its    
4-dimensional hyperbolic numbers, coordinates of basis elements e0 and e2 are Fibonacci 
numbers and coordinates of basis elements e1 and e3 are Lucas numbers: 3, 1, 4, 7, 11, 18, 29, 
… . Such aggregation of Fibonacci and Lucas numbers resembles a phyllotaxis-like locations 
of amino acid residues in the helices of polypeptides for various molecular chains - 11/3, 
18/5, 29/8, 47/13; here fraction numerators are Lucas numbers and fraction denominators are 
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Fibonacci numbers. These bio-molecular phenomena of polypeptides configurations are de-
scribed in the fundamental book [Frey-Wissling, Muhlethaler, 1965].  

A matrix representation of each member of the sequence (4.2) has 4 eigenvalues, 
which can be considered again as coordinates of a new 4-dimensional hyperbolic number. 
These 4-dimensional hyperbolic numbers form a new additive sequence (4.3): 
 
 -8e0-4e1+4e2+12e3; -12e0-8e1+4e2+20e3; -20e0-12e1+8e2+32e3; -32e0-20e1+12e2+32e3;.. (4.3)  
 
    Comparing sequences (4.1) and (4.3) reveals that a set of coordinates of each member of 
the sequence (4.3) repeats - with a factor 4 - a set of coordinates of the corresponding mem-
ber of the sequence (4.1) with accuracy up to signs and a cyclic permutation of coordinates. 
For example, the first member of (4.1) contains coordinates 3, 2, 1, 1 and the first member of 
(4.3) contains coordinates -4*2, -4*1, 4*1, 4*3. This procedure of calculating repeating addi-
tive sequences of 4-dimensional hyperbolic numbers associated with Fibonacci and Lucas 
numbers can be repeated as long as desired. Similar results are received for additive sequenc-
es of 2n-dimensional hyperbolic numbers with Fibonacci coordinates in cases n = 3, 4, … .  

5     Hyperbolic numbers and the Weber-Fechner law  

It is profitable for an organism, which is a single whole, to have the same typical             
algorithms at different levels of its functioning for a mutual optimal coordination of its parts. 
By this reason we study possibilities to simulate differentinnate phenomena on the general 
basis of hyperbolic numbers and its algebraic extensions. This Section is devoted to the main       
psychophysical law by Weber-Fechner and its structural connection with phyllotaxis laws 
through hyperbolic numbers. The innate Weber-Fechner law states that the intensity of the 
perception is proportional to the logarithm of stimulus intensity; it is expressed by the      
equation (5.1):  

 
                                    p = k*ln(x/x0) = k*{ln(x) - ln(x0)}                                              (5.1)  

 
where p - the intensity of perception, x – stimulus intensity, x0 - threshold stimulus,              
ln – natural logarithm, k – a weight factor. It is known that different types of inherited         
sensory perception are subordinated to this law: sight, hearing, smell, touch, taste, etc.       
Because of this law, the power of sound in physics and engineering technologies is measured 
on a logarithmic scale in decibels.  

One can suppose that the innate Weber–Fechner law is the law especially for nervous    
system. But it is not so since its meaning is much wider because it holds true in many kinds 
of lower organisms without a nervous system in them: “this law is applicable to chemo-
tropical, helio-tropical and geo-tropical movements of bacteria, fungi and antherozoids of 
ferns, mosses and phanerogams ... . The Weber-Fechner law, therefore, is not the law of the 
nervous system and its centers, but the law of protoplasm in general and its ability to respond 
to stimuli" [Shults, 1916, p.126]   
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Let us show that hyperbolic numbers are related to the Weber-Fechner law, which is based 

on the natural logarithm (5.1). Historically the natural logarithm was formerly termed the 
hyperbolic logarithm, as it corresponds to the area under a hyperbola [Klein, 2004;         
Shervatov, 1954]. History of hyperbolic logarithms is described for example in the book 
[Klein, 2004]. As known, the natural logarithm can be defined for any positive real number 
“a” as the area under the hyperbola y = 1/x from 1 to a (Fig. 5.1, left). It means that two 
points of the hyperbola with their coordinates (x, 1/x) and (x0, 1/x0), where x > 1 and x0 > 1, 
define values of natural logarithms ln(x) and ln(x0). Subtraction ln(x) − ln(x0) = ln(x/x0)     
expresses the intensity of perception p in the expression (5.1) of the Weber–Fechner law    
(Fig. 5.1, right). A change of a stimulus intensity x1 into a new stimulus intensity x2 corre-
sponds to a hyperbolic rotation, which transforms points of this hyperbola each into other and 
defines an appropriate change of intensity of perception: Δp  =  k*ln(x2/x1). One can add that 
each point (x, 1/x) of this hyperbola, where x≥1, can be naturally interpreted as hyperbolic 
number with positive coordinates x+x-1j, which is represented by a bisymmetriс matrix with 
positive entries (such matrices coincide with doubly stochastic matrices under an appropriate 
matrix normalization; see below Section 12 on doubly stochastic matrices and their applica-
tions).    

 

 
 
Fig. 5.1. Natural logarithm as the area under the hyperbola y = 1/x. Left: ln(a) is equal to 

the area under the hyperbola from 1 to a. Right: ln(x/x0) is equal to the area under the          
hyperbola from x0 to x. 

 
Hyperbolic rotations are particular cases of 2-dimensional hyperbolic numbers. This         

analysis gives evidences that our sensory perception obeys the same structural principles as 
morphogenesis with its phyllotaxis laws and that these principles can be effectively model-
ling on the basis of hyperbolic numbers. 

Phyllotaxis laws are related with the golden ratio (or the golden section) φ = (1+50.5)/2 = 
1,618… . Here one can attract attention to the well-known phenomenon of human visual per-
ception, which consists in the aesthetic preference for proportions of the golden ratio.  People 
are endowed with an aesthetic feeling that allows them to prefer certain proportions and 
forms in specific situations (review materials can be found in the book [Petoukhov, 1981, 
Appendix 1]). A classic example is given by the proportion of the golden section, which is 
featured for a long time in architecture and theoretical works on aesthetics, although it some-
times causes criticism due to the efforts of some authors to absolutize its significance. The 
famous American neurophysiologist and one of the founders of cybernetics McCalloch spe-
cially studied the aesthetics of this proportion [McCulloch, 1965, c. 395]. He wrote that he 
spent two years measuring the person’s ability to bring an adjustable oblong object to a pre-
ferred shape, because he did not believe that human persons prefer the golden ratio or that 
they could recognize it. They prefer and they can! In repeated experimental constructing the 
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most pleasant forms, human persons come to the preference of the golden ratio and they can 
establish it. As McCulloch concluded one who is able to detect a difference in the twentieth 
of the length, area or volume, exposes this difference to 1:1,618, and not to 1:1,617 or 
1:1,619. 

  Obviously, if in the ratio 1:1,618 for the smaller and larger sides of a rectangle, the length 
of the larger side is redenoted as 1, then the relative length of the smaller side will become 
equal to φ-1=0,618. In other words, these values φ and φ-1 in the aesthetics of proportions for 
our visual perception always go in pairs and therefore they can be considered - in the frame 
of our approach - as two parts of the single hyperbolic number φ+j*φ-1 whose matrix presen-
tation is [φ, φ-1; φ-1, φ]. But this hyperbolic number φ+j*φ-1 is related with hyperbolic number 
3+j*2, which was shown above as connected with the molecular-genetic system (see Figs. 2.3 
and 2.4). Really,  (φ+j*φ-1)2 = 3+j*2 or in their matrix presentations: 

 

                                                 
 
Fig. 5.2. The relation of 2-dimensional hyperbolic numbers φ+j*φ-1 and 3+j*2 
 
Below we’ll meet again the hyperbolic number 3+j*2 in Sections on relations of hyperbolic 

numbers with musical harmony and the quint ratio 3/2 (or the pure perfect fifth).  
The end of this article contains one additional paragraph with the hypothesis that some   

analogue of the Weber-Fechner law exists in single nervous fibers for encoding time intervals 
among action potentials, whose sequences carry information in nervous system. 

 
6       The alphabets of orthogonal vector bases associated with basis units of                            
         2n-dimensional hyperbolic numbers 
	

Let us remind the essence of the eigenvalues and eigenvectors by means of the matrix 
A on Fig. 6.1, which acts on vectors [x, y]. In this case almost any vector is transformed into 
a new vector [x, y]*A with changing its direction. The exceptions are those vectors [x, y], 
which belong to two orthogonal dotted lines and are called "eigenvectors" of the matrix A; 
they conserve their direction under action of the matrix A, but their lengths are scaled with 
factors λi, which are called “eigenvalues” of the matrix A (each eigenvalue corresponds to its 
own direction of eigenvectors). 

 

 

 

 

Fig. 6.1. Illustration of actions of the matrix A on vectors [x, y] (from [Zharov, 2002]) 
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Еасh basis unit of 2n-hyperbolic numbers is represented by a corresponding symmetric 

(2n*2n)-matrix, which is an orthogonal matrix and has its own set of orthogonal eigenvectors. 
This orthogonal set is a corresponding vector basis of 2n-dimensional space. For example in 
the case of any 2-dimensional hyperbolic number a*j0 +b*j1 (Fig. 2.4) its real component aj0 
is presented by the matrix a*[1, 0; 0 1], which has two orthogonal eigenvectors [1, 0] and   
[0, 1] independently on value of the coefficient a (a ≠ 0). This pair of eigenvectors defines 
the first vector basis of the 2-dimensional space of existance of hyperbolic numbers. The        
imaginary term bj1 is presented by the matrix b*[0, 1; 1, 0] (Fig. 2.4), which has another pair 
of orthogonal eigenvectors [-2-0.5, 2-0.5], [2-0.5, 2-0.5] independently on value of the coefficient 
b (b ≠ 0). This pair of eigenvectors defines the second vector basis of the considered             
2-dimensional space. In other words, the pairs of eigenvectors are determined only by basis 
units j0 and j1. These two pairs of eigenvector bases can be considered as a two-term vector 
alphabet of basis units of hyperbolic numbers in case of 2-dimensional space.  

A similar situation is true for cases of other 2n-dimensional hyperbolic numbers and        
eigenvectors of their matrix representations. For example, in the case of 4-dimensional      
hyperbolic numbers ae0 + b*e1 + c*e2 + d*e3, matrix representations of their basis units (see 
Fig. 2.5) have the following eigenvectors:  

• The (4*4)-matrix [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1] representing the real unit 
e0 has 4 eigenvectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]; 

• The (4*4)-matrix [0, 1, 0 0; 1, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0] representing the first           
imaginary unit e1 has 4 eigenvectors [-2-0.5, 2-0.5, 0, 0], [0, 0, -2-0.5, 2-0.5],                       
[0, 0, 2-0.5, 2-0.5], [2-0.5, 2-0.5, 0, 0]; 

• The (4*4)-matrix [0, 0, 1, 0; 0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 0] representing the second 
imaginary unit e2 has 4 eigenvectors [-2-0.5, 0, 2-0.5, 0], [0, 2-0.5, 0, -2-0.5],                    
[0, 2-0.5, 0, 2-0.5], [-2-0.5, 0, -2-0.5, 0]; 

• The (4*4)-matrix [0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0, 0; 1, 0, 0, 0] representing the third    
imaginary unit e3 has 4 eigenvectors [0, -2-0.5, 2-0.5, 0], [2-0.5, 0, 0, -2-0.5],                       
[2-0.5, 0, 0, 2-0.5], [0, 2-0.5, 2-0.5, 0]. 

Correspondingly in the case of 4-dimensional hyperbolic numbers and their space, the       
4-term eigenvector alphabet of their 4 basis units exists. In a general case of 2n-dimensional 
hyperbolic numbers, the 2n-term eigenvector alphabet of their 2n basis units exists. Each 
member of such alphabet is a set of 2n orthogonal vectors. The author briefly calls such 
alphabets of eigenvector bases of matrix representations of basis units of 2n-dimensional 
hyperbolic numbers as «hyperbolic eigenvector alphabets» or simply «hyper-alphabets». 
Here the prefix "hyper" is the beginning of the word "hyperbolic" and its use is additionally 
justified by the fact that each member of such hyper-alphabet contains in itself 2n 
eigenvectors, each of which can be considered – in special cases - as a member of another 
alphabet  of the lower level. 

Any transition from one such eigenvector basis into another (that is a transition of one 
member of  such a hyper-alphabet into another) is carried out by means of an orthogonal 
matrix (orthogonal operator), that is, a real unitary matrix (previously, the structural 
connection of DNA alphabets with orthogonal matrices was shown by the author in 
[Petoukhov, 2018a]; unitary operators play a great role in quantum mechanics and quantum 
computing; for example, all calculations in quantum computers are based on unitary 
operators). Orthogonal operators preserve the space metric and define transformations of 
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proper and improper rotations. Any sequence of basis units (or their sums) of 2n-
dimensional hyperbolic numbers corresponds to a certain sequence of eigenvector bases of 
these units, and also to a sequence of orthogonal matrices transforming successively these 
bases. Such algebraic sequences can be used for transmitting information. Taking into 
account some results of his previous published studies, the author supposes that genetic 
sequences are related with such algebraic sequences. 

Moreover, the author puts forward the hypothesis that alphabets of eigenvectors of matrix 
representations of basis units of 2n-dimensional hyperbolic numbers play a key role in 
transmitting biological information and that they can be considered as a foundation of        
coding information at different levels of biological organization. The corresponding 
languages using such alphabets define many inherited phenomenological structures in 
biology including molecular-genetic structures.  

As known, the principle of transmitting information in the form of certain texts composed 
on the basis of certain “alphabets” is widely used in living organisms: genetic information is 
recorded in DNA molecules in the form of texts based on the DNA alphabet; music is a 
sequence of sound frequencies of one or another musical scale (that is, the "alphabet" of 
note sound frequencies of one octave); literary texts are written on the basis of literary 
alphabets, etc. The author believes that various alphabets and texts in these bioinformational 
fields can be effectively modeled and studied on the basis of the presented hidden algebraic 
alphabets as their joint algebraic foundation. This approach is connected with the theme of a  
«grammar of biology», which term was introduced by E.Chargaff in the title of his article 
on DNA peculiarities «Preface to a Grammar of Biology» [Chargaff, 1971] (see also the 
book [Yamagishi, 2017]).  

Since alphabets are used as foundations of corresponding languages, each algebraic 
hyper-alphabet in 2n-dimensional spaces with a concrete number n can be considered as a 
foundation of a corresponding algebraic language. From this point of view, many such 
algebraic languages using these hyper-alphabets exist in biology. 

7        Quint ratios in DNA parameters and musical harmony  

 
As known, thoughts about the key significance of musical harmony in the organization of 

the world exist from ancient time. For example, one can quote here a classical work of     
Chinese literature “Spring and Autumn” by Lu Bu We about the fundamental role of music 
and numbers 3 and 2 as numbers of Heaven and Earth: “The origins of music lie far back in 
the past. Music arises from Measure and is rooted in the great Oneness. … Music is founded 
on the harmony between Heaven and Earth” (this citation is taken from the book [Hesse, 
2002]. In Ancient China the ratio 3/2, traditionally termed as the quint ratio (or the pure     
perfect fifth), was used as the fundament of quint music scales. After Ancient Chinese,     
Pythagoreans also considered numbers 2 and 3 as the female and male numbers (or Yin and 
Yang numbers), which can give birth to new musical tones in their interconnection. Ancient 
Greeks attached an extraordinary significance to search of the quint 3:2 in natural systems 
because of their thoughts about musical harmony in the organization of the world. For exam-
ple, Archimedes considered as the best result of his life a detection of the quint 3/2 between 
volumes and surfaces of a cylinder and a sphere entered in it.  
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Science has been dealing with the physiological mechanisms of music perception for a 

long time [Weinberger, 2004]. There is no specialized center of music in the human brain, a 
sense of love for music can be considered dispersed throughout the body, similar to the        
dispersion of genetic DNA molecules throughout all of its cells. More than 30 thousand years 
ago, long before the advent of arithmetic, our ancestors already played stone flutes and bone 
harps. For example, the bone flute found in France is at least 32 thousand years old. The      
enjoyment of music is usually explained by the fact that it gives rise to emotions and feelings. 
Aristotle tried to understand how rhythms and melodies, being only sounds, resemble states 
of mind. Available data indicate that our affinity for music and musical creativity is biologi-
cal in nature and the sense of musical harmony is based on innate mechanisms. Therefore, 
one should look for a connection between the genetic system and musical harmony. 

       For Europeans the idea of musical harmony is basically connected with the name      
Pythagoras. The Pythagorean musical scales, which are based on the quint ratio 3/2, played 
the main role in the Pythagorean’s doctrine about a cosmic meaning of musical harmony. Fig. 
7.1 shows the known interconnection of sound frequencies of notes of Pythagorean 7-stages 
scale (a heptatonic scale) on the basis of the ratio 3/2 when notes are spaced in the                
appropriate octaves.  
 

fa (F) do (C) sol (G) re (D1) la (A1) mi (E2) si (B2) 
87 130 196 293 440 660 990 
(3/2)-3 (3/2)-2 (3/2)-1 (3/2)0 (3/2)1 (3/2)2 (3/2)3 

 
Fig. 7.1. The quint sequence of the 7 notes of the Pythagorean musical scale is presented. The 
upper row shows the notes. The second row shows their frequencies. The third row shows the 
ratios between the frequencies of these notes to the frequency 293 Hz of the note    re (D1). 
The designation of notes is given on Helmholtz system. Values of frequencies are                 
approximated to integers.       
 

Pythagoras created the mathematical foundations of ancient Greek music, borrowing in a 
certian degree some ancient knowledge on musical harmony. His theory used the discovery 
that the frequency of a vibrating string is inversely proportional to its length and that musical 
consonances can be represented by the ratios of small integer numbers, first of all the octave 
ratio 2:1 and the quint ratio 3:2. These ideas became the basic fundamental ones of all music 
theory from antiquity to even modern times. For most Europeans from antiquity, quint scales 
in music are connected with this Pythagorean mathematical theory of musical harmony and 
with divisions of vibrating strings in the quint ratio 3:2.  

In a general case, the Pythagorean scale is any scale, which can be constructed from only 
quint ratios 3:2 and octaves 2:1 [Sethares, 2005, p. 163]. One of known Pythagorean scales 
is a pentatonical scale, which is a five-stages music scale, all the sounds of which can be   
arranged in quint ratios. Its example is the set of the following 5 notes with their sound     
frequencies from Fig. 7.1: do(C)-sol(G)-re(D1)-la(A1)-mi(E2) or respectedly 130-196-293-
440-660 Hz. Other examples of Pythagorean scales are tetratonic and tritonic scales, which 
are correspondingly 4-stages and 3-stages music scales, all the sounds of which can be      
arranged by the quint ratio, for instance, 130-196-293-440 Hz for the tetratonic scale and 
130-196-293 Hz for the tritonic scale. 
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The historical fact is that these Pythagorean musical scales on the basis of the quint ratio 

were used by different civilisations around the world long before Pythagoras without 
knowledge of any mathematical laws [Apel, 1969; Day-O'Connell, 2007; Christidis, Arapo-
poulou, Christi, 2007; Olsen, Sheehy, 1998; Todd Titon, 1996]. For example, the pentatonical 
scale is the foundation of traditional music of the Chinese, Vietnamese, Mongols, Turkic 
peoples (Bashkirs, Tatars, Chuvashes, etc.), the Inca Empire and the peoples of the South 
Andes in general. Pentatonics is also found in European musical folklore and in the oldest 
layers of the Russian folk song (especially in the so-called calendar ritual songs). Tetratonic 
music was noted as common in Polynesia and Melanesia. Tetratonic scales were known for 
example among the Plains Indians, the Arapaho, Blackfoot, Crow, Omaha, Kiowa, Pawnee, 
Sioux, some Plateau tribes, the Creek Indians, and in the Great Basin region among the 
Washo, Ute, Paiute, and Shoshone. In the Southwest, the Navajo people also largely used the 
pentatonic and tetratonic, occasionally also tritonic scales. Tetratonic, as well as tritonic 
scales, were commonly used by the tribal peoples of India, such as the Juang and Bhuyan of 
Orissa state [Sudhibhushan Bhattacharya, 1968]. Tetratonic scales are generally associated 
with prehistoric music [Baines, 1991].  

G.Leibniz declared that music is arithmetic of soul, which computes without being aware 
of it. But what is there in living organisms that determines the special attraction of musical 
scales on the basis of the quint ratio 3/2 for representatives of various civilizations and 
epochs? A possible answer lies in the structural features of DNA molecules that are carriers 
of genetic information in humans and other living organisms. The author has paid attention to 
the fact that the parametric structure of DNA molecules is connected in many ways with the 
quint ratio 3/2 and with numbers 3 and 2 at various levels of their parametric organization 
[Petoukhov, 2008; Petoukhov, He, 2010]. Let us briefly say now about this relation between 
the musical harmony and structures of genetic molecules. 

Molecules of heredity - DNA and RNA – contain sequences of 4 “letters” or nucleobases: 
adenine (A), cytosine (C), guanine (G), thymine (T) (or uracil U in RNA). Letters A-T(U) 
and C-G form complementary pairs with 2 and 3 hydrogen bonds in them, respectively. From 
the standpoint of its sequence of two and three hydrogen bonds, each DNA molecule is a long 
chain of numbers 2 and 3 of a type 32232332 .... 
    The genetic code encodes sequences of 20 amino acids in proteins by means of 64 triplets 
(three-letter words) that represent all possible combinations of these four letters (ATC, TTA, 
...). Since A = T = 2, C = G = 3, each triplet has a numeric representation as a product of 
number of hydrogen bonds of its constituent letters. For example, the triplet ACT is               
represented by number 2*3*2 = 12. Each of 64 triplets is represented by one of such numbers 
of hydrogen bonds 23=8, 22*3=12, 2*32=18, 33=27, the pairwise relations between which are 
equal to the quint 3/2 in varying integer degrees (by analogy with music tetratonic scales), for 
example, 27/8 = (3/2)3, 18/8 = (3/2)2, etc.  

Under considering pairs of adjacent triplets, then DNA molecule appears as a quint         
sequence of 7 kinds of numbers of hydrogen bonds with the following numeric 
representation: 26=64, 25*3=96, 24*32=144, 23*33=216, 22*34=324, 2*35=486, 36=729.       
Pairwise ratios in this series of numbers are equal to the quint 3/2 in the same powers as in 
the Pythagoras 7-stage scale in Fig. 7.1. If, for example, the frequency of 87 Hz of the note 
"F" is compared with the first number 64 of this series, then all other numbers of this series 
will correspond precisely to the other frequencies of the Pythagoras scale. Then any sequence 
of triplets (eg, insulin gene GGC-ATC-GTT-GAA-CAG-TGT- ...) can be associated uniquely 
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with a sequence of notes of Pythagoras 7-stages scale (figuratively speaking, we have “music 
of genes in the Pythagoras scale”). 

Accordingly, each DNA molecule as a chain of hydrogen bonds is characterized by its own 
sequences of the quint 3/2 in different integer degrees. By analogy with quint musical scales, 
depending on the chosen lengths of nucleobase fragments of DNA, we have – on the basis of 
considered hydrogen bonds - various systems for transmitting information signals with         
quint-power relations between signals. 

The quint ratios are realized in DNA not only for the hydrogen bonds of complementary 
nucleobases, but also for several other parameters, such as sums of atoms in the rings of     
purines and pyrimidines (numbers 9 and 6 with their ratio 3/2), or sums of protons in the 
rings of complementary nitrogenous bases (numbers 60 and 40 with their ratio 3/2), and      
others. Chains of these parameters in DNA form their own sequences of quint ratios, which 
are similar to sequences of note frequencies in quint scales of music. In other words, Nature   
created DNA as a plexus of various sequences of quint ratios (“a quint polyphony of DNA”). 
The harmony of the parametric organization of the genetic system is akin to the musical  
harmony of the Pythagorean scales. 

As it was reminded above, over the centuries from Ancient China to antiquity, the numbers 
2 and 3 were considered respectively as female and male numbers (that is as Yin and Yang 
numbers) forming the important pair. The author proposes their consideration not as separate 
one-dimensional numbers but as two separate parts of two-dimensional number. Mathematics 
knows 3 main kinds of two-dimensional numbers: complex numbers, hyperbolic (or double) 
numbers and dual numbers [Kantor, Solodovnikov, 1989]. Taking into account a set of our 
results on relations of genetic system and inherited physiological phenomena with hyperbolic 
numbers, we choice namely hyperbolic numbers for a presentation of these historically 
known numbers 3 and 2 as two interrelated parts of single two-dimensional number             
G2 = 3+2j, where j is imaginary unit with its features j ≠ ±1, j2 = +1; the index 2 refers                           
2-dimensionality of the number G2. This hyperbolic number can be expressed as a point or a 
vector on a hyperbolic plane with Cartesian coordinates, in which the axis of abcissus is con-
sidered the axis of Yang-numbers, and the axis of ordinates is considered the axis of            
Yin-numbers. Fig. 7.2 shows this coordinate system and also the matrix form of presentation 
of hyperbolic numbers with its decomposition into 2 sparse matrices playing the role of real 
and imaginary basis units of hyperbolic numbers. This matrix [3, 2; 2, 3] is conditionally 
termed “quint matrix” since its components 3 and 2 give the ratio 3/2. (The same quint matrix         
[3, 2; 2, 3] appears under a consideration of DNA alphabet C, A, T, G and its three binary 
sub-alphabets [Petoukhov, 2008, Chapter 2;  Petoukhov, He, 2010, Chapter 4]).  

 
 

 

 
 
G2 = 

 
3, 2 
2, 3 

 
 
= 3* 

 
1, 0 
0, 1 

 
 
+ 2* 

 
0, 1 
1, 0 

 
 
; 

 
 
Fig. 7.2. The graphical and matrix presentation of 2-dimensional hyperbolic number            

G2 = 3 + 2j1 (by analogy with Fig. 2.4). The first sparse matrix [1, 0; 0, 1] is the identity    
matrix, the second sparse matrix [0, 1; 1, 0] presents imaginary unit j1 having the property                   
[0, 1; 1, 0]2 = [1, 0; 0, 1]. The multiplication table of these sparse matrices, where 1 refers the 
matrix [1, 0; 0, 1], is also shown at right.  
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8     Applications of matrix representations of 2n-dimensional hyperbolic numbers in  
        musicology  
 
In the Introduction to this article, the important role of hypercomplex numbers in many fields 
of science has already been mentioned. This Section is devoted to the author’s proposal to use 
in musicology 2n-dimensional hyperbolic numbers and their matrix representations to study 
the laws of harmony of the development of themes in musical works (or in other words, the 
harmony of the plasticity of a musical work). As is known in musicology, the musical theme 
of a musical work is the basis of its development, the core of the formation of its form. Some-
times a theme is defined as any element, motive, or small musical construction, which is the 
basis for the further development of musical material. The structure of musical works has a 
clear logic of construction. Some masterpieces of world classics are literally calculated math-
ematically. It is no accident that in Ancient Greece, music was included in a number of math-
ematical sciences. 

In musicology, to date, only one-dimensional numbers are used to express sound frequen-
cies and durations of individual notes. The creative possibilities of the language of multidi-
mensional numbers are just waiting for their use in musicology. Music acts on the listener as 
an operator, changing his state. And this operator’s action is determined not by individual 
notes, but by harmony in the sequence of elements of a musical work (“harmony of plastici-
ty” in music). How to mathematically explore this harmony of plasticity? 

For this, the author proposes to use  2n-dimensional hyperbolic numbers and their matrix 
representations, which are related with the alphabetic structures of genetic DNA molecules 
and many inherited physiological structures. The proposed use allows us to represent the 
sequence of elements of a musical work in the form of:   

• a sequence of vectors (or points) of the vector metric space of 2n-dimensional 
numbers;  

• a sequence of corresponding matrix representations (or matrix operators) of                
2n-dimensional numbers. 

 
Let us explain the scheme of this approach using a simplified example of a conditional musi-
cal fragment written on the basis of a musical scale having only three notes, for example,        
C (do1), E (mi1), G (sol1) of the first octave (Fig. 8.1). Sound frequencies of these notes will 
be expressed in relative values as usual for the piano keyboard with its equal-tempered scale:       
1, 24/12, 27/12. Durations of notes are traditionally given by the values 1, 2-1, 2-2, 2-3, 2-4, ... . 
 

 
 
Fig. 8.1. A conditional musical fragment written on the basis of the musical scale having only  
               three kinds of musical notes. 
 
 In our approach, for the vector analysis of this musical fragment, it is enough to use  
4-dimensional vectors  Ž = a0ē0 + a1ē1 + a2ē2 + a3ē3 of 4-dimensional hyperbolic numbers. In 
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the Cartesian coordinate system of the corresponding 4-dimensional space, we will consider 
ē0, ē1, ē2, ē3 as unit vectors of 4 coordinate axes. In this case, the note C with its relative fre-
quency 1 is represented by the unit vector ē1 of one coordinate axis, the note E with its         
frequency 24/12 - by the vector 24/12ē2 of the second axis, the note G with its frequency 27/12 - 
by the vector 27/12ē3 of the third axis. Durations 1, 2-1, 2-2, 2-3, ... are represented by vectors of 
the fourth axis: ē0, 2-1ē0, 2-2ē0, 2-3ē0, etc. 

In elements of musical works, the pitch of each note is not separable from its duration. In 
our approach, this symbiosis of “frequency + duration” of a musical element is represented 
by the sum of the named vectors. We also present chords as the sum of the vectors of their 
sound components and duration. Correspondingly four musical measures of the presented 
fragment (Fig. 8.1) are been recording as a sequence of vectors of a given 4-dimensional dis-
crete space (Fig. 8.2): 
 

 
 
Fig. 8.2. The representation of the sequence of elements of the musical fragments from            
               Fig. 8.1 as the sequence of their vectors. 
 

But for any two vectors, there is a difference vector between them. Therefore, in the          
described approach, the sequence of musical elements appears additionally as a sequence of                            
4-dimensional difference vectors of transition from the vector of the previous musical ele-
ment to the vector of the next musical element. Each such transition vector has a length and a 
conjugation angle with a subsequent transition vector. A metric analysis of their sequence 
allows you to study the harmony of the plasticity of a musical work, taking into account the 
symbiosis of its tonal and temporal organization. Musical works become the subject of metric 
vector analysis.  

Such a vector analysis is possible not only for sequences of separate elements in musical 
works, but also for sequences of musical measures, periods, etc. This vector approach is suit-
able for musical works written in a wide variety of musical systems, for example, in 7-stage 
Pythagorean scale, 12-stages tempered musical scale and in any microchromatic scales. The 
difference is only in the choice of the corresponding 2n-dimensional vectors for such vector 
analysis. For example, for a 7-stage system, it is sufficient to use the vectors of 8-dimensional 
hyperbolic numbers (seven coordinates are assigned to its 7 stages and one coordinate to du-
rations); for a 12-stage system one can use vectors of 16-dimensional hyperbolic numbers 
(you assign 12 coordinates to its 12 stages and one coordinate to durations, taking zero values 
for other 3 coordinates). 

In the case of using the described multi-dimensional numbers, cardinally new mathematical 
personages come into play in musicology: matrix operators, orthogonal bases of multidimen-
sional spaces and orthogonal transformations of such bases related with hyper-alphabets de-
scribed above in Section 6. These new personages allow significantly encreasing analytical 
possibilities in musicology by means of those mathematical tools, which are effectively used 
in many scientific and technology fields. 

Now let us turn to using in musicology bisymmetric (2n*2n)-matrices, which represent 2n-
dimensional hyperbolic numbers (see above the Section 2). In this case, a musical work is 
considered as a sequence of matrix operators. For example, a 4-dimensional hyperbolic num-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 January 2020                   doi:10.20944/preprints201908.0284.v3

https://doi.org/10.20944/preprints201908.0284.v3


24 
ber a0ē0 + a1ē1 + a2ē2 + a3ē3 is represented by the (4*4)-matrix, which is the sum of 4 sparse 
bisymmetric matrices representing 4 basic units e0, e1, e2, e3 (Fig. 8.3): 

 

 
 
Fig. 8.3. The decomposition of the matrix representation of 4-dimensional hyperbolic 

number a0ē0 + a1ē1 + a2ē2 + a3ē3. 
 
Under analyzing this musical fragment, one can replace the vector representations of the 

basic units e0, e1, e2, e3 (in Fig. 8.2) with their matrix representations (from Fig. 8.3). In this 
case you pass to a representation of the musical fragment as a sequence of matrices (matrix 
operators). This introduces into musicology the ideology of matrix analysis from physics, 
where the action of the matrix operator on the state vector of a system determines a change in 
its state vector, etc.  

Each of bisymmetric (4*4)-matrices, representing e0, e1, e2, e3 or their linear combinations, 
has a set of 4 orthogonal eigenvectors (a “hedgehog” set of vectors). Therefore, this musical 
fragment has a conditional artistic representation in the form of a sequence of “hedgehogs” 
carrying such 4 orthogonal vectors (Fig. 8.4): 

 
 
 
 
 
 
 
 
 

 
Fig. 8.4. The artistic image of the sequence of sets of 4 orthogonal eigenvectors of    
               bisymmetric matrices, which represent elements of the musical fragment. 

 
The transition from a set of orthogonal eigenvectors of a matrix representing some element 

of a given musical fragment to a set of orthogonal eigenvectors of a matrix representing a 
subsequent musical element is determined by a new matrix of corresponding orthogonal 
transformation. Therefore, a sequence of elements of a musical play corresponds to a se-
quence of matrices of orthogonal transformations, which transform the said sets of orthogonal 
eigenvectors into each other. The matrix of each of these orthogonal transformations, in turn, 
has its own set of orthogonal eigenvectors. Transitions between orthogonal sets of eigenvec-
tors of neighboring matrices of the named sequence are again determined by matrices of 
some orthogonal transformations, which is accompanied by the appearance of a new - short-
ened - sequence of matrices of orthogonal transformations with their orthogonal sets of ei-
genvectors. As a result of repeating this procedure, for each new sequence of matrices of or-
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thogonal transformations that arises, a tree of orthogonal transformations arises (Fig. 8.5). 
Since orthogonal transformations represent proper and improper rotations in appropriate vec-
tor spaces, the development of a musical play from element to element can be artistically im-
aged as the spinning of dance couples in such multidimensional space.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.5. The artistic image of the tree, whose levels show sequences of sets of                        
               4 orthogonal eigenvectors of matrices of orthogonal transformations, which are   
               hiddenly related with the sequence of elements of the musical fragment. 

 
Apparently, ingenious composers intuitively feel the algebraic tonal-temporal harmony of 

music. Not without reason G.Leibniz argued that music is mathematics of soul, which        
computes without being aware of it. The deep interest to numerology by I.S. Bach is known, 
in connection with which some musicologists study the connection of his works with numer-
ology.  

A special place in the theme “Music and Mathematics” is occupied by the famous book 
“Bead Game” by H. Hesse. This book deeply speculates on time, when «the analytical study 
of musical values had led to the reduction of musical events to physical and mathematical 
formulas» and when there were invented «the principles of a new language, a language of  
symbols and formulas, in which mathematics and music played an equal part, so that it be-
came  possible to combine astronomical and musical formulas, to reduce mathematics and 
music to a  common denominator». At its core, the “bead game” is the art of composing a 
metatext, a synthesis of all branches of art into one, universal art. 

Described in this article searches of an adequate system of multidimensional numbers and 
matrix operators for the analysis and synthesis of musical works can be considered as a con-
tinuation of thoughts and beliefs of many musicians and thinkers about the connection be-
tween music and mathematics (with an author’s addition of modern knowledge on algebraic 
features of the genetic coding in human and other living organisms). We believe that genetic 
DNA texts are those metatexts, in the image of which biological texts of various natures are 
built. This article jointly with the article [Petoukhov, 2019c] show the structural connections 
of genetic texts with 2n-dimensional hyperbolic numbers. Taking all of these materials into 
account, the author proposes to look at music as a bead game with its basis on hyperbolic 
numbers and corresponding matrix operators. 
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9 Advantages of matrix representations of hyperbolic numbers 
 
The matrix forms of presentation of 2n-dimensional hyperbolic numbers deserve a special 

attention since they have the following useful properties:  
1. This presentation form is based on symmetric matrices, which are closely related with 

the theory of resonances of oscillatory systems, having many degrees of freedom, [Pe-
toukhov, 2015, 2016]. Symmetrical matrices are related with the theory of resonance 
of L. Pauling whose book [Pauling, 1940] about this theory in structural chemistry is 
the most quoted among scientific books of the XX century. The actual molecule, as 
Pauling proposed, is a sort of hybrid, a structure that resonates   between the two al-
ternative extremes; and whenever there is a resonance between the two forms, the 
structure is stabilized. Pauling claimed that living organisms are chemical in nature, 
and resonances in their molecules should be very essential for   biological phenomena. 
In general, quantum mechanics was emerged and developed largely as a science about 
resonances in microworld. Thus, the concept of system-resonance genetics (or spec-
tral-resonance genetics) creates models of genetic phenomena on the same language 
of frequencies and resonances, on which models in quantum mechanics are based. In 
addition to this, it uses the same matrix language, on which “matrix mechanics” of 
Werner Heisenberg has been created: it was historically the first form of quantum me-
chanics, which retains its value to this day. 

2. These symmetric matrices are Hermitian (self-adjoint) matrices, which play an       
important role in quantum mechanics. By this reason they can be used in development 
of applications of ideas and methods of quantum mechanics and quantum informatics 
in the field of bioinformatics and algebraic biology. In this connection some of        
author’s works [Petoukhov, 2018a,b, 2019a,b; Petoukhov, Petukhova, Svirin, 2019] 
are devoted to using formalisms of quantum mechanics and quantum informatics in 
bioinformatics and algebraic biology including analysis of long genetic and and      
literary texts. For example, in long DNA sequences of nucleobases, where           
complementary nucleobases C and G (A and T) are linked by 3 (2) hydrogen bonds, 
2n-dimensional hyperbolic numbers [%3, %2; %2, %3](n) (where %3 and %2 denote 
percentages of numbers 3 and 2 of hydrogen bonds in the analyzed DNA sequence;    
n = 2, 3, 4, 5) effectively models percentages of monoplets, doublets, triplets, tetra-
plets and pentaplets of these numbers 3 and 2 of hydrogen bonds [Petoukhov, 2018].  

3. These symmetric matrices can be interpreted as metric tensors, which are main        
invariants in Riemanian geometry and which can be used in the theory of                  
morpho-resonance morphogenesis [Petoukhov, 2008, 2015, 2016];  

4. These symmetric matrices are related with hyperbolic rotations [ch x, sh x; sh x, ch x], 
which are particular cases of hyperbolic numbers and are connected with the theory of 
biological phyllotaxis laws [Bodnar, 1992, 1994; Stakhov, 2009], with problems of 
locomotion control [Smolyaninov, 2000], with the main psychophysical law of       
Weber-Fechner (see above and also in [Petoukhov, 2016]), with Lorenz                      
transformations in the special theory of relativity;  

5. These bisymmeric matrices are related with doubly stochastic matrices (under an ap-
propriate normalization of bisymmetric matrices), whose using for genetics is de-
scribed below; 
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6. These symmetric matrices are related with the theory of solitons of sine-Gordon   

equation [Petoukhov, 1999, 2008; Petoukhov, He, 2009]. Such solitons are the only 
relativistic type of solitons; they were put forward for the role of the fundamental type 
of solitons of living matter in the book [Petoukhov, 1999]. 

Symmetric matrices possess a wonderful property to express resonances [Bellman, 1960; 
Balonin, 2000]. The expression y = A*S models the transmission of a signal S via an acoustic 
system A, represented by a relevant matrix A. If an input signal is a resonant tone, then the 
output signal will repeat it with a precision up to a scale factor y = λ*S by analogy with a 
situation when a musical string sounds in unison with the neighboring vibrating string. In the 
case of a matrix A, its number of resonant tones Si corresponds to its size. They are termed its 
eigenvectors, and the scale factors λi with them are termed its eigenvalues or, briefly, 
spectrum A. One of the main tasks of the theory of oscillations is a determination of natural 
frequencies (mathematically, eigenvalues of operators) and the natural forms of oscillations 
of bodies. To find all the eigenvalues λi and eigenvectors of the matrix A, which are defined 
by the matrix equation A*s = λ*s, the “characteristic equation” of the matrix A is analyzed: 
det(A − E) = 0, where E – the identity matrix (see more in [Petoukhov, 2016]). Matrices, 
which are relevant to the various problems of the theory of oscillations, are usually 
symmetric real matrices [Gladwell, 2004]. Such matrices have real eigenvalues and their 
eigenvectors are orthogonal. 

Symmetric matrices representing hyperbolic numbers are simultaneously metric tensors by 
their structure. Metric tensors are main invariants of Riemanian geometry, which can be used 
for modelling inherited curvilinear forms of biological bodies. By definition, the metric 
tensor in the n-dimensional affine space with the scalar multiplication introduced is defined 
by the nondegenerate matrix ||gij|| under the condition of symmetry gij = gji [Rashevskij, 
1964], which is satisfied by the structure of bisymmetric matrices of hyperbolic numbers. The 
coordinates gij of the metric tensor are the pairwise scalar products of vectors of the frame, on 
which it is built. If we extract the square root from a bisymmetric matrix, we get a square 
matrix whose columns are vectors of this frame. It is interesting that the extraction of the 
square root from quint matrices of 2n-dimensional hyperbolic numbers [3, 2; 2, 3](n), which 
has integer components, get square matrices of 2n-dimensional hyperbolic numbers                
[φ, φ-1; φ-1, φ](n) whose components are irrational numbers of the golden section                     
φ = (1+50.5)/2 = 1,618… in integer powers; the golden section φ is famous in the aesthetics of 
proportions and described by many authors in a series of inherited physiological systems 
[Petoukhov, 2008; Petoukhov, He, 2010]. It means that metric tensors, having forms of quint 
matrices of hyperbolic numbers, are built on a frame of "golden" vectors, all components of 
which are equal to the golden sections in integer powers. 

10    2n-dimensional hyperbolic numbers and phenomenologic rules of percentages in 
genetics 

   The author revealed that in some cases it is possible to use 2n-dimensional hyperbolic 
numbers and their matrix representations for modeling some phenomenological rules in 
biology, first of all, in genetics. In this cases the tensor family of symmetric matrices          
[%S, %W; %W, %S](n) is under consideration, where %S and %W refer to percentages of 
biological realisation of some events denoted by symbols S and W (%W+%S=100%).                 
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    This tensor family contains matrix representations of 2-dimensional hyperbolic numbers 
%S + %W*j1; of 4-dimensional hyperbolic numbers  %S*%S + %S*%W*j1 + %W*%S*j2 + 
%W*%W*j3; of 8-dimensional hyperbolic numbers, etc. Expressions like as %S*%S, 
%S*%W, %W*%W can be considered as percentages of realisation of doublets SS, SW, 
WW in chains of these events. Let us show some concrete phenomenologic data. 
Any long DNA sequence contains many millions of nucleotides A, C, G, T. For example a 
DNA filament of the first chromosome of the human genome contains about 250 millions of 
these letters. In DNA double helixes, nitrogenous bases C-G and A-T form complementary 
pairs by means of 3 and 2 hydrogen bonds (it can be denoted as C=G=3 and A=T=2). Corre-
spondingly, any DNA sequence contains a long chain of numbers 2 and 3 of hydrogen bonds, 
for example, 33223223233… . We term such number chains of hydrogen bonds as “hydrogen 
bond sequences” (briefly, “hydrogen texts”). The author analysed the properties of such long 
hydrogen bond sequences for many different organisms (here the term “long” means DNA 
sequences containing ≥ 100000 letters). 

Studying such binary “hydrogen texts” 33223223233… of a wide number of various 
genomes, the author discovered that percentages (or frequencies) of hydrogen monoplets (3, 
2), doublets (33, 32, 23, 22), triplets (333, 332, 323, 322, 233, 232, 223, 222), tetraplets and 
pentaplets in them are subordinated to hidden rules: percentages of monoplets (values %3 and 
%2) are strongly interrelated with percentages of other H-n-plets (n = 2, 3, 4, 5). These inter-
relations are effectively described by a tensor family of matrices [%3, %2; %2, %3](n) repre-
senting 2n-dimensional hyperbolic numbers: 

• %3 + %2*j  (when n=1);   
• %3*%3 +%3*%2*e1+%2*%3*e2+%2*%2*e3 (when n=2);  
• etc. 

Fig. 10.1 shows one example of matrices from this tensor family: the second tensor power of 
the percentage matrix [%3, %2; %2, %3](2), which represents 4-dimensional hyperbolic  
number %3*%3 +%3*%2*e1+%2*%3*e2+%2*%2*e3. 
 

 
%3, %2 
%2, %3 

(2) 
            
     = 

%3*%3, %3*%2, %2*%3, %2*%2 
%3*%2, %3*%3, %2*%2, %2*%3 
%2*%3, %2*%2, %3*%3, %3*%2 
%2*%2, %2*%3, %3*%2, %3*%3 

 
Fig. 10.1. The second tensor power of the percentage matrix [%3, %2; %2, %3] represents 
              4-dimensional hyperbolic number  %3*%3*e0+%3*%2*e1+%2*%3*e2+%2*%2*e3. 
 
     As it turned out, coefficients of these hyperbolic numbers effectively model percentages of 
corresponding n-plets in long DNA sequences: for example, the value %3*%2 models the 
percentage of doublets 32, and the value %2*%3*%3 models the percentage of triplets 233. 
Knowing only percentages of monoplets %3 and %2, you can predict percentages of dozens 
of hydrogen n-plets in long DNA. 

For an illustration of this statement, Fig. 10.2 shows - in a graphical form - an exam-
ple of phenomenological values of probabilities of all members of alphabets of hydrogen     
n-plets (n = 1, 2, 3, 4, 5) in the case of the DNA sequence of the first chromosome of the 
plant Arabidopsis thaliana, which contains 30427671 nucleotide pairs. Simultaneously, Fig. 
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10.2 shows model values of these percentages as components of 2n-dimensional hyperbolic 
numbers [q, p; p, q](n), where q=0,35873552 and p=0,64126448, n = 1, 2, 3, 4, 5. 
 

Percentages 
of 2 monoplets      

(3, 2) 

Percentages 
of 4 doublets 

(33, 32, 23, 22) 

Percentages      
of 8 triplets 

(333, 332, …, 222) 

Percentages                   
of 16 tetraplets 

(3333, 3332, …, 2222) 

Percentages                              
of 32 pentaplets 

(33333, 33332,…, 22222) 

 
q=0,35873552 
p=0,64126448 

  
 

 

 
 
 
 

q=0,35873552 
p=0,64126448  

           
[q, p; p, q](2) 

 
               
  [q, p; p, q](3)  

       [q, p; p, q](4)  
               [q, p; p, q](5) 

 
Fig. 10.2. The graphic representation of percentages of all kinds of hydrogen n-plets (n = 1, 
2, 3, 4, 5) in the DNA sequence of the first chromosome of the plant Arabidopsis thaliana 
(initial data   relating to this chromosome were accessed from 
https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9). Blue points in the graphs show phe-
nomenological percentages of n-plets of numbers of hydrogen bonds, while red points show 
model values of these probabilities as components of 2n-dimensional hyperbolic numbers       
[q, p; p, q](n), where q and p are percentages of hydrogen bonds 3 and 2 in this DNA. 
 

Fig. 10.3 shows phenomenological and model values of percentages of all members of 
hydrogen n-plet alphabets (n = 1, 2, 3, 4) for the same DNA sequence as in Fig. 10.2. It can 
be seen that these model values reproduce phenomenological values with the level of accura-
cy, which one can see in Fig. 10.2. 

Percentages of hydrogen monoplets 3 and 2 
Reality:                  q = [3] = 0,3587;                  p = [2] = 0,6413 

Probabilities of hydrogen doublets (4 kinds of doublets: 33, 32, 23, 22) 
Reality:   [33] = 0,1198;       [32] = 0,2390;      [23] = 0,2389;      [22] = 0,4023. 
Model:     [33] = 0,1287;       [32] = 0,2300;      [23] = 0,2300;      [22] = 0,4112. 

Percentages of hydrogen triplets  
(8 kinds of triplets: 333, 332, 323, 322, 233, 232, 223, 222) 

Reality:   [333]= 0,0385;   [332]= 0,0812;    [323]= 0,0880;    [322]= 0,1507;  
                [233]= 0,0812;   [232]= 0,1577;    [223]= 0,1514;    [222]= 0,2512. 
Model:     [333]=0,0462;   [332]=0,0825;    [323]=0,0825;    [322]=0,1475;  
                  [233]=0,0825;   [232]=0,1475;    [223]=0,1475;    [222]=0,2637. 
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Percentages of  hydrogen tetraplets 
(16 kinds of tetraplets: 3333, 3332, 3323, 3322, 3233, 3232, 3223, 3222,  
                                     2333, 2332, 2323, 2322, 2233, 2232, 2223, 2222) 

Reality: [3333]=0,0132;  [3332]=0,0253;  [3323]=0,0310;  [3322]=0,0502;  
                [3233]=0,0311;  [3232]=0,0570;  [3223]=0,0601;  [3222]=0,0906;  
                [2333]=0,0253;  [2332]=0,0560;   [2323]=0,0570;  [2322]=0,1007;  
                [2233]=0,0502;  [2232]=0,1008;   [2223]=0,0907;  [2222]=0,1607. 
Model:   [3333]=0,0166;  [3332]=0,0296;   [3323]=0,0296;  [3322]=0,0529;  
                [3233]=0,0296;  [3232]=0,0529;   [3223]=0,0529;  [3222]=0,0946;  
                [2333]=0,0296;  [2332]=0,0529;   [2323]=0,0529;  [2322]=0,0946;  
                [2233]=0,0529;  [2232]=0,0946;   [2223]=0,0946;  [2222]=0,1691. 

 
Fig. 10.3. Phenomenological values (in blue color) and model values (in red color) of per-
centages of all kinds of hydrogen n-plets (n = 1, 2, 3, 4) in the DNA sequence of the first 
chromosome of Arabidopsis thaliana (appropriate graphs are shown in Fig. 10.2; initial data 
relating to this chromosome were accessed from 
https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9). Numbers in square brackets refer to 
percentages of corresponding hydrogen n-plets (for example, the symbol [323] refers to the 
percentage of the hydrogen triplet 323 in the hydrogen sequence of this DNA like 322-232-
233-…). All values are rounded to the fourth decimal place. 
 

Similar results have been obtained in our analysis of the plant, Arabidopsis thaliana; 
nematode, Caenorhabditis elegans; fruit fly, Drosophila melanogaster; house mouse, Mus 
musculus; and Homo Sapiens, drawing on nuclear chromosome data and DNA sequence data 
obtained from GenBank. 

The author has also calculated percentages of all kinds of n-plets  (n = 1, 2, 3, 4, 5) in        
19 genomes of bacteria and archaea from the full list in the article [Rapoport, Trifonov, 2012, 
p. 2]: “Aquifex aeolicus, Acidobacteria bacterium, Bradyrhizobium japonicum, Bacillus sub-
tilis, Chlamydia trachomatis, Chromobacterium violaceum, Dehalococcoides ethenogenes, 
Escherichia coli, Flavobacterium psychrophilum, Gloeobacter violaceus, Helicobacter pi-
lory, Methanosarcina acetivorans, Nanoarchaeum equitans, Syntrophus aciditrophicus, 
Streptomyces coelicolor, Sulfolobus solfataricus, Treponema denticola, Thermotoga mariti-
ma  and Thermus thermophiles”. The calculated sets of these percentages were also modelled 
on the basis of sets of coordinates of appropriate 2n-dimensional hyperbolic numbers              
[q, p; p, q](n). These results confirm that the proposed model approach on the basis of             
2n-dimensional hyperbolic numbers [q, p; p, q](n) can be used to obtain idealized models of 
percentages of all kinds of n-plets in actual long DNA sequences (n = 1, 2, 3, 4, … is much 
less than the length of such sequences). 

The proposed application of 2n-dimensional hyperbolic numbers allows the prediction 
of percentages of all kinds of considered hydrogen n-plets in long DNA sequences with a 
high level of accuracy, using knowledge of percentages of only two numbers - 3 and 2 – of 
hydrogen bonds in the DNA sequence. 
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11 2n-dimensional hyperbolic numbers and phenomenologic rules of percentages in 

long literary texts         

Impressive recent discoveries in genetics have borrowed terminology from linguistics and the 
theory of communications. As experts in molecular genetics note, “the more we understand 
laws of coding of the genetic information, the more strongly we are surprised by their simi-
larity to principles of linguistics of human and computer languages” [Ratner, 2002, p. 203].  

    Leading experts in the field of structural linguistics have long believed that languages of 
human dialogue were formed as a continuation of genetic language or, are, at least, closely 
connected with genetic language. Analogies between systems of genetic and linguistic infor-
mation are of wide and important scientific interest, which this article briefly illustrates. 
Some relevant concepts will be referred to by R. Jakobson [1987, 1999], one of the most fa-
mous lingusitics experts and author of an in-depth theory of binary lingustic oppositions. 
Jointly with F. Jacob, Nobel Prize winner in molecular genetics, and with other linguistic 
specialists holding the same views, Jakobson proposed that genetic language is the structural 
basis of linguistic languages [Jacob et al., 1968; Jakobson, 1985]. In particular, according to 
Jakobson, all relations among linguistic phonemes are decomposed into a series of binary 
oppositions of elementary differential attributes (or traits). By analogy, the set of four letters 
of the genetic alphabet contains the three binary sub-alphabets, which allow creating new 
mathematical models in molecular genetics [Petoukhov, 2017, 2018a]. As Jakobson wrote, 
the genetic code system is the basic simulator, which underlies all verbal codes of human 
languages. “The heredity in itself is the fundamental form of communications … Perhaps, the 
bases of language structures, which are imposed on molecular communications, have been 
constructed by its structural principles directly” [Jakobson, 1985, p. 396]. These questions 
had arisen to Jakobson as consequence of his long-term research into the connections be-
tween linguistics, biology and physics. Such connections were considered at a united seminar 
of physicists and linguists, organized by Niels Bohr and Roman Jakobson, jointly, at the 
Massachusetts Institute of Technology. 

“Jakobson reveals distinctly a binary opposition of sound attributes as underlying each 
system of phonemes... The subject of phonology has changed by him: the phonology consid-
ered phonemes (as the main subject) earlier, but now Jakobson has offered that distinctive 
attributes should be considered as “quantums” (or elementary units of language)… Jakobson 
was interested especially in the general analogies of language structures with the genetic 
code, and he considered these analogies as indubitable” [Ivanov, 1985]. We are reminded 
also of the title of the monograph "On the Yin and Yang nature of language" [Bailey, 1982], 
which is characteristic for the theme of binary oppositions in linguistics.  

F. Jacob, Nobel Prize winner in molecular genetics, also considered the relationship be-
tween genetics and linguistic languages in connection with the principle of binary opposi-
tions, systematically described in the Ancient Chinese book “I-Ching”. He wrote: « C’est 
peut-être I Ching qu’il faudrait étudier pour saisir les relations entre hérédité et langage» (In 
English: To understand the relationship between genetics and language, perhaps it would be 
necessary to study the Ancient Chinese “I Ching”) [Jacob, 1974, p. 205]. 

This connection between linguistics and the genetic code interests many researchers, and 
some even perceive linguistic language as a living organism. In his book, “Linguistic Genet-
ics”, Makovsky says: "A look at language as a living organism, subject to the natural laws of 
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nature,, ascends to a deep antiquity … Research of a nature, of disposition and of reasons of 
isomorphism between genetic and linguistic regularities is one of the most important funda-
mental problems for linguistics of our time" [Makovsky, 1992]. 

In this Section the author describes the structural analogies between long DNA-‘texts’ 
and long literary works in Russian. The represented analysis of long literary Russian texts 
uses binary-oppositional phonetic features of the Russian alphabet, whose importances were 
accented by R.Jakobson and which have similarities with binary-oppositional features of ge-
netic lanquage. 

The DNA alphabet of nucleobases A, C, G and T has the binary-oppositional structure 
in accordance with their molecular traits (Fig. 11.1 left): it contains the sub-alphabet of pu-
rines (A, G), each of which has two rings in its molecular structure, and the sub-alphabet of 
pyrimidines (T, C), each of which has only one ring. Each of these sub-alphabets possesses 
its own binary-oppositional structure since it contains two sub-sub-alphabets defined by 2 or 
3 hydrogen bonds: in the sub-alphabet of purines, adenine A has 2 hydrogen bonds and gua-
nine G has 3 hydrogen bonds; in the sub-alphabet of pyrimidines, cytosine C has 3 hydrogen 
bonds and thymine T has 2 hydrogen bonds (Fig. 11. 1 right). 

 
 

 
 

 
Fig. 11.1. Left: the DNA alphabet of 4 nucleobases A, C, G and T. Right: the scheme of         
                 binary-oppositional structure of this DNA alphabet. 

    
The Russian alphabet has also a binary-oppositional phonetic structure since it has 

two binary-oppositional sub-alphabets: the sub-alphabet of vowels and the sub-alphabet of 
consonants. Each of these sub-alphabets also has its own binary-oppositional structure: the 
sub-alphabet of vowels consists of the sub-sub-alphabet of long vowels and the sub-sub-
alphabet of short (or iotated) vowels; the sub-alphabet of consonants consists of the sub-sub-
alphabet of voiced consonants and the sub-sub-alphabet of deaf consonants (Fig. 11.2 right). 
The soft sign “ь” and the hard sign “ъ” in the Russian alphabet do not convey any sound and 
therefore they are not taken into account in its phonologic structure. 
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Fig. 11.2. The similarity of binary-oppositional structures of the DNA alphabet (left) and the    
alphabet of Russian lanquage (right). 

 
For analyzing long literary Russian texts, let us introduce two corresponding classes of 

equivalency for letters of the Russian alphabet (in Fig. 11.2 the first class is marked by      
yellow and the second class is marked by green): 

1. The first class of equivalency combines all short (iotated) vowels and all deaf 
consonants: e, ё, ю, я, п, ф, к, т, ш, с, х, ц, ч, щ. We denote all the 14 members of 
this class by the common symbol 0; 

2. The second class of equivalency combines all long vowels and all voiced conso-
nants: а, и, о, у, ы, э, б, в, г, д, ж, з, й, л, м, н, р. We denote all the 17 members 
of this class by the common symbol 1.  

Leaving only these letters in the literary text, and replacing each letter with the symbol of its 
equivalence class 0 or 1, we obtain the representation of the text by a binary sequence of the 
type 100101100.... 

In such binary representation of long literary texts, let us denote percentages of letters 
from classes of equivalency 0 and 1 by symbols %0 and %1 correspondingly.  Then consider 
the bisymmetric matrix of percentages  [%0, %1; %1, %0], representing 2-dimensional      
hyperbolic number, and the matrix tensor family [%0, %1; %1, %0](n), representing               
2n-dimensional hyperbolic numbers: 

• %0*e0 + %1*e1 (if n = 1);  
• %0*%0*e0 + %0*%1*e1 + %1*%0*e2 + %1*%1*e3 (if n = 2),  
• etc. 

The author studied percentages %0 and %1 of letters of these two classes in long        
literary texts by L.N.Tolstoy, A.S.Pushkin, F.M.Dostoevsky, etc. More precisely, for each 
fixed n, the author analyzed percentage of each type of n-plets inside the mentioned binary 
representation of any long Russian language literary text (or a long literary text of any other 
language translated into Russian). Under a fixed value n, each of these percentages is equal to 
the ratio: “the total quantity of a corresponding type of n-plets” divided by “the total quantity 
of these binary n-plets”. For example, in the text of the work "Anna Karenina", by Leo Tol-
stoy, in its binary representation there are 654523 doublets 00, 01, 10 and 11. This number 
includes 75895 doublets 00, 142504 doublets 01, 142547 doublets 10 and 293577 doublets 
11. Correspondingly, the percentage of doublets 00 is equal to 75895/654523 = 0,115954672; 
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the percentage of doublets 01 is equal to 142504/654523 = 0,217721914; the percentage of 
doublets 10 is equal to 142547/654523 = 0,21778761; the percentage of doublets 11 is equal 
to 293577/654523 = 0,448535804 (such values of percentages are shown below rounded to 
four decimal places).  

By analogy with binary sequences of hydrogen bonds 32232223… in long DNA, it 
turned out - in the case of these literary texts - that knowing only percentages of monoplets 
%0 and %1 in such binary representation of a long Russian text, one can predict percentages 
of dozens of types of n-plets in it.  Coordinates of 2n-hyperbolic numbers [%0,%1; %1,%0](n) 
effectively model percentages of corresponding types of n-plets in long Russian texts: for 
example, the product of values %1*%0*%1 models the percentage of binary triplets 101, etc. 

Figs. 11.3 and 11.4 represent results – in graphical and tabular forms - of the analysis 
of the novel «Anna Karenina» of Leo Tolstoy by the above described approach. Significant 
correspondences can be seen between phenomenologic values of percentages (blue points in 
graphs in Fig. 11.3) of all considered types of n-plets, and model values (red points in 
graphs), represented by coordinates of 2n-dimensional hyperbolic numbers [%0, %1; %1, 
%0](n), n = 2, 3, 4. These graphs reveal that the model points of red color are almost exactly 
superimposed on the phenomenologic points of blue color. Fig. 11.4 shows the proximity of 
the numerical phenomenological and model values of the studied percentages. All values are 
rounded to four decimal places. Therefore, knowing only two percentages %0 and %1 of 
monoplets 0 and 1 in the binary n-plet representation of this well known novel, percentages 
of all other considered types of n-plets can be predicted. We presume that a similar model 
correspondence also holds true for n = 5, 6,  ... (if n is much less than the length of the con-
sidered literary text) but this should be studied in future research.  

 
 

L.N. Tolstoy «Anna Karenina» (1309047 letters) 
  Percentages of      

2 monoplets  
(0, 1) 

Percentages of         
4 doublets  

(00, 01, 10, 11) 

Percentages of 
8 triplets  

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3337092 
%1= 0,6662908 
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%0= 0,3337092 
%1= 0,6662908 

 
 
[%0,%1; %1,%0](2) 

 
 

      [%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 
 
Fig. 11.3. Graphical analysis results of the novel “Anna Karenina” by Leo Tolstoy (the 

original literary text was accessed from http://samolit.com/books/62/). Percentages of all the 
types of binary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel are shown.  
Blue points correspond to phenomenologic values of the percentages of hydrogen n-plets, 
while red points correspond to model values of the percentages calculated as coordinates of 
the 2n-dimensional hyperbolic numbers [%0,%1; %1,%0](n), where %0 and %1 are percent-
ages of  monoplets 0 and 1; (n) refers to tensor powers.   

 

L.N. Tolstoy «Anna Karenina» (1309047 letters) 
Percentages of types of monoplets  

Reality:                   %0 (or 0p)= 0,3337;                    %1 (or 1p) = 0,6663 
Percentages of types of binary doublets 

Reality:    0P0P=0,1160;       0P1P=0,2177;       1P0P=0,2178;        1P1P=0,4485. 
Model:     0P0P=0,1114;        0P1P=0,2223;       1P0P=0,2223;        1P1P=0,4439. 

Percentages of types of binary triplets 
Reality:       0P0P0P=0,0348;    0P0P1P=0,0818;   0P1P0P=0,0708;    0P1P1P=0,1481;  
                   1P0P0P=0,0808;    1P0P1P=0,1353;   1P1P0P=0,1465;    1P1P1P=0,3019. 
Model:         0P0P0P=0,0372;    0P0P1P=0,0742;   0P1P0P=0,0742;    0P1P1P=0,1481;  

      1P0P0P=0,0742;    1P0P1P=0,1481;    1P1P0P=0,1481;    1P1P1P=0,2958. 
Percentages of types of binary tetraplets 

Reality:    0P0P0P0P=0,0114;   0P0P0P1P=0,0232;   0P0P1P0P=0,0257;   0P0P1P1P=0,0559;  
                 0P1P0P0P=0,0247;   0P1P0P1P=0,0460;   0P1P1P0P=0,0505;   0P1P1P1P=0,0970;  
                 1P0P0P0P=0,0231;   1P0P0P1P=0,0582;   1P0P1P0P=0,0446;   1P0P1P1P=0,0914;  
                 1P1P0P0P=0,0565;   1P1P0P1P=0,0899;   1P1P1P0P=0,0975;   1P1P1P1P=0,2045. 
Model:     0P0P0P0P=0,0124;   0P0P0P1P=0,0248;   0P0P1P0P=0,0248;   0P0P1P1P=0,0494;       
                 0P1P0P0P=0,0248;   0P1P0P1P=0,0494;   0P1P1P0P=0,0494;   0P1P1P1P=0,0987;  
                 1P0P0P0P=0,0248;   1P0P0P1P=0,0494;   1P0P1P0P=0,0494;   1P0P1P1P=0,0987;  
                 1P1P0P0P=0,0494;   1P1P0P1P=0,0987;   1P1P1P0P=0,0987;   1P1P1P1P=0,1971. 

 

Fig. 11.4. The numeric representation of the analysis of the novel “Anna Karenina” by Leo 
Tolstoy (the original literary text was accessed from http://samolit.com/books/62/). Percent-
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ages of all the types of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this 
novel are shown. All values are rounded to four decimal places. Blue numbers correspond to 
phenomenologic values of the percentages for cases named in tabular sections, while red 
numbers correspond to model values of these percentages calculated as coordinates of the 2n-
dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of 
monoplets 0 and 1; (n) refers to tensor powers. Denotations 0p and 1p are used as equivalents 
of denotations %0 and %1.  

 
Below the author shows some results received by similar analysis of famous Russian lit-

erary works: L.N. Tolstoy «War and Peace»; F.M. Dostoevsky «Crime and Punishment» and 
«Idiot»; A.S. Pushkin «Evgenij Onegin» and «Dubrovsky»; the Russian Bible. All these re-
sults are similar to those described for the novel «Anna Karenina» (Figs. 11.3 and 11.4): they 
confirm that percentages of binary n-plets (n = 1, 2, 3, 4) are, to some degree, interrelated to 
each other and that this interrelation can be effectively modeled on the basis of                     
2n-dimensional hyperbolic numbers [%0, %1; %1, %0](n), where n = 1, 2, 3, 4. The computer 
program for the analysis of literary texts was created by our graduate student V.I. Svirin. 

 
 

L.N. Tolstoy «War and Peace», Book I (1068479 letters) 
Percentages of      
2 monoplets  

(0, 1) 

Percentages of         
4 doublets 

(00, 01, 10, 11) 

Percentages of 
8 triplets 

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets 

(0000, 0001, …, 1111) 

 
%0= 0,32830126 
%1= 0,67169874 

   

 
%0= 0,32830126 
%1= 0,67169874 

 
 

[%0,%1; %1,%0](2) 
 

 
[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 
 

Fig. 11.5. Graphical analysis results of the novel “War and Peace” (Book 1) by Leo Tol-
stoy (the original literary text was accessed from http://samolit.com/books/64/). Percentages 
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of all the types of binary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel 
are shown.  Blue points correspond to phenomenologic values of the percentages of hydrogen 
n-plets, while red points correspond to model values of the percentages calculated as coordi-
nates of the 2n-dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are 
percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

 
 

L.N. Tolstoy «War and Peace», Book I (1068479 letters) 
Percentages of types of binary monoplets 

Reality:              %0 (or 0P) = 0,3283;               %1 (or 1P) = 0,6717 
Percentages of types of binary doublets  

Reality:      0P0P=0,1088;        0P1P=0,2200;      1P0P=0,2190;      1P1P=0,4522. 
Model:        0P0P=0,1078;        0P1P=0,2205;      1P0P=0,2205;      1P1P=0,4512. 

Percentages of types of binary triplets 
Reality:         0P0P0P=0,0314;   0P0P1P=0,0774;   0P1P0P=0,0705;   0P1P1P=0,1484;  

              1P0P0P=0,0778;   1P0P1P=0,1419;   1P1P0P=0,1490;   1P1P1P=0,3036. 
Model:           0P0P0P=0,0354;   0P0P1P=0,0724;   0P1P0P=0,0724;   0P1P1P=0,1481;  

              1P0P0P=0,0724;   1P0P1P=0,1481;   1P1P0P=0,1481;   1P1P1P=0,3031. 
Percentages of types of binary tetraplets 

Reality:  0P0P0P0P=0,0096;  0P0P0P1P=0,0220;  0P0P1P0P=0,0250; 0P0P1P1P=0,0521;  
               0P1P0P0P=0,0234;  0P1P0P1P=0,0474;  0P1P1P0P=0,0504; 0P1P1P1P=0,0988;  
               1P0P0P0P=0,0214; 1P0P0P1P=0,0562;   1P0P1P0P=0,0451; 1P0P1P1P=0,0966;  
               1P1P0P0P=0,0546;  1P1P0P1P=0,0943;  1P1P1P0P=0,0984; 1P1P1P1P=0,2049. 
Model:   0P0P0P0P=0,0116;  0P0P0P1P=0,0238;  0P0P1P0P=0,0238; 0P0P1P1P=0,0486;  
                0P1P0P0P=0,0238;  0P1P0P1P=0,0486;  0P1P1P0P=0,0486; 0P1P1P1P=0,0995;  
                1P0P0P0P=0,0238;  1P0P0P1P=0,0486;  1P0P1P0P=0,0486; 1P0P1P1P=0,0995;  
                1P1P0P0P=0,0486;  1P1P0P1P=0,0995;  1P1P1P0P=0,0995; 1P1P1P1P=0,2036. 

 
Fig. 11.6. Numeric analysis results of the novel “War and Peace” (Book 1) by Leo Tolstoy 

(the original literary text was accessed from http://samolit.com/books/64/). Percentages of all 
the types of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this novel are 
shown. All values are rounded to four decimal places. Blue numbers correspond to phenome-
nologic values of percentages for cases named in tabular sections, while red numbers corre-
spond to model values of these percentages calculated as coordinates of 2n-dimensional    
hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of monoplets     
0 and 1; (n) refers to tensor powers. Denotations 0p and 1p are used as equivalents of denota-
tions %0 and %1.  
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F.M. Dostoevsky «Crime and Punishment» (818099 letters) 

  Percentages of      
2 monoplets  

(0, 1) 

Percentages of         
4 doublets  

(00, 01, 10, 11) 

Percentages of 
8 triplets  

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3420845 
%1= 0,6579155 

   

 
%0= 0,3420845 
%1= 0,6579155 

 

 
 

[%0,%1; %1,%0](2) 
 

 
[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 
Fig. 11.7. Graphical analysis results of the novel “Crime and Punishment” by F.M. Dosto-

evsky (the original literary text was accessed from http://samolit.com/books/57/). Percentages 
of all the types of binary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel 
are shown.  Blue points correspond to phenomenologic values of the percentages of hydrogen 
n-plets, while red points correspond to model values of the percentages calculated as coordi-
nates of the 2n-dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are 
percentages of  monoplets 0 and 1; (n) refers to tensor powers.   

 
 

 

F.M. Dostoevsky «Crime and Punishment» (818099 letters) 
Percentages of types of binary monoplets 

Reality:              %0 (or 0P) = 0,3421;                 %1 (or 1P) = 0,6579 
Percentages of members in the alphabet of binary doublets 

Reality:   0P0P = 0,1203;       0P1P = 0,2219;     1P0P = 0,2216;       1P1P = 0,4362. 
Model:    0P0P = 0,1170;        0P1P = 0,2251;     1P0P = 0,2251;       1P1P = 0,4329. 
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Percentages of types of binary triplets 
Reality:    0P0P0P=0,0370;    0P0P1P=0,0843;    0P1P0P=0,0738;     0P1P1P=0,1464;  

         1P0P0P=0,0838;    1P0P1P=0,1377;     1P1P0P=0,1472;     1P1P1P=0,2897. 
Model:     0P0P0P=0,0400;    0P0P1P=0,0770;    0P1P0P=0,0770;     0P1P1P=0,1481;  

         1P0P0P=0,0760;    1P0P1P=0,1481;    1P1P0P=0,1481;     1P1P1P=0,2848. 
Percentages of types of binary tetraplets 

Reality:    0P0P0P0P=0,0119; 0P0P0P1P=0,0258; 0P0P1P0P=0,0284; 0P0P1P1P=0,0551;  
                 0P1P0P0P=0,0265; 0P1P0P1P=0,0467; 0P1P1P0P=0,0535; 0P1P1P1P=0,0954;  
                 1P0P0P0P=0,0249; 1P0P0P1P=0,0594; 1P0P1P0P=0,0458; 1P0P1P1P=0,0900;  
                 1P1P0P0P=0,0560; 1P1P0P1P=0,0898; 1P1P1P0P=0,0952; 1P1P1P1P=0,1954. 
Model:     0P0P0P0P=0,0137;  0P0P0P1P=0,0263; 0P0P1P0P=0,0263; 0P0P1P1P=0,0507;  
                0P1P0P0P=0,0263;  0P1P0P1P=0,0507;  0P1P1P0P=0,0507; 0P1P1P1P=0,0974;  
                1P0P0P0P=0,0263;  1P0P0P1P=0,0507;  1P0P1P0P=0,0507; 1P0P1P1P=0,0974;  
                1P1P0P0P=0,0507;  1P1P0P1P=0,0974;  1P1P1P0P=0,0974; 1P1P1P1P=0,1874.  

 

Fig. 11.8. Numeric analysis results of the novel “Crime and Punishment” by F.M. Dosto-
evsky (the original literary text was accessed from http://samolit.com/books/57/). Percentages 
of all the types of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this novel 
are shown. All values are rounded to four decimal places. Blue numbers correspond to phe-
nomenologic values of percentages for cases named in tabular sections, while red numbers 
correspond to model values of these percentages calculated as coordinates of the 2n-
dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of 
monoplets 0 and 1; (n) refers to tensor powers. Denotations 0p and 1p are used as equivalents 
of denotations %0 and %1.  
 

F.M. Dostoevsky «Idiot» (1001129 letters) 
  Percentages of      

2 monoplets  
(0, 1) 

Percentages of         
4 doublets  

(00, 01, 10, 11) 

Percentages of 
8 triplets  

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3459674 
%1= 0,6540326 
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%0= 0,3459674 
%1= 0,6540326 

 
 

[%0,%1; %1,%0](2) 

 
 

[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 
 

Fig. 11.9. Graphical analysis results of the novel “Idiot” by F.M. Dostoevsky (the original 
literary text was accessed from http://samolit.com/books/56/). Percentages of all the types of 
binary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel are shown.  Blue 
points correspond to phenomenologic values of the percentages of hydrogen n-plets, while 
red points correspond to model values of the percentages calculated as coordinates of the 2n-
dimensional hyperbolic numbers [%0,%1; %1,%0](n), where %0 and %1 are percentages of  
monoplets 0 and 1; (n) refers to tensor powers.   

 

F.M. Dostoevsky «Idiot» (1001129 letters) 
Percentages of types of binary monoplets 

Reality:               %0 (or 0P) = 0,3460;                     %1 (or 1P) = 0,6540 
Percentages of types of binary doublets 

Reality:   0P0P=0,1208;       0P1P=0,2251;      1P0P=0,2252;      1P1P=0,4289. 
Model:    0P0P=0,1197;        0P1P=0,2263;      1P0P=0,2263;      1P1P=0,4278. 

Percentages of types of binary triplets 
Reality:   0P0P0P=0,0367;     0P0P1P=0,0845;     0P1P0P=0,0792;     0P1P1P=0,1449;  
                1P0P0P=0,0847;     1P0P1P=0,1405;     1P1P0P=0,1405;     1P1P1P=0,2839. 
Model:    0P0P0P=0,0414;     0P0P1P=0,0783;     0P1P0P=0,0783;     0P1P1P=0,1480;           
                1P0P0P=0,0783;     1P0P1P=0,1480;     1P1P0P=0,1480;      1P1P1P=0,2798. 

Percentages of types of binary tetraplets 
Reality:     0P0P0P0P=0,0118;  0P0P0P1P=0,0251;  0P0P1P0P=0,0290;  0P0P1P1P=0,0545;  
                  0P1P0P0P=0,0276;  0P1P0P1P=0,0517;  0P1P1P0P=0,0519;  0P1P1P1P=0,0941;  
                  1P0P0P0P=0,0249;  1P0P0P1P=0,0597;  1P0P1P0P=0,0505;  1P0P1P1P=0,0909;  
                  1P1P0P0P=0,0570;  1P1P0P1P=0,0885;  1P1P1P0P=0,0931;  1P1P1P1P=0,1899. 
Model:      0P0P0P0P=0,0143;  0P0P0P1P=0,0271;  0P0P1P0P=0,0271;  0P0P1P1P=0,0512;  
                  0P1P0P0P=0,0271;  0P1P0P1P=0,0512;  0P1P1P0P=0,0512;  0P1P1P1P=0,0968;  
                  1P0P0P0P=0,0271;  1P0P0P1P=0,0512;  1P0P1P0P=0,0512;  1P0P1P1P=0,0968;  
                  1P1P0P0P=0,0512;  1P1P0P1P=0,0968;  1P1P1P0P=0,0968;  1P1P1P1P=0,1830.  
 

Fig. 11.10. Numeric analysis results of the novel “Idiot” by F.M. Dostoevsky (the original 
literary text was accessed from http://samolit.com/books/56/). Percentages of all the types of 
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binary n-plets (n = 1, 2, 3, 4) from the binary representation of this novel are shown. All val-
ues are rounded to four decimal places. Blue numbers correspond to phenomenologic values 
of the percentages for cases named in tabular sections, while red numbers correspond to 
model values of these percentages calculated as coordinates of the 2n-dimensional hyperbolic 
numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of monoplets 0 and 1; (n) 
refers to tensor powers. Denotations 0p and 1p are used as equivalents of denotations %0 and 
%1.  

 
 
 

A.S. Pushkin «Evgenij Onegin» (107146 letters) 
  Percentages of      

2 monoplets  
(0, 1) 

Percentages of         
4 doublets  

(00, 01, 10, 11) 

Percentages of 
8 triplets  

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3277771 
%1= 0,6722229 

   

 
%0= 0,3277771 
%1= 0,6722229 

 
 

[%0,%1; %1,%0](2) 
 

 
[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 
 

Fig. 11.11. Graphical analysis results of the novel “Evgenij Onegin” by A.S. Pushkin (the 
original literary text was accessed from http://tululu.org/b57798/). Percentages of all the 
types of binary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel are shown.  
Blue points correspond to phenomenologic values of the percentages of hydrogen n-plets, 
while red points correspond to model values of the percentages calculated as coordinates of 
the 2n-dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percent-
ages of  monoplets 0 and 1; (n) refers to tensor powers.   
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A.S. Pushkin «Evgenij Onegin» (107146 letters) 
Percentages of types of binary monoplets 

Reality:                %0 (or 0P) = 0,3278;                     %1 (or 1P) = 0,6722 
Percentages of members in the alphabet of binary doublets 

Reality:   0P0P = 0,1090;       0P1P = 0,2189;      1P0P = 0,2187;      1P1P = 0,4534. 
Model:    0P0P = 0,1074;       0P1P = 0,2203;      1P0P = 0,2203;      1P1P = 0,4519. 

Percentages of types of binary triplets 
Reality:     0P0P0P=0,0316;     0P0P1P=0,0789;     0P1P0P=0,0738;      0P1P1P=0,1428;  

          1P0P0P=0,0769;     1P0P1P=0,1389;     1P1P0P=0,1476;      1P1P1P=0,3095. 
Model:       0P0P0P=0,0352;     0P0P1P=0,0722;     0P1P0P=0,0722;     0P1P1P=0,1481;  

           1P0P0P=0,0722;     1P0P1P=0,1481;     1P1P0P=0,1481;     1P1P1P=0,3038. 
Percentages of types of binary tetraplets 

Reality:    0P0P0P0P=0,0098; 0P0P0P1P=0,0223;  0P0P1P0P=0,0272;  0P0P1P1P=0,0509;  
                 0P1P0P0P=0,0251; 0P1P0P1P=0,0457;  0P1P1P0P=0,0500;  0P1P1P1P=0,0974;  
                 1P0P0P0P=0,0217; 1P0P0P1P=0,0588;  1P0P1P0P=0,0457;  1P0P1P1P=0,0930;  
                 1P1P0P0P=0,0513; 1P1P0P1P=0,0928;  1P1P1P0P=0,0953;  1P1P1P1P=0,2131. 
Model:     0P0P0P0P=0,0115;  0P0P0P1P=0,0237;  0P0P1P0P=0,0237;  0P0P1P1P=0,0485;  
                 0P1P0P0P=0,0237;  0P1P0P1P=0,0485;  0P1P1P0P=0,0485;  0P1P1P1P=0,0996;  
                 1P0P0P0P=0,0237;  1P0P0P1P=0,0485;  1P0P1P0P=0,0485;  1P0P1P1P=0,0996 ;  
                 1P1P0P0P=0,0485;  1P1P0P1P=0,0996;  1P1P1P0P=0,0996;  1P1P1P1P=0,2042.  
 

Fig. 11.12. Numeric analysis results of the novel “Evgenij Onegin” by A.S. Pushkin (the 
original literary text was accessed from http://tululu.org/b57798/). Percentages of all the 
types of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this novel are shown. 
All values are rounded to four decimal places. Blue numbers correspond to phenomenologic 
values of the percentages for cases named in tabular sections, while red numbers correspond 
to model values of these percentages calculated as coordinates of the 2n-dimensional hyper-
bolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of monoplets 0 and 1; 
(n) refers to tensor powers. Denotations 0p and 1p are used as equivalents of denotations %0 
and %1.  
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A.S. Pushkin «Dubrovsky» (106891 letters) 

  Percentages of      
2 monoplets  

(0, 1) 

Percentages of         
4 doublets  

(00, 01, 10, 11) 

Percentages of 
8 triplets  

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3259021 
%1= 0,6740979 

   

 
%0= 0,3259021 
%1= 0,6740979 

 
 

[%0,%1; %1,%0](2) 
 

 
[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 
 

Fig. 11.13. Graphical analysis results of the novel “Dubrovsky” by A.S. Pushkin (the orig-
inal literary text was accessed from http://samolit.com/books/61/ ). Percentages of all the 
types of binary n-plets (n = 1, 2, 3, 4) from the binary representations of this novel are shown.  
Blue points correspond to phenomenologic values of the percentages of hydrogen n-plets, 
while red points correspond to model values of the percentages calculated as coordinates of 
the 2n-dimensional hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percent-
ages of  monoplets 0 and 1; (n) refers to tensor powers.   

  
 

 

A.S. Pushkin «Dubrovsky» (106891 letters) 
Percentages of types of binary monoplets 

Reality:                 %0 (or 0P) = 0,3259;                 %1 (or 1P) = 0,6741  
Percentages of types of binary doublets 

Reality:   0P0P = 0,1100;       0P1P = 0,2152;      1P0P = 0,2166;      1P1P = 0,4582. 
Model:    0P0P = 0,1062;        0P1P = 0,2197;      1P0P = 0,2197;      1P1P = 0,4544. 

Percentages of types of binary triplets 
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Reality:     0P0P0P=0,0295;   0P0P1P=0,0816;    0P1P0P=0,0671;    0P1P1P=0,1491;  
                  1P0P0P=0,0784;   1P0P1P=0,1358;    1P1P0P=0,1503;    1P1P1P=0,3083. 
Model:      0P0P0P=0,0346;   0P0P1P=0,0716;    0P1P0P=0,0716;    0P1P1P=0,1481;     
                 1P0P0P=0,0716;   1P0P1P=0,1481;    1P1P0P=0,1481;    1P1P1P=0,3063. 

Percentages of types of binary tetraplets 
Reality:  0P0P0P0P=0,0081;  0P0P0P1P=0,0223;  0P0P1P0P=0,0257;  0P0P1P1P=0,0549;  
               0P1P0P0P=0,0234;  0P1P0P1P=0,0459;  0P1P1P0P=0,0506;  0P1P1P1P=0,0952;  
               1P0P0P0P=0,0211;  1P0P0P1P=0,0553;   1P0P1P0P=0,0437;  1P0P1P1P=0,0971;  
               1P1P0P0P=0,0564;  1P1P0P1P=0,0916;   1P1P1P0P=0,0959;  1P1P1P1P=0,2127. 
Model:   0P0P0P0P=0,0113;  0P0P0P1P=0,0233;   0P0P1P0P=0,0233;  0P0P1P1P=0,0483;  
               0P1P0P0P=0,0233;  0P1P0P1P=0,0483;   0P1P1P0P=0,0483;  0P1P1P1P=0,0998;  
               1P0P0P0P=0,0233;  1P0P0P1P=0,0483;   1P0P1P0P=0,0483;  1P0P1P1P=0,0998;  
               1P1P0P0P=0,0483;  1P1P0P1P=0,0998;   1P1P1P0P=0,0998;  1P1P1P1P=0,2065.  
 

Fig. 11.14. Numeric analysis results of the novel “Dubrovsky” by A.S. Pushkin (the origi-
nal literary text was accessed from http://samolit.com/books/61/). Percentages of all the types 
of binary n-plets (n = 1, 2, 3, 4) from the binary representation of this novel are shown. All 
values are rounded to four decimal places. Blue numbers correspond to phenomenologic val-
ues of the percentages for cases named in tabular sections, while red numbers correspond to 
model values of these percentages calculated as coordinates of the 2n-dimensional hyperbolic 
numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of monoplets 0 and 1; (n) 
refers to tensor powers. Denotations 0p and 1p are used as equivalents of denotations %0 and 
%1.  

 

Russian Bible (3122489 letters) 
  Percentages of      

2 monoplets  
(0, 1) 

Percentages of         
4 doublets  

(00, 01, 10, 11) 

Percentages of 
8 triplets  

(000, 001, 010, …, 111) 

Percentages of 
16 tetraplets  

(0000, 0001, …, 1111) 

 
%0= 0,3279771 
%1= 0,6720229 
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%0= 0,3279771 
%1= 0,6720229 

 
 

[%0,%1; %1,%0](2) 
 

 
[%0,%1; %1,%0](3) 

 
 

[%0,%1; %1,%0](4) 

 

Fig. 11.15. Graphical analysis results of the Russian Bible (the original literary text was 
accessed from http://petoukhov.com/bible.zip). Percentages of all the types of binary n-plets 
(n = 1, 2, 3, 4) from the binary representations of this novel are shown.  Blue points corre-
spond to phenomenologic values of the percentages of hydrogen n-plets, while red points cor-
respond to model values of the percentages calculated as coordinates of the 2n-dimensional 
hyperbolic numbers [%0, %1; %1, %0](n), where %0 and %1 are percentages of monoplets        
0 and 1; (n) refers to tensor powers.   

 
 

Russian Bible (3122489 letters) 
Percentages of types of binary monoplets 

 Reality:                 %0 (or 0P) = 0,3280;                  %1 (or 1P) = 0,6720 
Percentages of types of binary doublets 

Reality:   0P0P = 0,1107;     0P1P = 0,2171;    1P0P = 0,2174;    1P1P = 0,4548. 
Model:    0P0P = 0,1076;      0P1P = 0,2204;    1P0P = 0,2204;    1P1P = 0,4516. 

Percentages of types of binary triplets 
Reality:       0P0P0P = 0,0318;  0P0P1P = 0,0789;  0P1P0P = 0,0678;  0P1P1P = 0,1484;  

                1P0P0P = 0,0794;   1P0P1P = 0,1386;  1P1P0P = 0,1493;  1P1P1P  = 0,3058. 
Model:        0P0P0P=0,0353;     0P0P1P=0,0723;    0P1P0P=0,0723;    0P1P1P=0,1481;  

               1P0P0P=0,0723;     1P0P1P=0,1481;    1P1P0P=0,1481;    1P1P1P=0,3035.  
Percentages of types of binary tetraplets 

Reality: 0P0P0P0P=0,0099;  0P0P0P1P=0,0222;  0P0P1P0P=0,0245; 0P0P1P1P=0,0543;  
              0P1P0P0P=0,0232;  0P1P0P1P=0,0448;  0P1P1P0P=0,0493; 0P1P1P1P=0,0995;  
              1P0P0P0P=0,0222;  1P0P0P1P=0,0568;  1P0P1P0P=0,0438; 1P0P1P1P=0,0948;  
              1P1P0P0P=0,0552;  1P1P0P1P=0,0937;  1P1P1P0P=0,0997; 1P1P1P1P=0,2063. 
Model:    0P0P0P0P=0,0116;  0P0P0P1P=0,0237;  0P0P1P0P=0,0237; 0P0P1P1P=0,0486;  
               0P1P0P0P=0,0237;  0P1P0P1P=0,0486;  0P1P1P0P=0,0486; 0P1P1P1P=0,0995;  
               1P0P0P0P=0,0237;  1P0P0P1P=0,0486;  1P0P1P0P=0,0486; 1P0P1P1P=0,0995;  
               1P1P0P0P=0,0486;  1P1P0P1P=0,0995;  1P1P1P0P=0,0995; 1P1P1P1P=0,2040.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 January 2020                   doi:10.20944/preprints201908.0284.v3

https://doi.org/10.20944/preprints201908.0284.v3


46 
Fig. 11.16. Numeric analysis results of the Russian Bible (the original literary text was ac-

cessed from http://petoukhov.com/bible.zip). Percentages of all the types of binary n-plets (n 
= 1, 2, 3, 4) from the binary representation of this novel are shown. All values are rounded to 
four decimal places. Blue numbers correspond to phenomenologic values of the percentages 
for cases named in tabular sections, while red numbers correspond to model values of these 
percentages calculated as coordinates of the 2n-dimensional hyperbolic numbers [%0, %1; 
%1, %0](n), where %0 and %1 are percentages of monoplets 0 and 1; (n) refers to tensor pow-
ers. Denotations 0p and 1p are used as equivalents of denotations %0 and %1.  

 
Presented results show that the described properties of long Russian literary texts reflect, 

first of all, the deep specifics of Russian language and not the particular literary style of a 
particular writer. It can be assumed that any long literary text in a foreign language, translated 
into Russian, will demonstrate similar properties. It will be interesting to study if there are 
similar patterns in the texts of other languages with differing alphabets and differing phonetic 
features.  

Presented results reveal such analogies between long genetic texts and and long Russian 
literary texts, which are related with their binary-oppositional structures, percentage features 
of texts and 2n-dimensional hyperbolic numbers [%0, %1; %1, %0](n). 

 
 
 

12      Doubly stochastic matrices and tensor families of hyperbolic numbers 
 
 
A square matrix is called doubly stochastic if all entries of the matrix are nonnegative 

and the sum of the elements in each row and each column is unity [Prasolov, 1994]. In 
previous Sections 10 and 11 we studied phenomenologic long binary sequences like as 
01101001… . We simulated phenomenologic percentages (or frequencies) of their doublets 
00, 01, 10, 11, of their triplets 000, 001, 010,…110, 111 and of their other n-plets by means 
of coordinates of 2n-dimensional hyperbolic numbers [p, q; q, p](n), where p refers 
precentages %0 of monoplets 0, and q refers percentages %1 of monoplets 1 (in binary 
sequences, the sum of percentages of monoplets 0 and 1 is equal to unity: p + q = 1).  

It is easy to check that each matrix of this tensor family [p, q; q, p](n) (Fig. 12.1) is 
doubly stochastic matrix since it is nonegative and the sum of its entries in each row and each 
column is unity. For example, the sum of entries in each row and in each column in the    
(4*4)-matrix M(2) is equal to unity: pp + pq + qp + qq = p(p + q) + q(p + q)= p + q =1. 
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Fig. 12.1. Three first members of the tensor family [p, q; q, p](n) of bisymmetric doubly  
                 stochastic matrices for percentages p and q (where p+q=1) are shown. 

 
The revealed connections of bisymmetric doubly stochastic matrices with structures of 

long genetic and literary texts (described in Sections 10 and 11) are interesting since doubly 
stochastic matrices have essential applications in many scientific fields: linear programming 
and planing, theory of games and optimization, forming of coalitions, models for oncology 
study, economy, etc. Some algebraic simulations of genetic and biologic materials in this 
article can be also considered as models on basis of bisymmetric doubly stochastic matrices. 
In addition, the Hardy-Weinberg law, which is called in biologic literature as the basis of 
mathematical constructions in population genetics and contemporary evolutionary theory, is 
simulated on the basis of the tensor family [p, q; q, p](n) of bisymmetric doubly stochastic 
matrices where p + q = 1 [Petoukhov, 2018, doi: 10.20944/preprints201804.0131.v2]. On the 
way of further applications of doubly stochastic matrices for analysis of biologic structures, 
many interesting studies and results are possible, which are related, in particular, with using 
the Darwinian concept of natural selection. The author plans to publish a few of such results 
some later. 

13  Regarding Punnett squares for the trait inheritance in Mendelian genetics 

According to Mendel's law of independent assortment of inherited traits, information from 
microworld of genetic molecules dictates macrostructures of living organisms, despite of 
strong noise and interference, through many independent channels (for instance, colors of 
hair, eye and skin are inherited independently from each other). This determinism is carried 
out by means of unknown algorithms of multi-channel noise-immunity coding. Consequently, 
every organism is an algorithmic machine of multi-channel noise-immunity coding. 

In genetics from 1906 year, Punnett squares represent Mendel's laws of inheritance of traits 
under poly-hybrid crosses. In Punnet squares, combinations of dominant and recessive alleles 
of genes from parent reproductive cells – gametes – are represented (Fig. 13.1).  
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Fig. 13.1.  Examples of Punnett squares for monohybrid and dihybrid crosses of organ-
isms under the laws of Mendel. Abbreviations «pat. sp.» and «pat. gam.» mean «paternal 
spectrum» and «paternal gametes». 
 

Punnett squares have strong analogies with square «tables of tensor inheritance» of eigen-
values of original matrices (or «parental» matrices), which were introduced in [Petoukhov, 
2016]. Let us say on this in more details in relation to bisymmetric matrices and their tensor 
(or Kronecker) product. 

As known, doubly stochastic matrices and bisymmetric matrix representations of                 
2n-hyperbolic numbers have real eigenvalues. The operation of the tensor product of any two 
square matrices V and W have the following property: the eigenvalues of matrix VUW are 
equal to a product of ci*dj, where ci and dj are eigenvalues of the matrices V and W. This fea-
ture of the tensor inheritance of eigenvalues of the original matrices (or "parental" matrices) 
V and W in the result of their tensor product can be conveniently represented in the form of 
"tables of inheritance". Fig. 13.2 shows the example of two simplest cases, conventionally 
referred to as monohybrid and dihybrid cases of a tensor hybridization of two bisymmetric 
matrices (for example, two doubly stochastic matrices or two matrices representing 2-
dimensional hyperbolic numbers). In the first case, the tensor product of two bisymmetric 
(2*2)-matrices V and W, which have the same spectrum of real eigenvalues A and a, gives 
the (4*4)-matrix Q=VVW with its 4 eigenvalues A*A, A*a, A*a, a*a. In the second case, the 
tensor product of (4*4)-matrices, having the same spectrum of real eigenvalues AB, Ab, aB, 
ab, gives (16*16)-matrix with 16 eigenvalues, represented in the tabular form.  

 

 
 

Fig. 13.2. Examples of tables of inheritance of eigenvalues under the tensor product in cases   
                of bisymmetric (2*2)-matrices and (4*4)-matrices. 

This formal analogy - between Punnett squares of combinations of alleles and tables 
of tensor inheritance of eigenvalues of the considered bisymmetric matrices - generates the 
following idea:  
• alleles of genes and their combinations can be interpreted as eigenvalues of                
            (2n*2n)-matrices from tensor families of considered bisymmetric matrices.  

14     Fractal-like multi-dimensional configurational spaces of hyperbolic types 

This Section is devoted to the use of 2n-dimensional hyperbolic numbers for modeling       
heritable fractal-like biostructures, which are developing step by step in ontogenesis of       
biological bodies.  
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Living bodies in a course of their ontogenesis from the embryonic state to the mature state 

gradually increase the number of body parts. Accordingly, the number of parameters,          
characterizing the developing body, increases. This leads to appropriate phased increasing a 
dimensionality of a configurational space of parameters of the body. In many cases of such 
ontogenetic development one can see the following iterative process: body structural         
elements, which exist at a previous stage of ontogenesis, produce - at the next step of        
ontogenesis - new elements with similar structures (Fig. 14.1). In the result, after some       
repetitions of this ontogenetic procedure, complex fractal-like structure of the multi-level 
body appears. A multidimensional configurational space of parameters of such body has a 
fractal-like system of its different subspaces having similar patterns of parametric states. One 
of many examples of such phased producing a fractal-like structure of multi-level body is 
ontogenetic producing new and new dichotomic branches in some plants (Fig.  14.1, left). 
 

 
 

 

 

   
 

Fig. 14.1. Illustrations for the phased ontogenetic development of fractal-like biological 
structures (from https://studbooks.net/2365314/tehnika/istoriya_poyavleniya_razvitiya). 
 

Regarding the theme of fractal-like structures in biological bodies, one can note a great 
number of publications is devoted to algorithmic creation of fractal-like geometric figures in 
spaces of a fixed (!) dimensionality, first of all, in 2-dimensional complex plane. There are 
also known works devoted to constructions of fractal geometric patterns on the plane of     
hyperbolic (or double) numbers [Pavlov, Panchelyuga, Panchelyuga, 2009a,b].  

In contrast to these works, the author proposes an approach to model an algorithmic 
reproduction of patterns, which are similar each other, not in a space of a fixed 
dimensionality but in different subspaces of multidimensional configurational spaces of 
parameters of multi-level bodies under their phased ontogenetic development. Due to 
similarity of parametric structures in its different subspaces, each of considered 
configurational spaces becomes a fractal-like space in the whole. 

The author notes the following possibility of modelling such multi-step ontogenetic        
development of biological objects and their configurational spaces, which receive new and 
new parameters and dimensionalities step by step. Let us take the matrix representation of 
hyperbolic number [f1(t), f2(t); f2(t), f1(t)] whose components f1(t) and f2(t) are functions of 
time. Fig. 14.2 shows that if this (2*2)-matrix is tensor multiplied on the left by a hyperbolic 
number [1, 1; 1, 1], which acts as a generator of additional dimensionalities of the configura-
tional space, the result is (4*4)-matrix representing 4-dimensional hyperbolic number f1(t)*e0 
+ f2(t)*e1 + f1(t)*e2 + f2(t)*e3. This 4-dimensional configurational space repeats in its sub-
spaces (namely the first plane on the basis vectors e0 and e1, and the second plane on the basis 
vectors e2 and e3) the same functions f1(t) and f2(t), which were in the initial 2-dimensional 
space. 
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Fig. 14.2. An initial step of a generation of a fractal-like 2n-dimensional space whose 
subspaces have identical contents. Here e0, e1, e2 and e3 are basis units from Fig. 2.5. 

Repeating the required number of times this operation of the tensor multiplication on 
the left using the generator [1, 1; 1, 1], we obtain a hierarchical tree of 2n-dimensional 
hyperbolic numbers and their corresponding 2n-dimensional configurational spaces for 
algorithmic modelling multi-step onthogenesis of a fractal-like morphogenetic construction. 
Different levels of this tree have subspaces with the same functions f1(t) and f2(t), which were 
in the initial 2-dimensional space; in this sense one can speech about a fractal-like structure 
of this hierarchy of multi-dimensional configurational spaces of parameters.                             

We briefly note that the noted generator [1, 1; 1, 1] (Fig. 14.2) can be used in a more 
complicated form if its components are some functions of time gi(t), for example [g1(t), g2(t); 
g2(t), g1(t)]. For modeling biological cyclic processes based on such fractal-like sets of 
subspaces, the case, in which the functions f1(t), f2(t), g1(t) and g2(t) are cyclic functions of 
time, is especially interesting. 

 

15     Pythagoras and the importance of the concept of number 
 

The notion of “number” is the main notion of mathematics and mathematical natural      
sciences. Pythagoras has formulated the famous idea: “Numbers rule the world” or “All 
things are numbers”. This Pythagorean slogan arose not because that the number can express 
a quantity of objects. Pythagoras was engaged in figured numbers associated with geometric 
figures: triangular, square, 5-angled, 12-angled, etc. Seeing that different numbers can dictate 
different geometric shapes, he came up with the idea that numbers have an internal structure 
and able to organize the outside world according to their properties. In view of this idea,    
natural phenomena should be explained by means of systems of numbers; the systems of 
numbers play a role of the beginning for uniting all things and for expressing the harmony of 
nature [Kline, 1980]. For the Pythagoreans, the number expressed the "essence" of             
everything, and therefore the phenomena should be explained only with the help of numbers; 
it was numerical relations that served as the unifying principle of all things and expressed the 
harmony and order of nature.  

Many prominent scientists and thinkers were supporters of this Pythagorean standpoint or 
of one similar to it. As W. Heisenberg noted, modern physics, where matrices are used as a 
higher form of numbers, is moving along the same path along which the Pythagoreans 
walked [Heisenberg, 1958]. Not without reason B. Russell noted that he did not know any 
other person who could exert such influence on the thinking of people as Pythagoras [Russell, 
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1945]. Taking this into account, one can believe that there is no more fundamental scientific 
idea in the world than this idea about a basic meaning of numbers. 

Our research results and the proposed approach can be considered as a further development 
of this fundamental idea of Pythagoras in connection with the structural organization of the 
genetic system and inherited biological phenomena. 

16  The hypothesis of an analogue of the Weber-Fechner law related to the transmission 
of information along single nerve fibres 

In Section 5 above, the connection of hyperbolic rotations with the basic psychophysical 
Weber-Fechner law, which has a logarithmic character, was shown. This law is equally 
applicable to the perception of sensory information through a variety of sensory channels and 
it can be considered as the law of not only the nervous system, but "the law of protoplasm” in 
accordance with known data [Schulz, 1916]. In the nervous system, sensory information 
associated with this logarithmic law is transmitted through single nerve fibers in the form of 
special series of spikes (nervous impulses). It can be assumed that the transmission of 
information through single nerve fibers is itself associated with some analogue of the Weber-
Fechner logarithmic law. This Section contains the author's thoughts on this topic. 

As known, the magnitude of the action potential set up in any single  nerve fibre is 
independent of the strength of the exciting stimulus, provided the latter is adequate. An  
electrical stimulus below threshold strength fails to elicit a propagated spike potential. If it is 
of threshold strength or over, a spike (a nervous impulse or an action potential) of maximum 
magnitude is set up. Either the single fibre does not respond with spike production, or it 
responds to the utmost of its ability under the conditions at the moment. This property of 
single nerve fibres is termed the all-or-none law (see, for example, [Kalat, 2016]).  After 
generating each spike, each neuron has a refractory period t0, when it is incapable of 
generating a new spike. 

Electrical spikes in brain neurons are produced by using a flow of Na+ and K+ ions, 
which is provided by so called Na+/K+ pump [Hodgkin and Huxley, 1952]. It should be noted 
that the generation of each nervous spike is connected with the same numbers 3 and 2, which 
were mentioned above many times: the Na+/K+ pump uses the energy of one ATP molecule 
to exchange 3 intracellular Na+ ions for 2 extracellular K+ ions [Glitsch, 2001]. Some publi-
cations claim that functional features of the Na+/K+ pump can be used for brain computations 
[Forrest, 2014]. In pevious Sections, we have interpreted numbers 3 and 2 as two different 
parts of the single hyperbolic number 3+2j1 (Fig. 2.4, etc). Meeting now this pair of numbers 
3 and 2 in generating nervous spikes, one can think that the hyperbolic number 3+2j1 plays a 
certain role in brain computations on the basis of such spike generatings.  (The author here 
expresses special thanks to Professor Matthew He from USA, who told him 2 years ago on 
publications about these numbers 3 and 2 when generating spikes in neurons). 

In the sequence of spikes running along the nerve fiber, the time intervals «t» between 
adjacent spikes are - in a general case - not equal to each other, but can differ significantly. 
These changes of the time intervals between spikes carry information transmitted over the 
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nerve fiber. Taking into account all the data on the Weber-Fechner law described above, the 
author hypothesizes on the existence of the following analogue of the Wever-Fechner law in 
nervous systems: 

- in single nerve fibers, the information significance (or the intensity of information 
perception) of a interpulse interval for the nervous system is a logarithmic function of 
the duration of this interval in accordance with the following equation: 

 
                                                          p = k*ln(t/t0)                                                            (15.1) 
 
where «p» is the information significance of the interpulse interval for the nervous system, 
«t» is a duration of the interpulse interval, «t0» is a refractory period (time threshold) of the 
neuron,  ln – natural logarithm, k – a weight factor. Fig. 16.1 compares formulations of the 
Weber-Fechner law and its supposed analoque for neurons. 

 
The Weber-Fechner law 
for sensory perceptions 

The supposed analoque of the Veber-Fechner law 
for time sequences of spikes in single nerve fibers 

p = k*ln(x/x0) p = k*ln(t/t0) 
p - the intensity of perception p - the information significance of the interpulse   

     interval for the nervous system  
x – stimulus intensity t - a duration of the interpulse interval  
x0 - threshold stimulus              t0 - is a refractory period (time threshold)    
ln – natural logarithm ln – natural logarithm  
k – a weight factor k – a weight factor 

 
Fig. 16.1. Comparing formulations of the Weber-Fechner law and its supposed analoque for  
                 neurons. 
 
 From the standpoint of proposed approach to transmitting information along single 
nerve fibers, these information processes are also related with hyperbolic numbers and with 
hyperbolic rotations as their particular cases. 
 
17     Some concluding remarks 
 

The development of modern mathematical natural sciences is based on the use of certain 
mathematical tools. Mathematical tools of theoretical research can be compared with glasses 
for a visually impaired person: adequate glasses provide a person with a clear and beautiful 
picture of reality, which he had previously seen as blurred and hidden by fog. Darwin once 
wrote: “I have deeply regretted that I did not proceed far enough at least to understand   
something of the great leading principles of mathematics; for men thus endowed seem to have 
an extra sense” (this quotation is taken from [May, 2004]). 
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This article attracts attention of researches to an important role of hyperbolic numbers and 

their matrix representations in algebraic modelling structural features of genetic phenomena 
(see also [Petoukhov, 2019 c]). The author puts forward the hypothesis that hyper-alphabets 
of eigenvectors of matrix representations of basis units of 2n-dimensional hyperbolic numbers 
play a key role in transmitting biological information and that they can be considered as one 
of foundations of coding information at different levels of biological organization. He 
believes that corresponding languages using such hyper-alphabets define many inherited 
phenomenological structures in biology including molecular genetic structures. In particular, 
using these hyper-alphabets gives new algebraic tools to study phenomenologic rules in 
genetics, long literary texts (at least, in Russian language) and also harmony of musical 
pieces. The proposed algebraic approach is connected with the theme of a grammar of 
biology mentioned above. 

In the author’s opinion, the proposed kind of mathematics is beautiful and it can be used 
for further developing of algebraic biology and informatics in accordance with the famous 
statement by P. Dirac, who taught that a creation of a physical theory must begin with the 
beautiful mathematical theory: “If this theory is really beautiful, then it necessarily will 
appear as a fine model of important physical phenomena. It is necessary to search for these 
phenomena to develop applications of the beautiful mathematical theory and to interpret 
them as predictions of new laws of  physics” (this quotation is taken from [Arnold, 2007]). 
According to Dirac, all new physics, including relativistic and quantum, are developing in 
this way. One can suppose that this statement is also true for mathematical biology. 
 
Appendix I. Dyadic groups of binary numbers, modulo-2 addition and matrices of          
                      dyadic shifts 
     This article has repeatedly used a special decomposition of bisymmetric (2n*2n)-matrices, 
which represented them as a sum of 2n sparse matrices, defining multiplication tables of    
corresponing algebras (Figs. 2.3, 2.4, 7.2, 8.3). Just these sparce matrices represented the 
basic units of hyperbolic numbers. This Appendix explains what this special kind of          
decomposition is. 
   Bisymmetric matrix representations of 2n-dimensional hyperbolic numbers have the        
peculiarity that the set of numbers of the first row of the matrix is completely repeated in 
each subsequent row with some permutation or "shift". This permutation is called the dyadic 
shift and is associated with the well-known operation of modulo-2 addition described below. 
Matrices constructed by this principle are called dyadic shift matrices. Matrix representations 
of 2n-dimensional hyperbolic numbers are constructed by analogy with dyadic shift matrices. 
Decompositions of such matrices provide that each of appearing sparse matrices contains  
only one identical non-zero number in each row (Figs. 2.3, 2.4, 7.2, 8.3). 

Modulo-2 addition is utilized broadly in the theory of discrete signal processing as a fun-
damental operation for binary variables. By definition, the modulo-2 addition of two numbers 
written in binary notation is made in a bitwise manner in accordance with the following rules: 
 

                               0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0                                         (A1) 
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     For example, modulo-2 addition of two binary numbers 110 and 101, which are equal to   
6 and 5 respectively in decimal notation, gives the result 110⊕101 = 011, which is equal to 3 
in decimal notation (⊕is the symbol for modulo-2 addition). The set of binary numbers 

 
                               000, 001, 010, 011, 100, 101, 110, 111                                           (A2) 
 

forms a dyadic group with 8 members, in which modulo-2 addition serves as the group         
operation [Harmuth, 1989]. By analogy dyadic groups of binary numbers with 2n members 
can be presented. The distance in this symmetry group is known as the Hamming distance. 
Since the Hamming distance satisfies the conditions of a metric group, the dyadic group is a 
metric group. The modulo-2 addition of any two binary numbers from (A2) always gives a 
new number from the same series. The number 000 serves as the unit element of this group: 
for example, 010⊕000 = 010. The reverse element for any number in this group is the      
number itself: for example, 010⊕010 = 000. Each member from (A2) possesses its inverse-
symmetrical partner (or a mating number), which arises if the binary symbol of the member is 
transformed by the inverse replacements 0→1 and 1→0. For example, binary numbers 010 
and 101 give an example of such pair of mating numbers. 

The series (A2) is transformed by modulo-2 addition with the binary number 001 into a 
new series (A3) of the same numbers: 

 
                                001, 000, 011, 010, 101, 100, 111, 110                                           (A3) 
 
Such changes in the initial binary sequence, produced by modulo-2 addition of its members 

with any binary numbers (A2), are termed dyadic shifts [Ahmed and Rao, 1975; Harmuth, 
1989]. If any system of elements demonstrates its connection with dyadic shifts, it indicates 
that the structural organization of its system is related to the logic of modulo-2 addition. The 
article shows additionally that the structural organization of genetic systems is related to logic 
of modulo-2 addition. 

By means of dyadic groups, a special family of (2n*2n)-matrices can be constructed which 
are termed “matrices of dyadic shifts” and which are used widely in technology of discrete 
signal processing [Ahmed, Rao, 1975; Harmuth, 1977, §1.2.6]. Fig. A1 shows examples of 
bisymmetric matrices of dyadic shifts. In these matrices their rows and columns are             
numerated by means of binary numbers of an appropriate dyadic group. All matrix cells are 
numerated by means of binary numbers of the same dyadic group in such way that a binary 
numeration of each cell is a result of modulo-2 addition of binary numerations of its column 
and its row. For example, the cell from the column 110 and the row 101 obtains the binary 
numeration 011 by means of such addition. Such numerations of matrix cells are termed   
“dyadic-shift numerations” (or simply “dyadic numeration”).  

 
   00 (0) 01 (1) 10 (2) 11 (3) 
 0 1   00 (0) 00 (0) 01 (1) 10 (2) 11 (3) 

0 0 1 ;  01 (1) 01 (1) 00 (0) 11 (3) 10 (2) 
1 1 0   10 (2) 10 (2) 11 (3) 00 (0) 01 (1) 

 11 (3) 11 (3) 10 (2) 01 (1) 00 (0) 
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 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 
000 (0) 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 
001 (1) 001 (1) 000 (0) 011 (3) 010 (2) 101 (5) 100 (4) 111 (7) 110 (6) 
010 (2) 010 (2) 011 (3) 000 (0) 001 (1) 110 (6) 111 (7) 100 (4) 101 (5) 
011 (3) 011 (3) 010 (2) 001 (1) 000 (0) 111 (7) 110 (6) 101 (5) 100 (4) 
100 (4) 100 (4) 101 (5) 110 (6) 111 (7) 000 (0) 001 (1) 010 (2) 011 (3) 
101 (5) 101 (5) 100 (4) 111 (7) 110 (6) 001 (1) 000 (0) 011 (3) 010 (2) 
110 (6) 110 (6) 111 (7) 100 (4) 101 (5) 010 (2) 011 (3) 000 (0) 001 (1) 
111 (7) 111 (7) 110 (6) 101 (5) 100 (4) 011 (3) 010 (2) 001 (1) 000 (0) 

 
Fig. A1. The examples of matrices of dyadic shifts. Parentheses contain expressions of the   
               numbers in decimal notation. 

 
 
Appendix II. Matrix representations of basis units of 32-dimensional hyperbolic           
                       numbers 
 

The Appendix contains matrix representations of basis units e0, e1, e2, …, e31 of                   
32-dimensional hyperbolic numbers a0e0+a1e1+a2e2+….+a31e31. Each of these matrices is a 
permutation matrix having in each row and in each column onle one entry 1, all other matrix 
cells contain zero. Each of matrices is a matric of dyadic shifts described above in the       
Appendix I. 

 
e0  (the unit matrix): 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
 
 
 
e1 : 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
 
e2 : 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
 
e3 : 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
 
e4 : 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
 
e5 : 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
 
e13 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e14 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e15 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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e16 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e17 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e18 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e19 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e27 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e28 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
 
e29 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e30 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
e31 : 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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