
Article 

Effects of Structure from Motion Data density, 

interpolation method and grid size on micro 

topography Digital Terrain Model accuracy 

Francisco Agüera-Vega 1,*, Marta Agüera-Puntas 1, Patricio Martínez-Carricondo 1,2, Francesco 

Mancini 3 and Fernando Carvajal 1 

1 Department of Engineering, Mediterranean Research Center of Economics and Sustainable Development 

(CIMEDES), University of Almería (Agrifood Campus of International Excellence, ceiA3). La Cañada de 

San Urbano, s/n. 04120 Almería, Spain; map719@inlumine.ual.es (M.A-P.); carvajal@ual.es (F.C-R.); 

pmc824@ual.es (P.M.C.) 
2 Peripheral Service of Research and Development based on drones, University of Almeria. La Cañada de 

San Urbano, s/n. 04120 Almería, Spain 
3 Department of Engineering “Enzzo Ferrari”, University of Modena and Reggio Emilia, Italy. 

francesco.mancini@unimore.it (F.M.) 

* Correspondence: faguera@ual.es (F.A-V.) 

Abstract: The objective of this study is to evaluate the effects of the 3D point cloud density 

derived from unmanned aerial vehicle (UAV) photogrammetry and structure from motion (SfM) 

and multi-view stereopsis (MVS) techniques, the interpolation method for generating a digital 

terrain model (DTM), and the resolution (grid size) of the derived DTM on the accuracy of estimated 

heights in small areas, where a very accurate high spatial resolution is required. A UAV-

photogrammetry project was carried out on a bare soil of 13 × 13 m with a rotatory wing UAV at 10 

m flight altitude (equivalent ground sample distance = 0.4 cm). The 3D point cloud was derived, 

and five sample replications representing 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 and 90% of the 

original cloud were extracted to analyze the effect of cloud density on DTM accuracy. For each of 

these samples, DTMs were derived using four different interpolation methods (Inverse Distance 

Weighted (IDW), Multiquadric Radial Basis Function (MRBF), Kriging (KR), and Triangulation 

with Linear Interpolation (TLI)) and 15 DTM grid size (GS) values (20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 

0.67, 0.5, and 0.4 cm). Then, 675 DTMs were analyzed. The results showed, for each interpolation 

method and each density, an optimal GS value (most of the cases equal to 1 cm) for which the Root 

Mean Square Error (RMSE) is minimum. IDW was the interpolator which yielded best accuracies 

for all combination of densities and GS. Its RMSE, considering the raw cloud, was 1.054 cm. The 

RMSE increased 3% when a point cloud with 80% extracted from the raw cloud was used to 

generate the DTM. When the point cloud included the 40% of the raw cloud, RMSE increased 5%. 

For densities lower than 15%, RMSE increased exponentially (45% for 1% of raw cloud). The grid 

size minimizing RMSE for densities of 20% or higher was 1 cm, which represents 2.5 times the 

ground sample distance of the pictures used for developing the photogrammetry project. 
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1. Introduction 

A Digital Elevation Model (DEM) represents a mathematical expression of an object. It is usually 

used for describing terrains, giving its elevations without considering the vegetation or man-made 

features. It plays an important role in applications related to terrain modeling, hydrological 

modeling, or landscape evolution due erosion process [1–3]. When a high scale is required, it is very 

important to count with a point cloud which yields a high resolution and high quality DEM.  
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 Furthermore, Unmanned Aerial Vehicles (UAVs) can catch data which, combined with remote 

sensing techniques, provide 3D models and orthophotographs with a high spatial and temporal 

resolution [3]. These products are very useful for landscape monitoring: reconstruction of extreme 

topography [4], precision agriculture [5–7], landslide monitoring [8], or erosion assessment [9]. All 

these applications require very high spatial resolution and very high accuracy. 

The integration of photogrammetry and computer vision has provided the Structure from 

Motion (SfM) technique, from which is possible to collect images from different heights and in 

different directions, with greater flexibility and high quality results [10,11]. SfM solves automatically 

the geometry of the scene and the camera positions and orientation, without the need to specify a 

priori a network of targets which have known 3D positions [12–14]. The multi-view stereopsis (MVS) 

technique has been incorporated into SfM, and it allows to derive the 3D structure from overlapping 

photography acquired from multiples angles. Furthermore, the Scale Invariant Feature Transform 

(SIFT) operator has been shown to be one of the most robust for key-point detection for generating 

3D point clouds from 2D photographs [15,16]. All this has led to the so-called UAV-photogrammetry, 

which consists of taking pictures from a non-metric camera mounted on a UAV to obtain a 3D point 

cloud representing the studied object. 

Having an accurate 3D point cloud, several factors affect the accuracy of the DEM: density and 

distribution of point cloud, grid resolution, and interpolation method to generate the DEM. UAV-

photogrammetry is able to generate high 3D point densities. However, this must be accompanied by 

proper system for data storage, data processing and manipulation of large volumes of data. High 3D 

point densities and high DEM grid resolution imply long processing time both in point cloud 

generation and DEM generation. So, reductions of such high point densities contribute to reduce the 

cost of data acquisition and data computation [17]. Although reduction in point cloud densities and 

DEM grid size reduction are expected to have direct effects on DEM characteristics, if those effects 

are not significant for a given application, this could result in saving in data acquisition and 

processing costs by a balance between them. 

Although there are no published works studying these effects on data generated from UAV-

photogrammetry, there are some on a 3D cloud point generated with terrestrial LiDAR technology. 

Anderson et al. [18] reduced the original LiDAR point cloud, resulting in data sets with 50%, 25%, 

10%, 5% and 1% of their original densities. Furthermore, they used two interpolators (inverse distance 

weighting (IDW) and ordinary kriging) to generate the DEM. Study of the errors concluded that 

LiDAR data sets could withstand substantial data reductions yet maintain adequate accuracy for 

elevation predictions, and that simple interpolation approaches such as IDW could be sufficient for 

generating the DEM. Liu et al. [19] explored the effect of point cloud density acquired with LiDAR 

and examined the scope for data volume reduction without affecting the efficiency in data storage 

and processing. They concluded that, although datasets could be reduced increasing the efficiency of 

DEM generation, the maximum level of data reduction depends on the original data density, 

interpolation method, DEM grid size, and terrain characteristics. Liu et al. [20] explored the effects of 

LiDAR data density on the accuracy of DEMs and examined how much a set of this data can be 

reduced while maintaining adequate accuracy for DEM generation. They concluded that data 

reduction mitigates the data redundancy and improves data processing efficiency in terms of both 

storage and processing time. For a large area, Singh et al. [17] evaluated the effects of LiDAR point 

cloud density on the biomass estimation of remnant forest in a rapidly urbanizing region, concluding 

that data with an average point spacing of 0.70 to 1.50 m could derive in cost-effective acquisition 

and data processing. Asal [2] evaluated the effects of reduction in airborne LiDAR data on the visual 

and statistical characteristics of the created DEM and concluded that the DEM accuracy decreases 

only 4.83% when the point cloud was reduced 50%. 

All the above related works were developed for large areas, but there are occasions that require 

studying smaller areas with a high level of detail, and therefore the required scale for representing 

these is greater than that required for representing those larger areas. In this sense, Asensio et al. [21] 

developed a methodology, based on a wind tunnel and a 3D laser scanner, in order to estimate wind 
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erosion, relating the change in microrelief to soil loss. They worked on microplots of 120 cm2, with 

2.98 × 106 3D points scanned in each studied plot. Then, two 0.1 × 0.1 cm resolution Digital Terrain 

Models (DTM), one before and one after wind simulation, were generated and compared to estimate 

soil loss. The interpolation method to obtain the DTMs is not indicated. Schmid et al. [22] used a high-

resolution terrestrial laser scanner to assess erosion risk due to mechanized logging with crawler 

harvesters on steep slopes. The plots under study were 20 m2, and they were scanned before and after 

the logging operation and after one year of exposure to rain. The surface roughness was estimated 

from DTMs with resolutions of 0.5 × 0.5 mm and 1 × 1 cm. The interpolation method is not mentioned. 

One conclusion of this work was that the roughness index calculated was influenced by DTM 

resolution. García-Serrana et al. [23] formulated the relevance of the fractal approach for 

understanding the relation of surface roughness to overland flow patterns. The system to generate 

the 3D point cloud was based on the close-range photogrammetry, and the DTM was generated with 

0.1 × 0.1 cm resolution. No indications about the interpolation method to generate the DTM are given. 

The study of Smith and Warburton [24] used SfM surveys to examine its ability to represent the fine 

details and to quantify roughness for different peat surfaces. To get these objectives, they derived 

two DTMs, one at 0.1 × 0.1 cm resolution and one at 0.5 × 0.5 cm resolution, but no mention about the 

interpolation method is given. 

In view of all these mentioned works, it can be statedthat both LiDAR and SfM techniques 

generate high-density 3D point clouds and that it would be interesting to study the relationship 

between the data density reduction and the accuracy of the DEM generated. 

The objective of this study is to evaluate the effects of 3D point cloud density derived from UAV-

photogrammetry and SfM and MVS techniques, the interpolation method for generating the DEM, 

and the resolution (grid size, GS) of the derived DEM, on the accuracy of estimated heights in small 

areas, where a very high spatial resolution and accuracy are required. 

2. Materials and Methods  

2.1. Study site 

The study site is located in Tabernas Desert (Almería), Southeast Spain. The south-west and the 

north-east coordinates UTM (Zone 30, ETRS89) of this area are (548948, 4096735) and (548961, 

4096748), respectively. Thus, it is a square of 13 × 13 m, which covers an area of 139 m2. The selection 

of this area was based on its morphology, which includes a wide range of variability. Furthermore, 

the terrain is free of vegetation, and thus there is no difference between the Digital Surface Model 

(DSM), the Digital Terrain Model (DTM), and the DEM. The elevation range is 4.8 m. Figure 1 

represents the location of the study site, an orthophoto and contour map of the study site. 
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Figure 1. Location of the study area (red point in the figures of the left side), and orthophoto (right, 

up) and contour map (right, down). Coordinates are UTM (zone 30, ETRS89). 

2.2. Image collection 

The images used in this work were taken from a rotatory wing DJI Mavic Air with four rotors. 

Its weight is 430 g, and it is equiped with a navigation system using GPS and GLONASS. In addition, 

it is equipped with a front, rear and lower vision system that allows it to detect surfaces with a defined 

pattern and adequate lighting, avoiding obstacles with a range between 0.5 and 10 m. Furthermore, 

the UAV is equipped with an RGB camera, mounted on a motion-compensated three-axis gimbal, 

with a 1/2.3” CMOS sensor, f/2.8 aperture, and 12 megapixels (4056 × 3040). The lens has a fixed focal 

length, equivlent to 35 mm format, of 24 mm and horizontal FOV of 85°. 

The flight was carried out with an autopilot using the UgCS software [25], which allows to 

configure a flight altitude fitted parallel to the ground by a introducing a DSM of the study site. In 

this way, There is not scale difference between photographs. This DSM was generated previously in 

the same field visit through a photogrammetric project which was procesed on site. Flight altitude 

was set at a constant distance of 10 m, which yields a ground sample distance (GSD) of 0.46 cm. The 

forward and side overlaps were of 85% and 65%, respectively. 

Furthermore, the coordinates of four Ground Control Points (GCPs) placed on the corners of the 

study area and marked with targets of A3-format size (297 × 420 mm) were measured with GNSS, 

made by working with differential corrections in real-time kinematic (RTK) mode, with the base 

station on a geodesic pillar located within 1 km of the studied site. Both the rover and base GNSS 

receivers were Trimble R6 units. With this configuration, the maximum horizontal and vertical RMSE 
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were ±9 and ±16 mm, respectively. Regardless, the purpose of this task was to get a high accuracy in 

the georeference of the DEM, not to check its accuracy. 

2.3. Photogrammetric processing 

The photogrammetric project was processed using Pix4Dmapper Pro version 3.1.23 [26], a 

software application based on the SfM and MVS techniques mentioned in the introduction section. 

The adjustments of this software were fitted in order to obtaind the highest 3D point cloud density. 

All the images were checked to avoid including blurred images in the project. Furthermore, the 

internal calibration parameters and coordinates of the image principal point of all the images were 

loaded from the EXIF data and considered as initial data for the iterative process of block adjustment. 

Identification of the GCPs in the images was carried out visually, using an incorporated tool in the 

processing software for assigning the absolute geolocation of the photogrammetric block. The 

product obtained from the photogrammetric project used in this study was the 3D point cloud. 

2.4. 3D point cloud processing 

To study the influence of the 3D point cloud density, the interpolation method, and the GS of 

the derived DSM on the accuracy of that DSM, a factorial experimental design was carried out. Figure 

2 shows the flowchart of the procedure followed in this study. The whole procedure described in this 

section was programmed using Golden Software ScripterTM, which allows to work with the Surfer 

8.01 [27] modelization engine through instructions writen in a Visual Basic-like programming 

language. 

 

Figure 2. Flowchart of the procedure followed in this study. 

2.4.1. Data sets 

Taking into account the objectives proposed in this work, the errors inherent in the coordinates 

of 3D points generated in the photogrammetric project have been considered null. From the initial 

3D point cloud, a random sample of 200 Check Points (CPs) were extracted in every square meter of 

the study site. So, a total of 200 × 13 × 13 = 33,800 CPs were used for evaluating the derived DSM 

accuracy. Furthermore, after the CPs were extracted, 15 stratified random samples with different 

Study site: square terrain 

(13 m × 13 m = 169 m2) 

Stratified random sampling for every 

sample density (15 levels: d1 to d90). 

Five replications for every density. 

15 levels × 5 replications = 45 samples 

 

UAV-photogrammetry 

project (GSD = 0.46 cm) 

3D point cloud 

Check points: 

Stratified random sampling. 

Extract 200 random points for every m2 

For each sample, generate DSMs using 

4 different interpolators (IDW, KR, 

MBRF and TLI) and 15 different grid 

sizes (from 20 cm to 0.4 cm). 

45 samples × 15 GSs × 4 interpolators = 

2,700 DSMs analyzed 

Root Mean Square Error at check 

points to assess the accuracy 
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numbers of points were extracted, with five repetitions per sampling density. The sampling densities 

were those corresponding to 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 and 90% of the total 3D points 

in the generated cloud, which are named as d1, d2, d3, d4, d5, d10, d15, d20, d30, d40, d5, d60, d70, 

d80, and d90, respectively. The raw point cloud is named as d100. These 5 × 15 = 45 files were extracted 

from the raw 3D point cloud using an informatics program developed by the authors in Visual Basic 

v6.0 language.  

2.4.2. Interpolation methods 

The interpolation methods evaluated in this work are Inverse Distance Weighted (IDW), 

Multiquadric Radial Basis Function (MRBF), Kriging (KR), and Triangulation with Linear 

Interpolation (TLI), which are all incorporated in the above-mentioned software Surfer 8.01. For each 

of the 45 extracted files and for each of the interpolation methods, the DSM grid size was set at 15 

different values: 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.67, 0.5, and 0.4 cm. Then, 45 × 15 × 4 = 2,700 DSMs 

were analyzed.  

Inverse Distance Weighted 

This is a weighted average interpolator and one of the most used for surface modeling. It is based 

on the idea that the influence of one point relative to another declines with the distance from the grid 

node, where the value is interpolated. The weighting factor assigned to each data point fixes how this 

influence decreases when the distance increases. It is an exact and local interpolator which uses the 

next expression to estimate the value for a non-sampling point (x, y): 

𝑍𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =

∑
𝑍𝑖

𝑑
𝑖𝑗
𝛽

𝑖=𝑚𝑗
𝑖=1

∑
1

𝑑
𝑖𝑗
𝛽

𝑖=𝑚𝑗
𝑖=1

, (1) 

where 𝑍𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is the interpolated height in the jth DSM node; Zi (I = 1, 2, …, mj) is the ith point 

height of the cloud used to interpolate the jth DSM node; dij is the distance between the jth DSM node 

and the ith point of the cloud used to interpolate the jth DSM node; mj is the number of points of the 

cloud used to interpolate the jth DSM node; and β is the weighting power. In this study β = 2. 

Radial Basis Function 

This exact interpolator includes a diverse group of interpolation methods which use a basic 

equation dependent on the distance between the interpolated point and the sampling points [28]. Its 

general expression generally used to interpolate topographic surfaces is:  

𝑍𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = ∑ 𝑎𝑖Ψ(𝑟𝑖𝑗)

𝑖=𝑚𝑗

𝑖=1
, (2) 

where 𝑍𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is the interpolated height in the jth DSM node; Ψ(𝑟𝑖𝑗) represents the radial basis 

functions; rij is the distance between the jth DSM node and the ith point of the cloud used to 

interpolate the jth DSM node; ai are scalar values, called weights, associated to each point of the cloud 

used to interpolate the jth DSM node; and mj is the number of points of the cloud used to interpolate 

the jth DSM node. 

To calculate the scalar values ai, it is necessary to solve the linear system M·A = Z, where M is an 

mj-order square matrix containing the distances between the DSM node and the points used to 

interpolate this node, A is a vector containing the ai values which have to be calculated, and Z is a 

vector containing the height of each point used to interpolate this node. 

In terms of the ability to fit the data and to produce a smooth surface, the Multiquadric method 

is considered by many authors the best of all of the radial basis function methods [29,30]. In the MRBF, 

the radial basis functions take this form:  

Ψ(𝑟) = √𝑟2 + 𝑐2, (3) 
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where r is the distance from the node to the point of the cloud, and c is the smoothing factor. There is 

no universal method to calculate this factor, and several authors have proposed different formulas 

(i.e. [31]). In this study, the following formula is used [27]: 

𝑐2 =
𝐷2

25 × 𝑛
, (4) 

where D is the length of diagonal of the data extent, and n is the number of data points. 

Kriging 

This is a geostatistical interpolation method that has demostrated good behavior in many fields. It 

attempts to express trends suggested in a data sample (3D point cloud), which means, for example, 

that high points might be connected along a ridge rather than isolated by bull’s-eye type contours. 

The general expresion for Ordinary Kriging is as follows: 

𝑍𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = ∑ 𝜆𝑖𝑍𝑖

𝑖=𝑚𝑗

𝑖=1
, (5) 

where 𝑍𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is the interpolated height in the jth DSM node. Zi (i = 1, 2, …, mj) is the ith point 

height of the cloud used to interpolate the jth DSM node. λi is the weight associated to each point of 

the cloud used to interpolate the jth DSM node. These values should be set so that the estimator is 

unbiased (∑ 𝜆𝑖
𝑖=𝑚𝑗

𝑖=1
= 1) and the variance is minimal. mj is the number of points of the cloud used to 

interpolate the jth DSM node. 

Triangulation with Linear Interpolation 

This is an exact interpolator which uses the optimal Delaunay triangulation [32] creating 

triangles by drawing lines between data points in such a way that no triangle edges are intersected 

by other triangles. In this way, the entire studied surface will be covered by a 3D triangle net, and the 

height estimation at a given grid node is made by linear interpolation taking into account the triangle 

which covers that node. 

2.4.3. Evaluation of the DEM accuracy 

As mentioned in Section 2.4.1, 33,800 points were extracted from the raw 3D point cloud to check 

the accuracy of the extracted elevations from the DSMs created from reduced point data densities. 

The measure to evaluate the performance of DSMs was the Root Mean Square Error (RMSE) [33]: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑍𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑍𝑖
𝑟𝑒𝑎𝑙)2𝑖=𝑛

𝑖=1

𝑛
, (6) 

where 𝑍𝑖
𝑟𝑒𝑎𝑙  is the elevation of the ith (i = 1, 2, 3, …, 33,800) CP extracted from 3D point cloud, 

𝑧𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the elevation estimated for the ith CP in the DSM under study, and n is the number of 

CPs (33800). A set of five RMSE values, corresponding to each replication, was calculated for each 

combination of 3D point cloud density, DSM grid size and interpolator. Analysis of variance 

(ANOVA) of the factorial model designed was carried out taking the RMSE as variable dependent, 

and the interpolation method and sampling density as the variation sources. 

3. Results 

The raw 3D point cloud derived from the photogrammetric project yielded 10516447 points, 

which corresponds to 62,227 points × m-2. Table 1 shows the correspondence between the studied 

percentages of points extracted from the raw point cloud, the number of points, the point cloud 

density or number of points per square meter and the square grid size of a DSM that has as many 

nodes as points extracted from the raw cloud (equivalent square grid size), which ranged from 4.01 

cm to 0.4 cm. The number of points per square meter ranged from 622 to 62,227. From here, the 

percentage of extracted points will be referred to as density because they are directly related.  
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Table 1. Correspondence between the studied percentages of points extracted from the raw point 

cloud, the number of points, the number of points per square meter, and the square grid size of a DSM 

that has as many nodes as points extracted from the raw cloud (equivalent square grid size). 

Percentage 1 2 3 4 5 10 15 20 

Number of points 105164 210329 315493 420658 525822 1051645 1577467 2103289 

Points × m−2 622 1245 1867 2489 3111 6223 9334 12445 

Equivalent square grid size (cm) 4.01 2.84 2.31 2.00 1.79 1.27 1.04 0.90 

Percentage 30 40 50 60 70 80 90 100 

Number of points 3154934 4206579 5258224 6309868 7361513 8413158 9464802 10516447 

Points × m−2 18668 24891 31114 37336 43559 49782 56005 62227 

Equivalent square grid size (cm) 0.73 0.63 0.57 0.52 0.48 0.45 0.42 0.40 

 

 Figure 3 shows the relationship between the DSM grid size and the RMSE (average of five 

repetitions) for each point cloud density studied. As can be observed in this figure, all curves show a 

similar shape: as the GS decreases, the RMSE also decreases until a certain GS value, which is not the 

same in all cases but is close to 1 cm, from which the RMSE increases. Moreover, for the four 

interpolation methods, the curves are ordered to density, meaning that for a given interpolator, the 

curve corresponding to a certain density is below that corresponding to a lower density. For a given 

interpolation method, the differences in RMSE between different densities are lower at the extremes 

and higher in the central zone, which is precisely, as has just been said, where the minimum RMSE 

values are found. This means that the influence of point density on the RMSE for large and small GS 

values is not as noticeable as when the GS values are close to or somewhat greater than the optimum. 

 

(a)

 

(b)

 

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

0 5 10 15 20
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

0 5 10 15 20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2019                   doi:10.20944/preprints201908.0283.v1

https://doi.org/10.20944/preprints201908.0283.v1


 

(c)

 

(d)

 

Figure 3. RMSE (y-axes, cm) for each GS (x-axes, cm), interpolation method and point cloud density. 

Interpolation method: (a) IDW; (b) KR; (c) MRBF; (d) TLI. Point cloud density: ● d1; ● d2; ● d3; ● d4; 

● d5; ● d10; ● d15; ● d20; ● d30; ● d40; ● d50; ● d60; ● d70; ● d80; ● d90; ● d100. 

Table 2 shows the minimum RMSE (average of the five replications) and the GS for which it was 

reached, for every interpolator and 3D point cloud density studied. In this table, for a given RMSE 

column, values with the same letter are not statistically different (p < 0.05). In view of this table, it can 

be stated that for all interpolation methods, the minimum values of RMSE corresponding to a density 

equal to or greater than d20 have been reached for a GS equal to 1 cm. In view of this table, it can be 

stated that for all interpolation methods, the minimum RMSE values corresponding to a density equal 

to or greater than d20 have been reached for a GS equal to 1 cm. For densities lower than d20, the 

optimum GS varied depending on the interpolation method considered. In any case, up to d2, the 

highest optimum GS was 3 cm. For the lowest point density studied, d1, the optimal GS values are 

different for each interpolation method: 10, 4, 6, 3 cm for IDW, KR, MRBF, and TLI, respectively. The 

ANOVA and least significant difference tests carried out show that, considering each interpolation 

method separately, the RMSE values are grouped into statistically different sets (p < 0.05). These 

differences are most clearly shown for the IDW and KR methods, where there are no overlaps 

between the sets. For the MRBF and TLI, the value sets were not as well defined as for the other 

interpolators. RMSE values corresponding to d80 and d90 form a homogeneous group for all 

interpolation methods (MRBF and TLI have overlap with other groups of values). 
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Table 2. The minimum RMSE and the GS for which it was found, for every interpolator and 3D point 

cloud density studied. RMSE values are the average of the five replications. In each RMSE column, 

values with the same letter are not statistically different. The last row shows data corresponding to 

the raw 3D point cloud. 

 

 

 

 

 

Figure 4 shows graphically the data presented in Table 2. Curves representing the minimum 

RMSE reached for every 3D point cloud density and every interpolation method show an asymptotic 

tendency, as the point density increases, toward the RMSE corresponding to d100. It can also be seen 

that the curve corresponding to the MRBF method is the one that is most separated from the rest. 

 

 

 
IDW KR MRBF TLI 

Density (%) GS 
 

RMSE Opt. GS 
 

RMSE GS 
 

RMSE GS 
 

RMSE 

d1 10 1.529a 4 1.478a 6 1.660a 3 1.477a 

d2 2 1.380b 3 1.368b 3 1.505b 3 1.372b 

d3 2 1.318c 2 1.313c 3 1.442c 2 1.325c 

d4 2 1.290d 2 1.291d 3 1.417c,d 2 1.309d 

d5 2 1.260e 2 1.263e 3 1.406d 2 1.284e 

d10 1 1.193f 2 1.216f 2 1.346e 1 1.248f 

d15 1 1.162g 1 1.191g 2 1.306f 1 1.210g 

d20 1 1.136h 1 1.161h 1 1.265g 1 1.181h 

d30 1 1.121i 1 1.148i 1 1.241g,h 1 1.172h 

d40 1 1.110j 1 1.135j 1 1.225h,i 1 1.152i 

d50 1 1.106j 1 1.132j 1 1.225h,i 1 1.154i 

d60 1 1.103j 1 1.127j 1 1.215h,i 1 1.148i 

d70 1 1.101j 1 1.126j 1 1.217h,i 1 1.145i,j 

d80 1 1.089k 1 1.114k 1 1.203i 1 1.133j 

d90 1 1.088k 1 1.114k 1 1.197i 1 1.131j 

d100 1 1.054 1 1.097 1 1.173 1 1.116 
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3D point cloud density (%) 
 

Figure 4. Minimum RMSE reached for every interpolator (● IDW; ● KR; ● MRBF; ● TLI) vs. 3D point 

cloud density studied. RMSE values are the average of the five replications. 

After the study of these results, two groups in every interpolation method were considered, one 

including RMSEs of d40 and other including d80. The ANOVA yields statistical differences (p < 0.05) 

between interpolation methods in both groups. 

4. Discussion 

UAV-derived 3D point clouds provide a new strategy for monitoring terrain surfaces with an 

extremely high level of spatial and temporal resolution. These clouds are used to derive DSMs, which 

provide a very useful basis to carry out calculus related to terrain monitoring. In the literature, 

virtually all work studying the accuracy of the DSMs generated from data acquired with SfM and 

MVS techniques does not separate the error due to the 3D point cloud generation process and the 

interpolation method used to generate the DSM, neither the fixed grid size nor the number of points 

in the point cloud. 

All curves shown in Figure 3 (RMSE vs. GS, for all interpolation methods and densities studied), 

have a minimum RMSE value, reached for a certain GS, and values smaller than these yield worse 

RMSE, which indicates than the DSM generated does not fit as well as those generated with a bigger 

GS. Although there are works in which relations between the optimal grid size and other factors such 

as the point cloud density, terrain morphology, and others have been established (i.e. [34]), all of 

them being carried out for larger areas and point densities lower than those considered in this work, 

the results presented in this work do not show this relationship. Table 2 indicates that the GS for 

which the minimum RMSE has been reached for every interpolator and every density is not related 

to the 3D point cloud density and not related to the interpolation method. From d100 to d20, the 

optimum GS is 1 cm, and for values lower than d20 the optimum GSs adopt different values but they 

are not related to density and not related to the interpolator. 

For all studied interpolation methods, data density was related to DSM accuracy: RMSE 

increased as data density decreased. This is because as the distance between the sample points 

increases, the accuracy of the DSM generated decreases [18]. Anderson et al. [18] studied a set of six 

reduced 3D point clouds derived from a series of 10 100-ha LiDAR-tiled study sites. Point densities 

ranged from 181.03 points × m−2 (no reduced point cloud) to 1.80 points × m−2 (1% of raw cloud). 

Furthermore, they used two interpolation methods: IDW and KR. For the IDW interpolator, the 

results showed an increase of RMSE from density equal to 100% (17.31 cm) to density equal to 1% 
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(35.66 cm). Then, the increase represented 106% of the minimum RMSE. For the KR interpolator, an 

increase from 001% (34.24 cm) to 1% (17.25 cm) represented 98.5% of the minimum RMSE. Liu et al. 

[19] found similar results using the IDW interpolator on a set of six reduced 3D point clouds derived 

from a raw LiDAR cloud. They studied densities from 0.037 points × m−2 (no reduced point cloud) to 

less than 0.001 points × m−2 (1% of raw cloud) in a study area of 113 km2. An increase of RMSE from 

100% (18.4 cm) to 1% of 3D point cloud (64.1 cm) represented 248% with respect to the minimum 

RMSE. The study site of the present work is 169 m2 in area, and the point densities ranged (Table 1) 

from 62,227 points × m−2 (no reduced point cloud) to 622 points × m−2 (1% of raw cloud). This study, 

as opposed to those cited above, is looking for highly accurate and detailed microscale topography, 

and therefore the point densities should be higher than those used in the cited works. Taking into 

account the minimum and maximum RMSEs found for every interpolation method (Table 2), the 

increases represented 45% for IDW (from 1.529 to 1.054 cm), 35% for KR (from 1.478 to 1.097 cm), 42% 

for MRBF (from 1.660 to 1.173 cm), and 32% for TLI (from 1.477 to 1.116 cm). All these increases are 

lower than those reported by Anderson et al. [18] and Liu et al. [19]. Nevertheless, Asal [2] reported 

an increase of RMSE of approximately 260% when the point cloud was reduced to 6%. 

For each density value studied, the RMSE values derived from the four interpolators were 

ordered from lowest to highest as follows: IDW, KR, TLI, and the worst values were found for RBF. 

Although differences between RMSEs derived from IDW, KR and TLI interpolators were not very 

high, the classical method IDW clearly proved to be more appropriate than the others, which agrees 

with some developers of UAV-photogrammetric software [26,35] that have incorporated this 

interpolation method to generate DSMs. Nevertheless, Anderson et al. [18] reported no RMSE 

discernible difference between IDW and KR. A similar conclusion was derived from their results by 

Lloyd and Atkinson [36]. 

Within each interpolation method, the least significant difference test carried out on RMSE 

yielded d80 and d90 as homogeneous groups (p < 0.05), another homogeneous group from d40 to 

d70, and densities from d30 to d1 are homogeneous groups themselves. All these homogeneous 

groups were clearly defined for IDW and KR. For TLI ,the groups were a bit more diffuse, and a bit 

more for RBF (Table 2). As with observed in data presented in this work, Anderson et al. [18], Liu et 

al. [19] and Asal [2] observed an asymptotic tendency of RMSE to d100 RMSE when point cloud 

density increases (Fig. 4), but they report a homogeneous RMSE group from d100 to d50, which does 

not agree with our results. 

Elevation accuracy of DSM generated from UAV photogrammetry and SfM and MSV techniques 

reported in some works are 3.1 cm [37], 4 cm [38], 4.7 cm [39], or 6.62 cm [40], but none of them 

indicate the part of the error attributable to the DSM generation process, which could be desirable in 

order to define methodologies to maximize the accuracy of DSM. 

5. Conclusions 

UAV-photogrammetry based on SfM and MSV offers high-accuracy and high-density 3D point 

clouds for detailed representation of terrain surfaces. However, very high density data can entail 

redundant information and, therefore, large processing times to generate the DSM. Furthermore, 

knowledge of how each factor involved in the generation of DSM influences the error associated with 

it can help to develop methodologies to minimize this error.  

This work studied how the 3D point cloud density and the interpolation method affect the DSM 

accuracy for data acquired from UAV and using SfM and MSV techniques. 

The main conclusions derived from results exposed in this work are the following: 

- Point cloud density, grid size and interpolation method significantly affect DSM accuracy. 

- Although differences of accuracy between IDW, KR, and TLI are not very high, IDW showed 

the lower RMSE values. MRBF yielded the worse accuracies. 

- The higher the point density, the greater the accuracy of the DSM. For the IDW interpolator, 

the RMSE for the 3D point generated from a UAV-photogrammetry software including SfM 

and MVS techniques was 1.054 cm. The RMSE increases 3% when a point cloud with 80% 

extracted from the raw cloud is used to generate the DSM. When the point cloud includes 
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40% of the raw cloud, RMSE increases 5%. For densities lower than 15%, RMSE increases 

exponentially (45% for 1% of raw cloud). 

- The grid size minimizing the RMSE for densities of 20% or higher was 1 cm, which 

represents 2 times the GSD of the pictures used for developing the photogrammetry project. 

Further analysis is needed to check generalizations of the conclusions: different surface 

morphologies, GSD, or even interpolation variant (power different than 2 in IDW interpolator, for 

example). 
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