

1 Article

2

Nanosecond Pulsed Laser Irradiation of Titanium 3 Alloy Substrate: Effects of Periodic Patterned 4 Topography on the Optical Properties of Colorizing 5 Surfaces

6 J.M. Vazquez-Martinez^{1,*}, J. Salguero¹, E. Blanco² and J.M. González-Leal²

7

8 ¹ Department of Mechanical Engineering & Industrial Design, Faculty of Engineering, University of Cadiz,
9 Av. Universidad de Cadiz 10, E11519 Puerto Real-Cadiz, Spain; jorge.salguero@uca.es (J.S.)10 ² Department of Condensed Matter Physics, Faculty of Sciences, University of Cadiz, Av. República Saharui,
11 E11510 Puerto Real-Cadiz, Spain; juanmaria.gonzalez@uca.es (J.M.G.L.), eduardo.blanco@uca.es (E.B.)12 * Correspondence: juanmanuel.vazquez@uca.es

13

14

15 **Abstract:** Surface treatments of metals based on laser marking technology is an important
16 application in a wide range of industrial fields. By specific combinations of laser processing
17 parameters, the modified surface leads to different textures with specific roughness and colored
18 appearance. Most of current works are focused on the modification of color tonality of flat surfaces,
19 or the development of specific topography features, but the combination of both processes is not
20 usually evaluated, mainly due to the complexity to control the optical properties on rough surfaces.
21 This research presents an analysis of the influence of the micro-geometrical characteristics of
22 periodic patterned laser tracks on the chromaticity and reflectance of Ti6Al4V substrates. The
23 samples were irradiated with an infrared nanosecond pulsed laser under air atmosphere, taking as
24 control parameter the scan speed of the beam. A roughness evaluation, microscopic inspection,
25 absorption and chromaticity examination were conducted. Although micro-crack growth was
26 detected in isolated case (10 mm/s), the possibility of adjusting the result color were demonstrated
27 by controlling the thermal affected zone thickness of the textures. Results of rough/colored
28 combined textures allow opening new perspectives in industrial design, particularly in aesthetic
29 applications with special properties.30 **Keywords:** Titanium, laser marking; color; reflectance; roughness; oxidation.

31

32

1. Introduction

33 Surface texturing has recently acquired an important growth in engineering applications,
34 resulting in significant improvements in load capacity, wear resistance and friction coefficient of
35 tribo-mechanical parts. Under tribological conditions, texturing geometries remove wear debris from
36 the sliding track, reducing the involved abrasive effects of these hard particles, and also acting as
37 lubricant reservoirs [1-2].38 Among the several techniques that can be applied for texturing (micro-drilling, mechanical
39 indentation, electro-discharge texturing, etc), Laser Surface Texturing (LST) has shown some relevant
40 advantages regarding chemical and mechanical processes. On the one hand, the laser system can be
41 adapted to a wide range of parameters, become a faster and more flexible method than machining
42 operations. On the other hand, these treatments are usually based on laser irradiation processes

43 under air atmosphere, avoiding the use of lubricants or coolant fluids that is necessary in some
44 machining processes [3].

45 Therefore, LST is considered as a viable process for surface engineering, contributing to the
46 development of functionalisation of components [4]. Also contributes to the development of
47 sustainable manufacturing by means of an environmentally friendly process, in comparison to
48 chemical and conventional machining [5-6].

49 Ti6Al4V is a well-known $\alpha+\beta$ (grade 5) Ti-based alloy, widely used for the manufacturing of
50 aerospace parts and biomedical components, mainly due to their good weight/mechanical properties
51 ratio, high corrosion resistance and excellent biocompatibility.

52 The ability to maintain control over the main mechanical properties on the surface of this alloy
53 by LST can produce several benefits. In the healthcare sector, the biocompatibility and biomechanical
54 behavior are key factors, as well as the improvement of the sliding features under biological fluids
55 [7-8]. In the case of strategic alloys for the aerospace industry, surface modification treatments are
56 used to overcome material limitations and to improve its functional performance [9-11].

57 In the case of Ti6Al4V alloy, the use of LST is focused to overcome these functioning limitations,
58 such as poor wear behavior. The unstable frictional response of titanium alloys, coupled with severe
59 wear behavior under certain rubbing conditions, make the use of this type of alloys difficult to apply
60 in severe tribological applications [12-13].

61 Moreover, the exposure of this alloy to a LST treatment in an air atmosphere -favored by a local
62 increase of temperature- causes the combination of the external surface layer with the oxygen present
63 [14], giving rise to the development of a thin protective layer composed by titanium oxides, mainly
64 in rutile (TiO_2) form [15-16].

65 After oxidation phenomena, transparent oxide films on a reflecting substrate give rise to color.
66 So, titanium substrate reacts changing the initial tonality to a color range mainly related to the
67 thickness of the oxide layer and the conditions of the thermal treatment [17-18].

68 A wide range of color tonalities can be achieved by modifying the main control parameters of
69 the LST process in Ti6Al4V, according to variables such as thickness and microstructure of the
70 oxidation layer [19].

71 This property, the color, can be considered as aesthetic or non-functional regarding to the
72 advantages that can provide the LST process, but can be also considered as an easy indicator of the
73 characteristics of the treated surface. A kind of color can determine a surface characteristic. Also, by
74 modifying parameters during the LST process, it could be obtained textures with color variations,
75 such as the color laser marking in steels [20].

76 There are several studies in the scientific literature that report on the LST of the Ti6Al4V alloy,
77 mainly focused on the characterization of micro-geometry and the study of the relationship with
78 tribological behavior, generally evaluated by studying the wettability and surface roughness [2,4,6,
79 21-22].

80 There are also some works that relate the influence of LST parameters on the color of textured
81 surfaces, mainly by evaluating the optical properties (n, k) of oxide films by using spectrophotometry
82 and ellipsometry techniques [23-28]. These measurements are useful for calculating the spectral
83 reflectance, and can then be compared with the data measured by a spectroscope. The appearance of
84 these titanium laser-grown oxide coatings is described by chromaticity, a standard by which these
85 identifiers can be compared [29,30].

86 However, a lake of knowledge has been detected in the scientific literature about the study of
87 color / mechanical properties and process parameters.

88 In this paper, a study of the chromatic changes -in terms of optical reflectance and chromaticity-
89 and its relationship with the micro-geometrical variations -in terms of roughness-, is reported. LST
90 parameters in the texturing of Ti6Al4V is key for the control of the surface morphology, that can be
91 directly linked with the chromatic state.

92

93

94

95 **2. Materials and Methods**96 *2.1. Laser texturing process*

97 Ti6Al4V titanium alloy (UNS R56400) 50 mm x 50 mm plates with 5 mm thickness were cleaned
 98 by ether-petroleum/ethanol 50% dissolution. These plates were conditioned by mechanical polishing
 99 to an initial surface roughness of $Ra < 0.05 \mu\text{m}$ and $Rz < 0.15 \mu\text{m}$. Ti6Al4V chemical composition (wt%)
 100 is shown in table 1.

101 **Table 1.** Ti6Al4V substrate composition (wt%)

Al	V	Fe	C	O	N	H	Ti
6.26	3.91	0.18	0.011	< 0.10	< 0.10	< 0.10	Rest

102 The laser exposure was performed under room air atmosphere, using a commercially marking
 103 machine (ROFIN-SINAR Technologies Inc., Plymouth, MI, USA) based on a 10 W Ytterbium fiber
 104 infrared laser system with $\lambda = 1070 \pm 5 \text{ nm}$ wavelength, which generates pulses of $\tau = 100 \text{ ns}$ duration
 105 at repetition rate of $f = 50 \text{ kHz}$. The laser spot with a focal diameter of $d = 60 \mu\text{m}$ was moved over the
 106 surface of the sample with a scanning speed (V_s) range from 10 to 300 mm/s. Texturing process was
 107 developed through bidirectional parallel lines with a 0.1 mm distance between laser tracks. Textured
 108 areas over Ti6Al4V substrate consists of 10 mm x 10 mm size squares.

109 To evaluate the influence of laser processing parameters on the variation of the properties and
 110 features of the modified surfaces, the scanning speed of the beam (V_s) was taken as control parameter.
 111 Under this assumption, a single energy density of pulse/fluence (E_d) was chosen for the experimental
 112 tests, combined with nine different values of V_s , which are shown in table 2.

114 **Table 2.** Laser processing parameters

Nominal Power (W)	Pulse rate (KHz)	E_d (J/cm ²)	V_s (mm/s)							
			10	25	50	75	100	150	200	250
115 10	50	7.07								

116 *2.2. Evaluation methods*

117 Textured samples were subjected to two different types of analysis, on the one hand, through
 118 the chromatic changes, and on the other hand through the micro-geometrical variations, in terms of
 119 roughness, all induced by the laser treatments.

120 Color modification of the surfaces was evaluated by measuring the optical reflectance of the
 121 samples, using a dispersive spectrophotometer (Agilent, model Cary 5000) along with a 150 mm
 122 diameter integrating sphere accessory. Optical geometries $8^\circ/\text{di}$ and $8^\circ/\text{de}$ were used for color
 123 measurements, following the recommendations of the CIE (Commission Internationale de
 124 L'Eclairage) [31]. Light reflectance values (LRV) of the textured surfaces were determined following
 125 the recommendations of the British Standard [32].

126 For the study of micro-geometrical characteristics of the textures, a roughness measure device
 127 Mahr Perthometer Concept PGK120 (Mahr technology, Göttingen, Germany).

128 Surface finish features were described by the roughness parameters of asymmetry or skewness
 129 (R_{sk}) and sharpness of the asperity peaks of kurtosis (R_{ku}). These parameters, which are extracted
 130 from the Amplitude Distribution Curve (ADF), can provide a valuable information about the shape
 131 of the laser tracks shape.

132

133

134

$$Rsk = \frac{1}{Rq^3} \left[\frac{1}{lr} \int_0^{lr} Z^3(x) dx \right] \quad (1)$$

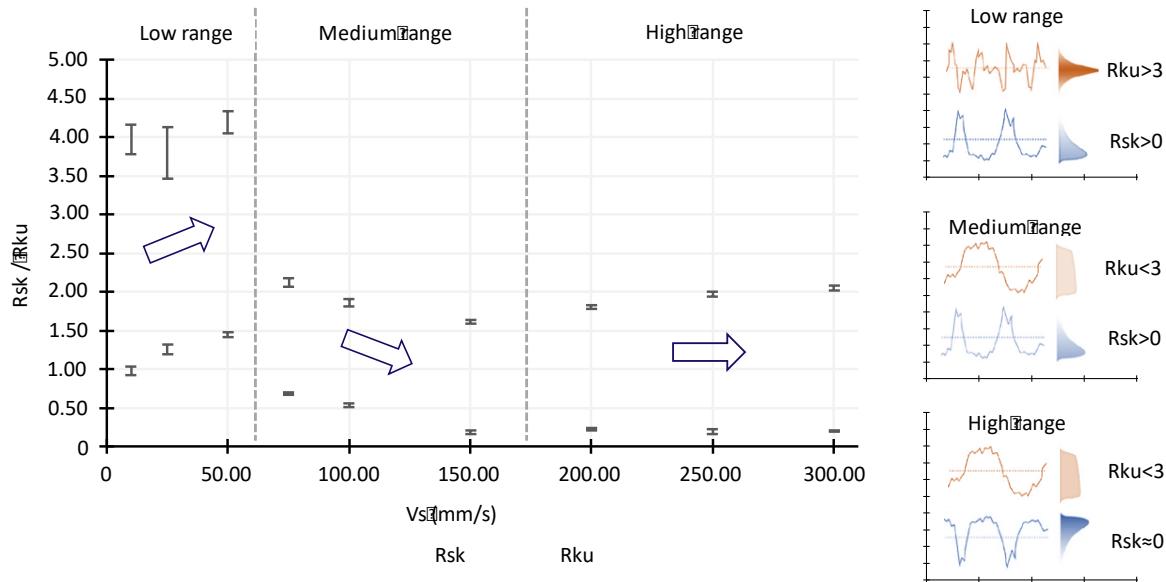
$$Rku = \frac{1}{Rq^4} \left[\frac{1}{lr} \int_0^{lr} Z^4(x) dx \right] \quad (2)$$

135
136 Being Rq a parameter that defines the root mean square roughness of the profile ordinates (Z)
137 on the evaluation length (lr) [33]:
138

$$Rq = \sqrt{\frac{1}{lr} \int_0^{lr} Z^2(x) dx} \quad (3)$$

139
140 In addition to roughness characterization, laser tracks morphology and crack growth were
141 studied on cross-section of the grooves by means of optical and scanning electron microscopy
142 methods. The influence of the laser processing parameters on the development of modified texturized
143 layers were evaluated by the measuring of hardness from the outer edge of the track. Under this
144 consideration, the presence of oxidation phenomena, highly related with variations in color and
145 hardness, was analyzed by using energy dispersive X-Ray spectroscopy (EDX).

146 3. Results and discussion

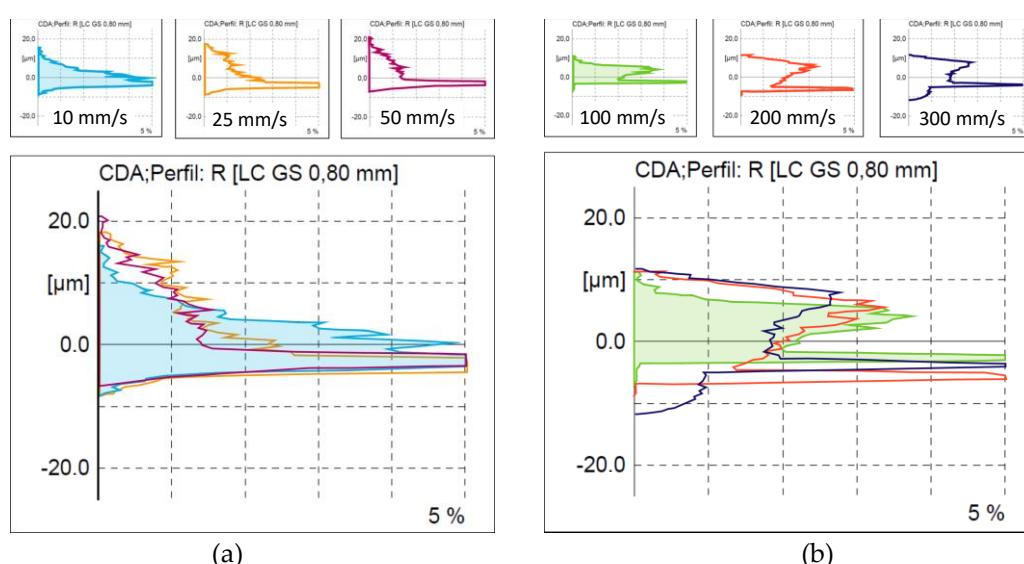

147 Laser texturing processes on the surface performs relevant modifications from the initial features of
148 the substrate. The main alterations on the substrate can be related to micro-geometrical changes of
149 the surface and color tonality variations of the samples. Because of the energy incidence of the laser
150 along the paths used for this study, a material phenomenon occurs, giving place to the development
151 of a linear parallel pattern of grooves on the substrate. Laser tracks show specific combinations of
152 shape and size as a function of the processing parameters. In the same way, microstructural and
153 chemical composition variations are modified in closest areas of the tracks, changing the initial
154 properties of the titanium alloy. These kind of modification can be easily detected due to color
155 tonality variations.

156 3.1. Micro-geometrical morphology of the laser textures

157 In addition to the color variation, the modified samples show a substrate removal process from
158 the laser tracks. These removal process results on the development of a linear parallel pattern texture.
159 However, the use of different processing parameters may induce a wide range of shape and size of
160 the grooves.

161 Taking as reference the scanning speed of the beam, a decrease of the grooves depth as a function
162 of V_s was detected. Affected Ti6Al4V debris deposited on the upper area of the tracks were noticed,
163 making that the density chart shows two clearly differentiated areas of material, Fig. 1. The analysis
164 of the Rsk and Rku parameters show significant differences between low, medium and high V_s
165 ranges.

166 For lower scanning speed, an increase trend was detected on each roughness studied parameters.
167 Based on the interpretation of the ISO 4287 and ASME B46.1 standard, higher values of $Rsk > 0$ implies
168 that the laser tracks maintain greater volume of material below the midline of the profile, which is
169 understood as larger grooves caused by more aggressive treatments. For Rku parameter, an increase
170 trend with values greater than 3 are indicative of a sharp profile, confirming the existence of deep
171 and narrow textures.


Figure 1. ISO 4287 Rsk and Rku behavior as a function of Vs

172

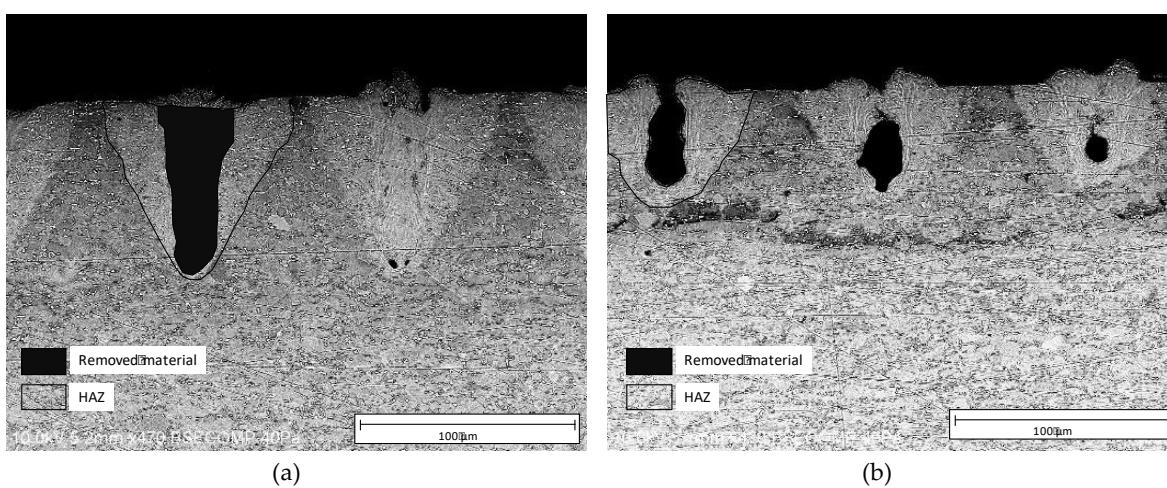
173 Medium Vs ranges (75-150 mm/s) involve a decrease in the values of Rsk and Rku. This fact
 174 results in softer asperities caused by the laser beam, and lower deep of the tracks. From these Vs
 175 range, some material debris detachment can be observed on the closest areas of the grooves.

176 The use of high ranges of Vs (200-300 mm/s) reduces the intensity of the treatments, giving rise
 177 to softer textures with low deep semicircular tracks. These treatments promote the uniform behavior
 178 of the roughness values, with $Rsk < 0.5$ and $Rku < 2$.

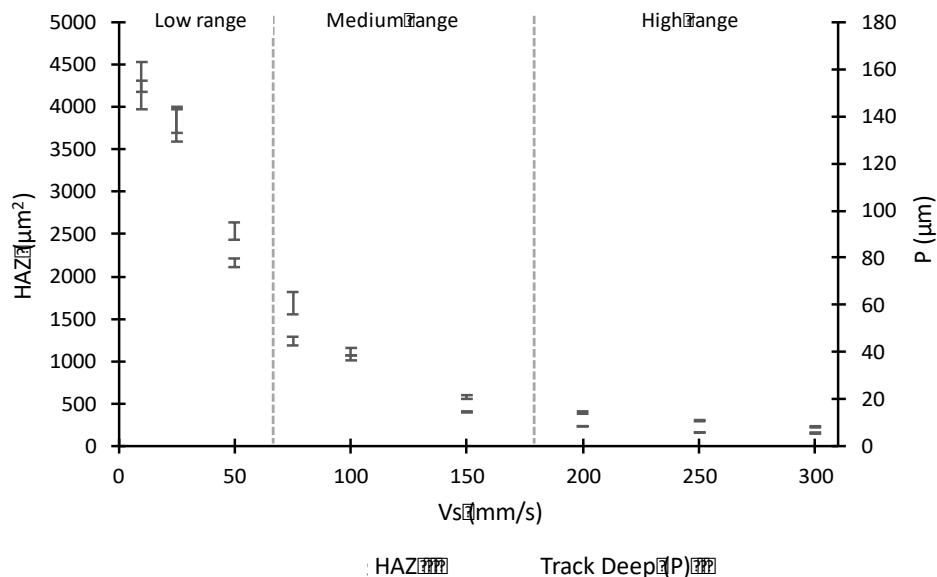
179 The analysis of the probability density function (Adf) from the material ratio curve (BAC) of the
 180 measured profiles reveals the existence of two different curves based on the shape and size of the
 181 textures. On the one hand, from lower scanning speeds (10-50 mm/s), the BAC curve shows a single
 182 maximum in the Adf located in the midline of the roughness profile. Furthermore, when Vs increases,
 183 a displacement of the material below the midline was detected, as illustrated in Fig. 2a. On the other
 184 hand, Vs ranges from 100 mm/s to 300 mm/s results in the generation of specific distributions,
 185 showing two maxima in the Adf located on both sides of the midline of the roughness profile, Fig. 2b.
 186

Figure 2. Different behaviors on probability density function as a function of Vs

187

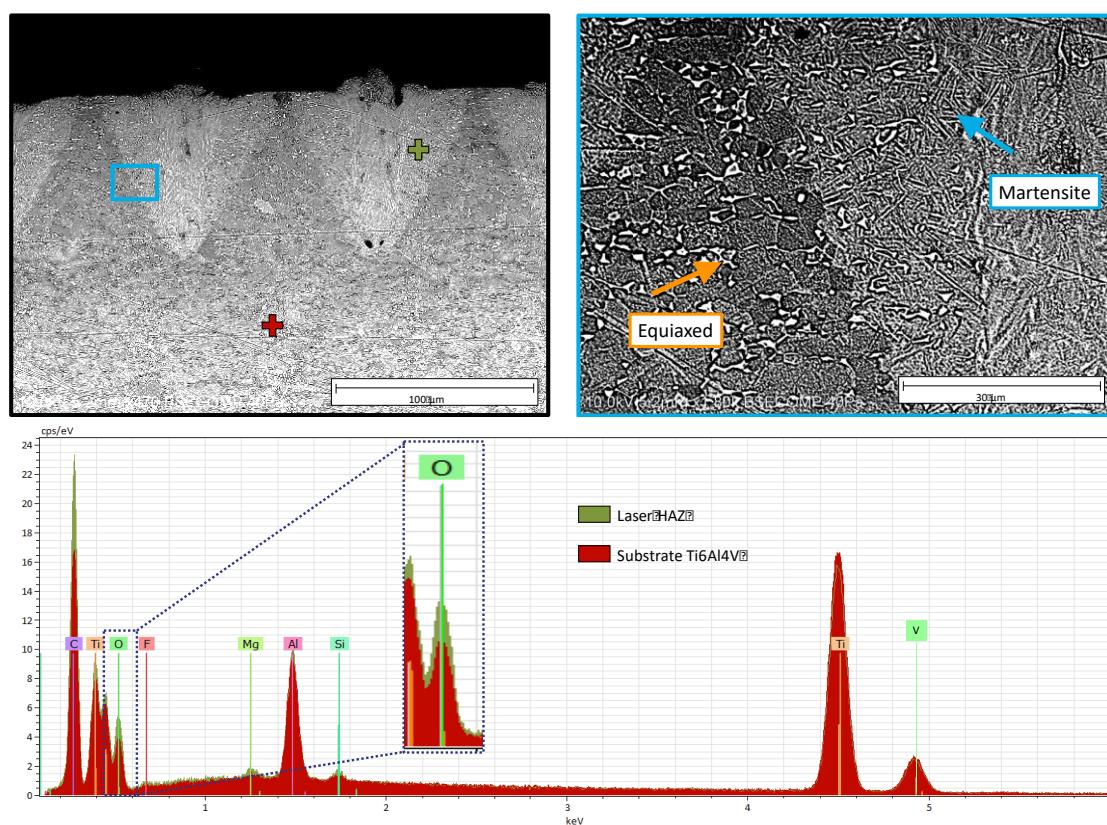

188 In addition to micro-geometrical modifications in terms of roughness, the LST treatments, may
 induce microstructure variations and oxidative phenomena on the modified layer.

189 3.2. Influence of LST on thermal affected zone and microstructure


190 As a consequence of the texturing process on the surface of the Ti6Al4V, microstructural changes
 191 were caused. A rapid temperature increase focused on small areas, and cooling processes in
 192 laboratory atmosphere, may affect the initial structure of the alloy. Furthermore, the development of
 193 the LST processes under room air atmosphere induce the presence of oxidative phenomena on the
 194 Heat Affected Zone (HAZ).

195 The Ti6Al4V (UNS R56400) alloy used for this research shows an $\alpha+\beta$ equiaxed microstructure.
 196 However, the surface treatment and the introduction of oxygen (as a α -phase stabilized element)
 197 results in significant changes on the microstructure and mechanical properties of the alloy. As can be
 198 seen in the figure 3, the HAZ close to the textures tracks is highly influenced by the intensity of the
 199 treatment, quantified by the Vs.

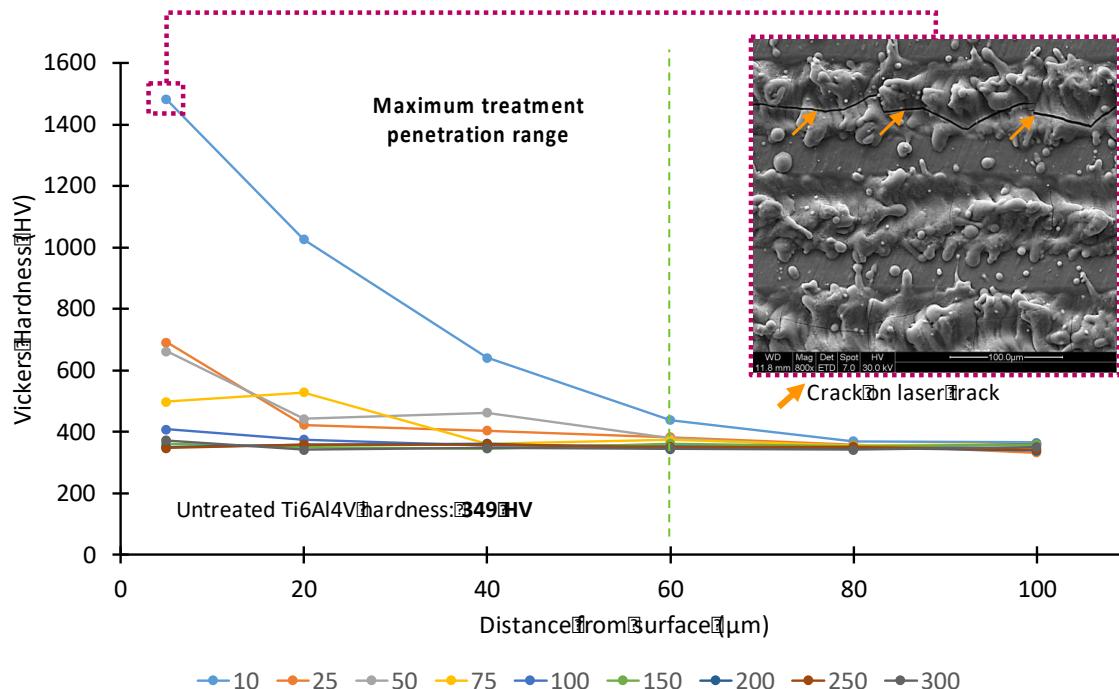
200 As described, the HAZ shows an important dependence to the scanning speed of the beam. The
 201 increase of the Vs implies that the beam remains less time over the same section of the alloy, giving
 202 rise to reduced tracks and consequently decreasing the HAZ, according to [15, 34], Fig 4.
 203



204
 205 **Figure 3.** Heat Affected Zone of textured tracks (a) 50 mm/s; (b) 75 mm/s

206 **Figure 4.** Thermal affected zone and laser tracks deep as a function of Vs

207 Regarding to the microstructural modification, the rapid cooling process of the treated areas,
 208 may be the main cause to the transformation from a equiaxed grains of a $\alpha+\beta$ to martensitic structures
 209 with laminar shape grains near to α phase, Fig. 5 [36].
 210

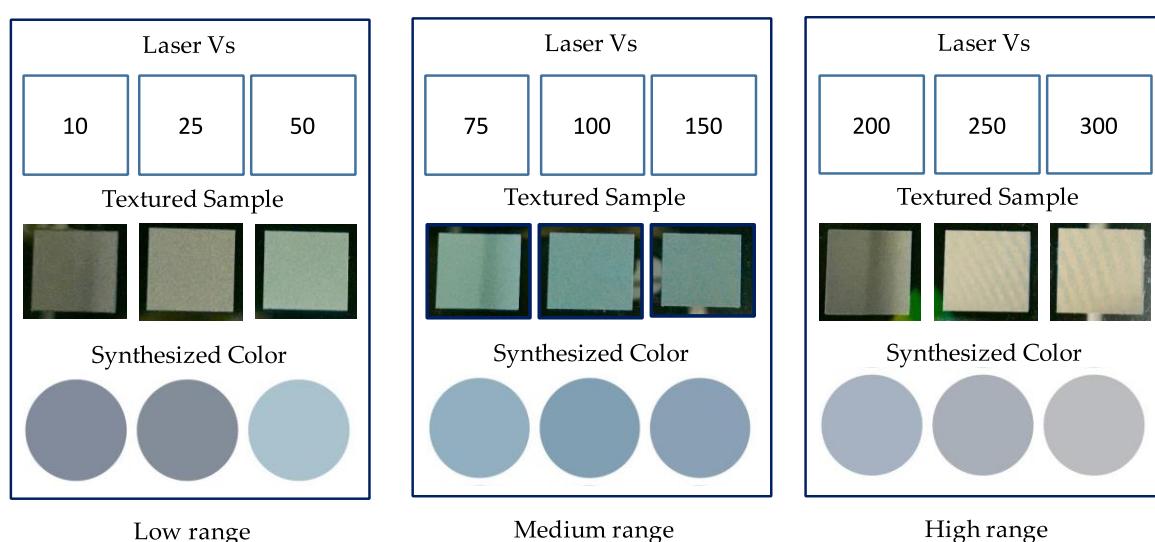

211 **Figure 5.** Microstructural and composition changes induced by laser treatment (Vs = 50 mm/s)

212 One of the most representative effect -in addition to the martensitic transformation- is the
 213 appearance of oxidative phenomena, mainly due to the increase of the temperature under air
 214 atmosphere, in which oxygen may enrich the composition of the modified layer.

215 *3.3. Hardness variation and crack growth on textured surfaces*

216 An increment in the oxygen composition from the thermal oxidation, and the phase evolution
 217 to martensitic structure, makes possible the increase of the hardness of the modified layer. By the
 218 study of the hardness from the edge of the tracks, a direct relationship can be observed between the
 219 scanning speed of the beam and the increase of hardness on the thermal affected area. Under this
 220 consideration, the use of very low scanning speed (10 mm/s) results in the best results, in terms of
 221 penetration ability of the treatment. Taking as a reference the hardness of the untreated substrate
 222 (Ti6Al4V) with a nominal value of approximately 349 HV, by means of the laser surface treatments,
 223 a textured layer was obtained with a new hardness value more than four times higher than the initial
 224 one, Fig. 6.

225 Using the high performance conditions for the hardness increasing (Vs = 10 mm/s), a maximum
 226 penetration range of 60 μ m was determined through the measurement results to obtain significant
 227 mechanical improvements. Under this thickness, the laser treatment for this purpose may not be an
 228 effective mean. On the other hand, mainly due to the cooling processes, in rare cases the existence of
 229 micro-cracks may occur, Fig. 6, according to [35]. Crack growth over the track surface is caused to the
 230 solidification process of the vaporized titanium alloy and the oxidation that takes place during the
 231 beam displacement.


Figure 6. Hardness variation based on Vs and detail of micro-crack on laser track

233 3.4. Color tonality variation of laser textured surfaces

234 Laser radiation treatments may affect both the micro-geometrical topography and the
 235 physicochemical properties of the surface. One of the most representative effect of the laser texturing
 236 process on the Ti6Al4V surface may be the color tonality variation. Under oxidation phenomena, the
 237 titanium substrate reacts changing the initial tonality to a color range mainly related to the thickness
 238 of the oxide layer and the conditions of the thermal treatment.

239 When the tonality variations in the textures were analyzed, a sample color dependency was
 240 detected on the scanning speed of the beam. Under the range of Vs used, a color palette with golden
 241 and near blue tones were developed, fig. 7. As it was detected for previous parameters, the existence
 242 of three different ranges of Vs (Low, medium and high rates) also results in separate behaviors in
 243 terms of the development of color tonalities, in accordance with the fluence groups of [36].

244

Figure 7. Color palette generate under different scanning speeds

245

246 On these samples, the chromaticity coordinates $Y10x10y10$ were calculated from the reflectance
 247 spectra as measured with the integrating sphere and considering the standard colimetry observer
 248 CIE1964 and the illuminante D65. Values of the $x10$ and $y10$ color coordinates for the samples under
 249 study are shown in the CIE1931 chromaticity diagram, Fig. 8a.

250 The study of the different color coordinates shows reveals that the chromaticity coordinates
 251 ($X10y10$) are located in a small area on the center of the two dimensional diagram. This fact indicates
 252 a color locus quite reduced for this alloy and the parameters used in the study. However, through
 253 variations on the laser processing parameters, a wide variety in the color palette can be induced,
 254 according to [37].

255 The CIE 1931 color space ($x10$; $y10$ and $Y10$ (LRV)) indicates a singular point of the LRV value
 256 for 50 mm/s scanning speed of the beam. This feature can be observed on the synthesized color image
 257 of the lower Vs range, Fig. 7. Furthermore, a general growing trend was noticed for the color
 258 coordinate values ($x10$; $y10$) as a function of the Vs, Fig 8b. Likewise, most intense colors of the laser
 259 texturing conditions that were used in this research are located under higher values of Vs. However,
 260 there is a point of singular behavior for 50 mm/s, in connection with a change of trend in the shape
 261 of the laser tracks, mainly in terms of Rku. In addition, thanks to the micro-geometrical features of
 262 the textures under this processing conditions, an increase in the HAZ thickness was achieved, giving
 263 the best results to generate intense and lightness tonalities.

264

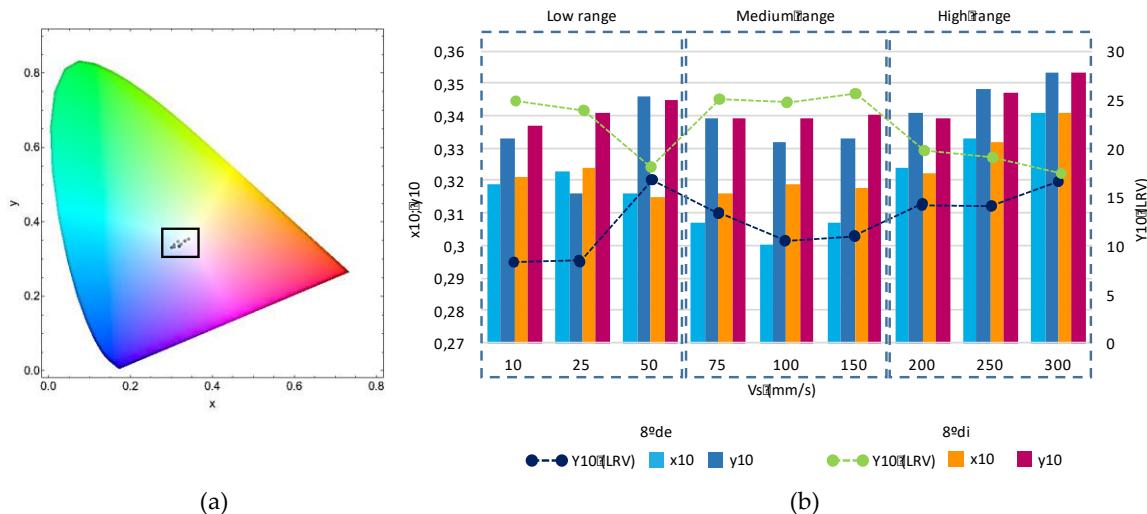


Figure 8. (a) Color chromaticity diagram of the textures (b) Color coordinates behavior as a function of Vs

265 3.5. Reflectance of the colored titanium surfaces

266 Most of the researches about the reflectance of titanium alloys subjected to oxidative processes
 267 are focused on the development and analysis of continuous and flat surfaces. However, the
 268 possibility to incorporate additional properties by means of specific roughness topographies is shown
 269 as a gap in the study of this treatments. The sample color and reflectance shows an important
 270 dependency on the light incidence angle. This fact makes relevant the influence of the surface finish
 271 on the optical properties of the textured Ti6Al4V substrates.

272 The significant variation on the surface reflectance confirms the strong capability of the laser
 273 texturing processes for modifying the optical properties of metallic substrates. Wang et al. studies
 274 demonstrate that rough surfaces imply lower reflectivity values [28]. Under these considerations,
 275 may be confirmed that a decrease on the Vs led to a decrease in the absorption coefficient (α) of the
 276 surfaces. This fact indicates an attenuation of the reflectance properties as a function of the oxide layer
 277 thickness, obtained for lower scanning speeds.

278 Three main different groups of absorption coefficient behavior were also observed as in previous
 279 analysis of micro-geometrical and chromaticity properties, Fig. 9. Regarding to absorption coefficient,
 280 higher Vs values results in an increase of the reflectance of the textures. On the other hand, more
 281 aggressive treatments based on lower Vs generates surfaces with lower α values. The optical

282 absorption phenomenon is in addition directly connected with the geometrical characteristics of the
 283 laser induced topography. The shape and depth of the laser grooves makes difficult the reflectance
 284 properties of the modified surfaces, resulting in low absorption coefficient values.
 285

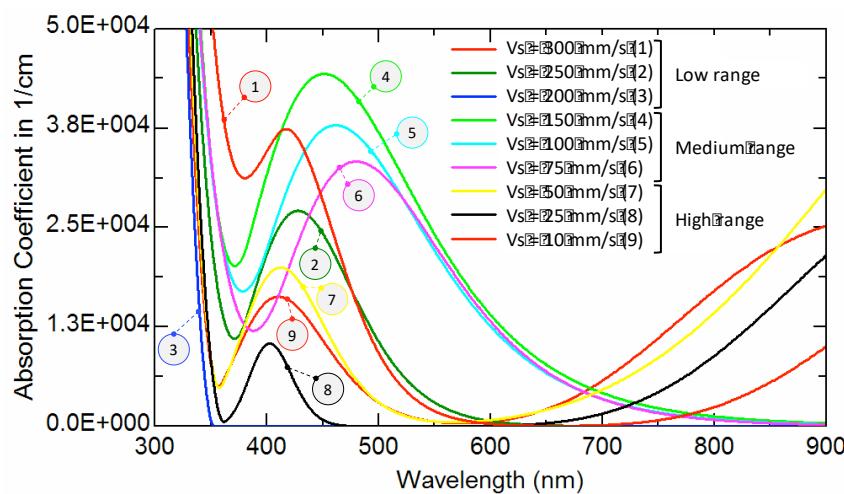


Figure 9. Absorption coefficient values of the laser textures

286 4. Conclusions

287 In this research, specific topographies combined with color surfaces of titanium have been
 288 obtained by changing the laser scanning speed in air atmosphere, using a fiber nanosecond pulsed
 289 laser. Experimental results confirm that the textured samples exhibit different roughness values
 290 combined with colorized surface, enhancing mechanical properties as hardness.

291 The development of the laser treatment under atmospheric environment contributes to the
 292 generation of an oxide film on the surface of the alloy. Mainly due to the rapid heating and cooling
 293 stages, associated with pulsed laser irradiation, these treatments also affect the
 294 Ti6Al4V microstructure by transforming the closest areas of the laser tracks of the native surface to α'
 295 martensite. A maximum area of higher than $4300 \mu\text{m}^2$ on cross-sections of the textures, and track
 296 depth as large as $174 \mu\text{m}$ were measured for the lowest scanning speed experiments (10 mm/s).

297 Extreme temperatures focused on small spot diameter and cooling nature may affect the
 298 formation of the oxide film and the phase transformation close to the tracks. This may be the cause
 299 of the existence in isolated cases of crack growth over the texturing channels under most aggressive
 300 treatments (10 mm/s).

301 The existence of three scanning speed (Vs) ranges with clearly differentiated behaviors has been
 302 verified for all the evaluated parameters. Samples treated under lower range are characterized by
 303 deeper and narrow textured tracks with large thermal affected areas (HAZ) that induces important
 304 increases in hardness and lower absorption coefficient (α) values on near blue/grey color surfaces.

305 Chromaticity values are located in a small ellipse on the center of the CIE 1931 color coordinate
 306 diagram for all texturing conditions used in study. Main changes in optical properties of the textures
 307 were presented as increasing in the color coordinates (XYZ) and lightness (L^*) as a function of the
 308 scanning speed of the beam. However, higher α values were detected in medium ranges of Vs. This
 309 suggest that the optically active film is strongly influenced by the deep and shape of the textures, in
 310 addition to the thickness of the HAZ.

311 This combined topography/color texturing method provides a new methodology for the
 312 development of multi-functional surfaces, expanding the application range of materials and
 313 increasing the performance of novel manufacturing processes.

314

315 **Acknowledgments:** This work has received financial support by the Spanish Government
 316 (MINECO/AEI/FEDER, grant Project DPI2017-84935-R).

317 **Author Contributions:** Vazquez-Martinez, J.M. and Salguero, J. conceived and designed the experiments;
318 González-Leal, J.M. and Vazquez-Martinez, J.M. performed the experiments; Vazquez-Martinez, J.M., Salguero,
319 J., González-Leal, J.M., Blanco, E. analyzed the data; Vazquez-Martinez, J.M. and Salguero, J. wrote the paper.

320 **Conflicts of Interest:** The authors declare no conflict of interest.

321 References

- 322 1. Etsion, I. State of the art in laser surface texturing. *Journal of Tribology- ASME Trans* **2005**, *127*, 248–253.
- 323 2. Salguero, J.; Del Sol, I.; Vazquez-Martinez, J.M.; Schertzer, M.; Iglesias, P. Effect of laser parameters on the
324 tribological behavior of Ti6Al4V titanium microtextures under lubricated conditions. *Wear* **2019**, *426*–427,
325 1272–1279.
- 326 3. Oh, J.M.; Lee, B.G.; Cho, S.W.; Choi, G.S.; Lim, J.W. Oxygen effects on the mechanical properties and lattice
327 strain of Ti and Ti-6Al-4V. *Met. Mater. Int.* **2011**, *17*, 733–736.
- 328 4. Bhaduri, D.; Batal, A.; Dimov, S.S.; Zhang, Z.; Dong, H.; Fallqvist, M.; Saoubid, R.M. On design and
329 tribological behaviour of laser textured surfaces. *Procedia CIRP* **2017**, *60*, 20–25.
- 330 5. James, A.S.; Thomas, K.; Mann, P.; Wall, R. The role and impacts of surface engineering in environmental
331 design. *Mater. Des.* **2005**, *26*, 594–601.
- 332 6. Ali, N.; Bashir, S.; Kalsoom, U.; Akram, M.; Mahmood, K. Effect of dry and wet ambient environment on
333 the pulsed laser ablation of titanium. *Appl. Surf. Sci.* **2013**, *270*, 49–57.
- 334 7. Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and
335 materials. *Soft Matter* **2011**, *7*, 9804–9829.
- 336 8. Pou, P.; Riveiro, A.; del Val, J.; Comesaña, R.; Penide, J.; Arias-González, F.; Soto, R.; Lusquiños, F.; Pou, J.
337 Laser surface texturing of Titanium for bioengineering applications. *Procedia Manuf.* **2017**, *13*, 694–701.
- 338 9. Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Surface modification of titanium materials for developing
339 corrosion behavior in human body environment: A review. *Procedia Mater. Sci.* **2014**, *6*, 1610–1618.
- 340 10. Vazquez-Martinez, J.M.; Salguero, J.; Botana, F.J.; Gomez-Parra, A.; Fernandez-Vidal, S.R.; Marcos, M.
341 Tribological wear analysis of laser surface treated Ti6Al4V based on volume lost evaluation. *Key Eng. Mater.*
342 **2014**, *615*, 82–87.
- 343 11. Tian, Y.S.; Chen, C.Z.; Li, S.T.; Huo, Q.H. Research progress on laser surface modification of titanium alloys.
344 *Appl. Surface Sci.* **2005**, *242*, 177–184.
- 345 12. Leuders, S.; Thone, M.; Riemer, A.; Niendorf, T.; Troster, T.; Richard, H.A.; Maier, H.J. On the mechanical
346 behavior of titanium alloy Ti6Al4V manufactured by selective laser melting: Fatigue resistance and crack
347 growth performance. *Int. J. Fatigue* **2013**, *48*, 300–307.
- 348 13. Veiga, C.; Davim, J.P.; Loureiro, A.J.R. Properties and applications of titanium alloys: A brief review. *Rev.
349 Adv. Mater. Sci.* **2012**, *32*, 133–148.
- 350 14. Wen, M.; Wen, C.; Hodgson, P.; Li, Y. Thermal oxidation behavior of bulk titanium with nanocrystalline
351 surface layer. *Corros. Sci.* **2012**, *59*, 352–359.
- 352 15. Adams, D.P.; Murphy, R.D.; Saiz, D.J.; Hirschfeld, D.A.; Rodriguez, M.A.; Kotula, P.G.; Jared, B.H.
353 Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal. *Surf. Coat.
354 Technol.* **2014**, *248*, 38–45.
- 355 16. Alvarez, M.; Salguero, J.; Sánchez, J.A.; Huerta, M.; Marcos, M. SEM and EDS characterisation of layering
356 TiO_x growth onto the cutting tool surface in hard drilling processes of Ti-Al-V alloys. *Adv. Mat. Sci. & Eng.*
357 **2011**, *414868*
- 358 17. Pérez del Pino, A.; Serra, P.; Morenza, J.L. Coloring of titanium by pulsed laser processing in air. *Thin Solid
359 Films* **2002**, *415*, 201–205.
- 360 18. Pérez del Pino, A.; Fernandez-Pradas, J.M.; Serra, P.; Morenza, J.L. Coloring of titanium through laser
361 oxidation: Comparative study with anodizing. *Surf. Coat. Technol.* **2004**, *187*, 106–112.
- 362 19. Vazquez-Martinez, J.M.; Salguero, J.; Botana, F.J.; Contreras, J.P.; Fernandez-Vidal, S.R.; Marcos, M.
363 Metrological evaluation of the tribological behavior of laser surface treated Ti6Al4V alloy. *Procedia Eng.*
364 **2013**, *63*, 752–760.
- 365 20. Amara, E.H.; Haïd, F.; Noukaz, A. Experimental investigations on fiber laser color marking of steels.
366 *Applied Surface Science* **2015**, *351*, 1–12.
- 367 21. Singh-Patel, D.; Singh, A.; Balani, K.; Ramkumar, J. Topographical effects of laser surface texturing on
368 various time-dependent wetting regimes in Ti6Al4V. *Surface & Coatings Technology* **2018**, *349*, 816–829.

369 22. Vazquez-Martinez, J.M.; Del Sol, I.; Iglesias, P.; Salguero, J. Assessment the sliding wear behavior of laser
370 microtexturing Ti6Al4V under wet conditions. *Coatings* **2019**, *9*, 67.

371 23. Veiko, V.; Odintsova, G.; Ageev, E.; Karlagina, Y.; Loginov, A.; Skuratova, A.; Gorbunova, E. Controlled
372 oxide films formation by nanosecond laser pulses for color marking. *Optics Express* **2014**, *22*(20), 24342-
373 24347.

374 24. Vazquez-Martinez, J.M.; Botana, F.J.; Botana, M.; Salguero, J.; Marcos, M. Sliding wear behavior of UNS
375 R56400 titanium alloy samples thermally oxidized by laser. *Materials* **2017**, *10*, 830.

376 25. Grabowski, A.; Sozańska, M.; Adamia, M.; Kępińska, M.; Florian, T. Laser surface texturing of Ti6Al4V
377 alloy, stainless steel and aluminium silicon alloy. *Applied Surface Science* **2018**, *461*(15), 117-123.

378 26. Gao, W.; Xue, Y.; Li, G.; Chang, C.; Li, B.; Hou, Z.; Li, K.; Wang, J. Investigations on the laser color marking
379 of TC4. *Optik* **2019**, *182*, 11-18.

380 27. Jwad, T.; Walker, M.; Dimov, S. Erasing and rewriting of titanium oxide colour marks using laser-induced
381 reduction/oxidation. *Applied Surface Science* **2018**, *458*, 849-854.

382 28. Wang, Q.; Samanta, A.; Toor, F.; Shaw, S.; Ding, H. Colorizing Ti-6Al-4V surface via high-throughput laser
383 surface nanostructuring. *Journal of Manufacturing Processes* **2019**, *43*(B), 70-75.

384 29. Pedefterri, M.P.; Del Curto, B.; Pedefterri, P. Chromatic properties of anodised titanium obtained with two
385 techniques. *Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers* **2006**, 205-210.

386 30. V.C.Gupte. Expressing colours numerically. Colour measurement principles, advances and industrial
387 applications **2010**, 70-87.

388 31. CIE 15:2004 – Colorimetry, 3rd Edition; International Commission on Illumination (CIE): Vienna, Austria,
389 2004.

390 32. BS 8493:2008+A1:2010. Light reflectance value (LRV) of a surface – Method of test. British Standard (BSI
391 Group), London, UK, 2010.

392 33. Geometrical Product Specifications (GPS) – Surface texture: Profile method -- Terms, definitions and
393 surface texture parameters; International Organization Standardization (ISO): Geneva, Switzerland, 1997.

394 34. Ching-Ching, Y.; Yi-Cheng, L.; Chih-Chung, Y.; Yu-Hsuan, L.; Kuo-Cheng, H.; Keh-moh, L.; Wen-Tse, H.
395 Laser-induced coloring of titanium alloy using ultraviolet nanosecond pulses scanning technology. *Journal
396 of Alloys and Compounds* **2017**, *715*, 349-361.

397 35. Kosec, T.; Legat, A.; Kovač, J.; Klobčar, D. Influence of Laser Colour Marking on the Corrosion Properties
398 of Low Alloyed Ti. *Coatings* **2019**, *9*, 375

399 36. Jwad, T.; Deng, S.; Butt, H.; Dimov, S.; Laser induced single spot oxidation of titanium. *Applied Surface
400 Science* **2016**, *387*, 617-624.

401 37. Veiko, V.; Odintsova, G.; Gorbunova, E.; Ageev, E.; Shimko, A.; Karlagina, Y.; Andreeva, Y. Development
402 of complete color palette based on spectrophotometric measurements of steel oxidation results for
403 enhancement of color laser marking technology. *Materials and Design* **2016**, *89*, 684-688.