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Abstract: Although urbanization has contributed to improving living conditions, it has had negative 18 
impacts on the natural environment in the urbanized areas. Urbanization has changed the urban 19 
landscape and resulted in increasing land surface temperature (LST). Thus, studies related to LST in 20 
various urban environments have become a popular research topic. However, few LST studies 21 
focusing on the mountain landscapes (i.e. hill stations) have been carried out. The primary objective 22 
of this study is to investigate changes in the landscape and their impacts on LST intensity (LSTI) in 23 
the tropical mountain city of Nuwara Eliya, Sri Lanka. The study utilized annual median 24 
temperatures extracted from Landsat data collected from 1996 to 2017 based on the Google Earth 25 
Engine (GEE) interface. The fractions of built-up (BL), forest (FL), and agricultural (AL) land were 26 
calculated using land use and cover maps based on the urban-rural zone (URZ) analysis. The urban-27 
rural margin was demarcated based on the fraction of BL (<10%) and LSTI was measured using the 28 
mean LST difference in the urban-rural zone. In addition, the mixture of land use types was calculated 29 
using the AL/FL and BL/FL fraction ratios, and grid-based density analysis. The result shows that the 30 
BL in all URZ rapidly developed, while AL decreased during the period 1996 to 2017. There was 31 
minimal change in the forest area of the Nuwara Eliya owing to the government forest preservation 32 
policies. The fraction of the BL increased from 32.4% in 1996 to 58.7% in 2017 in the city center zone 33 
(URZ1) resulting in increased mean LST by 4.7 °C. Furthermore, the increase of the BL/FL fraction 34 
ratio and the decrease of the AL/FL fraction ratio were positively correlated with the mean LST. Grid-35 
based analysis showed an increasing positive relationship between mean LST and density of BL. This 36 
indicated that BL density has been a crucial element in increasing LST in the study area. The results 37 
of this study will be a useful indicator to introduce improved landscape and urban planning in the 38 
future to minimize the negative impact of LST on urban sustainability. 39 

Keywords: land use and cover; land surface temperature, built-up land; agricultural land; gradient 40 
analysis; Nuwara Eliya; Sri Lanka  41 

 42 

1. Introduction 43 

In recent decades, population growth and economic development have directly affected the 44 
landscape transformation in developing countries [1]. Rapid changes in the landscape have resulted 45 
in the conversion of natural vegetation and agricultural land into built-up (impervious) land, such as 46 
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buildings, parking lots, roads, and other constructions [1–4]. This has caused several environmental 47 
problems at local, regional, and global scales [5], such as decreases in agricultural land [6]; habitat 48 
destruction [5,7,8]; air, soil, and water contamination [9,10]; increases in vector-borne diseases, such 49 
as malaria and dengue [11]; decreases in green space [12,13]; and increases Land Surface Temperature 50 
(LST) [14–16].  51 

Increasing LST is an outcome of rapid urbanization and anthropogenic activities [17]. Built-up 52 
areas have been formed using several materials such as concrete, flooring, pebbles, stone, and gravel 53 
which decrease evapotranspiration, increase the sensitivity of the city and notably affect its local 54 
climate [15,18,19]. However, studying temperature changes based on the air temperature is 55 
challenging as there is a lack of meteorological stations, especially in developing countries [20]. Thus, 56 
satellite remote-sensing data provide vital information for observing the temperature pattern in 57 
urban areas [20]. Several studies have been conducted by using vast rage of remote sensing data, such 58 
as Modis data [21][22][23][24], SAR data [25], Nightlights data [26][27], Landsat data [16][28][29], 59 
Land Scan [30][31][32], and Fossil Fuel CO2 Emission data [32][33] to understand the LST pattern. 60 
Many urban landscapes from small to large scales have been studied worldwide [15,34,35], including 61 
coastal cities [15,32,36,37], desert cities [19,38], and mountain cities [12,13]. Mountain cities are 62 
attractive for rich people as they have a cold climate and comfortable living conditions, which have 63 
resulted in rapid urban development [13]. Thus, studies related to the different mountain landscape 64 
are vital for understanding the changing pattern of LST to introduce mitigation measures for 65 
comfortable living conditions. 66 

A large number of studies have used two or more satellite images in a different period to analyze 67 
the LST pattern due to the unavailability of the cloud-free images. However, the difference in the 68 
acquisition time might have influenced to LST pattern due to the influence of various environmental 69 
factors such as wind speed, surface moisture, humidity, and Sun’s radiation [31][4]. The use of more 70 
satellite images captured in multiple time point can potentially provide more specific information to 71 
understand the changing pattern of LST [4]. Still, it is not easy to analyze extensive earth observation 72 
data set due to spatial and temporal resolution [39][40]. Thus, big data analysis platforms can be used 73 
as an alternative for conducting accurate result [39]. Google Earth Engine (GEE) provides potential 74 
to process a large number of satellite images, and researchers can easily access to free public data 75 
archives more than thirty years of historical data [39]. Hence, we have used GEE to extract the annual 76 
median LST for three-time points such as 1996, 2006, and 2017 based on the several images captured 77 
during the selected years. We hypothesized that the use of many images captured in multiple time 78 
points provides a clear picture of the LST pattern of the study area.      79 

The spatial distribution of the LST intensity (LSTI) provides essential environmental information 80 
for understanding the temperature pattern in detail. Two methods can be used to study LSTI, such 81 
as (1) categorization of land use and cover as the local climate zone and following the cross cover 82 
comparison method used to calculate the LSTI [12,13,41–43], and (2) determining the difference in 83 
the mean LST between urban and rural zones based on the urban-rural gradient analysis. The mean 84 
LST, a fraction of built-up land (BL), and green spaces have been used in previous studies [12,13]. 85 
The urban-rural demarcation is essential for determining the temperature difference. In this study, 86 
we calculated the gradient zone as the <10% fraction of BL from the city center [12,13]. The AL was 87 
considered as a part of green spaces in most of the previous studies [12,13]. However, we used a 88 
separate fraction of AL to understand the LSTI by considering the spatial distribution in Nuwara 89 
Eliya. 90 

Mountain cities in Asia have been developing since the colonization period of the 19th and 20th 91 
centuries [44,45]. The cool climate and natural landscape became the most prominent factors driving 92 
the development of mountain cities. During the colonial period, cool climates were preferred as they 93 
allowed the Colonials to maintain their “western lifestyle.” However, mountain cities were also 94 
selected as the population could avoid wasting illnesses, episodic pestilence, sunstroke, and 95 
depression [44,46]. Most mountain cities underwent rapid urbanization after World War II, and the 96 
rapid development of the urban landscape and population growth are becoming vital for 97 
understanding the urban development process in Asian hill stations [44]. Thus, most of the negative 98 
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by-products of urbanization can be observed in the mountain cities, and similar patterns can be seen 99 
in the mountain cities of Sri Lanka [12]. 100 

Nuwara Eliya is a historical city that developed during the British colonial period, reflected in 101 
the city’s architecture [47]. The British people preferred a cold climate, and Nuwara Eliya was 102 
referred to as “Little England” [47]. They used Nuwara Eliya as a meeting place for wealthy British 103 
families [48]. Currently, several recreational sites, such as Lake Gregory, golf links, race courses, and 104 
a large number of clubs, remain in Nuwara Eliya [48]. After gaining independence in 1948, Nuwara 105 
Eliya became renowned worldwide as a tourist destination in Sri Lanka, and thousands of tourists 106 
from Sri Lanka and overseas visited this area to enjoy the cool climate and natural beauty [47]. This 107 
has resulted in the occurrence of several environmental problems associated with urbanization. Thus, 108 
we hypothesize that the rapid changes in the urban landscape caused the LST pattern in the study 109 
area. Most previous studies related to LST focused on the Colombo City [3,4,36] and Kandy [12][49] 110 
in Sri Lanka. This study examines the changes in the urban landscape and their impact on the spatial 111 
changes of LST to introduce proper landscape and urban planning in Nuwara Eliya. Thus, the 112 
objectives of this study are to (1) monitor the urban landscape changes and their impact on the LST 113 
intensity over the past 21 years (1996 -2017) based on the urban-rural gradient analysis; (2) identify 114 
relationships between mean LST and the AL/FL and BL/FL fraction ratio; and (3) study the 115 
relationship between mean LST and density of BL, FL, and AL based on the grid-based analysis 116 
method. The result of this study can be used to enhance capacity and knowledge to minimize the 117 
possible negative impacts of rapid urbanization in the study area. 118 

2. Materials and Methods 119 

2.1. Study area: Nuwara Eliya, Sri Lanka  120 

Nuwara Eliya is located in the central province of Sri Lanka and resides at latitudes of 6°54'21.94" 121 
to 7°2'28.53" N and longitudes of 80°50'5.89" to 80°41'57.23" E (Figure 1). The study area includes the 122 
landscape within a 7.5 km2 radius of the center of Nuwara Eliya. Nuwara Eliya is surrounded by one 123 
of the tallest mountains (~ 2,524 m high) in the study area known as Pidurutalagala. The average 124 
elevation of Nuwara Eliya is about 1,800 m. Monthly rainfall in Nuwara Eliya ranges from 125 
approximately 71.5 to 226.8 m, with an annual average of 1,905 mm. The lowest average monthly 126 
rainfall is recorded in January, February, and March, resulting in a relatively dry period. According 127 
to the Meteorology Department of Sri Lanka, the daily mean temperature is about 15.9 °C, with 128 
average minimum and maximum temperatures of 11.6 and 20.2 °C, respectively. Nuwara Eliya is the 129 
most popular site among local and foreign tourists due to the cold climate that persists throughout 130 
the year. In terms of the urban development pattern, Nuwara Eliya exhibits a single core concept. 131 
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 132 
Figure 1. Study area: (a) Map of South Asia (http://www.maps-world.net); (b) Location of Nuwara Eliya; and (c) 133 
Population density of Nuwara Eliya (100 × 100 m).  134 

2.2. Overall workflow 135 

Figure 2 shows the overall workflow of the study to achieve the objectives described above. The 136 
study workflow included five major steps: (i) extraction of median upper-atmosphere brightness 137 
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temperature from the thermal bands of the Landsat images (Figure 2a); (ii) retrieval of LST (Figure 138 
2b); (iii) LULC classification into five classes, forest land (FL), built-up (BL), agriculture land (AL), 139 
other land, and water using machine learning algorithms based on supervised classification (Figure 140 
2c); (iv) urban-rural gradient, statistical and intensity analysis based on the BL, FL and AL fractions, 141 
AL/FL and BL/FL ratios and mean LST and finally (v) grid analysis based on the mean LST and the 142 
density of BL, FL, and AL. 143 

 144 
Figure 2. Workflow of the study. Note BL, FL and AL refers to built-up land, forest land, and agriculture 145 
land, respectively   146 

2.3. Satellite data preparation using Google Earth Engine (GEE) 147 

The study employed the GEE to calculate at-satellite brightness temperature using 148 
atmospherically corrected pre-processed datasets (Level 2) [50]. In this process, several steps were 149 
performed as follows. First, the study area was defined and imported as “Assets” in GEE, and 150 
thereafter used as the primary geometry throughout the process. Masking was then conducted due 151 
to cloud disturbance in the available Landsat imageries. The cloud disturbance could be attributed to 152 
Nuwara Eliya being located in a tropical area. Afterwards, the Image Collection tool in GEE was used 153 
to prepare the imageries for the study including 15 images for 1996 (Landsat 5), 17 images for 2006 154 
(Landsat 5), and 20 images for 2017 (Landsat 8) (Table A1). The Figure 3 shows the graphical 155 
illustration of creating image collection and the code used to generate median pixel values of 156 
imageries is provided in Annex A2 and A3. 157 
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 158 
Figure 3. Graphical illustration of image collection  159 

(Source: https://developers.google.com/earth-engine/reducers_image_collection) 160 

Finally, median pixel values of each image were selected and three data sets were prepared in 161 
each year [51] (Figure2). To do this, all thermal bands in the Landsat imageries were used to generate 162 
annual median temperatures based on the upper-atmosphere brightness temperature for the thermal 163 
bands (in Kelvin). On the other hand, the multispectral bands were used to calculate the best median 164 
pixel of the imageries for the study area. The extracted thermal band (band 6 for Landsat 5 and band 165 
10 for Landsat 8) were used to calculate the LST (section 2.4). We hypothesized that the use more 166 
imageries produces clearer output images to understand the LST patterns in the study area. Past 167 
studies have shown the aptness of this method to generate LST in different areas [39][40].  All 168 
extracted images were georectified using the WGS84/UTM 44N projection system before further 169 
processing.  170 

2.4. LST calculation  171 

The extracted median at-satellite brightness temperature in section 2.3, was scaled using the land 172 
surface emissivity derived from Equation. (1) [52].  173 

 174 
𝜀 = {mPV + n} (1) 

where m = (ε − ε) − (1 − εσ) Fεv and n = εs + (1 − εs) Fεv, where εs and εv are the soil emissivity and 175 
vegetation emissivity, respectively. In this study, we used the result of [52] for m = 0.004 and n = 176 
0.986. The proportion of vegetation (Pv) was calculated using the normalized difference vegetation 177 
index (NDVI) based on Equation. (2)[53].  178 

 179 
NDVI =

𝜌 − 𝜌

𝜌 + 𝜌
 (2) 

where ρNIR refers to the surface reflectance values of Bands 4 (Landsat-5) and 5 (Landsat-8); and ρRed 180 
refers to the surface reflectance values of Bands 3 (Landsat-5), and 4 (Landsat-8 OLI).  181 

 Pv was extracted using Equation. (3) 182 

 183 
P = ((NDVI − NDVI )/(NDVI  − NDVI ))  (3) 

where, Pv is the proportion of vegetation, NDVI is original NDVI values calculated using Eq. (2), 184 
and NDVImin and NDVImax are the minimum and maximum values of the NDVI dataset, 185 
respectively.  186 

 The emissivity corrected images were used to extract LST using Equation. (4) [3,29].  187 
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    188 
LST = T  /1 + (λ ×  T  /ρ)lnε (4) 

where Tb is the at-satellite brightness temperature in degrees Kelvin; λ is the central band 189 
wavelength of emitted radiance (11.5 μm for Band 6 [29] and 10.8 μm for Band 10 [12];  is h × c/σ 190 
(1.438 × 10–2 m K), with σ as the Boltzmann constant (1.38 × 10–23 J/K), h as Planck’s constant (6.626 × 191 
10–34 J *s), and c as the velocity of light (2.998 × 108 m/s); and ε is the land-surface emissivity estimated 192 
using the NDVI method [52]. The calculated LST value (Kelvin) was then converted to °C.  193 

2.5. Land Use/Land Cover (LULC) Mapping  194 

Machine learning methods such as the support vector machine, K-nearest neighbor, random 195 
forest, and neural networks, have been widely used to classify LULC [12][13]. Among these methods, 196 
the support vector machine (SVM) has provided higher overall accuracy [54][55][56][57]. Thus, in this 197 
study, we used the SVM algorithm to conduct LULC mapping. The classification scheme used in the 198 
study included five LULC categories including Built-up land (BL), Forest land (FL), Agricultural land 199 
(AL), Other lands and Water. The Other lands category comprised a combination of grasslands and 200 
bare lands.  201 

We produced three LULC maps containing the five LULC categories (BL, FL, AL, other land and 202 
water) for the years 1996, 2006, and 2017 with overall accuracies of 85%, 93%, and 92%, respectively 203 
(see Tables A4, A5, and A6). The accuracy was assessed by using 500 reference points generated by a 204 
stratified random sampling method [13] for all the LULC categories. Google Earth imageries were 205 
used to assess the accuracy of the classified LULC maps for 2006 and 2017. The accuracy assessment 206 
for the 1996 LULC map was conducted with the aid of the available topographic maps and different 207 
band combinations of Landsat imageries. 208 

2.6. LST intensity (LSTI) measurement 209 

The LSTI was calculated based on the urban-rural gradient analysis approach involving the 210 
creation of concentric rings or buffer zones around the city center with standard distance intervals 211 
extending to the rural areas [12,13,41]. Urban-rural gradient analysis has been conducted to identify 212 
the spatial and temporal variations in environmental variables in many previous environmental 213 
studies [12,13,15,19,58][59]. In this study, thirty five 210-meter buffer zones (hereinafter referred to as 214 
urban-rural zones (URZs)) were created for the study area. The mean LST of each URZ was then 215 
extracted using zonal statistics. The fractions of BL, FL, and AL were determined by calculating their 216 
respective proportions in each URZ. Of note is that previous studies combined AL and FL into one 217 
LULC category, defined as green space [12,13,15]. However, AL has been one of the key drivers of 218 
LULC changes in the study area. Therefore, AL in Nuwara Eliya and its surroundings was considered 219 
separately. 220 

The magnitude of the LSTI along the urban-rural gradient (LSTI U-R ) was determined based on 221 
the ∆ mean LST, ∆ fraction of BL, ∆ fraction of FL, and ∆ fraction of AL following methodology 222 
proposed by Estoque and Murayama [13]. To calculate LSTIU-R , we first determined the ∆ mean LST 223 
by finding the difference between the mean LST in the URZ with the highest fractions of BL, FL and 224 
AL (defined as URZ1) and  other URZs (i.e. URZ1 − URZ2 . . . 35). We then applied the same method to 225 
determine the ∆ fraction of BL, ∆ fraction of FL, and ∆ fraction of AL along the urban-rural gradient. 226 
We used the same threshold for delineating the urban and rural zones as [12,13] i.e., from the city 227 
center, all URZs with >10% fraction of BL were considered as urban and those beyond the first URZ 228 
with <10% fraction of BL were considered as rural. 229 

2.7. AL/FL and BL/FL fraction ratios and their intensities  230 

The AL/FL and BL/FL fraction ratios were calculated using the URZs created in 2.6. Ranagalage 231 
et al., 2018 [12] proposed the green space (GS)/impervious surface (IS) fraction ratio and its intensity, 232 
and we followed their methodology to extract AL/FL and BL/FL in each URZ using Equations. 5 and 233 
6, respectively.  234 
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AL/FL fraction ratio =
ALz

FLz
 (5) 

BL/FL fraction ratio =
BLz

FLz
 (6) 

2.8. Grid-based analysis 235 

The grid-based method was used to analyze the spatial distribution of the density of BL, FL, AL, 236 
and mean LST in 1996, 2006, and 2017. In this analysis, we used 210m × 210 m grids (7 × 7 pixels) to 237 
demarcate the relationship between BL, FL, AL density with mean LST. The 210 × 210 m grid size 238 
was used in previous studies and achieved high correlation with mean LST [15][38][43][60]. After the 239 
creation of the set of grids, the mean LST and the densities of BL, FL, and AL in each grid were 240 
calculated. The scatter plots were created, and linear regression analysis was performed to identify 241 
the relationships between mean LST and density of BL, FL, and AL.  242 

3. Results 243 

3.1. Landscape Changes and LST Distribution of Nuwara Eliya 244 

The results revealed that Nuwara Eliya experienced rapid urbanization in the last 21 years. The 245 
built-up area increased from 289.9ha to 2,080.4 ha from 1996 to 2017, with an annual growth rate of 246 
85.3 ha per year (Figure 4 and Tables 1 and 2). The forest area has not changed significantly due to 247 
the implementation of forest reserves [61]. Rapid changes in the built-up land have negatively 248 
affected the agricultural sector. The area of agricultural land decreased from 8,503.2 ha to 6,583.9 ha 249 
from 1996 to 2017 (Table 1). The rapid changes in the landscape have also directly affected the spatial 250 
changes of LST in the study area.    251 

Table 1. Details of the LULC changes in Nuwara Eliya (1996, 2006, and 2017) 252 

Land Use/Cover  
1996  2006  2017  

Area (ha) % Area (ha) % Area (ha) % 

Built-up 289.9 1.3 785.5 3.5 2080.4 9.3 

Forest 13,076.7 58.2 13,502.1 60.1 13,234.3 58.9 

Agricultural Land 8,503.2 37.9 8,085.5 36.0 6,583.9 29.3 

Other Land 511.8 2.3 6.0 0.0 481.8 2.1 

Water 73.4 0.3 75.9 0.3 74.6 0.3 

Total 22,455.0 100.0 22,455.0 100.0 22,455.0 100.0 
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 253 
Figure. 4. Land use/cover maps and LST values in Nuwara Eliya: land use/cover in (a) 1996, (b) 2006, and 254 
(c) 2017; and LST in (d) 1996, (e) 2006, and (f) 2017. 255 

 256 
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Table 2. LULC changes during 1996-2006, 2006-2017, and 1996-2017. 257 

Land 
Use/Cover 

1996-2006 2006-2017 1996-2017 

Land 
use/cover 

changes (ha) 

Annual 
growth 
rate (ha 

per year) 

Land 
use/cover 

changes (ha) 

Annual 
growth 

rate (ha per 
year) 

Land 
use/cover 
changes 

(ha) 

Annual 
growth rate 

(ha per 
year) 

Built-up 495.6 49.6 1,294.9 117.7 1,790.6 85.3 
Forest 425.3 42.5 -267.8 -24.3 157.6 7.5 
Agricultural 
Land 

-417.7 -41.8 -1,501.7 -136.5 -1,919.3 -91.4 

Other Land -505.8 -50.6 475.7 43.2 -30.1 -1.4 
Water 2.5 0.3 -1.3 -0.1 1.3 0.1 

Figure 4 (d, e, f) shows the spatial distribution of LST in Nuwara Eliya for the years 1996, 2006, 258 
and 2017, respectively. In 1996, LST ranged between 9.1 and 29.2 °C, with a mean value of 18.9 °C. In 259 
2006, LST ranged between 5.9 and 30.2 °C, with a mean value of 17.9 °C. In 2017, LST ranged between 260 
14.3 and 31.0 °C, with a mean value of 21.0 °C. Therefore, the mean LST exhibited an increasing trend 261 
from 1996 to 2017. The mean LST increased by 2.1 °C during the past 21 years.  262 

3.2. Magnitude and Trend of LSTI 263 

3.2. 1. LSTIU-R along the Urban-Rural Gradient  264 

Figure 5 (a, b, c) shows the spatial pattern of mean LST, and the fractions of BL, FL, and AL along 265 
the urban-rural gradient. The highest mean LST value was recorded in the URZ1 zone near the city 266 
center. In 1996, the mean LST of URZ1 was 19.8 °C, which decreased to 18.9 °C in 2006 and increased 267 
to 24.4 °C in 2017. Conversely, the mean LST of all other URZs increased from 1996 to 2017. The 268 
results revealed that the mean LST of all other URZs was 18.9 °C and 21.2°C in 1996 and 2017, 269 
respectively. The results further revealed that the lowest temperatures were recorded in URZ12 in 270 
1996, URZ10 in 2006, and URZ19 in 2017 (Figure 5).  271 

The fraction of BL increased rapidly between 1996 and 2017. In URZ1, the fraction of BL increased 272 
by 32.4%, 48.7%, and 58.7%, in 1996, 2006, and 2017, respectively. The fraction of FL did not 273 
significantly change during the last 21 years. However, rapid changes in AL occurred in all URZ 274 
throughout the study temporal extent. The lowest fraction of AL was always recorded in URZ1 and 275 
exhibited a decreasing pattern. The AL fraction in URZ1 was 43.6% in 1996, 29.6% in 2006, and 15.8% 276 
in 2017.  277 

Figure 5b shows the results of the statistical analysis of mean LST with the fractions of BL, FL, 278 
and AL. The mean LST had a significant strong positive correlation (p < 0.001) with the fraction of BL 279 
at all the three time-points. The fraction of FL exhibited a significantly strong negative correlation (p 280 
< 0.001) with mean LST. On the other hand, mean LST exhibited a dissimilar relationship with the 281 
fraction of AL in 1996, 2006, and 2017. In 1996, the mean LST had a significant positive correlation (p 282 
< 0.001) with the fraction of AL. In 2006, the mean LST and fraction of AL had a weak relationship (p 283 
< 0.5), and, in 2017, the mean LST had a significant negative correlation with the fraction of AL (p < 284 
0.1). 285 
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 286 
Figure. 5. (a) Spatial distribution of mean LST, and the fractions of BL, FL, and AL along the 287 
urban-rural gradient; and scatter plots of the mean LST and fractions of (b) BL, (c) FL, and (d) 288 
AL. 289 

3.2. 2. The magnitude of LSTIU-R along the Urban-Rural Gradient  290 

The magnitudes of the mean LST and fractions of BL, FL, and AL were calculated based on URZ1 291 
as described in section 2.6 above. The ∆ mean LST in URZ13 showed a considerable decrease in 1996 292 
and 2006. However, the decrease shifted to URZ20 in 2017 (Figure 6a). The ∆ fractions of BL, FL, and 293 
AL also showed a similar pattern. The statistical analysis revealed that the ∆ mean LST had a 294 
significant positive relationship with the ∆ fraction of BL, and a strong negative relationship with the 295 
∆ fraction of FL. The ∆ mean LST exhibited a significant positive relationship in 1996 (p < 0.001) and 296 
in 2006 (p < 0.5) with the ∆ fraction of AL. However, the relationship changed in 2017 showing a weak 297 
negative correlation (p < 0.5) with the ∆ fraction of AL.   298 
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 299 

 300 
Figure. 6. (a) Magnitudes of the trends of LSTIU-R (°C), and fractions of BL, FL, and AL along the URZ; and (b) 301 
scatter plots and statistical relationships between the magnitude of mean LST and fractions of BL, FL, and AL in 302 
Nuwara Eliya during 1996, 2006, and 2017. 303 

 304 

 305 
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3.3. AL/FL and BL/FL Ratios Along the Urban-rural Gradient  306 

An annual decrease in AL of 91.6 ha was observed from 1996 to 2017 (Table 2). FL was stable 307 
due to the protection measures implemented by the Forest Department of Sri Lanka (Table 1). Figure 308 
7a shows the spatial distribution of the mean LST and AL/FL fraction ratio. A rapid decreasing trend 309 
in the AL/FL fraction ratio was observed from 1996 to 2017. The AL/FL fraction ratio decreased in all 310 
zones from URZ1 to URZ35 with average values of 0.84, 0.7, and 0.53 in 1996, 2006, and 2017, 311 
respectively. The mean LST values had a significant (p<0.001) positive relationship with the AL/FL 312 
fraction ratio. Figure 7 (c) shows the statistical relationship between the  mean LST and  AL/FL 313 
fraction ratio along the urban-rural gradient, and the result shows a significant positive relationship 314 
in all the three time-points in this study.  315 

 316 

Figure. 7. (a) Spatial distribution of the mean LST, AL/FL fraction ratio; (b) scatter plots of the mean LST and 317 
AL/FL fraction ratio; and (c) mean LST (°C) and  AL/FL fraction ratio in Nuwara Eliya during 1996, 2006, 318 
and 2017. 319 

Figure 8a shows the spatial distribution of the mean LST and BL/FL fraction ratios. The BL/FL 320 
ratio increased from 1996 to 2017 with average values of 0.13, 0.22, and 0.42 in 1996, 2006, and 2017, 321 
respectively. The mean LST exhibited a significant (p<0.001) positive relationship with the BL/FL 322 
fraction ratio (Figure 8b). The relationship between the  mean LST and  BL/FL fraction ratio is 323 
presented in Figure 8c. The results revealed that there was a significant strong positive relationship 324 
between the  mean LST and  BL/FL fraction ratio in all the three time-points.     325 

 326 
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 327 
Figure. 8. (a) Spatial distribution of the mean LST and BL/FL fraction ratio; (b) scatter plots of the mean 328 
LST and BL/FL fraction ratio; and (c)  mean LST (°C) and  BL/FL fraction ratio in Nuwara Eliya in 1996, 329 
2006, and 2017. 330 

3.4. The density of BL, FL, and AL vs. mean LST  331 

Figure 9a shows the spatial distribution of mean LST and the density of BL, FL, and AL in 1996, 332 
2006, and 2017. High temperatures were observed around the city center and the northwestern and 333 
southwestern parts of the study area. The BL density was also high around the city center area in 334 
1996 and it spread towards the south, southwestern and southeastern direction of the Nuwara Eliya 335 
area in 2006 and 2017. The FL density had an opposite pattern showing low FL densities around all 336 
areas of high BL densities in all the three time points. However, AL density showed a decreasing 337 
trend, especially in the city center area and southwestern direction of the study area.  338 

Fig 9b shows the relationship between the densities of BL, FL, AL, and mean LST based on the 339 
grid-based analysis. The results show that mean LST was statistically significant (p < 0.001) with the 340 
densities of BL, FL, and AL in all the three time points. There was an increasing trend of a positive 341 
correlation between BL density and mean LST from 1996 to 2017. The correlation between mean LST 342 
and the density of FL showed a significant negative relationship throughout the study period. On the 343 
other hand, there was a decreasing trend of a positive correlation between AL density and mean LST 344 
from 1996 to 2017.  345 
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 346 

Figure. 9a. Graphical view of the 210 × 210 m polygon grid showing maps of mean LST, Built-up 347 
density, Forest density, and Agricultural density. 348 

 349 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2019                   doi:10.20944/preprints201908.0262.v1

Peer-reviewed version available at Sustainability 2019, 11, 5517; doi:10.3390/su11195517

https://doi.org/10.20944/preprints201908.0262.v1
https://doi.org/10.3390/su11195517


 16 of 28 

 350 
Figure. 9b. Scatterplots showing the relationship between the densities of BL, FL, AL, and mean LST 351 

4. Discussion 352 

In this study, we examined the landscape changes and their impacts on LST in Nuwara Eliya, 353 
Sri Lanka during the last 21 years (1996 to 2017). The results revealed that the urbanization pattern 354 
of Nuwara Eliya was concentrated around the city center areas in 1996 which then expanded towards 355 
the southern, southwestern, northwestern, and eastern parts by 2017. The development pattern of 356 
Nuwara Eliya is similar to that of other mountain cities (Kandy) in Sri Lanka [12]. The Built-up land 357 
expanded rapidly in the past 21 years (Tables 1 and 2, and Figure 4), with an overall increase of 1,790.6 358 
ha and an annual increase of 85.3 ha. The tourism industry has been reported to be the main driving 359 
force of the observed rapid development in the study area as thousands of local and foreign tourists  360 
have been visiting Nuwara Eliya [47]. In terms of infrastructural development, the road network 361 
improved after the civil war in 2009 and post-war policies attracted significant amounts of foreign 362 
capital to Sri Lanka for development projects [62]. The improvement of transportation facilities has 363 
reduced travel times resulting in an increase in the numbers of visiting tourists. The number visiting 364 
tourists had a 10.1% growth rate from 2000 to 2017 [63,64], and the number of visitors staying 365 
overnight increased from 122,334 to 642,162  from 2000 to 2017[63]. The accelerated urbanization 366 
rates in the study area can be attributed to the increasing population (583,716 in 1981, 702,689 in 2001, 367 
and 711,644 in 2012 [65]) and the increase in the number of tourists visiting Nuwara Eliya. Other 368 
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studies in mountain cities such as Baguio in the Philippines [13,44], Kandy in Sri Lanka [12][49], 369 
Bengaluru in India [66], Bogor in Indonesia [44], and Dalat in Vietnam [44], revealed that green 370 
spaces, such as forests, declined due to urban development pressure in their respective study areas. 371 
However, out study revealed that the forest areas were intact throughout the study period owing to 372 
strong governmental policies on forest preservation. Most of the forest areas located in Nuwara Eliya 373 
are protected. This has resulted in other LULC types other than forests being consumed. Our results 374 
demonstrate that BL expanded mainly at the expense of agricultural areas (Figure 5a).   375 

The highest mean LST values were recorded around the city center (URZ1) in all the three time 376 
points and the fraction of BL increased by 32.4%, 48.7%, and 58.7%, while the fraction of AL decreased 377 
by 43.6%, 29.6%, and 15.8% in 1996, 2006, and 2017, respectively. The mean LST had a significant 378 
positive relationship with the fraction of BL in all the three time-points. The results revealed that the 379 
fraction of BL greatly influenced the LSTI in Nuwara Eliya. During the last 21 years (1996, the mean 380 
LST of the city center zone (URZ1) increased by 4.7 °C due to rapid urban expansion. At the same 381 
time, the fraction of the BL increased by 26.3% in URZ1. Conversely, the mean LST had a strong and 382 
significant negative relationship with the fraction of FL (p<0.001). This result is similar to the pattern 383 
observed in other mountain cities in Asia [12,13].  384 

The relationship between the mean LST and the fraction of AL was different in all the three time-385 
points. The mean LST showed a significantly strong positive relationship with the fraction of AL in 386 
1996 while in 2006, the relationship was significantly weak positive. However, in 2017, the 387 
relationship became weak negative. We observed that poorly managed agricultural lands were 388 
converted into built-up land during the past 21 years. The average fraction of AL exhibited a 389 
decreasing pattern, with values of 38.7%, 35.8%, and 27.2% in 1996, 2006, and 2017, respectively. This 390 
result is similar to the fact observed for the other mountain cities in Sri Lanka [12]. This pattern is 391 
critical evidence for policymakers to introduce a proper mechanism for minimizing the adverse 392 
impacts associated with the rapid changes in the urbanization of the study area. The observed urban 393 
development impact on agricultural land could negatively affect the production of unique upcountry 394 
agricultural products such as exotic vegetables, fruits, cut flowers, and world-famous Ceylon tea. 395 
Further, unplanned development could cause several environmental issues [57], such as increasing 396 
soil erosion [67], and landslides [68][69][70]. The rapid development of built-up land resulting in 397 
increased levels of LST could negatively affect the tourism industry. Policies should be implemented 398 
to maintain the natural beauty of Nuwara Eliya for the sustainable tourism industry. Most tourists 399 
wish to enjoy the landscape and comfortable climate of the area [47][57]. 400 

The change in the urban-rural pattern provides a clear picture of urbanization pattern in the 401 
study area. The urban-rural zones were demarcated using the fraction of BL (<10%). The rural zone 402 
exhibited a shifting pattern from 1996 to 2017. The rural zone located in URZ5 (1 km from the city 403 
center) in 1996 and the rural zone located in URZ6 (1.2 km from the city center) in 2006, had shifted 404 
to URZ18 by 2017 (3.8 km from the city center) (Figure 6a). Rapid changes to built-up land resulted in 405 
a shift in the rural zone away from the city center. The result shows that the temperature of URZ1 was 406 
higher than that of the rural zone margin, with values of 1.0, 1.3, and 3.5 °C in 1996, 2006, and 2017, 407 
respectively. Previous research has shown a similar trend in the shifting rural zone [12,13]. The ∆ 408 
mean LST had a strong positive relationship with the ∆ fraction of BL and a strong negative 409 
relationship with the ∆ fraction FL. However, the relationship between the ∆ mean LST and ∆ fraction 410 
of AL shifted from positive (1996 and 2006) to negative (2017). Policymakers should pay much 411 
attention to the shifting of the urban zone. 412 

 The mixture of land use types which is important for controlling LST [71] was investigated 413 
based on two indices i.e., the AL/FL and BL/FL fraction ratios. The results showed that the AL/FL 414 
fraction ratio decreased from 1996 to 2017 (Figure 7a). The maximum AL/FL fraction ratio declined 415 
with values of 3.3, 2.3, and 1.3 in 1996, 2006, and 2017, respectively. The mean LST exhibited a 416 
significantly strong positive relationship with the AL/FL fraction ratio in 1996 and 2006. However, 417 
the degree of the relationship became weaker in 2017 due to the changes in the AL of the study area. 418 
The ∆ mean LST exhibited a positive relationship with the ∆ AL/FL fraction ratio over the three time-419 
points (Figure 7c). On the other hand, the result of the BL/FL fraction ratio provided an indicator for 420 
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the LSTI pattern in the study area. Changes in built-up land have been proven to be vital in 421 
understanding the LST changing pattern in urban areas [19,32,72]. The maximum BL/FL fraction ratio 422 
increased with values of 1.7, 2.3, and 3.4 (URZ1) in 1996, 2006, and 2017, respectively. This resulted in 423 
an increase in the mean LST over the 21-year study period (Figure 8a). The increasing BL/FL fraction 424 
ratio directly affected the LSTI in the study area as the mean LST had a significantly strong 425 
relationship with the BL/FL fraction ratio over the 21-year study period.  426 

The spatial distribution pattern of the BL, FL, and AL densities provided vital information to 427 
understand the distribution pattern of the study area. The linear regression analysis results also 428 
revealed the vital formation of capturing the land use mixture of the study area. The average density 429 
of BL increased with values of 1.3%, 3.5%, and 9.2% while the density of AL decreased with values 430 
37.6%, 35.9%, and 29.2% in 1996, 2006, and 2017, respectively (Figure 9a). This pattern indicates that 431 
the BL density has been increasing in the last 21 years. It is based on the linear regression analysis 432 
result between mean LST and the density of BL. The coefficient of determination (R2) between mean 433 
LST and the density of BL increased as 0.04 to 0.29 from 1996 to 2017. It shows that the density of BL 434 
had a significant influence on the increase of LST in the study area. Same times, the R2 between mean 435 
LST and the density of AL declined as 0.59 to 0. 47 from 1996 to 2017. It shows that AL density has a 436 
positive influence on the increase of LST. The only density of FL influenced to control the LST in the 437 
study area with the negative strong significant relationship (Figure 9b). Most of the previous studies 438 
have combined AL as green spaces, but AL of the Nuwara Eliya area has been positively influencing 439 
to the increase of LST in the three time points. The policymakers and planners need to consider 440 
maintaining the mixture of land use to control the LST pattern in the future.  441 

All in all, the rapid increase of built-up areas has been the main force driving the recorded high 442 
temperatures in 2017 compared to 2006 and 1996. The ∆ mean LST exhibited a positive relationship 443 
with the ∆ BL/FL fraction ratio over the three time-points (Figure 8c). Previous research has 444 
demonstrated that having a mixture of land use types results can reduce temperatures in urban areas 445 
[71]. Forest coverage will be maintained at a similar level due to governmental policies. However, 446 
rapidly developing urban areas require proper urban planning to maintain sustainability. We have 447 
noticed: (1) the present urban development pattern is unplanned, and (2) the walls and roofs of most 448 
of the buildings are green in color to maintain the greening concept, which is vital for reducing the 449 
indoor temperature [73,74]. Sustainable development can be achieved by constructing a green belt 450 
along the main road, schools, hospitals, and other government buildings. The present development 451 
pattern more forced to horizontal development than vertical development. The vertical development 452 
will benefit to keep more land free. Vertical development can be used as a proxy indicator to 453 
understand urban-development intensity [75][76]. In addition, tree cover plays a vital role in 454 
reducing the impacts of LST in urban areas [77]. We believe that the current urban planning must 455 
focus on sustainability to protect this popular tourist destination in Sri Lanka. The findings of this 456 
study can be used as an indicator for reorienting current urban planning policies to improve Nuwara 457 
Eliya.   458 

5. Conclusions 459 

The spatial distribution of the LST provides vital information for understanding the local 460 
climatic variation of the cities and can be used as a proxy indicator to introduce sufficient measures 461 
to minimize the negative impacts associated with high LST. This study revealed that Nuwara Eliya 462 
has undergone rapid urban development during the past 21 years. In addition, this study used 463 
multiple images to extract the median annual LST for 1996, 2006, and 2017. Use of multiple images 464 
will provide a better result to understand the LST pattern of the area. The city center temperatures 465 
have increased by 4.7 °C. The urban-rural zone have shifted away from the city center resulting in a 466 
warmer city center than the rural zone. It shows the rapid development was spreading towards rural 467 
zones, especially in 2017. The rapid increase in the BL fraction was affected by the decreasing fraction 468 
of AL. Mean LST exhibited a strong positive relationship with the BL/FL fraction ratio, and a 469 
decreasing positive relationship with the AL/FL fraction ratio. The density of AL and BL had a 470 
positive relationship with mean LST indicating that both BL and AL influenced the increase in the 471 
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LST of the study area. on the other hand, the government policies have been protecting the FL 472 
resulting in minimal changes during the last 21 years. It has been the main source to control the LST 473 
pattern. A mixture of land use types is vitally important to control the LST increasing. The grid-based 474 
analysis showed that the relationship between mean LST and density of BL has been increasing due 475 
to the increasing trend of BL in the study area. BL has played a vital role to control mean LST of the 476 
study area. Policy makers need to consider the importance of the land use mixture to reduce the 477 
impacts of high LST in the study area. Nuwara Eliya is renowned as a tourist destination in Sri Lanka. 478 
The future urban policy must focus on maintaining the natural splendor of the Nuwara Eliya to 479 
promote tourism in the study area and Sri Lanka. The findings of this study can be used as an 480 
indicator to introduce sustainable future landscape and urban planning to protect the world-481 
renowned tourist hub of Sri Lanka.   482 
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Appendix A 490 

Table A1. Properties of the Landsat images (Level 2) used in this study. 491 

Sensor Scene ID 
Acquisition 

 Date 

Time  

(GMT) 

Cloud cover 

(%) in 

Landsat title 

Landsat 5 TM  

LT05_L1TP_141055_19960221_20170106_01_T1 1996-02-21 03:59:45 19 

LT05_L1TP_141055_19960308_20170106_01_T1 1996-03-08 04:00:49 6 

LT05_L1TP_141055_19960324_20170105_01_T1 1996-03-24 04:01:51 11 

LT05_L1TP_141055_19960409_20170105_01_T1 1996-04-09 04:02:51 46 

LT05_L1TP_141055_19960425_20170104_01_T1 1996-04-25 04:03:49 9 

LT05_L1TP_141055_19960511_20170104_01_T1 1996-05-11 04:04:46 9 

LT05_L1TP_141055_19960527_20170104_01_T1 1996-05-27 04:05:41 29 

LT05_L1TP_141055_19960730_20170103_01_T1 1996-07-30 04:09:06 78 

LT05_L1TP_141055_19960815_20170103_01_T1 1996-08-15 04:09:56 66 

LT05_L1TP_141055_19960831_20170103_01_T1 1996-08-31 04:10:48 41 

LT05_L1TP_141055_19960916_20170102_01_T1 1996-09-16 04:11:41 70 

LT05_L1TP_141055_19961002_20170102_01_T1 1996-10-02 04:12:33 48 

LT05_L1TP_141055_19961103_20170102_01_T1 1996-11-03 04:14:09 38 

LT05_L1TP_141055_19961119_20170101_01_T1 1996-11-19 04:14:53 19 

LT05_L1TP_141055_19961205_20170101_01_T1 1996-12-05 04:15:40 84 

Landsat 5 TM 

LT05_L1TP_141055_20060131_20161123_01_T1 2006-01-31 04:44:06 46 

LT05_L1TP_141055_20060216_20161123_01_T1 2006-02-16 04:44:28 28 

LT05_L1TP_141055_20060304_20161122_01_T1 2006-03-04 04:44:49 41 

LT05_L1TP_141055_20060405_20161123_01_T1 2006-04-05 04:45:26 10 

LT05_L1TP_141055_20060421_20161122_01_T1 2006-04-21 04:45:41 68 

LT05_L1TP_141055_20060507_20161122_01_T1 2006-05-07 04:45:55 33 
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LT05_L1TP_141055_20060523_20161121_01_T1 2006-05-23 04:46:07 31 

LT05_L1TP_141055_20060608_20161121_01_T1 2006-06-08 04:46:23 27 

LT05_L1TP_141055_20060624_20161121_01_T1 2006-06-24 04:46:39 72 

LT05_L1TP_141055_20060710_20161120_01_T1 2006-07-10 04:46:53 30 

LT05_L1TP_141055_20060811_20161119_01_T1 2006-08-11 04:47:17 79 

LT05_L1TP_141055_20060827_20161119_01_T1 2006-08-27 04:47:29 45 

LT05_L1TP_141055_20060912_20161119_01_T1 2006-09-12 04:47:41 57 

LT05_L1TP_141055_20060928_20161119_01_T1 2006-09-28 04:47:52 55 

LT05_L1TP_141055_20061014_20161118_01_T1 2006-10-14 04:48:03 22 

LT05_L1TP_141055_20061030_20161118_01_T1 2006-10-30 04:48:13 30 

LT05_L1TP_141055_20061115_20161118_01_T1 2006-11-15 04:48:21 60 

Landsat 8  

OLI/TIRS  

LC08_L1TP_141055_20170113_20170311_01_T1 2017-01-13 04:54:05 3 

LC08_L1TP_141055_20170129_20170214_01_T1 2017-01-29 04:53:59 40 

LC08_L1TP_141055_20170214_20170228_01_T1 2017-02-14 04:53:52 68 

LC08_L1TP_141055_20170302_20170316_01_T1 2017-03-02 04:53:46 64 

LC08_L1TP_141055_20170318_20170328_01_T1 2017-03-18 04:53:36 13 

LC08_L1TP_141055_20170403_20170414_01_T1 2017-04-03 04:53:29 16 

LC08_L1TP_141055_20170419_20170501_01_T1 2017-04-19 04:53:20 15 

LC08_L1TP_141055_20170505_20170515_01_T1 2017-05-05 04:53:13 32 

LC08_L1TP_141055_20170606_20170616_01_T1 2017-06-06 04:53:34 54 

LC08_L1TP_141055_20170622_20170630_01_T1 2017-06-22 04:53:40 28 

LC08_L1TP_141055_20170708_20170716_01_T1 2017-07-08 04:53:43 44 

LC08_L1TP_141055_20170724_20170809_01_T1 2017-07-24 04:53:49 38 

LC08_L1TP_141055_20170809_20170824_01_T1 2017-08-09 04:53:56 47 

LC08_L1TP_141055_20170825_20170913_01_T1 2017-08-25 04:54:00 38 

LC08_L1TP_141055_20170910_20170927_01_T1 2017-09-10 04:54:02 61 

LC08_L1TP_141055_20170926_20171013_01_T1 2017-09-26 04:54:07 82 

LC08_L1TP_141055_20171012_20171024_01_T1 2017-10-12 04:54:12 76 

LC08_L1TP_141055_20171028_20171108_01_T1 2017-10-28 04:54:13 19 

LC08_L1TP_141055_20171113_20171121_01_T1 2017-11-13 04:54:10 38 

LC08_L1TP_141055_20171215_20171223_01_T1 2017-12-15 04:54:05 32 

A2. The code used to generate median temperature of Landsat 5 TM images for 1996 and 2006. 492 

// Export Landsat 5 SR data 493 

/** 494 

 * Function to mask clouds based on the pixel_qa band of Landsat SR data. 495 

 * @param {ee.Image} image Input Landsat SR image 496 

 * @return {ee.Image} Cloudmasked Landsat image 497 

 */ 498 

var cloudMaskL457 = function(image) { 499 

  var qa = image.select('pixel_qa'); 500 

  // If the cloud bit (5) is set and the cloud confidence (7) is high 501 
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  // or the cloud shadow bit is set (3), then it's a bad pixel. 502 

  var cloud = qa.bitwiseAnd(1 << 5) 503 

                  .and(qa.bitwiseAnd(1 << 7)) 504 

                  .or(qa.bitwiseAnd(1 << 3)); 505 

  // Remove edge pixels that don't occur in all bands 506 

  var mask2 = image.mask().reduce(ee.Reducer.min()); 507 

  return image.updateMask(cloud.not()).updateMask(mask2); 508 

}; 509 

//Load the Landsat 5 data collection - example for B6 510 

{ 511 

var col = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR') 512 

.map(cloudMaskL457) 513 

.filterDate('1996-01-01','1996-12-30') 514 

.select( ['B6']) 515 

.filterBounds(geometry); 516 

} 517 

//Compute the median of the collection -example for B6 518 

{ 519 

var image = col.median().clip(geometry); 520 

print(image, 'Selected band'); 521 

Map.addLayer(image); 522 

} 523 

// Export the B6, specifying scale and region. 524 

Export.image.toDrive({ 525 

  image: image, 526 

  description: 'B6', 527 

  scale: 30, 528 

  region: geometry, 529 

  maxPixels:1e13, 530 

  folder: 'Landsat 5 data collection', 531 

  skipEmptyTiles: true 532 

}); 533 

// Export the B6 information as table. 534 

Export.table.toDrive({ 535 

  collection: col, 536 

  description: 'B6_information', 537 

  fileFormat: 'CSV', 538 

  folder:'Landsat 5 data collection' 539 

}); 540 
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// Get the number of collections. 541 

var count = col.size(); 542 

print('Count: ', count); 543 

// Get the date range of images in the collection. 544 

var range = col.reduceColumns(ee.Reducer.minMax(), ["system:time_start"]) 545 

print('Date range: ', ee.Date(range.get('min')), ee.Date(range.get('max'))) 546 

A3. The code used to generate median temperature of Landsat 8 images for 2017. 547 

// Export Landsat 8 SR data 548 

/** 549 

 * Function to mask clouds based on the pixel_qa band of Landsat 8 SR data. 550 

 * @param {ee.Image} image input Landsat 8 SR image 551 

 * @return {ee.Image} cloudmasked Landsat 8 image 552 

 */ 553 

function maskL8sr(image) { 554 

  // Bits 3 and 5 are cloud shadow and cloud, respectively. 555 

  var cloudShadowBitMask = (1 << 3); 556 

  var cloudsBitMask = (1 << 5); 557 

  // Get the pixel QA band. 558 

  var qa = image.select('pixel_qa'); 559 

  // Both flags should be set to zero, indicating clear conditions. 560 

  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) 561 

                 .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); 562 

  return image.updateMask(mask); 563 

} 564 

//Load the Landsat 8 data collection - example for B10 565 

{ 566 

var col = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') 567 

.map(maskL8sr) 568 

.filterDate('2018-01-01','2018-12-30') 569 

.select(['B10']) 570 

.filterBounds(geometry); 571 

} 572 

//Compute the median of the collection - example for B10 573 

{ 574 

var image = col.median().clip(geometry); 575 

print(image, 'Selected band'); 576 

Map.addLayer(image); 577 

} 578 
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// Export the B10, specifying scale and region. 579 

Export.image.toDrive({ 580 

  image: image, 581 

  description: 'B10', 582 

  scale: 30, 583 

  region: geometry, 584 

  maxPixels:1e13, 585 

  folder: 'Landsat 8 data collection', 586 

  skipEmptyTiles: true 587 

}); 588 

// Export the B10 information as table. 589 

Export.table.toDrive({ 590 

  collection: col, 591 

  description: 'B10_information', 592 

  fileFormat: 'CSV', 593 

  folder:'Landsat 8 data collection' 594 

}); 595 

// Get the number of collections. 596 

var count = col.size(); 597 

print('Count: ', count); 598 

// Get the date range of images in the collection. 599 

var range = col.reduceColumns(ee.Reducer.minMax(), ["system:time_start"]) 600 

print('Date range: ', ee.Date(range.get('min')), ee.Date(range.get('max'))) 601 

Table A4. Error matrix for the classified 1996 land use/cover map, classified 602 

Classified Data 

Reference Data   

Built-up Forest 
Agricultural 

land 
Other Water Total 

User’s 

Accuracy (%) 

Built-up  72 8 6 3 0 89 80.9 

Forest  2 165 10 3 3 183 90.2 

Agricultural land 5 17 140 2 2 166 84.3 

Other land 2 2 3 34 1 42 81.0 

Water 0 2 2 0 16 20 80.0 

Total 81 194 161 42 22 500  

Producer’s accuracy (%) 88.9 85.1 87.0 81.0 72.7   

Overall Accuracy (%) = 85 % 603 

 604 

 605 

 606 

 607 
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Table A5. Error matrix for the classified 2006 land use/cover map, classified 608 

Classified Data 

Reference Data   

Built-up Forest 
Agricultural 

land 
Other Water Total 

User’s 

Accuracy (%) 

Built-up  98 2 5 0 0 105 93.3 

Forest  3 182 8 0 0 193 94.3 

Agricultural land 4 5 155 1 1 166 93.4 

Other land 0 0 1 5 1 7 71.4 

Water 0 1 1 1 26 29 89.7 

Total 105 190 170 7 28 500   

Producer’s accuracy (%) 93.3 95.8 91.2 71.4 92.9     

Overall Accuracy (%) = 93 % 609 

Table A6. Error matrix for the classified 1996 land use/cover map, classified 610 

Classified Data 

Reference Data   

Built-up Forest 
Agricultural 

land 
Other Water Total 

User’s 

Accuracy (%) 

Built-up  110 3 3 1 0 117 94.0 

Forest  5 160 7 1 0 173 92.5 

Agricultural land 3 2 135 2 1 143 94.4 

Other land 2 3 2 33 1 41 80.5 

Water 0 1 1 0 24 26 92.3 

Total 120 169 148 37 26 500   

Producer’s accuracy (%) 91.7 94.7 91.2 89.2 92.3     

Overall Accuracy (%) = 92 % 611 
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