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Abstract 

Many scientific and technological problems are studied with the help of computer codes that 

simulate the phenomena of interest rather than via traditional laboratory experiments.  Such 

models play an important role in neuroscience where they are used to mimic brain function from 

the sub-cellular to the macroscopic level.  Exploration with computer models carries with it a 

number of statistical challenges:  where to sample the input space for the simulator, how to make 

sense of the data that is generated, how to estimate unknown parameters in the model, how to 

validate a model.  The simulator setting also has some unique problems and possibilities.  This 

review paper describes statistical research on these issues and how that work might be applied to 

neural simulations. 
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1. WHAT IS A COMPUTER EXPERIMENT? 

 

Many interesting processes are difficult to study in the laboratory.  An increasingly common 

alternative in science is to explore these processes with the aid of computer simulations that 

mimic the natural phenomenon via appropriate mathematical equations.  The use of simulators is 

a focal point in modern neuroscience, in general, and of the European Human Brain Project 

(HBP), in particular.  The Human Brain Simulation Platform (BSP) of the HBP states, “the tools 

provided by the BSP allow researchers to perform in silico experiments to validate models and to 

perform investigations that are not possible in the laboratory”.   

There are many similarities between in silico experiments and traditional laboratory experiments:  

what factors should be studied, which controlled at constant levels, what combinations of factor 

levels to simulate, and how to analyze and draw conclusions from the resulting data.  There are, 

though, many important differences.  The unique features that arise when the lab bench is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 August 2019                   doi:10.20944/preprints201908.0246.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints201908.0246.v1
http://creativecommons.org/licenses/by/4.0/


2 

 

replaced by a simulation model have motivated a substantial body of statistical research over the 

last 30 years.  The purpose of this paper is to give general background and then to review recent 

developments in the field, highlighting their possible implementation in neuroscience.  Our focus 

will be on methods for analyzing data from a computer simulator.  However, it is important to 

note that much progress has also been made on the design of these experiments (i.e. where to 

evaluate the simulator).  Readers interested in more detail can refer to (Sacks, Welch, Mitchell, 

& Wynn, 1989), (Levy & Steinberg, 2010) and (Santner, Williams & Notz 2016).  

The statistical developments related to computer experiments are useful for a number of related 

problems, some of them common in neuroscience.  In particular, they include efficient tools for 

Bayesian optimization and for describing complex posterior distributions.  We also discuss these 

methods and their applications. 

In Section 2 we present a number of relevant applications with an emphasis on neuroscience.  

Section 3 gives an overview of methods for analyzing data generated by a computer simulator.  

Section 4 presents the popular and useful Gaussian process (GP) regression model.  Section 5 

describes some alternative analysis methods.  Section 6 returns to the GP approach, presenting 

methods for problems with both quantitative and qualitative input factors.  In Section 7 we 

describe methods that are appropriate for the computational challenges posed by large simulator 

data sets.  Section 8 is devoted to problems that can be studied using simulators at varying levels 

of resolution.  In Section 9 we discuss calibration of a computer model using laboratory or field 

data.  Section 10 shows how the ideas for analyzing computer experiments can be used to carry 

out challenging problems in Bayesian inference.  Section 11 describes how the methods can be 

applied to optimization problems.  In Section 12 we consider the case of simulators that generate 

multivariate output.  Section 13 looks at methods for uncertainty assessment of a computer 

model.  Finally, in Section 14, we give a brief summary of some of the tools that are now 

available to implement these methods. 

 

2. APPLICATIONS 

 

We present here some examples of the use of computer experiments, with an emphasis on 

applications in neuroscience.  One recurring theme is the use of Gaussian processes (GPs) in 

modeling data.  Another is the use of simulator methods to carry out computationally intensive 

Bayesian statistical analysis. 

2.1  Deep Brain Stimulation 

Methods from computer experiments can be used to emulate neuron behavior of a single cell or a 

complete spiking neural network.  Deep brain simulations use as building blocks single neuron 

cell models, which are based on differential equations and therefore require considerable 
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computational time. (De La Pava et al., 2015) developed a new methodology to reduce the 

computation time required to estimate the volume of tissue activated during deep brain 

stimulation. At the heart of their method is an emulator that replaces the system of differential 

equations with combined multi-compartment axon models coupled to the stimulating electric 

field with a Gaussian process classifier. The emulator is constructed by fitting a Gaussian 

process to outcome data.  The approach of (De La Pava et al., 2015)   reduced by a factor of 10 

the average computational runtime of Volume Tissue Activated estimation compared with the 

gold standard. 

2.2 Whole Mouse Brain Dynamics 

(Melozzi, Woodman, Jirsa, & Bernard, 2017) describe the benefits of in silico experimentation 

with The Virtual Mouse Brain (TVMB), a platform that facilitates investigation of large-scale 

mouse brain dynamics.    They describe how TVMB might be used to investigate a number of 

research questions.  One example concerns resting state activity in epilepsy.  The simulation 

platform enables the research team to remove connections among different neural regions, 

reflecting the anatomic reorganization that occurs with neurological diseases.  Intermediate 

settings can be studied by declaring impaired connection strengths between source and target 

regions, rather than removing them entirely.  An interesting feature is that the output may be 

complex maps of the functional connection dynamics of the brain.   

2.3 Inferring Neural Firing Rates from Spike Trains Using Gaussian 

Processes 

The output from a neural simulator is often a spike train.  Such data pose challenges to analytical 

efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural prosthetic 

importance rely on a smoothed, denoised estimate of the spike train’s underlying firing rate. 

(Cunningham, Byron, Shenoy, & Sahani, 2008) present a new method, based on a Gaussian 

Process prior, for estimating probabilistically optimal estimates of firing rate functions 

underlying single or multiple neural spike trains. Whereas current techniques to find time-

varying firing rates require ad hoc choices of parameters and offer no confidence intervals on 

their estimates, their method demonstrates improvements over conventional estimators. 

2.4 Gaussian Process Behavior in Wide Deep Neural Networks 

Neural networks have been extensively used in machine learning applications and have 

widespread use in neuroscience such as modeling behavior of certain parts of the brain, spike 

trains, etc. While deep neural networks have shown great empirical success, there is much room 

for research that will help us understand their theoretical qualities. (Matthews et al., 2018) 

published an important theoretical work, studying the relationship between feedforward, wide, 

fully connected, random networks with multiple hidden layers and Gaussian processes with a 

recursive kernel definition. They based their work on (Neal, 1996), who showed that under some 
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conditions, random, one hidden layer neural networks converge to a Gaussian process as the 

number of nodes increases. This result provided a connection between flexible Bayesian neural 

networks and Gaussian processes (Williams, 1998; Rasmussen & Williams, 2006).  (Matthews, 

et al., 2018) provided a strict result on the convergence of certain sequences of finite and fully 

connected neural networks with multiple hidden layers to Gaussian processes.  

The result suggests that a Gaussian process model can effectively emulate the Bayesian neural 

network.  In fact, (Matthews et al., 2018) found that such a model could accurately emulate the 

network and accelerate computations by orders of magnitude. 

2.5 Bayesian Analysis 

Some applications in neuroscience apply Bayesian statistical inference as part of their data 

analysis.  For examples, see (Eriksson et al., 2019)  and (Papamakarios, Sterratt, & Murray, 

2018) . Bayesian inference combines a prior distribution 𝜋(𝜃)  on the model parameters with a 

likelihood function 𝐿(𝜃; 𝑦)  that links the observed data to the parameters via a probability 

model.  The analysis is summarized by the posterior distribution for the parameters,  𝜋∗(𝜃)  , 

where 

 

𝜋∗(𝜃) ∝ 𝜋(𝜃)𝐿(𝜃; 𝑦). 

 

The publications cited here both use models which require running a simulator to evaluate the 

likelihood.  (Eriksson et al., 2019) consider a model related to protein activity in which the 

simulator is used to compute expected values for the observed data; then one can make standard 

assumptions for the distribution of the data about the expected values.  (Papamakarios et al., 

2018) consider a model in which randomness enters inside the simulator, so that the entire shape 

of the likelihood function, and not just expected values, must be determined from simulator runs. 

2.6 Molecular Dynamics 

Molecular dynamics uses computationally intensive simulations to study how the motion of 

atoms and molecules may lead to the formation of proteins or other biomolecules. (Raiteri, Laio, 

Gervasio, Micheletti, & Parrinello, 2006)  modeled a free energy profile of ligand binding, while 

searching for a local minimum of free energy change. To overcome the computational cost and 

reach the desired energy trajectory the authors used new sampling techniques.  They ran multiple 

replicas of the system, each with its associated trajectory, in parallel. All the replicas contribute 

to the estimation of the free energy. By applying and improving computational methods, the 

researchers were able to build a free energy profile faster than using previous methadymanics 

method. 
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3. MODELING AND DESIGN 

 

In this section we present a broad picture of ideas for modeling the data that is generated by a 

computer simulator and for designing computer experiments.  There are a number of potential 

benefits from modeling.  First, analysis can indicate which input factors have large effects (and 

which small effects) on the output.  In principle, one might think this would be known from the 

work that went into building the simulator.  In practice, many simulators are so complex that it is 

difficult to determine from first principles which factors are most important.  Empirical inquiry 

may be much simpler.  Second, many simulators involve complex mathematical modeling and 

are too costly, or too slow, to permit many simulation shots. In such cases, statistical modeling 

can support an emulator, or surrogate model, of the experiment.   With the emulator, much more 

extensive exploration of factor settings is possible.  This consideration is especially important in 

applications where the goal is to optimize a system or to characterize uncertainty (both of which 

may require many function calls).  Third, analysis can be essential for uncertainty quantification, 

which aims to understand output variation when there is large uncertainty regarding input values. 

A variety of flexible regression models could be used to link the output 𝑌(𝑥) of a computer 

simulator to the vector 𝑥 of inputs.  We will present a number of options, but with special 

emphasis on Gaussian Process models, which have proven a popular and effective approach in 

many applications.  These models have roots in geostatistics where they were proposed by 

(Krige, 1951)  as a method for spatial interpolation of two or three-dimensional data observed at 

locations on the globe.  They have a number of attractive features for modeling data from 

computer experiments.   In recent years they have also become an important tool in machine 

learning (Ghahramani, 2013) (Rasmussen & Williams, 2006) . 

Experimental design relates to the collections of input points where the simulator is run and 

evaluated.  A good design enables more informative analysis, with greater potential for 

generalization.  The most popular design for computer experiments has been the Latin hypercube 

(LHC) (Mckay, Beckman, & Conover, 1979) and its close relatives.  The LHC uses settings for 

each single input that lie on a lattice, usually with different values for each simulation run.  A 

number of methods have been proposed to mate the levels of the different factors.  The simplest 

approach is to mate them at random.  More often secondary criteria are adopted, like maximizing 

the minimum interpoint distance (maximin LHC designs) (Johnson, Moore, & Ylvisaker, 1990) 

or making the factors first-order orthogonal (Steinberg & Lin, 2006).  Other space-filling 

sequences have also been used.   

We will comment on additional ideas in design as they relate to some of the specific data 

analysis problems that we cover in the ensuing sections. 
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4.  GAUSSIAN PROCESS MODELS 

 

GP models were suggested for use in the context of computer simulators by (Sacks et al., 1989).  

They viewed the output 𝑌(𝑥) as a realization of a random process,  

𝑌(𝑥) =  ∑ 𝛽𝑖𝑓𝑖(𝑥) + 𝑍(𝑥) 

where the 𝑓𝑖(𝑥) are known regression functions, the 𝛽𝑖 are unknown regression parameters and 

the term 𝑍(𝑥) represents the deviation of the simulator from the regression model.  They 

assumed that 𝑍(𝑥) is a GP with  𝐸(𝑍(𝑥)) = 0; 𝑉𝑎𝑟(𝑍(𝑥)) =  𝜎2
, and correlation function 

𝑅(𝑥, 𝑧).  One could also add a “random error,” as in a standard regression model; however, we 

have in mind problems where 𝑌(𝑥) is the output of a deterministic simulator, so do not include 

such a term.   

Having observed simulator output 𝑌𝑖 at input settings 𝑥𝑖,  the GP model leads to a natural 

emulator of the output 𝑌(𝑥∗) at the input setting 𝑥∗ – the Best Linear Unbiased Predictor 

(BLUP).  The BLUP depends on the vector 𝑓(𝑥∗)  that evaluates the regression functions at 𝑥∗, 

the vector 𝑟(𝑥∗)  that evaluates the correlations 𝑅(𝑥∗, 𝑥𝑖), 𝑖 = 1, … , 𝑛, the matrix 𝐹 whose rows 

are 𝑓𝑇(𝑥𝑖) and the kernel matrix 𝑅 defined by 𝑅𝑖,𝑗 = 𝑅(𝑥𝑖, 𝑥𝑗), , 𝑖, 𝑗 = 1, … , 𝑛.  The BLUP is 

then given by 

�̂�(𝑥∗) = 𝐸 [𝑌(𝑥∗)|𝑦] =  𝑓𝑇(𝑥∗)�̂�  + 𝑟𝑇(𝑥∗)𝑅−1(𝑦 − 𝐹�̂�) 

where 𝑟(𝑥∗) = [ 𝑅(𝑥∗, 𝑥1), … , 𝑅(𝑥∗, 𝑥𝑛)]𝑇 and  �̂� = (𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑦  . 

Five useful properties of the GP predictor are: 

The predictor is very flexible and can accurately represent a broad spectrum of response 

functions. 

Assumptions about the likely “smoothness” of the response function can be injected into the 

predictor via appropriate choice of the covariance kernel. 

The GP predictor interpolates the observed data:  if 𝑥∗is one of the observation sites, then 

�̂�(𝑥∗) = 𝑌(𝑥∗).  This is very appealing with computer simulator data when the response 

function is observed with no random error. 

The method provides not just a predictor, but also a measure of the uncertainty associated with 

the prediction.  

The results can be seen as solutions to a Bayesian inference problem. 
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Regarding point (3), it is also straightforward to accommodate a random error term in the model; 

in that case �̂�(𝑥∗)  smooths the data rather than interpolating it, with the random error variance 

tuning the degree of smoothing. 

As for point (4), the MSE for �̂�(𝑥∗) is given by 

𝑀𝑆𝐸 [𝑌(𝑥)|𝑦] =  𝜎2 {1 − [𝑓𝑇(𝑥∗)𝑟𝑇(𝑥∗)] [0 𝐹𝑇

𝐹 𝑅
]

−1

[
𝑓(𝑥∗)

𝑟(𝑥∗)
]} 

4.1 Bayesian view of GP models 

 

In the Bayesian view, the correlation function is interpreted as a Gaussian prior distribution on 

the response function.  Given the data, the posterior distribution of 𝑌(𝑥∗) is then normal with 

expectation �̂�(𝑥∗) and variance equal to the MSE above.  We can compute a credible interval for 

𝑌(𝑥∗), estimating 𝜎2 from the data and using a multiplier from the t-distribution.  Many works 

compute these intervals using estimated values of model parameters; however, it is also possible 

to average over the uncertainty in those parameters to produce fully Bayesian credible intervals.  

What functions should be included in the regression model?  (Welch et al., 1992) found 

empirically that it was best to remove all regression terms except a constant.  This reduces the 

model to   𝑌(𝑥) = 𝛽 + 𝑍(𝑥)  and reflects all the dependence on x via the correlation function.  

Researchers in machine learning often drop the constant as well, leading to a slightly simpler 

formula for the BLUP, as presented in (Rasmussen & Williams, 2006).  Support for the use of 

these models was provided by (Steinberg & Bursztyn, 2004), who showed that commonly used 

correlation functions effectively model mean value and linear trends, obviating the need to 

include them explicitly as regression functions.   

Use of a sparse regression model can be problematic if the emulator is used to generate 

predictions outside the range of the observed data.  It is easy to show that such extrapolations are 

dominated by the regression function.  For example, in the machine-learning version, 

extrapolations far from the data will all be 0.  (Joseph, Hung, & Sudjianto, 2008) and (Joseph & 

Melkote, 2009) presented useful databased methods for selecting good regression models. 

 

4.2 Estimation 

 

The GP model includes parameters in the regression function and in the correlation function.  

(Sacks et al., 1989)  showed how these could be estimated by maximum likelihood.  The MLE 

for the regression parameters is the weighted least squares solution shown in the previous 
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section.  There is also a closed formula for the MLE of the overall variance of the GP.  Any 

remaining GP parameters must be estimated numerically. 

(Welch et al., 1992) proposed an iterative algorithm to deal with estimation with large sets of 

input factors, where the likelihood is difficult to optimize.  The procedure begins by estimating 

common parameter values for all factors and then, at each stage, identifying one factor whose 

parameters will be estimated separately and not in the common pool.  The chosen factor is the 

one that generates the largest improvement in the likelihood.     

Most works have generated emulators by estimating the correlation parameters and plugging 

them into the emulator formulas.  That ignores the uncertainty associated with estimated values.  

(Harari & Steinberg, 2013)  and (Pronzato & Rendas, 2017) used a fully Bayesian approach, 

assigning prior distributions to all model parameters and then averaging the emulator predictions 

with respect to the posterior.  Credible intervals also average over these distributions.  Both 

articles found that the Bayesian estimation improved both point estimates and Bayesian credible 

intervals.  

 

4.3 Alternative kernel options  

 

The quality of prediction using usual Gaussian process (GP) modeling and kriging depends on 

the choice of kernel function.  One common option is the power exponential family, proposed by 

Sacks et al. (1989), 

𝑅(𝑤, 𝑥) =  ∏ 𝑒𝑥𝑝(−𝜃𝑗|𝑤𝑗 − 𝑥𝑗|
𝑝𝑗

)𝑑
𝑗=1 , 𝑤ℎ𝑒𝑟𝑒 𝜃𝑗 ≥ 0 𝑎𝑛𝑑 0 < 𝑝𝑗 ≤ 2. 

The powers 𝑝𝑗 are related to the smoothness of the underlying simulator function.  The scale 

factors 𝜃𝑗  are indicative of factor importance.  The power exponential family has a sharp break 

between the case when all 𝑝𝑗 = 2, (Gaussian correlation) which places weight only on analytic 

response functions, and smaller exponents, for which, with probability 1, the response function 

has no derivatives.  Most statistical articles use different parameters for each input factor, as 

above.  In the machine learning literature, it is more common to adopt a common parameter for 

all factors.  That strategy sacrifices the ability to distinguish more from less important factors in 

exchange for the simplicity of having far fewer parameters to estimate, an important 

consideration with a large input space. 

The Matèrn family is a parametric collection of intermediate alternatives with a finite number of 

derivatives, controlled by the value of the parameter.  Another option, the cubic correlation, has 

finite support, which leads to a sparse kernel matrix and improved computational properties.  

Details on the Matèrn and cubic correlations can be found in   (Santner, Williams & Notz 2016, 

Section 2.2).    
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See (Chen, Loeppky, & Welch, 2017) for examples of applications with the Matèrn family.  

(Kaufman, Bingham, Habib, Heitmann, & Frieman, 2011) also exploited the idea of finite 

support by ``tapering’’ covariance functions from other families. 

(Harari & Steinberg, 2013) suggested using a convex combination of two simple processes.  The 

approach promotes robustness by considering simultaneously covariance functions from two 

different families.  Alternatively, the method can be used with different scale parameters, 

creating a combination of a "tame" and a "volatile" process in order to identify both global and 

local trends. 

Their method is applicable in cases where there is uncertainty regarding the family of correlation 

functions, or when one wishes to characterize both global trends and finer details, all in the same 

model.  In the first case, the method uses correlation functions from different families, thus 

allowing for robustness in correlation structure choice. In the second case, it combines two GP 

with the same correlation function, but with Research findings showed that combining Gaussian 

processes of different scales could improve both the prediction and coverage properties of the 

ordinary kriging method for moderate training sets, although tend to have no significant 

advantage for large. 

The formulation thus far has assumed that 𝑍(𝑥) is a mean 0 stationary process, and so can be 

described by its variance and its correlation function.  Predictors derived from stationary models 

tend to have a homogeneous behavior across the input space and may have large emulation 

errors when the underlying function changes its behavior across regions.  The model and the 

BLUP can easily be generalized to cover non-stationary processes, in which case the full 

covariance function is needed to specify the model.  A number of useful proposals have been 

made.   

(Ba & Joseph, 2012) also used a convex combination of processes, but with the expanded option 

that the mixing fraction could be a function of 𝑥, which induces non-stationarity.  (Pronzato & 

Rendas, 2017) also used a convex combination of processes in their Bayesian Local Kriging 

method. They made their model non-stationary by adding the assumption that the GP variance 

associated with a design site could be an increasing function of the distance between the design 

and prediction site.  Consequently, the covariance varies as a function of prediction site.  A 

number of test cases showed that Bayesian Local Kriging can substantially improve emulation 

when the stationarity assumptions are violated with only a small loss in accuracy when 

stationarity is satisfied. 

(Gramacy & Lee, 2008) and (Taddy, Lee, Gray, & Griffin, 2009) merged GP’s with regression 

trees, using the latter to divide the input space into distinct regimes, with separate GP’s fitted in 

each regime.  A Bayesian averaging technique smooths the transition across regime borders.   

(Plumlee & Apley, 2017) derived a new covariance function form - lifted Brownian covariance – 

as a limiting form of a Brownian-like covariance model and then extended it to higher-
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dimensional input domain. The lifted Brownian covariance is non-stationary and requires 

declaring a particular site in the factor space as the origin; the regression model then has the 

interpretation of being a model that exactly reflects the function value and derivatives at the 

origin.  They found that the lifted Brownian covariance function showed superior predictive 

performance than did standard covariance functions like the power exponential or Matèrn.    

 

5. OTHER ANALYSIS OPTIONS 

 

There are also useful methods for modeling data from computer simulators that do not follow the 

Gaussian process framework.  We mention a few of those methods here. 

(Joseph& Kang, 2011) proposed the use of regression-based inverse distance weighting (IDW).  

This is a simple data interpolation method that combines an overall linear regression model with 

inverse distance weighting of the residuals.  Including the trend is helpful for improving the fit 

for most problems.   Their distance function involves multipliers for each factor, with the 

multiplier estimated from the data to reflect the importance of the factor in modeling the 

residuals about the regression trend.  They also developed a method for assessing uncertainty in 

the fit. 

(Storlie, Bondell, Reich, & Zhang, 2011) proposed the adaptive COSSO (ACOSSO) approach to 

nonparametric regression.  Although their framework was to fit data observed with random error, 

the flexibility of the modeling makes this method appropriate to simulator data, as well.  Their 

model applies ideas from smoothing spline ANOVA (Wahba, Wang, Gu, Klein, & Klein, 1995) ) 

and the Component Selective Shrinkage Operator (COSSO)  (Lin & Zhang, 2006). The model 

adapts the degree of selection and shrinkage to the level of variation shown in the response data.   

The idea behind ACOSSO is to exploit an assumption that the response function is relatively 

smooth (which is realistic for many problems).  The simplest model assumes that the response is 

an additive function of the inputs,  

𝑌(𝑥𝑖) =  ∑ 𝑓𝑗(𝑥𝑖𝑗) +  휀𝑖 

where 𝑓𝑗   is a smooth function that depends only on the jth input factor and 휀𝑖 is an error term.  

The standard assumption in ACOSSO is that 휀𝑖 represents random variation that has no 

correlation structure, by contrast to the GP models, in which the error process is used to describe 

the relationship to the inputs.  At the next level of complexity, ACOSSO adds two-factor 

interaction functions, so that  

𝑌(𝑥𝑖) =  ∑ 𝑓𝑗(𝑥𝑖𝑗) + ∑ 𝑓𝑗𝑘(𝑥𝑖𝑗 , 𝑥𝑖𝑘)  +  휀𝑖, 
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with appropriate assumptions about the orthogonality of the functions.  Clearly we could 

continue to add higher-order interaction functions.  The estimation criterion combines squared 

error lack-of-fit with a lasso penalty that sums over all the functional components, so that some 

components are estimated as 0.  

(Sung, Wang, Plumlee, & Haaland, 2019) considered problems with many inputs and a large 

sample, where Gaussian process models become computationally difficult.  They suggested a 

multi-resolution functional ANOVA model similar to that in ACOSSO, but with coefficients 

estimated by the group lasso (Yuan & Lin, 2006) , which again limits the number of terms 

included, and emphasizes that some terms should be included/excluded as a group.   

 

6. PROBLEMS WITH QUALITATIVE AND QUANTITATIVE INPUTS 

 

The GP model defined in section 1 was proposed for settings where input factors are all 

quantitative, with correlations decreasing functions of distance. Many experiments also have 

some qualitative inputs and adjustments are needed to handle these variables.  GP models face 

two main challenges: constructing a proper covariance structure for the qualitative factors and 

specifying the relationship between the correlation function for qualitative factors and the 

correlation function for quantitative factors. 

Some of the initial approaches offer a partial solution. One option is to use a correlation function 

that satisfies some special form  (Joseph, & Delaney, 2007) for qualitative factors.  This can 

simplify the computational complexity for model estimation, but lacks the flexibility to provide a 

general correlation structure for qualitative factors.  

(Qian, Wu & Wu, 2008) developed a general framework with a flexible correlation structure 

expressed as the product of two functions, one for continuous inputs, the other for categorical 

inputs.  The model is capable of accommodating complex interaction effects between qualitative 

and quantitative factors and proved successful on a number of test cases.  (Zhou, Qian, & Zhou, 

2011)  introduced efficient methods for estimating these models by taking advantage of a 

hypersphere transformation of the parameters for the categorical terms.  The transformation does 

not sacrifice generality and provides a simple way to guarantee that the covariance matrix for the 

qualitative effects is positive definite.   (Deng, Lin, Liu, & Rowe, 2017) proposed an alternative 

model with an additive covariance structure for the qualitative factors, whereas that in Qian, Wu 

and Wu (2008) is multiplicative.   

(Zhang & Notz, 2015) gave an excellent summary of ideas for using GP predictors on this 

problem.  They proposed using indicator functions to derive a covariance model for the 

qualitative factors and compared several alternative ways to parameterize the GP model, with 

good discussion on the pros and cons of each approach. 
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A useful comparison was provided by (Swiler et al., 2014), with extensive discussion of concrete 

examples.  They compared the performance of GP models with special correlation structure, 

including some with a tree-based structure (Gramacy and Lee, 2008), and ACOSSO (Storlie et 

al. 2011; see Section 5).  Based on their suite of test cases, they concluded that the general model 

of Qian, Wu and Wu and the ACOSSO analysis are both effective methods that can be widely 

applied. 

Designs that facilitate fitting models with qualitative factors usually involve the following two 

goals: 

1. At each unique setting of the qualitative factors, the quantitative factors should have 

a good design. 

2. Summarizing over all settings of the qualitative factors, the marginal design of the 

quantitative factors should be efficient. 

(Qian,& Wu, 2009)  first addressed this problem, proposing the idea of “sliced designs”.  Here 

each slice of the design can correspond to a different setting of the qualitative factors.  (Qian, 

Peter Z. G., 2012)  showed how to effectively generate LHC designs with good slicing 

properties. (Ba, Myers, & Brenneman, 2015) extended the method to generate maximin sliced 

LHC designs.  (Yang, Lin, Qian, & Lin, 2013) showed how to generate sliced LHC designs with 

first-order (or second-order) orthogonality of the factors.  

  

7. MODELING LARGE DATA SETS 

 

It is challenging to model large sets of computer experiment data.  In particular, the use of the 

GP model is problematic because of the need to invert the n×n correlation matrix. When n 

becomes very large, this matrix will tend to be ill-conditioned, leading to numerical instability in 

the emulator.  Several techniques exist for numerically stabilizing kernel based interpolators, 

including adding a nugget effect (Linkletter, Bingham, Hengartner, Higdon, & Ye, 2006)  

(Santner, Williams & Notz 2016), using compactly supported kernels  (Fasshauer, 2007) 

(Gneiting, 2002), and covariance tapering (Kaufman, Schervish, & Nychka, 2008)  and 

approximating likelihoods.  (Stein, Chi, & Welty, 2004) In addition, some specialized methods 

have been proposed that circumvent the numerical problems. 

(Haaland & Qian, 2011)  proposed a multi-step procedure, which is easy to use and can 

substantially improve the overall accuracy in emulation of large-scale computer experiments.  

Their idea exploits a sequence of GP fits, at increasingly finer scales of resolution.  The 

procedure begins by forming well-spread nested subsets of the data. The first fit interpolates the 

lowest resolution subset using a wide kernel and residuals from this fit serve as the output data 

for the next fit, made on the next subset. At each step, the residuals are interpolated using a 
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narrower kernel, which is the key to preserving computational stability.  The final emulator is the 

sum of the prediction models fitted at each step.    

(Gramacy & Apley, 2014) take a different approach to avoid fitting a single GP model to the 

entire data set.  To generate �̂�(𝑥∗), they use only data from a local sub-design tailored to 

prediction at 𝑥∗.  With those data, they fit a simple GP model with a Gaussian covariance kernel 

(all factors have 𝑝𝑗 = 2 and a common value of 𝜃).  The complexity of the fit derives from its 

local nature, in both the sub-design and local estimation of 𝜃.  The choice of the local sub-design 

around 𝑥∗  exploits a greedy criterion that sequentially adds single data points so as to reduce the 

mean square prediction error of �̂�(𝑥∗), taking into account the MSE conditional on 𝜃  and the 

uncertainty associated with estimating 𝜃.  The former tends to favor adding data sites that are 

close to 𝑥∗ in Euclidean distance; but the estimation error for 𝜃 sometimes leads to adding points 

that are much further away.  They recommend choosing the size of the local designs to meet 

computational or execution time constraints. 

(Park & Apley, 2018)  also used local GP models to facilitate fitting GP models to large data 

sets.  They partitioned the factor space into multiple small regions and made local fits in each 

region, adding a clever scheme that ensures that near the borders between regions, the fits and 

their standard errors will match one another and thus avoid discontinuity problems that affect 

some other local methods. 

According to (Tzeng & Huang, 2018) the use of GP models in computer experiments has also 

borrowed ideas developed in the context of spatial statistics, where very large data sets are 

becoming increasingly common. This includes methods like covariance tapering (Furrer, Genton, 

& Nychka, 2006) , the predictive process method  (Banerjee, Gelfand, Finley, & Sang, 2008; 

Eidsvik, Finley, Banerjee, & Rue, 2012) fixed rank kriging (Cressie & Johannesson, 2008) and a 

stochastic partial differential equation approach based on a Markov random field representation 

(Lindgren, Rue, & Lindström, 2011) . 

All these methods involve selection of some tuning parameters (including functions), such as 

tapering range, basis functions, partitions of spatial regions, number of resolution levels, and 

boundary treatments. Unfortunately, obtaining an appropriate choice is difficult or 

computationally impossible, so some heuristic methods are usually applied. (Tzeng & Huang, 

2018)  proposed a completely automated new method - Fixed Rank Kriging, allowing for a 

greater number of base functions, so that it can be easily applied in practice without worrying 

about the allocation of base functions. 
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8. MULTIPLE RESOLUTION SIMULATORS 

 

Complex computer codes sometimes require substantial run time to produce a result.  In these 

settings there may be great benefit from running the simulator at several different levels of 

resolution.  The intuition is that one can use results from a fast, but coarse, simulator, to predict 

what would have been found from running a slow, but high-resolution, simulator.  In the context 

of neural simulations, this might mean replacing a simulated system with hundreds of thousands 

of neurons by one with just tens of thousands.  In molecular dynamics, one could run simulations 

with different numbers of atoms or molecules. 

The idea of exploiting multi-resolution codes was first developed by (Kennedy & O'Hagan, 

2001).  Given codes at two levels of resolution, they modeled the output from the high-level code 

as a Gaussian process, with mean and variance functions that depend on the output from the 

coarse code, the distance between the input points and a collection of hyperparameters that must 

be estimated. Given s levels of code 𝑧1(. ), … . , 𝑧𝑠(. ), at increasing levels of resolution, the output 

y from the 𝑡th level code is modeled as 𝑦 =   𝑧𝑡(𝑥), where  𝑧𝑡(. ) is a random function indexed 

by the input vector 𝑥. Kennedy and O’Hagan proposed using an autoregressive model that 

predicts the code at each level of resolution conditional on the previous one:  

𝑧𝑡(𝑥) = 𝜌𝑡−1𝑧𝑡−1(𝑥) + 𝛿𝑡(𝑥),    𝑡 = 2, … , 𝑠 

 

where 𝜌𝑡−1 is a regression parameter,  𝛿𝑡(. ) is independent of  𝑧𝑡−1(. ), … . , 𝑧1(. ) and is modeled 

as a Gaussian Process with mean ℎ(. )𝑇𝛽𝑡, where ℎ(. ) is a vector of q regression functions, and a 

stationary covariance function 𝑐𝑡(𝑥, 𝑥′) = 𝑐𝑜𝑣( 𝛿𝑡(𝑥),  𝛿𝑡(𝑥′)). The simplest code  𝑧1(. ) is 

assumed to be a Gaussian Process independent of  𝛿𝑡(. ) too.  Their methods using Bayesian 

prediction and uncertainty analysis are applicable to a variety of multi-level computer codes and 

particularly useful when the slowest code is very expensive to run.  

Further refinements were introduced by (Qian& Wu, 2008) , who allowed for more flexibility in 

relating the models across levels of resolution.  Their approach replaces the autoregressive model 

that ties low-fidelity data to high-fidelity data by a pair of Gaussian processes, one for location 

offset and one for re-scaling.  This provides much more flexibility than the model of Kennedy 

and O’Hagan.   

(Tuo, Wu, & Yu, 2014) developed some specialized multi-fidelity models using non-stationary 

Gaussian processes that are especially appropriate for settings where the resolution is determined 

by the size of a finite element mesh. 

The analysis methods for multi-resolution problems have invariably exploited an assumption that 

the factor settings evaluated with a high-resolution code are also evaluated at all lower levels of 

resolution, enabling direct comparison of how the results change with level of resolution.  
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Consequently, design for multi-resolution modeling has emphasized the use of sets that have this 

nesting property.  (Qian, Tang, & Wu, 2009) used orthogonal arrays to create a sequence of 

nested LHC designs.  (Qian, Ai, & Wu, 2009)  proposed an alternative construction method that 

uses difference matrices.  (Qian, 2009)  developed a simple construction scheme in which 

smaller LHC designs could be augmented to form larger LHC designs.  (Haaland & Qian, 2010)  

derived more general classes of nested space-filling designs.  

 

9. CALIBRATION AND TUNING WITH FIELD OR LAB DATA 

 

Computer models often include parameters or tuning constants whose values are not known.  For 

example, a computer model that describes the mean behavior of a process might be known only 

up to some set of parameters.  Then, much as in other statistical models, it is relevant to obtain 

data that can be used to calibrate (or estimate) these parameters; for an example, see (Eriksson et 

al., 2019) .  An additional feature in the calibration of computer simulators is the belief that the 

computer model may not be a perfect description of reality, so that some description of bias is 

needed.   

The term calibration sometimes refers specifically to the idea that some parameter values may be 

site or application-specific, and so are calibrated to local conditions.  Pharmacokinetic models, 

for example, often include some global parameters related to the substance under study and some 

individual parameters that describe how a person absorbs and removes the substance from the 

blood stream.  In other cases, the simulator may involve some constants that have no physical 

meaning and serve the purpose of “tuning” the model so that it more accurately reflects real 

systems.   

The calibration problem was first addressed by (Kennedy & O'Hagan, 2001) . They proposed a 

Bayesian model in which the simulator, when run at the true parameter values, provides the 

mean values of data.  The goal of the calibration is to estimate the parameters by finding values 

for which the simulator accurately reproduces the observed data.  Kennedy and O'Hagan 

extended this to a calibration method by adding assumptions about the validity of the computer 

model, its approximate parametric form, and the extent of error in the data.  The method can 

handle problems where the simulator is run at only a sample of possible settings; there is no 

requirement to obtain simulator data at all input settings that were observed. The assumptions 

provide the underpinnings of a Bayesian analysis that leads to estimates of the calibration 

parameters and to posterior distributions that characterize their uncertainty.   

(Han, Santner, & Rawlinson, 2009)  proposed a method for simultaneously tuning and 

calibrating.  They also used a hierarchical Bayesian model that combines responses from a 

computer simulation with those from a physical experiment and a discrepancy function that 

measures the distance between the computer code output and the expected value of an 
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observation in the physical experiment. They argued that the first step of the process should be to 

identify, for each calibration setting, the value of the tuning parameter that minimizes the 

squared discrepancy. Once obtained, this estimated value is used in the calibration process.  

(Eriksson et al., 2019) also implemented Bayesian parameter calibration.  Their approach was 

computationally intense.  As a first step, they used a broad sample of input settings to identify 

regions in their parameter space that might give a reasonable fit to the data.  They used that 

region as the starting point for an MCMC analysis in the later phases.  

The original calibration formulation of (Kennedy & O'Hagan, 2001) explicitly recognizes the 

presence of model error (i.e. that the simulator will not be a perfect reflection of the actual 

process) and includes a bias term to account for it.  The error function is general and so can be 

appended to any value of the calibration parameters, leading some recent authors to question the 

identifiability of those parameters.  (Tuo & Wu, 2016) described the problem and proposed to 

resolve the identifiability by defining the values of the calibration parameters as the minimizers 

of the 𝐿2 distance from the true expected response function to the simulator.  They then 

presented a method for consistent estimation of the calibration parameters.  (Tuo & Wu, 2015) 

proved additional results, showing that their calibration method is efficient; by comparison least 

squares calibration is not efficient for this problem.  

(Plumlee, 2017) developed a fully Bayesian method for calibration using a similar framework to 

that of Tuo and Wu.  This calls for careful statement of the prior on the model bias that ensures 

that the calibration parameter is well-defined; Plumlee solved the problem by adopting a prior in 

which the bias is orthogonal to the gradient of the computer model. 

(Dai & Chien, 2018) extended the ideas of Tuo and Wu by considering more general distance 

functions and not just the 𝐿2 distance to identify the calibration parameters, by proposing a two-

step estimation process, first estimating the calibration parameters and only then estimating the 

bias function.  (Dai & Chien, 2018)  derived finite sample properties and showed that their 

method can provide guarantees on predictive mean squared error.   

 

10. BAYESIAN INFERENCE 

 

Bayesian inference has proved useful for many applications in neuroscience, for example 

(Obrezanova 2008 et al, Geisler 2011, Wolpert et al. 2011, Park et al. 2013). 

As we noted in Section 1.4, Bayesian inference summarizes knowledge about a set of model 

parameters 𝜃 via their posterior distribution,  

 

𝜋∗(𝜃) ∝ 𝜋(𝜃)𝐿(𝜃; 𝑦). 
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where 𝜋(𝜃) is a prior distribution and 𝐿(𝜃; 𝑦) is the likelihood function that links the distribution 

of the observed data to the parameters.  The summary is via a probability distribution, so that 

methods for handling probability functions can be used to make further summaries.  For 

example, the inference for any single component of 𝜃 will be based on its marginal posterior 

distribution. 

Although the recipe looks simple, it hides potentially challenging computational issues.  In order 

to work with 𝜋∗(𝜃) one needs to either normalize the right-hand side by integration, to be able to 

sample from the distribution (as in Markov Chain Monte Carlo methods) or to be able to 

approximate the distribution (for example by saddle point or variational Bayes schemes).  

Moreover, just evaluating the right-hand side for a fixed value of 𝜃 may be difficult.  This will 

occur, for example, when a demanding simulation model must be run to evaluate the likelihood. 

(Joseph, 2012)   proposed a creative marriage of the research on computer experiments with the 

computational challenges of Bayesian inference.  Regarding the product of the prior and the 

likelihood as a complex function that is difficult to approximate, Joseph’s DoIT method made 

the approximation using a GP model.  In particular, he advocated the use of the GP framework 

with a Gaussian kernel.  As a result, the approximation itself is a linear combination of Gaussians 

and thus is trivial to normalize.  Joseph showed that DoIT could be very effective for 

approximating complex posterior distributions.  He also developed useful methods for taking 

initial samples of the parameter space and for adding further parameter vectors to improve the 

approximation.  See (Steinberg & Jones, 2012) for constructive comments on how to improve the 

method.  (Joseph, 2013) added a simple refinement that guaranteed that the approximation would 

be non-negative. 

 

11. OPTIMIZATION 

 

The success of computer experiment methods in emulating complex functions has also made 

them valuable tools for black-box optimization problems, in which the number of function 

evaluations may be limited by time and resource constraints. (Jones, Schonlau, & Welch, 1998)    

(Taddy et al., 2009) developed a new approach, which combines asynchronous parallel pattern 

search (APPS) and treed Gaussian processes (TGP; see section 4.3), with the EI criterion.  APPS 

was proposed by numerical analysts and is based around continued evaluations at sites near the 

current best site.  The two methods effectively complement one another. By combining these two 

schemes, their algorithm performs robust local optimization more efficiently than when using 

either method alone.  
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The MCMC algorithm is a very popular choice for optimization problems, yet less suitable for 

sequential design since it must be restarted and iterated to convergence with the inclusion of each 

new design point. (Gramacy & Polson, 2011) also extended the application of the EI criterion for 

optimization in the context of GP models.   The major contribution in their work is their method 

for exploring the GP posterior for the objective function.  The most common approach, Markov 

Chain Monte Carlo, is not a good choice for sequential learning because it requires substantial 

computing after each additional result is obtained.  Gramacy and Polson replace MCMC by a 

Sequential Monte Carlo algorithm that is much faster than MCMC.  This facilitates the 

generation of sequential evaluation sites and is applicable for online updating of Gaussian 

process regression and classification models. 

 Complex optimization problems often involve objective functions that are expensive to 

compute. An effective strategy to control costs is to exploit a much cheaper surrogate model for 

part of the optimization process. (Yao, Chen, Huang, & van Tooren, 2014) developed a new 

method for dealing with two common surrogate-based optimization issues.  The first one is the 

accuracy improvement of the surrogate model. The second relates to the augmentation of the 

training set with an infill strategy that gradually improves surrogate accuracy and ensures 

convergence to the real global optimum of the exact model. They propose to use a radial basis 

function neural network (RBFNN) method for the optimization process. They developed a linear 

interpolation (LI) based RBFNN modelling method, LI-RBFNN, to enhance the accuracy of 

RBFNN which is used in combination with a hybrid infill strategy. This strategy uses the lower 

bound of the surrogate prediction as the optimization objective to locate the promising input 

region and employs a linear interpolation-based sequential sampling approach to improve the 

surrogate accuracy globally. 

(Bischl et al., 2017) added a number of additional features for optimization via GP models.  

Their algorithm was designed for both single- and multi-objective optimization with mixed 

continuous, categorical and conditional inputs. Additional features included multi-point batch 

proposal, parallelization, visualization, logging and error-handling. The algorithm has a modular 

implementation that makes it easy to swap single components and permits the user to adapt the 

method for specific use cases.  For example, it is easy to include regression trends as part of the 

GP.   

 

12. MODELING MULTIVARIATE OUTPUT 

 

Our presentation thus far has focused on models for a univariate output.  However, computer 

simulators often generate multivariate output.  In the context of neural simulation, this could 

refer to a complete spike train, a collection of spike trains, or a set of macroscopic features 

computed from such a collection.   
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One class of methods for emulating multivariate output is directed toward functional output.  

They are related to statistical models for analyzing functional data (Ramsay, 2005). We will 

express ideas here in terms of functions of time, but they are equally appropriate for functions of 

neural location or functions jointly of time and location.   One approach has been to express the 

dependence on time via a collection of 𝑝 time-trend functions, 𝑔𝑗(𝑡), 𝑗 = 1, … , 𝑝.  Then the 

coefficients of these functions depend on the input settings 𝑥 via a GP model.  (Bayarri et al., 

2009) developed this model with the trend functions forming a basis expansion; (Bayarri et al., 

2007) analyzed highly irregular functional data with the help of a wavelet expansion.   (Higdon, 

Gattiker, Williams, & Rightley, 2008) determined the trend functions via principal component 

analysis and (Levy, 2008) derived a data-driven method to generate a good set of trend functions.  

There have been many further works on such models.  See, for example, (Goh et al., 2013) , 

(Hung, Joseph, & Melkote, 2015) , (Plumlee, Joseph & Yang, 2016) , (Chakraborty et al., 2017) , 

(Salter, Williamson, Scinocca, & Kharin, 2019) . 

There has been less attention to the case of multivariate output that is not functional in nature.  

However, that case seems especially relevant for neural simulations, where attention often 

focuses on a set of features extracted from complex output, rather than on the functional output 

itself (e.g. the spike trains for a region of the brain).  Even without the functional structure, there 

will likely be correlations among the outputs that can be exploited in modeling or emulating 

them.  (Rougier, 2008)  proposed to model all the outputs in a joint GP model.  His approach was 

made very tractable by an assumption that the overall correlation of the GP could be separated 

into two distinct, and independent, components, one related to the difference in input factor 

settings and the other to the outputs.  That leads to a Kronecker product form for the correlation 

matrix which has significant computational advantages.    

(Overstall & Woods, 2016) presented a common Bayesian framework for emulation of 

multivariate simulators using covariance separable Gaussian processes.  Their analysis takes 

advantage of the matrix normal distribution with a covariance that can be expressed as a 

Kronecker product.  They also take a fully Bayesian approach to inference. 

The separable structure imposes restrictions that may not always be appropriate, especially when 

the outputs are related in rather different ways to the inputs. (Fricker, Oakley, & Urban, 2013) 

developed an emulation scheme for such settings, taking advantage of convolution methods and 

the theory of coregionalization that has been used in spatial statistics.   

 

13. UNCERTAINTY ASSESSMENT 

 

Uncertainty quantification deals with the quantitative characterization and reduction 

of uncertainties. Generically, consider the output 𝑌(𝑥) of a computer simulator, which is 
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dependent on the input factors 𝑥.  Any uncertainty associated with the values of the input factors 

translates into uncertainty about the value of  𝑌.  Challenges that naturally arise are to 

characterize the nature of that uncertainty and to assess which of the input factors play dominant 

roles in it.  The latter issue is especially important as a guide to future research, indicating what 

sort of data might be most useful to reduce the degree of uncertainty about 𝑌.   

The notion of uncertainty assessment is closely linked to that of sensitivity analysis. It is 

instructive here to distinguish between so-called local and global sensitivity analysis (GSA).  The 

former is a mainstay of engineering analysis and is termed local because it focuses on the 

sensitivity of 𝑌(𝑥) at a particular input setting, say 𝑥∗, to changes in the input settings.  Such 

analyses usually emphasize finding the largest partial derivatives of the function at 𝑥∗.   By 

contrast, GSA looks at the variation of 𝑌(𝑥) over a large region that is generated by a probability 

distribution on the inputs.  Our interest will be in GSA.  See (Saltelli et al. 2008)  for a detailed 

presentation of ideas and methods and (Marino, Hogue, Ray, & Kirschner, 2008)  for an account 

of their application in systems biology. 

The study by (Eriksson et al., 2019) that we cited earlier is a good illustration.  The study was 

concerned with dynamical behavior in intracellular models and employed a simulator that 

depends on a number of unknown parameters, with substantial uncertainty as to their values.  

Experimental data provided good estimates of some of the parameters, substantially reducing 

their uncertainty.  An important question was to then assess how precisely one could predict the 

relationship between the active form of a kinase and the active form of a phosphatase and how 

this relationship depends on certain calcium transients. The authors used GSA to address these 

questions, using the posterior distribution of the model parameters as the relevant probability 

distribution on the input space. 

Traditional methods for uncertainty quantification and for GSA rely on sampling strategies to 

probe the input space and analytical summaries of the resulting function values.  Thus, there is 

much common ground with the methods used in computer experiments.   

The probabilistic approach offers an advantage of providing the degree of uncertainty associated 

with the model throughout the whole space. (Salem, Roustant, Gamboa, & Tomaso, 2017)  offer 

a universal method, called Universal Prediction distribution (UP distribution) to define a measure 

of uncertainty for any surrogate model either deterministic or probabilistic. Their method based 

on Cross-Validation (CV) sub-models predictions.  It also provides a prediction for uncertainty 

distribution, which is applicable in much more general frames than the Gaussian one, thus 

allowing a large set of sampling criteria. 

Well-known estimation methods of the GP parameters can be classified into two categories 

based on the Bayesian paradigm. The first is the empirical Bayes approach, using maximum 

probability estimates (MLE). The second category is a Bayesian posterior as suggested by 

(Higdon et al., 2008) and the GP method used by (Gramacy & Lee, 2010).  
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(Chen et al., 2017) introduced a new approach dealing with uncertainty quantification, which 

derives from the uncertainty from the statistical emulator of the computer model, including the 

contribution from parameter estimation. They state that Bayesian methods in principle take into 

account the parameters’ uncertainty and produce better coverage probabilities for reliable 

intervals. They demonstrated that choosing which category to use is less important for 

uncertainty quantification than choosing the correlation-function family. 

(Iooss & Ribatet, 2009)  extended the ideas in GSA to handle problems in which the inputs are 

themselves functional.  Their ideas can be used to assess factor importance when one of the input 

factors varies over time, such as the time course for providing an electrical stimulus to the brain. 

 

14.   TOOLS 

 

In this section, we review tools that address many of the challenges mentioned in this paper, such 

as modeling the Gaussian processes, the development of emulators for computer simulations, 

optimization and parameter calibration.   

14.1 Gaussian process modeling based on Bayesian approach  

laGP is an R package (Gramacy, 2016) that provides approximate GP regression for extensive 

computer experiments and spatial databases. The approximation method finds small local 

designs (independently) to predict specific inputs. It can be used for black box constrained 

optimization via augmented Lagrangians and for computer model calibration via optimization. It 

implements the following features: ALC, MSPE and NN-based local approximation, EFI-based 

global heuristics, local MLE/MAP inference for (isotropic and separable) length-scales and 

nuggets and supplies lower-level (full) GP inference and prediction. It also supports a large 

number of parallel computation methods and their API's like OpenMP (Open Multi-Processing) 

for approximation over a large out-of-sample testing set, GPU acceleration for local average 

length criterion, subroutine evaluations and Simple Network of Workstations (SNOW) parallel-

package cluster parallelization. 

The tgp package (Gramacy, 2007; Gramacy & Lee, 2008)  is designed for building surrogates of 

both stationary and nonstationary noisy simulators. It implements Bayesian techniques like the 

Metropolis-Hastings algorithm using a GP model for emulating the stationary components of the 

process. The GP model includes a nugget parameter estimated along with other parameters. The 

recent version of the tgp package facilitates the emulation of deterministic simulators by 

removing the nugget parameter from the model, supports designs of experiments and includes 

one-dimensional and two-dimensional plots, which includes tree drawing functions and higher 

dimension projection and slice options. 
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Plgp - R package developed by Gramacy, implements particle learning (PL) according to 

principles described in (Carvalho, Johannes, Lopes, & Polson, 2010) (Gramacy & Apley, 2014) 

(Gramacy & Lee, 2010) .  It facilitates Sequential Monte Carlo inference for Bayesian online 

updating of Gaussian process regression and classification by particle learning (PL).  It includes 

the following features: sequential design for optimization of functions by expected improvement 

(EI), sequential design for optimization under known and unknown constraints by an integrated 

expected conditional improvement (IECI) criterion using a hybrid regression-classification GP 

model, sequential design for exploring classification boundaries by the predictive entropy 

statistic via a classification GP model. It has a generic PL interface and supplies three types of 

correlation functions: isotropic, separable, and single-index Gaussian.  (Snoek, Larochelle, & 

Adams, 2012) presented new methods to optimize the hyperparameters used in machine learning 

algorithms.  They have developed a fully Bayesian approach for the expected improvement and 

algorithms for dealing with variable time regimes and parallelized experiments. 

rBayesianOptimization R package by Yachen Yan implements Bayesian Global Optimization 

with Gaussian Processes algorithm, as was described in (Snoek, Larochelle, & Adams, 2012).   

mlrMBO is an additional R package that implements the effective global optimization algorithm 

and designed to deal with mixed, continuous, categorical, and adaptive optimization parameters, 

developed by Bischl et al. (2017). The developers used the modular form so that the components 

replaced or easily adapted by the user. 

DiceKriging R package, developed by (Roustant, Ginsbourger, & Deville, 2012), performs 

estimation, simulation, prediction and validation for various Kriging models. It implements 

covariance parameter estimation with respect to noise and trend specifications in efficient and 

fast manner. The package also, has the option to define conditional and unconditional 

simulations. DiceOptim's R package, also developed by(Roustant et al., 2012), is a 

complementary package for DiceKriging that  performs sequential and parallel Kriging-based 

optimization, based on the 1-point and multi points Expected Improvement Criteria  (EI) . 

14.2 Gaussian process modeling using MLE (Maximum Likelihood 

Estimation)  

(Dancik & Dorman, 2008) developed mlegp R package, which suitable for modeling Gaussian 

processes for univariate and multi-dimensional outputs by estimating the maximum likelihood 

function.  The multi-dimensional output can be modeled by fitting independent GPs to each 

output. The package implements plotting of main effects for functional output. It also supports 

different correlation structures like product exponential correlation structure, constant or linear 

regression mean function and allows defining nugget terms like constant nugget term, nugget 

matrix up to a multiplicative constant or no nugget term at all. The ability to specify the nugget 

matrix allows some flexibility for using GPs to model heteroscedastic responses. In addition, 

there is a special version for sensitivity analysis, including functional analysis of Variance 
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(FANOVA) decomposition, plotting functions to achieve diagnostic plots, main effects, and two-

way factor interactions. 

GPfit: R package for fitting a Gaussian process model to deterministic simulator outputs 

(Macdonald, Ranjan, & Chipman, 2015) . Fitting a GP model can be numerically unstable if any 

pair of design points in the input space are close together. To overcome this problem, (Ranjan, 

Haynes, & Karsten, 2011) presented the use of a genetic algorithm for maximizing the 

likelihood, which was robust and numerically stable, but computationally intensive. This 

package offers an improved method for using a genetic algorithm to maximize the likelihood. It 

implements a different parameterization of the spatial correlation function and a clustering-based 

multi-start gradient-based optimization algorithm, which yields robust and faster optimization. 

14.3 Alternative surrogate modeling 

 The SUMO toolbox,(Gorissen, Couckuyt, Demeester, Dhaene, & Crombecq, 2010)  written in 

Matlab and Java , comprises a complete cross-platform, which comes with a large (60+) number 

of sample problems. It is a flexible framework for accurate global surrogate modeling and 

adaptive sampling (active learning). It features a rich set of plugins and applies to a wide variety 

of domains, in an autonomous fashion, a black box, or under full manual control. 

DoIt This R-package implements the design of experiments based on the interpolation technique 

(DoIt, Joseph 2012) for approximate Bayesian estimations of the joint and marginal densities.  

The method uses estimates of unnormalized density in the space-filling design of parameter 

values. Normalization is achieved by approximating the target density by a weighted sum of 

Gaussian kernels centered on the design points. The package contains functions for the optimal 

selection of additional design points and calculates the optimal kernel width by cross-validation. 
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