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Abstract

In this paper, we �rstly consider extended degenerate central factorial numbers of the second
kind and provide some properties of them. We then introduce uni�ed degenerate central Bell
polynomials and numbers and investigate many relations and formulas including summation
formula, explicit formula and derivative property. Moreover, we derive several correlations
for the fully degenerate central Bell polynomials associated with the degenerate Bernstein
polynomials and the degenerate Bernoulli, Euler and Genocchi numbers.
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1. Introduction

The classical Bell polynomials Beln (x) (called also Touchard polynomials and exponential polynomials)
and central Bell polynomials B(c)n (x) (called also central exponential polynomials) are de�ned by means of
the following generating functions:

1X
n=0

Beln (x)
tn

n!
= ex(e

t�1) (cf. [2-4; 9; 12; 13; 16; 20]) (1.1)

and
1X
n=0

B(c)n (x)
tn

n!
= e

x
�
e
t
2�e�

t
2

�
(cf. [8; 11; 17]). (1.2)

The classical Bell numbers Beln and central Bell numbers B
(c)
n are acquired by choosing x = 1 in (1.1) and

(1.2), that is Beln (1) := Beln and B
(c)
n (1) := B

(c)
n , which are given by the following exponential generating

function:
1X
n=0

Beln
tn

n!
= e(e

t�1) and
1X
n=0

B(c)n
tn

n!
= e

�
e
t
2�e�

t
2

�
. (1.3)

The Bell polynomials extensively studied by Bell [2] appear as a standard mathematical tool and arise in
combinatorial analysis. The familiar Bell polynomials and the central Bell polynomials have been intensely
studied by many mathematicians, cf. [2-4; 8; 9; 11-13; 16; 17; 20] and see also the references cited therein. For
example, Bouroubi [3] provides a novel and interesting approach to the determination of new formulas for
the Bell polynomials, based on the Lagrange inversion formula, and the binomial sequences which gives the
easy recovery of known relations and deduction of several new formulas covering these polynomials. Carlitz
[4] investigate diverse formulas for the Bell numbers including correlations with the Stirling numbers of the
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second kind, combinatorial interpretation and derivative property. Kim et al. [8] considered the central Bell
polynomials and numbers and presented several relations and identities for these polynomials and numbers.
Kim et al. [9] analyses properties of the Bell polynomials by using and without using umbral calculus and
proved several representations for multifarious known families of polynomials such as Cauchy polynomials,
Bernoulli polynomials, poly-Bernoulli polynomials and falling factorials by means of the Bell polynomials.
Mihoubi [20] gave some results tied the Bell polynomials and the binomial type sequences, which were used
to derive some novel formulas for the Bell polynomials. These large investigations of the Bell polynomials
and numbers yields a motivation to improve this mathematical tool.
For non-negative integer n, the central factorial numbers of the second kind T (n;m) are de�ned by the

following exponential generating function

1X
n=0

T (n;m)
tn

n!
=

�
e
t
2 � e� t

2

�m
m!

(cf. [8; 11; 17]) (1.4)

or by recurrence relation for a �xed non-negative integer n,

xn =

nX
m=0

T (n;m)x[m], (1.5)

where the notation x[m] called as the central factorial equals to x
�
x+ m

2 � 1
� �
x+ m

2 � 2
�
� � �
�
x� m

2 + 1
�

with initial condition x[0] = 1, cf. [8; 11; 17] and see also references cited therein.
The central Bell polynomials and central factorial numbers of the second kind satisfy the following relation

(cf. [8; 11; 17])

B(c)n (x) =

nX
m=0

T (n;m)xm. (1.6)

The Stirling numbers of the �rst kind S1 (n;m) are de�ned as follows (cf. [7-9; 11-14; 17; 20])

(x)n =
nX

m=0

S1 (n;m)x
m, (1.7)

where the notation (x)n called as the falling factorial equals to x (x� 1) � � � (x� n+ 1), cf. [7-9; 11-14; 17; 20]
and see also references cited therein.
The following sections are planned as follows: The second section includes the de�nition of the fully

degenerate central Bell polynomials and numbers and provides several formulas and relations including the
uni�ed degenerate central factorial numbers of the second kind and Stirling numbers of the �rst kind. The
third section covers diverse correlations for the fully degenerate central Bell polynomials associated with the
degenerate Bernstein polynomials, the degenerate Bernoulli, Euler and Genocchi numbers. The last section
of this paper analyses the results acquired in this paper.

2. Unified Degenerate Central Bell Polynomials

In this section, we perform to analyze and investigate degenerate forms of some special polynomials and
numbers. We focus on the uni�ed degenerate central factorial numbers of the second kind and the uni�ed
degenerate central Bell polynomials and numbers. We then derive several properties and formulas for these
polynomials.
In the theory of special polynomials and special functions, the degenerate forms for polynomials and

functions have been studied and investigated by many mathematicians for more than a century, cf. [4-6; 9-
19] and see also the references cited therein. Carlitz [5] introduced higher order degenerate Euler polynomials
and provided several properties. Carlitz [6] gave the degenerate Staudt-Clausen theorem and illustrated it
for the degenerate Bernoulli numbers. Howard [7] proved some explicit formulas for degenerate Bernoulli
polynomials. Kim et al. [10] considered the degenerate Bernstein polynomials and attained their generating
function, recurrence relations, symmetric identities, and some connections with generalized falling factorial
polynomials, higher-order degenerate Bernoulli polynomials and degenerate Stirling numbers of the second
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kind. Kim et al. [11] studied on the degenerate central Bell numbers and polynomials and derived some
properties, identities, and recurrence relations. Kim et al. [12] considered degenerate Bell numbers and
polynomials and presented several novel formulas for those numbers and polynomials associated with special
numbers and polynomials by using the notion of composita. Kim et al. [13] acquired diverse properties,
recurrence relations, and identities associated with the degenerate r-Stirling numbers of the second kind and
the degenerate r-Bell polynomials by means of umbral calculus. Kim et al. [14] presented various explicit
formulas and recurrence relationships for the degenerate Mittag-Le­ er polynomials and also gave several
connections between Mittag-Le­ er polynomials and other known families of polynomials. Kim et al. [15]
introduced the degenerate Laplace transform and degenerate gamma function and obtained several interesting
formulas related to this transform and this gamma function. Kim et al. [16] considered partially degenerate
Bell polynomials numbers and developed their properties and identities. Kim et al. [17] de�ned and studied
on the extended degenerate r-central factorial numbers of the second kind and the extended degenerate r-
central Bell polynomials. Kwon et al. [18] considered degenerate Changhee polynomials and proved several
relations and formulas for these polynomials. Lim [19] de�ned higher order degenerate Genocchi polynomials
and gave some identities and formulas for these polynomials.
For non-negative integer n, the degenerate central factorial numbers of the second kind T2;� (n;m) are

de�ned by the following exponential generating function

1X
n=0

T2;� (n;m)
tn

n!
=

�
e
1
2

� (t)� e
� 1
2

� (t)
�m

m!
(cf. [11]), (2.1)

where the notation ex� (t) denotes the degenerate exponential function for a real number �, given by

ex� (t) = (1 + �t)
x
� and e1� (t) = e� (t) . (2.2)

It is readily seen that lim�!0 e
x
� (t) = e

xt, cf. [11] and [17].

Remark 1. When � approaches to 0, the degenerate central factorial numbers of the second kind (2.1)
reduces to the central factorial numbers of the second kind (1.4), namely lim�!0 T2;� (n;m) = T (n;m).

We are now ready to give the de�nition of the uni�ed degenerate central factorial numbers of the second
kind.

De�nition 1. Let � and ! be real numbers. The uni�ed degenerate central factorial numbers of the second
kind T2;�;! (n;m) are introduced by means of the following generating function

1X
n=0

T2;�;! (n;m)
tn

n!
=

�
e!� (t)� e

�!
� (t)

�m
m!

. (2.3)

We here analyze some circumstances of the uni�ed degenerate central factorial numbers of the second
kind T2;�;! (n;m) as follows.

Remark 2.
(1) When ! = 1

2 , we obtain the degenerate central factorial numbers of the second kind T2;� (n;m) in
(2.1), cf. [11].

(2) When �! 0, the uni�ed degenerate central factorial numbers of the second kind T2;�;! (n;m) reduce
to the !-analogue of the central factorial numbers of the second kind denoted by T2;! (n;m), which
is also new generalization of the factorial numbers of the second kind T (n;m) in (1.4), given by

1X
n=0

T2;! (n;m)
tn

n!
=
(e!t � e�!t)m

m!
. (2.4)

(3) When ! = 1
2 and � ! 0, we obtain the usual central factorial numbers of the second kind T (n;m)

in (1.4), cf. [8; 11; 17].

We now investigate some properties of the uni�ed degenerate central factorial numbers of the second kind
T2;�;! (n;m). Hence, we give the following Theorem 1.
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Theorem 1. For non-negative integers k and m, we have

T2;�;! (n; k +m) =
k!m!

(k +m)!

nX
u=0

�
n

u

�
T2;�;! (u; k)T2;�;! (n� u;m) : (2.5)

Proof. In view of De�nition 1, we write�
e!� (t)� e

�!
� (t)

�k
k!

�
e!� (t)� e

�!
� (t)

�m
m!

=
1X
n=0

T2;! (n; k)
tn

n!

1X
n=0

T2;! (n;m)
tn

n!

and then we get �
e!� (t)� e

�!
� (t)

�k+m
(k +m)!

=
k!m!

(k +m)!

1X
n=0

nX
u=0

�
n

u

�
T2;! (u; k)T2;! (n� u;m)

tn

n!
,

which implies the asserted result (2.5). �
We here give the following correlation.

Theorem 2. The following correlation

T2;�;! (n;m) =
nX

l=m

T2;! (l;m)�
n�lS1 (n; l) (2.6)

is valid for real numbers � and !.

Proof. By De�nition 1 and the identity (2.2), we obtain
1X
n=0

T2;�;! (n;m)
tn

n!
=

�
e!� (t)� e

�!
� (t)

�m
m!

=
1

m!

�
(1 + �t)

!
� � (1 + �t)�

!
�

�m
=

1

m!

�
e
!
� log(1+�t) � e�!

� log(1+�t)
�m

=
1X
l=0

T2;! (l;m)�
�l (log (1 + �t))

l

l!

=
1X
l=0

T2;! (l;m)�
�l

1X
n=l

S1 (n; l)�
n t
n

n!

=
1X
n=0

nX
l=0

T2;! (l;m)S1 (n; l)�
n�l t

n

n!
;

which provides the desired result (2.6). �
The degenerate classical Bell polynomials and the degenerate central Bell polynomials are given by the

following Taylor series expansion at t = 0 as follows:
1X
n=0

Bn;� (x)
tn

n!
= ex(e�(t)�1) (cf. [10; 16]) (2.7)

and
1X
n=0

B
(c)
n;� (x)

tn

n!
= e

x

�
e
1
2
� (t)�e

� 1
2

� (t)

�
(cf. [11]), (2.8)

When x = 1 in (2.7) and (2.8), the mentioned polynomials (Bn;� (x) and B
(c)
n;� (x)) reduces to the corre-

sponding numbers
Bn;� (1) := Bn;� and B

(c)
n;� (1) := B

(c)
n;�, (2.9)
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termed as the degenerate Bell numbers and the degenerate central Bell numbers, respectively.

Remark 3. We note that using (2.2), the degenerate classical Bell polynomials (2.7) and the degenerate
central Bell polynomials (2.8) reduce the classical Bell polynomials (1.1) and the central Bell polynomials
(1.2) in the following limit cases:

lim
�!0

Bn;� (x) = Bn (x) and lim
�!0

B
(c)
n;� (x) = B

(c)
n (x) : (2.10)

For non-negative integer n and a real number �, �-extension of falling factorial is de�ned by (cf. [10; 16])

(x)0;� = 1, (x)n;� = x (x� �) (x� 2�) � � � (x� (n� 1)�) . (2.11)

From (2.2) and (2.11), we obtain the following relation (cf. [11; 17])

ex� (t) =
1X
n=0

(x)n;�
tn

n!
. (2.12)

The degenerate central Bell polynomials and the degenerate central factorial numbers of the second kind
satisfy the following relation (cf. [11])

B
(c)
n;� (x) =

nX
m=0

T2;� (n;m)x
m. (2.13)

We are now ready to de�ne the uni�ed degenerate central Bell polynomials and numbers by the following
De�nition 2.

De�nition 2. Let �; � and ! be real numbers. The uni�ed degenerate central Bell polynomials B(c)n;�;� (x : !)

and the uni�ed degenerate central Bell numbers B(c)n;�;� (!) are respectively de�ned by the following generating
functions

G (x : �; �;!) =

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
= ex�

�
e!� (t)� e�!� (t)

�
(2.14)

and

G (�; �;!) =

1X
n=0

B
(c)
n;�;� (!)

tn

n!
= e�

�
e!� (t)� e�!� (t)

�
. (2.15)

The immediate relation for the uni�ed degenerate central Bell polynomials and numbers is B(c)n;�;� (1 : !) :=

B
(c)
n;�;� (!).
We now examine some special cases of the uni�ed degenerate central Bell polynomials as follows.

Remark 4.
(1) When ! = 1

2 , the uni�ed degenerate central Bell polynomials B
(c)
n;�;� (x : !) and numbers B

(c)
n;�;� (!)

in (2.14) and (2.15) reduce to the fully degenerate central Bell polynomials B(c)n;�;� (x) and numbers

B
(c)
n;�;� in (2.16), which are also new generalizations of the central Bell polynomials B(c)n (x) and

numbers B(c)n in (1.2) and (1.3), given by
1X
n=0

B
(c)
n;�;� (x)

tn

n!
= ex�

�
e
1
2

� (t)� e
� 1
2

� (t)
�
and

1X
n=0

B
(c)
n;�;�

tn

n!
= e�

�
e
1
2

� (t)� e
� 1
2

� (t)
�
. (2.16)

(2) When � ! 0, the uni�ed degenerate central Bell polynomials B(c)n;�;� (x : !) and numbers B
(c)
n;�;� (!)

in (2.14) and (2.15) reduce to the extended degenerate central Bell polynomials B(c)n;� (x : !) and

numbers B(c)n;� (!) in (2.17), which are also novel extensions of the central Bell polynomials B
(c)
n (x)

and numbers B(c)n in (1.2) and (1.3), given by
1X
n=0

B
(c)
n;� (x : !)

tn

n!
= ex(e

!
�(t)�e

�!
� (t)) and

1X
n=0

B
(c)
n;� (!)

tn

n!
= e(e

!
�(t)�e

�!
� (t)). (2.17)
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(3) When ! = 1
2 and � ! 0, we get the degenerate central Bell polynomials and numbers denoted by

B
(c;)
n;� (x) and B

(c)
n;� in (2.8) and (2.9) (cf. [11]).

(4) When ! = 1
2 and �! 0, we attain the degenerate central Bell polynomials and numbers denoted by

B(c)n;� (x) and B
(c)
n;�, which is di¤erent from the polynomials and numbers in (2.8) and (2.9) given by

Kim et al. [11]:
1X
n=0

B(c)n;� (x)
tn

n!
= ex�

�
e
1
2 (t)� e� 1

2 (t)
�
and

1X
n=0

B(c)n;�
tn

n!
= e�

�
e
1
2 (t)� e� 1

2 (t)
�

(2.18)

(5) When � ! 0; � ! 0 and ! = 1
2 , we reach the central Bell polynomials and numbers in (1.2) and

(1.3) (cf. [8; 11; 17]).

We now investigate the properties of the uni�ed degenerate central Bell polynomials B(c)n;�;� (x : !). Thus,
we �rstly give the following theorem that includes a formula which is the generalization of the relations (1.6)
and (2.13).

Theorem 3. The following relation

B
(c)
n;�;� (x : !) =

nX
m=0

T2;�;! (n;m) (x)m;� (2.19)

holds true for real numbers �; � and !.

Proof. By De�nition 2 and formulas (2.2) and (2.12), we get
1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
=

1X
m=0

(x)m;�

�
e!� (t)� e

�!
� (t)

�m
m!

=
1X
m=0

(x)m;�

1X
n=0

T2;�;! (n;m)
tn

n!

=
1X
n=0

nX
m=0

(x)m;� T2;�;! (n;m)
tn

n!
;

which gives the claimed result (2.19). �

We now state a summation formula for B(c)n;�;� (x : !) as follows.

Theorem 4. The following summation formula

B
(c)
n;�;� (x+ y : !) =

nX
m=0

�
n

m

�
B
(c)
n�m;�;� (x : !)B

(c)
m;�;� (y : !) (2.20)

is valid for real numbers �; � and !.

Proof. By De�nition 2 and the identity (2.12), we obtain
1X
n=0

B
(c)
n;�;� (x+ y : !)

tn

n!
= ex+y�

�
e!� (t)� e�!� (t)

�
= ex�

�
e!� (t)� e�!� (t)

�
ey�
�
e!� (t)� e�!� (t)

�
=

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

B
(c)
n;�;� (y : !)

tn

n!

=
1X
n=0

nX
m=0

�
n

m

�
B
(c)
n�m;�;� (x : !)B

(c)
m;�;� (y : !)

tn

n!
;

which provides the desired result (2.20). �
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We now provide a correlation as follows.

Theorem 5. The following formula

B
(c)
n;�;� (x : !) =

nX
m=0

nX
l=m

T2;! (n;m)S1 (n; l)�
n�1 (x)m;� (2.21)

holds true for real numbers �; � and !.

Proof. By De�nition 2 and Theorem 2, we get
1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
=

1X
m=0

(x)m;�

�
e!� (t)� e

�!
� (t)

�m
m!

=
1X
m=0

(x)m;�

1X
n=0

nX
l=0

T2;! (l;m)S1 (n; l)�
n�l t

n

n!

=

1X
n=0

nX
m=0

nX
l=0

(x)m;� T2;! (l;m)S1 (n; l)�
n�l t

n

n!

which gives the claimed result (2.21). �

We here provide an explicit formula for B(c)n;�;� (x : !) as follows.

Theorem 6. The following explicit formula

B
(c)
n;�;� (x : !) =

nX
j=0

1X
m=0

mX
k=0

�
n

j

��
m

k

�
(x)m;�

(�1)m�k

m!
(!k)j;�

tn

n!
(! (k �m))n�j;� (2.22)

holds true for real numbers �; � and !.

Proof. By De�nition 2 and formulas (2.2) and (2.12), we get
1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
=

1X
m=0

(x)m;�

�
e!� (t)� e

�!
� (t)

�m
m!

=

1X
m=0

(x)m;�
m!

mX
k=0

�
m

k

�
e!k� (t) e

�!(m�k)
� (t) (�1)m�k

=
1X
m=0

(x)m;�
m!

mX
k=0

�
m

k

�
(�1)m�k (1 + �t)

!k
� (1 + �t)

�!(m�k)
�

=
1X
m=0

(x)m;�
m!

mX
k=0

�
m

k

�
(�1)m�k

1X
n=0

(!k)n;�
tn

n!

1X
n=0

(! (k �m))n;�
tn

n!

=
1X
m=0

(x)m;�
m!

mX
k=0

�
m

k

�
(�1)m�k

1X
n=0

nX
j=0

�
n

j

�
(!k)j;�

tn

n!
(! (k �m))n�j;�

tn

n!

=

1X
n=0

nX
j=0

1X
m=0

mX
k=0

�
n

j

��
m

k

�
(x)m;�

(�1)m�k

m!
(!k)j;�

tn

n!
(! (k �m))n�j;�

tn

n!

which gives the asserted result (2.22). �
We give the following theorem.

Theorem 7. The following relation

B
(c)
n+1;�;� (x : !) = x!

nX
j=0

�
n

j

�
B
(c)
n�j;�;� (x� � : !)

�
(! � �)j;� + (�! � �)j;�

�
(2.23)

holds true for real numbers �; � and !.
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Proof. Di¤erentiating with respect to t to both sides of De�nition 2 and in terms of formulas (2.2) and (2.12),
we get

d

dt

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
=

d

dt
ex�
�
e!� (t)� e�!� (t)

�
=

d

dt

�
1 + �

�
(1 + �t)

!
� � (1 + �t)�

!
�

�� x
�

=
x

�

�
1 + �

�
(1 + �t)

!
� � (1 + �t)�

!
�

�� x
��1

�
�
! (1 + �t)

!
��1 + ! (1 + �t)

�!
��1

�
= x!

�
1 + �

�
(1 + �t)

!
� � (1 + �t)�

!
�

�� x��
� �

e!��� (t) + e�!��� (t)
�

= x!
1X
n=0

B
(c)
n;�;� (x� � : !)

tn

n!

1X
n=0

�
(! � �)n;� + (�! � �)n;�

� tn
n!

= x!
1X
n=0

nX
j=0

�
n

j

�
B
(c)
n�j;�;� (x� � : !)

�
(! � �)j;� + (�! � �)j;�

� tn
n!

which implies the desired result (2.23). �

We now present a derivative property for B(c)n;�;� (x : !) as follows.

Theorem 8. The following relation

d

dx
B
(c)
n;�;� (x : !) =

nX
k=0

�
n

k

� 1X
m=1

(m� 1)! (��)m�1B(c)n�k;�;� (x : !)T2;�;! (k;m) (2.24)

holds true for real numbers �; � and !.

Proof. By De�nition 2 and formulas (2.2) and (2.12), we get

d

dx

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
=

d

dx
ex�
�
e!� (t)� e�!� (t)

�
=

d

dx

�
1 + �

�
e!� (t)� e�!� (t)

�� x
�

=
�
1 + �

�
e!� (t)� e�!� (t)

�� x
� ln

��
1 + �

�
e!� (t)� e�!� (t)

����1�
= ��1

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
m=1

(�1)m+1

m
�m

�
e!� (t)� e�!� (t)

�m
=

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
m=1

(m� 1)! (��)m�1
�
e!� (t)� e

�!
� (t)

�m
m!

=
1X
n=0

1X
m=1

(m� 1)! (��)m�1B(c)n;�;� (x : !)
tn

n!

1X
n=0

T2;�;! (n;m)
tn

n!

=

1X
n=0

nX
k=0

�
n

k

� 1X
m=1

(m� 1)! (��)m�1B(c)n�k;�;� (x : !)T2;�;! (k;m)
tn

n!

which means the claimed result (2.24). �

3. Connections with Some Known Degenerate Polynomials and Numbers

The main aim of this section is to derive diverse connections with some earlier degenerate polynomials such
as Bernstein, Bernoulli, Genocchi and Euler polynomials for the fully degenerate central Bell polynomials.
Thanks to this purpose, we acquire multifarious correlations in the family of the degenerate polynomials.
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We �rstly perform to obtain a relation with the degenerate Bernstein polynomials.
We start with the following computations

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
=

1X
m=0

(x)m;�

�
e!� (t)� e

�!
� (t)

�m
m!

=
1X
m=0

(x)m;�
m!

mX
k=0

�
m

k

�
e!k� (t) e

�!(m�k)
� (t) (�1)m�k

=
1X
m=0

(x)m;�
m!

mX
k=0

m!

k! (m� k)! (�1)
m�k

(1 + �t)
!k
� (1 + �t)

�!(m�k)
�

=
1X
m=0

mX
k=0

(x)m;�
tk (1� ! (m� 2k))k;�

(�1)m�k

(m� k)!
(1 + ! (m� 2k))k;�

k!
tk (1 + �t)

!(2k�m)
�

=
1X
m=0

mX
k=0

(x)m;�
(1 + ! (m� 2k))k;�

(�1)m�k

(m� k)!

1X
n=0

Bk;n (1 + ! (m� 2k) : �)
tn�k

n!
;

where the degenerate Bernstein polynomials are de�ned by

1X
n=0

Bk;n (x : �)
tn

n!
=
(x)k;�
k!

tk (1 + �t)
1�x
� ; (3.1)

cf. [10]. Thus, we obtain the following theorem.

Theorem 9. The following relation

B
(c)
n;�;� (x : !) = n!

1X
m=0

mX
k=0

(x)m;� (�1)
m�k

(1 + ! (m� 2k))k;�
Bk;n+k (1 + ! (m� 2k) : �)

(m� k)! (n+ k)! (3.2)

is valid.

Let

I = (x)k;�

�
(1 + �t)

!
� � (1 + �t)�

!
�

�k
k!

�
1 + �

�
(1 + �t)

!
� � (1 + �t)�

!
�

�� 1�x
�

.

Therefore, from (2.3) and (3.1), we obtain

I =
1X
j=0

Bk;j (x : �)

�
(1 + �t)

!
� � (1 + �t)�

!
�

�j
j!

=
1X
j=0

Bk;j (x : �)
1X
n=0

T2;�;! (n; j)
tn

n!

=
1X
n=0

0@ nX
j=0

Bk;j (x : �)T2;�;! (n; j)

1A tn

n!

and by (2.3) and (2.14), similarly

I =
1X
n=0

B
(c)
n;�;� (1� x : !)

tn

n!

1X
n=0

T2;�;! (n; k)
tn

n!
(x)k;�

=

1X
n=0

0@ nX
j=0

�
n

j

�
B
(c)
j;�;� (1� x : !)T2;�;! (n� j; k) (x)k;�

1A tn

n!
.

Thus, we arrive at the following theorem.
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Theorem 10. The following summation correlation
nX
j=0

Bk;j (x : �)T2;�;! (n; j) =
nX
j=0

�
n

j

�
(x)k;�B

(c)
j;�;� (1� x : !)T2;�;! (n� j; k) (3.3)

holds true.

In the special cases of the Theorems 9 and 10, we get new formulas for the usual central Bell polynomials
and familiar Bernstein polynomials as follows.

Corollary 1. We have

B(c)n (x) = n!
1X
m=0

mX
k=0

(x)m (�1)
m�k�

1 + 1
2 (m� 2k)

�
k;�

Bk;n+k

�
1 + 1

2 (m� 2k)
�

(m� k)! (n+ k)!

and
nX
j=0

Bk;j (x)T2 (n; j) =
nX
j=0

�
n

j

�
(x)k B

(c)
j (1� x)T2 (n� j; k) ;

where the Bernstein polynomials are de�ned by the following generating function (cf. [5]):

1X
n=0

Bk;n (x)
tn

n!
=
(tx)

k

k!
e(1�x)t:

The classical Bernoulli, Euler and Genocchi numbers are de�ned by the following generating functions
(cf. [5; 19]):

1X
n=0

Bn
tn

n!
=

t

et � 1 (jtj < 2�) ,
1X
n=0

En
tn

n!
=

2

et + 1
(jtj < �)

and
1X
n=0

Gn
tn

n!
=

2t

et + 1
(jtj < �) :

The degenerate Bernoulli, Euler and Genocchi numbers are given by the following Taylor series expansions
at t = 0 (cf. [5]):

1X
n=0

Bn;�
tn

n!
=

t

e� (t)� 1
;

1X
n=0

En;�
tn

n!
=

2

e� (t) + 1
(3.4)

and (cf. [19]):
1X
n=0

Gn;�
tn

n!
=

2t

e� (t) + 1
. (3.5)

We here give a formula including the degenerate Bernoulli numbers and the fully degenerate central Bell
polynomials as follows.

Theorem 11. The following formula

B
(c)
n;�;� (x : !) =

1

n+ 1

n+1X
k=0

kX
m=0

�
n+ 1

k

��
k

m

�
(1)n+1�k;�B

(c)
k�m;�;� (x : !)Bm;� (3.6)

� 1

n+ 1

n+1X
k=0

�
n+ 1

k

�
B
(c)
n+1�k;�;� (x : !)Bk;�

holds true.
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Proof. By (2.14) and (3.4), we get

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
= ex�

�
e!� (t)� e�!� (t)

� t

e� (t)� 1
e� (t)� 1

t

=
1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

Bn;�
tn

n!

1X
n=0

(1)n;�
tn�1

n!

�
1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

Bn;�
tn�1

n!

=
1X
n=0

nX
k=0

kX
m=0

�
n

k

��
k

m

�
(1)n�k;�B

(c)
k�m;�;� (x : !)Bm;�

tn�1

n!

�
1X
n=0

nX
k=0

�
n

k

�
B
(c)
n�k;�;� (x : !)Bk;�

tn�1

n!
;

which implies the desired result (3.6). �

A relation including the degenerate Euler numbers and the fully degenerate central Bell polynomials is
given by the following theorem.

Theorem 12. The following summation formula

B
(c)
n;�;� (x : !) =

nX
k=0

kX
m=0

�
n

k

��
k

m

�
(1)n�k;�

2
B
(c)
k�m;�;� (x : !)Em;� (3.7)

+
1

2

nX
k=0

�
n

k

�
B
(c)
n�k;�;� (x : !)Ek;�

is valid.

Proof. By (2.14) and (3.4), we get

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
= ex�

�
e!� (t)� e�!� (t)

� 2

e� (t) + 1

e� (t) + 1

2

=
1

2

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

En;�
tn

n!

1X
n=0

(1)n;�
tn�1

n!

+
1

2

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

En;�
tn�1

n!

=
1

2

1X
n=0

nX
k=0

kX
m=0

�
n

k

��
k

m

�
(1)n�k;�B

(c)
k�m;�;� (x : !)Em;�

tn

n!

+
1

2

1X
n=0

nX
k=0

�
n

k

�
B
(c)
n�k;�;� (x : !)Ek;�

tn

n!
;

which means the purposed result (3.7). �

A relationship for the degenerate Genocchi numbers and the fully degenerate central Bell polynomials is
stated in the following theorem.
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Theorem 13. The following relation

B
(c)
n;�;� (x : !) =

1

n+ 1

n+1X
k=0

kX
m=0

�
n+ 1

k

��
k

m

�
(1)n+1�k;�

2
B
(c)
k�m;�;� (x : !)Gm;� (3.8)

+
n+1X
k=0

�
n+ 1

k

�
B
(c)
n+1�k;�;� (x : !)Gk;�

2 (n+ 1)

holds true.

Proof. In terms of (2.14) and (3.5), we derive
1X
n=0

B
(c)
n;�;� (x : !)

tn

n!
= ex�

�
e!� (t)� e�!� (t)

� 2t

e� (t) + 1

e� (t) + 1

2t

=
1

2

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

Gn;�
tn

n!

1X
n=0

(1)n;�
tn�1

n!

+
1

2

1X
n=0

B
(c)
n;�;� (x : !)

tn

n!

1X
n=0

Gn;�
tn�1

n!

=
1

2

1X
n=0

nX
k=0

kX
m=0

�
n

k

��
k

m

�
(1)n�k;�B

(c)
k�m;�;� (x : !)Gm;�

tn�1

n!

+
1

2

1X
n=0

nX
k=0

�
n

k

�
B
(c)
n�k;�;� (x : !)Gk;�

tn�1

n!
;

which implies the desired result (3.8). �

4. Conclusion

In this paper, we have �rstly generalized the central factorial function termed as extended degenerate
central factorial numbers of the second kind and have given some identities for the mentioned numbers. We
then have de�ned uni�cation of the degenerate central Bell polynomials and numbers. We have analyzed
multifarious properties and formulas for the aforesaid polynomials and numbers. We have provided several
correlations for the fully degenerate central polynomials related to the degenerate Bernstein polynomials and
the degenerate Bernoulli, Euler and Genocchi numbers.
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