
Modelling Temperature Variation of 

Mushroom Growing Hall Using Artificial 

Neural Networks 
 

Sina Ardabili 1, Amir Mosavi 2,3*, Asghar Mahmoudi 4, Tarahom Mesri 

Gundoshmian 5, Saeed Nosratabadi 6, Annamaria R. Varkonyi-Koczy2,7 
 

 

1Institute of Advanced Studies Koszeg, Koszeg, Hungary 
2Institute of Automation, Kalman Kando Faculty of Electrical Engineering, Obuda 

University, Budapest, Hungary 
3School of the Built Environment, Oxford Brookes University, Oxford, UK 
4Department of Biosystem Engineering, University of Tabriz, Tabriz, Iran 

5Department of Biosystem Engineering, University of Mohaghegh Ardabili, Ardabil, 

Iran 
6 Institute of Business Studies, Szent Istvan University, Godollo 2100, Hungary 

7Department of Mathematics and Informatics, J. Selye University, Komarno, Slovakia 

Corresponding: a.mosavi@brookes.ac.uk 

 

Abstract: Recent advancements of computer and electronic systems have 

motivated the extensive use of intelligent systems for automation of agricultural 

industries. In this study, the temperature variation of the mushroom growing 

room is modeled through using a multi-layered perceptron (MLP) and radial 

basis function (RBF) networks. Modeling has been done based on the inde-

pendent parameters including ambient temperature, water temperature, fresh air 

and circulation air dampers, and water tap. According to the obtained results 

from the networks, the best network for MLP is found to be the second repeti-

tion with 12 neurons in the hidden layer and 20 neurons in the hidden layer for 

radial basis function networks. The obtained results from comparative parame-

ters for two networks showed the highest correlation coefficient (0.966), the 

lowest root mean square error (RMSE) (0.787) and the lowest mean absolute 

error (MAE) (0.02746) for radial basis function. Therefore, the neural networks 
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with radial basis function was selected as the optimal predictor for the behavior 

of the system. 

Keywords: agricultural production; environmental parameters; mushroom 

growth prediction; machine learning; artificial neural networks (ANN); food 

production; food security; multi-layered perceptron (MLP); radial basis func-

tion (RBF)   

1 Introduction 

Nowadays, Due to issues such as population growth and limited agricultural 

resources including land and freshwater, the necessity of attention to new meth-

ods and efficiency in agricultural production, is quite evident [1]. A number of 

clinical studies in Japan and the United States of America have shown that a 

certain percentage of polysaccharides against breast cancer, lung, liver, prostate 

and brain tumors is effective [2, 3]. The benefits of this product is promising to 

use this product in the diet. The growth period of this product consists of several 

stages and each of these stages requires different controlling condition [1]. The 

use of intelligent systems for automation in agriculture industries has been due 

to the development of computer systems and electronics in recent decades. With 

these systems, we can control the environmental parameters involved in mush-

room production halls. Temperature is one of the parameters that shows a high 

impact on mushroom growth, and chemical reactions are intensive at higher 

temperatures. In biological processes such as growth, the effect of temperature 

can be easily observed where vast quantities of chemical reactions occur. The 

optimum temperature for mushrooms, depending on the stage and type of race, 

is 17 to 30 degrees Celsius. The metabolism of consumed food by microorgan-

isms in the compost contributes to their growth and activity, and as a result, it 
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produces the heat. For example, rising compost temperature decreases crop pro-

duction. Figure 1 shows the lack of mushroom production in the middle of the 

bed when the compost temperature is higher than the standard value [1].  

 

 

Fig. 1. The effect of temperature value on mushroom production 

 

The successful cultivation of mushroom is possible when parameters such as 

temperature, humidity, and carbon dioxide concentration, pests and diseases 

and also preparing compost have been controlled and inspected properly. Envi-

ronmental factors have the most influence on the quality of the product on the 

growth stage [4]. Problems in the field of parameters controlling on mushroom 

cultivation halls forced us to do studies on controlling these parameters. Man-

ually and traditional controlling methods are under the influence of factors such 

as human, measurement and environment errors [1]. To resolve this problem, 
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several studies were carried out with different control methods. Faizollahzadeh 

et al[4] presented controlling system using fuzzy and digital controllers to con-

trol the environmental parameters of the mushroom production hall. Previous 

studies with presented methods have the complexity of calculation in control 

strategies. Today, predictive control is used in industrial applications to develop 

control strategies[5]. Among the systems that have the capability to model and 

predict the behavior of systems, can point to artificial neural networks. A neural 

network consists of a number of processing elements or computing nodes that 

are very simple and interconnected. This network is an algorithm information 

processing that is processing by dynamic response related to processing ele-

ments and their connections to lateral inputs[6]. The most common neural net-

works are Multi-Layered Perceptron (MLP) and Radial Basis Function (RBF) 

networks.  

The main aim of this study is to present a predictive model of the temperature 

variation of the mushroom growing room by artificial neural networks based 

on the variables that are affecting on room temperature (ambient temperature, 

water temperature, fresh air dampers, circulation air dampers, and water tap). 

To reach this purpose, the study consists of three phases. The first stage is ana-

lyzing the required data. The second stage presents MLP and RBF models and 

the last stage presents the results and a comparison of networks and introduces 

the best model. 
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2 Material and methods 

2.1 Data collecting 

This research was studied in one of the mushroom production halls of Saba-

lan agro-industry company (Sabalan Mushroom) in Ardabil province of Iran. 

The target hall has dimensions of 22, 5/6, 5/4 m (length, width, height, respec-

tively) and has 1850 compost with a weight of approximately 15 kilograms for 

each compost. In order to data collecting operation, three PT-100 sensors were 

used. The location of temperature sensors in terms of height and width was in 

the middle of the hall height and width and in term of length were located on 

three points including the beginning of hall, the middle of the hall and the end 

of the hall. This method of the arrangement of sensors was used because the 

longitudinal air circulators in two top corners of the hall make airflow in trans-

verse and height directions of Hall and provide thermal equilibrium on trans-

verse and height directions of the hall, and if there is a temperature difference, 

this difference will be in the longitudinal direction of hall.  

Compost generates heat. There is a need to maintain and stabilize the tem-

perature of compost at every stage of the growth cycle and since the volume of 

compost is lower than the indoor air volume of the growing hall, the operation 

of stabilizing of compost temperature should be done by changing hall temper-

ature.  

Data collecting operations were done in the winter season and due to varia-

tions of ambient temperature, an external temperature logger was used to record 

temperature changes. Data collecting operations were performed at different 

reps. In order to record the required data, Autonics temperature controller 

TKM-B4RC was used that was equipped with RS485 output and related DAQ-

master software. Ambient temperature, variations of circulation air dampers, 
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variations of fresh air dampers, hot water tap and hot water temperature were 

as independent variables and indoor temperature of hall was as the only de-

pendent variable. To adjust the room temperature and variation of input varia-

bles, it was using air conditioning systems (Fig. 2).  

 

Fig. 2. Air conditioning system 

 

This system is capable of cooling and heating, generating indoor air circula-

tion by air ducts, providing required relative humidity and reducing the carbon 

dioxide concentration using fresh air dampers. Operation of temperature control 

in this system is performing by variating hot and cold water Debbie as well as 

opening and closing the air dampers. This system has two air inputs (Circula-

tion and fresh air dampers) and an air output that the circulation air damper is 

for circulating the hall atmosphere and the fresh air damper is controlling tem-

perature, humidity or carbon dioxide concentration by entering fresh air to 

hall[1]. Measurement of independent variables such as the air dampers and hot 

water tap were performed at three levels including minimum, medium and max-

imum value of actuators openness. According to the coolness of the air in the 
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operation season, the outdoor air was used for cooling operations instead of 

cold water. Because the cold water would freeze and damage the coils in this 

season. Data were collected in 3 treatments and different repetitions to achieve 

high accuracy. Table 1 shows the different treatments for independent varia-

bles.  

Table 1. Treatments of independent variables for data collecting 

Treatment 

Parameter  
Maxi-

mum 

Me-

dium 

Mini-

mum 

+10 0 -10 Ambient Temperature ('C) 

50 40 30 Water Temperature ('C) 

3/3 2/3 1/3 Fresh air Damper (Openness) 

3/3 2/3 1/3 
Circulation air Damper (Open-

ness) 

3/3 2/3 1/3 Water Tap (Openness) 
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2.2 Artificial Neural Networks (ANNs) 

Literature includes a vast number of machine learning methods used for the 

purpose of the modeling and prediction [7-26]. Machine learning models gen-

erally out-perform most of the statistical and mathematical models in term of 

computation cost, efficiency and accuracy [27-40]. ANNs are considered as an 

efficient methods for developing reliable models. This study employs two types 

of neural networks including multilinear perceptron (MLP) and radial basis 

function (RBF). Before starting the training process, data have been divided 

into two categories of training data (with a share of 70%) and testing data (with 

a share of 30%), randomly. The training process was started with the different 

number of neurons in the hidden layer and the function of each parameter was 

measured with respect to the base parameter. To determine the optimal number 

of neurons in the hidden layer and to obtain the best predictor network, in first 

stage the network was trained with one neuron on a hidden layer. Fig. 3 presents 

the structure of the RBF network.  

Water temperature

Ambient temperature

Water Tap

Fresh air Damper

Circulation air Damper

Hall temperature

wi

wi

wi

Weights

Hidden LayerInput Layer Output Layer
 

Fig. 3. The structure of RBF network 
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Evaluating the results have been conducted by employing Root Mean Square 

Error (RMSE), correlation coefficient (R) and mean absolute error (MAE) were 

used [41] to analyze the output of networks and target values.  

 
2

1

1
 

N

i

MSE A P
N 

                                                        (2) 

 
2

1

1
 

N

i

RMSE A P
N 

                                                   (3) 

1/2

2

1

2

1

( )

1

n

i

n

i

i

A P

R

A





  
  

   
  

  
  





                                                      (4)  

1

N

i

A P

MAE
N








                                                              (5)  

 

That A is the target value, P is the predicted values and N is the numbers of 

data.  

3 Results 

In this study, the temperature variation of the mushroom growing hall, as an 

critical factor of mushroom production, was modeled based on dependent var-

iables including ambient temperature, fresh air damper, circulation air damper, 

water tap and water temperature using MLP and RBF networks. To perform 
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modeling operations, there is a need to be aware of the general nature of the 

system that this is carried out by experimental data related to the system. For 

this purpose, the experimental data were obtained from the studied system using 

the introduced strategy in table 1. Figure 4 indicates the results of data collect-

ing and the relationship among the actuators and the related parameter. 

 

Circulation air Damper

O
u

tp
u

t 
p
ar

a
m

et
er

s

Hall temperature20

15

10

5

0
1 2 3

Number of treatments

Fresh air Damper

 

The openness of water tap

O
u

tp
u

t 
p
ar

a
m

et
er

s

Hall temperature
20

15

10

5

0
1 2 3

Number of treatments  
b a 

Circulation air Damper

T
e
m

p
er

at
u
re

 V
a
ri

at
io

n

Hall temperature60

40

20

-10

-20
1 2 3

Number of treatments

Fresh air Damper

0

10

30

50

 
c 

Fig. 4. The results of experimental data and the relation of dependent and 

independent variables 
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According to Figure 4 (a) by considering the fixed value of other parameters, 

opening hot water tap, increases the growing hall temperature. Figure 4 (b) 

shows the variation of growing hall temperature by opening and closing air 

dampers when other parameters are fixed. Accordingly, if the rate of opening 

and closing of circulation and fresh air dampers be equal, respectively, the hall 

temperature almost will be fixed. In Figure 4 (c) by reducing the temperature 

of the water and by increasing the ambient temperature during the day, the 

growing hall temperature has undergone a constant trend. 

3.1 Training process 

This section presents the results of choosing the best network for the training 

process based on the performance functions for RBF and MLP separately. Ta-

ble 2 is related to MLP network, and Table 3 is related to RBF network. 
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 Table 2. the result of selecting the best network for MLP model 

Value of perfor-

mance function 

for testing data 

Value of perfor-

mance function 

for training data 

Value of perfor-

mance function 

for validation 

data 

Numbers of the 

neuron on hid-

den layer/repe-

tition 

0.84431 0.42202 0.55064 12/1 

0.82541 0.41001 0.53321 12/2 

0.84522 0.41056 0.52248 12/3 

0.82541 0.41001 0.52248 Minimum value 

0.84522 0.42202 0.55064 
Maximum 

value 

0.83831 0.41419 0.53544 Average 

 

According to table 2, the best result (lowest values of the performance func-

tion for testing data) is obtained in the second repetition of the training process. 

So the second network was selected as the best prediction network. Table 3 was 
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prepared to choose the best number of neurons in the hidden layer for RBF 

network. 

Table 3. the result of selecting the best number of neurons on hidden layer 

for RBF network  

MAE r RMSE 
Number of neurons on hid-

den layer 

0.1016 0.69 0.2897 4 

0.0675 0.79 0.1925 8 

0.05575 0.85 0.1589 12 

0.0422 0.91 0.1205 16 

0.02746 0.996 0.0787 20 

0.02745 0.996 0.0787 24 

 

As shown in Table 3, by increasing the number of neurons in the hidden 

layer, the correlation coefficient is increased and mean absolute error and root 

mean square error values are reduced. 
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After 20 neurons, these parameters remained stable and have not changed, 

so the number of 20 neurons in the hidden layer were selected as the optimal 

number of neurons. The networks were trained after selecting the optimal num-

ber of neurons to neural network Multilayer Perceptron and Radial Basis Func-

tion networks were trained. After the training process, test data were imported 

to developed networks and output data were generated to compare with the tar-

get values. The results of the target and the predicted values are shown in Figure 

5 and Figure 6: 

 

  

b a 

Fig. 5. Results of predicted and target values compared to target values. a) 

RBF network b) MLP network 
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a b 

Fig. 6. Scatter plot of predicted and target values a) RBF network b) MLP 

network  

 

According to Fig. 5.a, the predicted values of RBF network are following 

target values well and have less deviation and error from the target value, but 

predicted values of MLP network (Fig. 5.b) have a large error and deviation 

from target values and has lower compliance with target values compared to 

RBF network. 

Based on the results of Fig. 6 and according to the description mentioned 

about correlation coefficient, it can be said that the output values of RBF net-

work have 99.6% of linearship and the output values of MLP network have 

96% linearship with target values. To display these results as a statistical factor,  

the output of models were compared with target values using the comparison 
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parameters that were mentioned in Material and methods. The obtained results 

were tabulated in Table 4. 

 

Table 4. the results of comparison parameter for two types of networks  

r RMSE MAE Network type 

0.9612 0.9085 0.137 MLP 

0.996 0.787 0.02746 RBF 

According table 4, the results of comparison parameters indicate that the re-

sults of RBF network have high correlation coefficient (0.996) and low RMSE 

and MAE values (0.787 and 0.02746, respectively) compared to MLP network. 

Due to the high correlation coefficient for RBF network (0.996), It can be said 

that process modeling, compliance and linear correlation predicted by the RBF 

network is higher than MLP network that is confirming the obtained results 

from Figure 5 and Figure 6. 

On the other hand, RBF network with the lowest root mean square error 

(0.787) and the lowest mean absolute error (0.02746) generated closest pre-

dicted values with minimal errors compared to the MLP neural network and it 

can be said that RBF has high ability to model the temperature variations com-

pared to MLP network in this study. Therefore the designed model based on 

RBF is predicting the temperature value more accurate with low deviation to 

target values compared to the MLP network. 
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Faizollahzadeh et al[42] developed a fuzzy modeling system in order to pre-

dict the temperature of the mushroom growing hall that the correlation coeffi-

cient and mean absolute error between the predicted and target values were cal-

culated 0.67 and 0.232, respectively. The present study indicates the improve-

ments in the prediction of temperature variations using artificial neural net-

works. One of the reasons that led to this happening, is that the fuzzy systems 

unlike the artificial neural networks, is operating by the defined laws. These 

rules can be affected by the accuracy of laws defining and can have a negative 

effect on system precision. 

Figure 7 presents the error values for the predicted values of each network 

from the desired values. The zero value of deviation is related to the Target 

value. The blue line indicates the deviations related to RBF network and the red 

line indicates the deviations related to MLP network. Based on Fig. 7, MLP 

network has the maximum deviation from the target value. 

  

Fig. 7. Deviation Of predicted values of networks from the target value 
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According to figure 7, if the output of networks is compared in the same 

input values, it can be said that the deviation of temperature from target values 

in RBF network is higher than MLP network. This means that the energy losses 

of MLP network are higher than RBF network. This energy losses on MLP 

network can be reduced by the changes that can be applied in network inputs. 

This losses of energy is equal to increasing the failure risk of the system on 

MLP model compared to RBF model.  

 

4 Conclusion 

This study is performed in a mushroom growing hall with the aim of model-

ing of temperature variations. Accordingly, modeling systems including MLP 

and RBF networks was used. The results of the data collecting process reflected 

the dependence of temperature value to independent variables. Therefore re-

sults were prepared after the modelling process and extracting the output values 

of networks and comparing them with target values. This results showed that 

the RBF network has high accuracy and better performance compared to MLP 

network and also using RBS network will reduce energy consumption, system 

failure, and costs. Thus, the neural network with radial basis function was cho-

sen as a predictive network of hall temperature in this study. For the future 

works, more sophisticated machine learning methods must come to considera-

tion, e.g., [42-52].   
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