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Abstract: Recent advancements of computer and electronic systems have
motivated the extensive use of intelligent systems for automation of agricultural
industries. In this study, the temperature variation of the mushroom growing
room is modeled through using a multi-layered perceptron (MLP) and radial
basis function (RBF) networks. Modeling has been done based on the inde-
pendent parameters including ambient temperature, water temperature, fresh air
and circulation air dampers, and water tap. According to the obtained results
from the networks, the best network for MLP is found to be the second repeti-
tion with 12 neurons in the hidden layer and 20 neurons in the hidden layer for
radial basis function networks. The obtained results from comparative parame-
ters for two networks showed the highest correlation coefficient (0.966), the
lowest root mean square error (RMSE) (0.787) and the lowest mean absolute
error (MAE) (0.02746) for radial basis function. Therefore, the neural networks

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:a.mosavi@brookes.ac.uk
https://doi.org/10.20944/preprints201908.0201.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2019 d0i:10.20944/preprints201908.0201.v1

with radial basis function was selected as the optimal predictor for the behavior
of the system.

Keywords: agricultural production; environmental parameters; mushroom
growth prediction; machine learning; artificial neural networks (ANN); food
production; food security; multi-layered perceptron (MLP); radial basis func-
tion (RBF)

1 Introduction

Nowadays, Due to issues such as population growth and limited agricultural
resources including land and freshwater, the necessity of attention to new meth-
ods and efficiency in agricultural production, is quite evident [1]. A number of
clinical studies in Japan and the United States of America have shown that a
certain percentage of polysaccharides against breast cancer, lung, liver, prostate
and brain tumors is effective [2, 3]. The benefits of this product is promising to
use this product in the diet. The growth period of this product consists of several
stages and each of these stages requires different controlling condition [1]. The
use of intelligent systems for automation in agriculture industries has been due
to the development of computer systems and electronics in recent decades. With
these systems, we can control the environmental parameters involved in mush-
room production halls. Temperature is one of the parameters that shows a high
impact on mushroom growth, and chemical reactions are intensive at higher
temperatures. In biological processes such as growth, the effect of temperature
can be easily observed where vast quantities of chemical reactions occur. The
optimum temperature for mushrooms, depending on the stage and type of race,
is 17 to 30 degrees Celsius. The metabolism of consumed food by microorgan-

isms in the compost contributes to their growth and activity, and as a result, it
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produces the heat. For example, rising compost temperature decreases crop pro-
duction. Figure 1 shows the lack of mushroom production in the middle of the

bed when the compost temperature is higher than the standard value [1].

Fig. 1. The effect of temperature value on mushroom production

The successful cultivation of mushroom is possible when parameters such as
temperature, humidity, and carbon dioxide concentration, pests and diseases
and also preparing compost have been controlled and inspected properly. Envi-
ronmental factors have the most influence on the quality of the product on the
growth stage [4]. Problems in the field of parameters controlling on mushroom
cultivation halls forced us to do studies on controlling these parameters. Man-
ually and traditional controlling methods are under the influence of factors such

as human, measurement and environment errors [1]. To resolve this problem,
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several studies were carried out with different control methods. Faizollahzadeh
et al[4] presented controlling system using fuzzy and digital controllers to con-
trol the environmental parameters of the mushroom production hall. Previous
studies with presented methods have the complexity of calculation in control
strategies. Today, predictive control is used in industrial applications to develop
control strategies[5]. Among the systems that have the capability to model and
predict the behavior of systems, can point to artificial neural networks. A neural
network consists of a number of processing elements or computing nodes that
are very simple and interconnected. This network is an algorithm information
processing that is processing by dynamic response related to processing ele-
ments and their connections to lateral inputs[6]. The most common neural net-
works are Multi-Layered Perceptron (MLP) and Radial Basis Function (RBF)

networks.

The main aim of this study is to present a predictive model of the temperature
variation of the mushroom growing room by artificial neural networks based
on the variables that are affecting on room temperature (ambient temperature,
water temperature, fresh air dampers, circulation air dampers, and water tap).
To reach this purpose, the study consists of three phases. The first stage is ana-
lyzing the required data. The second stage presents MLP and RBF models and
the last stage presents the results and a comparison of networks and introduces

the best model.
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2 Material and methods
2.1 Data collecting

This research was studied in one of the mushroom production halls of Saba-
lan agro-industry company (Sabalan Mushroom) in Ardabil province of Iran.
The target hall has dimensions of 22, 5/6, 5/4 m (length, width, height, respec-
tively) and has 1850 compost with a weight of approximately 15 kilograms for
each compost. In order to data collecting operation, three PT-100 sensors were
used. The location of temperature sensors in terms of height and width was in
the middle of the hall height and width and in term of length were located on
three points including the beginning of hall, the middle of the hall and the end
of the hall. This method of the arrangement of sensors was used because the
longitudinal air circulators in two top corners of the hall make airflow in trans-
verse and height directions of Hall and provide thermal equilibrium on trans-
verse and height directions of the hall, and if there is a temperature difference,
this difference will be in the longitudinal direction of hall.

Compost generates heat. There is a need to maintain and stabilize the tem-
perature of compost at every stage of the growth cycle and since the volume of
compost is lower than the indoor air volume of the growing hall, the operation
of stabilizing of compost temperature should be done by changing hall temper-

ature.

Data collecting operations were done in the winter season and due to varia-
tions of ambient temperature, an external temperature logger was used to record
temperature changes. Data collecting operations were performed at different
reps. In order to record the required data, Autonics temperature controller
TKM-B4RC was used that was equipped with RS485 output and related DAQ-

master software. Ambient temperature, variations of circulation air dampers,
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variations of fresh air dampers, hot water tap and hot water temperature were
as independent variables and indoor temperature of hall was as the only de-
pendent variable. To adjust the room temperature and variation of input varia-

bles, it was using air conditioning systems (Fig. 2).

Circulation Air Circulation Air
Flamers Entrance
Y
/
Heating Coil
Fresh Air //Fresh Air Bati
Entrance = Dampers
Cooling Coil

Fig. 2. Air conditioning system

This system is capable of cooling and heating, generating indoor air circula-
tion by air ducts, providing required relative humidity and reducing the carbon
dioxide concentration using fresh air dampers. Operation of temperature control
in this system is performing by variating hot and cold water Debbie as well as
opening and closing the air dampers. This system has two air inputs (Circula-
tion and fresh air dampers) and an air output that the circulation air damper is
for circulating the hall atmosphere and the fresh air damper is controlling tem-
perature, humidity or carbon dioxide concentration by entering fresh air to
hall[1]. Measurement of independent variables such as the air dampers and hot
water tap were performed at three levels including minimum, medium and max-

imum value of actuators openness. According to the coolness of the air in the
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operation season, the outdoor air was used for cooling operations instead of
cold water. Because the cold water would freeze and damage the coils in this
season. Data were collected in 3 treatments and different repetitions to achieve
high accuracy. Table 1 shows the different treatments for independent varia-
bles.

Table 1. Treatments of independent variables for data collecting

Treatment
Parameter
Mini- Me- Maxi-

mum dium mum

Ambient Temperature ('C) -10 0 +10

Water Temperature ('C) 30 40 50

Fresh air Damper (Openness) 1/3 2/3 3/3
Circulation air Damper (Open-

1/3 2/3 3/3

ness)

Water Tap (Openness) 1/3 2/3 3/3
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2.2  Artificial Neural Networks (ANNSs)

Literature includes a vast number of machine learning methods used for the
purpose of the modeling and prediction [7-26]. Machine learning models gen-
erally out-perform most of the statistical and mathematical models in term of
computation cost, efficiency and accuracy [27-40]. ANNs are considered as an
efficient methods for developing reliable models. This study employs two types
of neural networks including multilinear perceptron (MLP) and radial basis
function (RBF). Before starting the training process, data have been divided
into two categories of training data (with a share of 70%) and testing data (with
a share of 30%), randomly. The training process was started with the different
number of neurons in the hidden layer and the function of each parameter was
measured with respect to the base parameter. To determine the optimal number
of neurons in the hidden layer and to obtain the best predictor network, in first
stage the network was trained with one neuron on a hidden layer. Fig. 3 presents
the structure of the RBF network.

Water temperature

Ambient temperature

Water Tap (O Hall temperature

Fresh air Damper
Weights

Circulation air Damper

Input Layer Hidden Layer Output Layer

Fig. 3. The structure of RBF network
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Evaluating the results have been conducted by employing Root Mean Square
Error (RMSE), correlation coefficient (R) and mean absolute error (MAE) were

used [41] to analyze the output of networks and target values.

MSE =Nii(A—P)2 2
RMSE = Nii(A—P)2 3)
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That A is the target value, P is the predicted values and N is the numbers of

data.
3 Results

In this study, the temperature variation of the mushroom growing hall, as an
critical factor of mushroom production, was modeled based on dependent var-
iables including ambient temperature, fresh air damper, circulation air damper,

water tap and water temperature using MLP and RBF networks. To perform
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modeling operations, there is a need to be aware of the general nature of the

system that this is carried out by experimental data related to the system. For

this purpose, the experimental data were obtained from the studied system using

the introduced strategy in table 1. Figure 4 indicates the results of data collect-

ing and the relationship among the actuators and the related parameter.
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Fig. 4. The results of experimental data and the relation of dependent and

independent variables
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According to Figure 4 (a) by considering the fixed value of other parameters,
opening hot water tap, increases the growing hall temperature. Figure 4 (b)
shows the variation of growing hall temperature by opening and closing air
dampers when other parameters are fixed. Accordingly, if the rate of opening
and closing of circulation and fresh air dampers be equal, respectively, the hall
temperature almost will be fixed. In Figure 4 (c) by reducing the temperature
of the water and by increasing the ambient temperature during the day, the

growing hall temperature has undergone a constant trend.
3.1 Training process

This section presents the results of choosing the best network for the training
process based on the performance functions for RBF and MLP separately. Ta-
ble 2 is related to MLP network, and Table 3 is related to RBF network.
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Table 2. the result of selecting the best network for MLP model

Numbers of the  Value of perfor-
) ) Value of perfor-  Value of perfor-
neuron on hid-  mance function ) )
mance function ~ mance function

den layer/repe- for validation o )
o for training data  for testing data
tition data
12/1 0.55064 0.42202 0.84431
12/2 0.53321 0.41001 0.82541
12/3 0.52248 0.41056 0.84522
Minimum value 0.52248 0.41001 0.82541
Maximum
0.55064 0.42202 0.84522
value
Average 0.53544 0.41419 0.83831

According to table 2, the best result (lowest values of the performance func-
tion for testing data) is obtained in the second repetition of the training process.

So the second network was selected as the best prediction network. Table 3 was
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prepared to choose the best number of neurons in the hidden layer for RBF

network.

Table 3. the result of selecting the best number of neurons on hidden layer
for RBF network

Number of neurons on hid-

den layer RMSE r MAE
4 0.2897 0.69 0.1016
8 0.1925 0.79 0.0675
12 0.1589 0.85 0.05575
16 0.1205 0.91 0.0422
20 0.0787 0.996 0.02746
24 0.0787 0.996 0.02745

As shown in Table 3, by increasing the number of neurons in the hidden
layer, the correlation coefficient is increased and mean absolute error and root

mean square error values are reduced.
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After 20 neurons, these parameters remained stable and have not changed,
so the number of 20 neurons in the hidden layer were selected as the optimal
number of neurons. The networks were trained after selecting the optimal num-
ber of neurons to neural network Multilayer Perceptron and Radial Basis Func-
tion networks were trained. After the training process, test data were imported
to developed networks and output data were generated to compare with the tar-

get values. The results of the target and the predicted values are shown in Figure
5 and Figure 6:
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Fig. 5. Results of predicted and target values compared to target values. a)
RBF network b) MLP network
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Fig. 6. Scatter plot of predicted and target values a) RBF network b) MLP

network

According to Fig. 5.a, the predicted values of RBF network are following
target values well and have less deviation and error from the target value, but
predicted values of MLP network (Fig. 5.b) have a large error and deviation

from target values and has lower compliance with target values compared to
RBF network.

Based on the results of Fig. 6 and according to the description mentioned
about correlation coefficient, it can be said that the output values of RBF net-
work have 99.6% of linearship and the output values of MLP network have
96% linearship with target values. To display these results as a statistical factor,

the output of models were compared with target values using the comparison
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parameters that were mentioned in Material and methods. The obtained results
were tabulated in Table 4.

Table 4. the results of comparison parameter for two types of networks

Network type MAE RMSE r
MLP 0.137 0.9085 0.9612
RBF 0.02746 0.787 0.996

According table 4, the results of comparison parameters indicate that the re-
sults of RBF network have high correlation coefficient (0.996) and low RMSE
and MAE values (0.787 and 0.02746, respectively) compared to MLP network.
Due to the high correlation coefficient for RBF network (0.996), It can be said
that process modeling, compliance and linear correlation predicted by the RBF
network is higher than MLP network that is confirming the obtained results
from Figure 5 and Figure 6.

On the other hand, RBF network with the lowest root mean square error
(0.787) and the lowest mean absolute error (0.02746) generated closest pre-
dicted values with minimal errors compared to the MLP neural network and it
can be said that RBF has high ability to model the temperature variations com-
pared to MLP network in this study. Therefore the designed model based on
RBF is predicting the temperature value more accurate with low deviation to

target values compared to the MLP network.

d0i:10.20944/preprints201908.0201.v1
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Faizollahzadeh et al[42] developed a fuzzy modeling system in order to pre-
dict the temperature of the mushroom growing hall that the correlation coeffi-
cient and mean absolute error between the predicted and target values were cal-
culated 0.67 and 0.232, respectively. The present study indicates the improve-
ments in the prediction of temperature variations using artificial neural net-
works. One of the reasons that led to this happening, is that the fuzzy systems
unlike the artificial neural networks, is operating by the defined laws. These
rules can be affected by the accuracy of laws defining and can have a negative

effect on system precision.

Figure 7 presents the error values for the predicted values of each network
from the desired values. The zero value of deviation is related to the Target
value. The blue line indicates the deviations related to RBF network and the red
line indicates the deviations related to MLP network. Based on Fig. 7, MLP

network has the maximum deviation from the target value.
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Fig. 7. Deviation Of predicted values of networks from the target value
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According to figure 7, if the output of networks is compared in the same
input values, it can be said that the deviation of temperature from target values
in RBF network is higher than MLP network. This means that the energy losses
of MLP network are higher than RBF network. This energy losses on MLP
network can be reduced by the changes that can be applied in network inputs.
This losses of energy is equal to increasing the failure risk of the system on

MLP model compared to RBF model.

4 Conclusion

This study is performed in a mushroom growing hall with the aim of model-
ing of temperature variations. Accordingly, modeling systems including MLP
and RBF networks was used. The results of the data collecting process reflected
the dependence of temperature value to independent variables. Therefore re-
sults were prepared after the modelling process and extracting the output values
of networks and comparing them with target values. This results showed that
the RBF network has high accuracy and better performance compared to MLP
network and also using RBS network will reduce energy consumption, system
failure, and costs. Thus, the neural network with radial basis function was cho-
sen as a predictive network of hall temperature in this study. For the future
works, more sophisticated machine learning methods must come to considera-
tion, e.g., [42-52].
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