

1 OsWRKY5 Promotes Rice Leaf Senescence by Upregulating 2 Senescence-Associated NAC Genes and Abscisic Acid Biosynthesis

3
4 **Taehoon Kim** ^{1,3}, **Kiyoon Kang** ^{1,3}, **Suk-Hwan Kim** ¹, **Gynheung An** ² and **Nam-Chon Paek**
5
6

7 ¹ Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of
8 Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
9 taehoonkim7@snu.ac.kr (T.K.); kykang7408@snu.ac.kr (K.K.); sukhwan0819@snu.ac.kr (S.-H.
10 K.)

11 ² Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin
12 17104, Korea; genean@khu.ac.kr (G.A.).

13 ³ These authors contributed equally to this work.

14 * Corresponding author: ncpaek@snu.ac.kr (N.-C. P.); Tel.: +82-2-880-4543; Fax: +82-2-877-
15 4550

16
17 **Abstract:** The onset of leaf senescence is triggered by external cues and internal factors such as
18 phytohormones and signaling pathways involving transcription factors (TFs). Abscisic acid (ABA)
19 strongly induces senescence and endogenous ABA levels are finely tuned by many senescence-
20 associated TFs. Here, we report on the regulatory function of the senescence-induced TF
21 OsWRKY5 TF in rice (*Oryza sativa*). *OsWRKY5* expression was rapidly upregulated in senescing
22 leaves, especially in yellowing sectors initiated by aging or dark treatment. A T-DNA insertion
23 activation-tagged *OsWRKY5*-overexpressing mutant (termed *oswrky5-D*) promoted leaf
24 senescence under natural and dark-induced senescence (DIS) conditions. By contrast, a T-DNA
25 insertion *oswrky5*-knockdown mutant (termed *oswrky5*) retained leaf greenness during DIS.
26 Reverse-transcription quantitative PCR (RT-qPCR) showed that *OsWRKY5* upregulates the
27 expression of genes controlling chlorophyll degradation and leaf senescence. Furthermore, RT-
28 qPCR and yeast one-hybrid analysis demonstrated that *OsWRKY5* indirectly upregulates the
29 expression of senescence-associated NAC genes including *OsNAP* and *OsNAC2*. Precocious leaf
30 yellowing in the *oswrky5-D* mutant might be caused by elevated endogenous ABA concentrations

31 resulting from upregulated expression of ABA biosynthesis genes *OsNCED3*, *OsNCED4*, and
32 *OsNCED5*, indicating that OsWRKY is a positive regulator of ABA biosynthesis during leaf
33 senescence. Furthermore, *OsWRKY5* expression was significantly suppressed by ABA treatment,
34 indicating negative feedback regulation of *OsWRKY5* expression by ABA. *OsWRKY5* is a positive
35 regulator of leaf senescence that upregulates senescence-induced *NAC* genes leading to expression
36 of ABA biosynthesis and chlorophyll degradation genes.

37

38 **Keywords:** rice; leaf senescence; abscisic acid (ABA); OsWRKY; NAC

39

40

41 1. Introduction

42 Leaf senescence is the final stage of plant development and involves diverse molecular and
43 cellular processes such as degradation of chlorophylls and macromolecules, and remobilization of
44 nutrients into newly developing or storage organs through expression of senescence-associated
45 genes (SAGs). The onset of leaf senescence begins with chlorophyll degradation and proceeds to
46 hydrolysis of macromolecules (proteins, lipids, and nucleic acids); this is followed by cell death
47 [1-3].

48 Genetic studies have revealed the contribution of chlorophyll catabolic enzymes to sequential
49 reactions of chlorophyll degradation. The STAY-GREEN (SGR) protein is a magnesium (Mg)-
50 dechelatase, which produces pheophytin *a* by removing Mg from chlorophyll *a* [4, 5]. Thus,
51 functional deficiency of SGR orthologs leads to a strong stay-green phenotype in diverse plant
52 species including *Arabidopsis thaliana* [6], rice (*Oryza sativa*) [4], pea (*Pisum sativum*) [7], tomato
53 (*Solanum lycopersicum*), bell pepper (*Capsicum annuum*) [8], and soybean (*Glycine max*) [9].
54 Failure to convert pheophytin *a* to pheophorbide *a* due to mutation of *NON-YELLOW*
55 *COLORING3* (*NYC3*), encoding an α/β hydrolase-fold family protein, delays leaf senescence
56 during dark-induced senescence (DIS) [10]. Knockdown of rice *pheophorbide a oxygenase*
57 (*OsPAO*) leads to accumulation of pheide *a* and prolongs leaf greenness during dark incubation
58 [11]. SAGs identified during leaf senescence in rice encode putative proteins involved in metabolic
59 programing [12]; *Osh36* and *Osl85* encode an aminotransferase and isocitrate lyase, which
60 participate in amino acid and fatty acid metabolism, respectively.

61 Leaf senescence generally occurs in an age-dependent manner, but it can be affected by
62 internal and environmental factors such as phytohormones, pathogen infection, extreme
63 temperatures, salt, drought, nutrient deficiency, and shading [1, 13-15]. Abscisic acid (ABA)
64 participates in multiple aspects of plant development including leaf senescence, seed germination,
65 stomatal closure, and root development [16-18]. Specifically, expression of ABA biosynthetic
66 genes such as those encoding 9'-*cis*-epoxycarotenoid dioxygenases (NCEDs) is induced by leaf
67 senescence, elevating endogenous ABA levels in *Arabidopsis* leaves [19, 20]. Increased levels of
68 endogenous ABA can activate chlorophyll degradation pathways mediated by senescence-
69 associated transcription factors (TFs) [21-24]. For instance, ABA induces the expression of the
70 genes encoding ABA-RESPONSIVE ELEMENT (ABRE)-BINDING TRANSCRIPTION
71 FACTOR 2 (ABF2), ABF3, and ABF4, which directly bind to the *SGR1* promoter, accelerating
72 chlorophyll degradation in *Arabidopsis* leaves [21]. In rice, ABA-promoted expression of *OsNAP*
73 directly upregulates chlorophyll degradation genes (CDGs) such as *SGR*, *NYC1*, *NYC3*, and
74 *RCCR1*, leading to early leaf senescence [25].

75 The WRKY TFs participate in various biological processes such as biotic and abiotic stress,
76 seed development, seed dormancy, and germination [26]. Genome-wide analyses have revealed
77 that many WRKY genes are strongly induced by leaf senescence [27, 28], suggesting that WRKY
78 TFs are involved in regulating leaf senescence. Following identification of AtWRKY6 as a
79 regulator of leaf senescence [29], other WRKY TFs regulating leaf senescence have been
80 functionally characterized. For example, mutation of *Arabidopsis* AtWRKY53 confers a delayed
81 leaf senescence phenotype by specifically altering regulation of its target genes [30].
82 Overexpression of AtWRKY22, a target gene of AtWRKY53, accelerates leaf senescence [31].
83 AtWRKY54 and AtWRKY70 act as negative regulators of leaf senescence by interacting
84 independently with WRKY30 [32]. AtWRKY45 mediates gibberellic acid (GA)-induced leaf
85 senescence by interacting with a DELLA protein, RGL1 [33]. AtWRKY75 increases salicylic acid
86 (SA) and H₂O₂ levels by activating *SID2* and repressing *CAT2*, respectively, resulting in early leaf
87 senescence [34]. Heterologous expression of rice OsWRKY23 promotes leaf senescence in
88 *Arabidopsis* [35]. Rice OsWRKY42 induces reactive oxygen species (ROS) by directly
89 downregulating the expression of *OsMT1d* encoding metallothionein protein and thereby
90 promoting leaf senescence [36]. Unlike *Arabidopsis* WRKY TFs involved in the regulation of leaf

91 senescence; however, few OsWRKY TFs have been identified as functioning in the execution of
92 leaf senescence.

93 In this study, we found that *OsWRKY5* expression is upregulated at the onset of leaf
94 senescence. The *OsWRKY5*-overexpressing *oswrky5-D* mutation promoted leaf yellowing under
95 aging and dark treatment, while an *oswrky5*-knockdown mutant exhibited a delayed senescence
96 phenotype. Reverse-transcription quantitative PCR (RT-qPCR) analysis suggested that CDGs and
97 SAGs were upregulated by senescence-induced *OsWRKY5*. Furthermore, *OsWRKY5* indirectly
98 regulated the expression of senescence-associated *NAC* (*senNAC*) genes such as *OsNAP* and
99 *OsNAC2*, which are upstream regulators of CDGs and SAGs. *OsWRKY5* elevated endogenous
100 ABA levels by upregulating the expression of ABA biosynthetic genes. Our results thus provide
101 evidence that *OsWRKY5* acts as a positive regulator of leaf senescence in rice.

102

103 **2. Results**

104 *2.1. Characterization of OsWRKY5*

105 *OsWRKY5* (Os05g04640), a member of rice WRKY TF family, consists of six exons with
106 1509 bp of open reading frame in 5379 bp of genomic DNA. *OsWRKY5* is predicted to encode a
107 502 amino acid protein with a molecular mass of 52.3 kDa. The WRKY domain of *OsWRKY5*
108 has a single consensus motif (WRKYGQK) and a zinc-finger C₂H₂ motif (Cx₅Cx₂₃HxH),
109 indicating that *OsWRKY5* belongs to the group II WRKY TF family [37]. From sequence
110 alignment of WRKY domains between *OsWRKY5* and group II *Arabidopsis thaliana* WRKY
111 (AtWRKY) proteins, we found that the domain sequences of *OsWRKY5* are quite similar to those
112 of AtWRKY6 and AtWRKY47, members of the subgroup IIb AtWRKY TF family (**Figure S1**).
113 To examine the subcellular localization of *OsWRKY5*, we transiently expressed the 35S::YFP-
114 *OsWRKY5* construct in onion epidermal cells. The fluorescent signal of YFP-*OsWRKY5* fusions
115 was observed exclusively in nuclei (**Figure S2**), indicating that *OsWRKY5* is a nuclear-localized
116 protein.

117

118 *2.2. OsWRKY5 Is Upregulated during Leaf Senescence*

119 To examine the spatial expression of *OsWRKY5*, we investigated transcript levels of
120 *OsWRKY5* in rice organs including root, culm, leaf blade, leaf sheath, and panicle at the

121 reproductive stage (**Figure 1a**). *OsWRKY5* was preferentially expressed in the leaf blade and leaf
122 sheath. Previous transcriptome analysis [28] showed upregulation of 47 rice WRKY TFs including
123 *OsWRKY5* in flag leaves during natural senescence (NS). Therefore, we determined age-dependent
124 changes in *OsWRKY5* expression in flag leaves of wild-type (WT; *japonica* cultivar ‘Dongjin’)
125 rice grown in a paddy field under natural long-day (NLD) conditions (>14 h light/day). While
126 *OsWRKY5* was constitutively expressed in developing leaves at the vegetative stage, *OsWRKY5*
127 expression was dramatically upregulated in senescing leaves at the reproductive stage (**Figure 1b**).
128 In addition, *OsWRKY5* expression gradually increased in detached leaves of four-week-old WT
129 leaves during DIS (**Figure 1c**). We further found that *OsWRKY5* transcripts accumulated in the
130 yellowing sector (region **c**) more than in the green sector (region **a**) of senescing flag leaves
131 (**Figure 1d**). These results suggest that *OsWRKY5* is involved in the onset and progression of leaf
132 senescence in rice.

133

134 2.3. *OsWRKY5* Positively Regulates the Progression of Leaf Senescence

135 To examine the function of *OsWRKY5* in leaf senescence, we identified activation-tagged and
136 loss-of-function mutants. To this end, we obtained two independent T-DNA insertion lines
137 (PFG_3A-15928 and PFG_3A-06060) from the RiceGE database ([http://signal.salk.edu/cgi-
138 bin/RiceGE](http://signal.salk.edu/cgi-bin/RiceGE)) in which each T-DNA fragment with an activation tag (4× 35S promoter) was
139 integrated into the promoter region of *OsWRKY5* (**Figure 2a**). To verify the expression levels of
140 *OsWRKY5* in these mutant lines, we measured *OsWRKY5* expression levels in detached leaves of
141 four-week-old mutant plants during DIS. RT-qPCR showed that *OsWRKY5* transcripts
142 accumulated to high levels in PFG_3A-15928 compared to the WT due to the activation-tagged
143 T-DNA insertion; by contrast, in PFG_3A-06060, the T-DNA insertion in the promoter region of
144 *OsWRKY5* reduced expression of *OsWRKY5* (**Figure 2b,c**). These results indicate that PFG_3A-
145 15928 and PFG_3A-06060 are dominant activation and recessive knockdown mutants,
146 respectively (hereafter termed *oswrky5-D* and *oswrky5*, respectively). To confirm this, we further
147 investigated the *OsWRKY5* expression in leaf blade, leaf sheath, and root separated from WT and
148 mutant lines grown in paddy soil for three weeks. Similar to expression patterns of *OsWRKY5*
149 shown in detached leaves during DIS (**Figure 2b,c**), *OsWRKY5* transcripts highly accumulated in
150 all tissues of *oswrky5-D* compared with the WT, while they were significantly lower in *oswrky5*
151 than in the WT (**Figure 2d,e**).

152 To determine the phenotypic difference between WT and mutant lines during DIS, we next
153 incubated detached leaves of three-week-old WT, *oswrky5-D*, and *oswrky5* plants in 3 mM MES
154 buffer (pH 5.8) at 28°C under complete darkness. While *oswrky5-D* showed accelerated leaf
155 yellowing compared with the WT, the *oswrky5* leaves retained their green color longer than the
156 WT leaves (**Figure 3a,b**). Consistent with the leaf color, the total chlorophyll content of *oswrky5-D*
157 was less than that of the WT after DIS, whereas *oswrky5* maintained higher total chlorophyll
158 levels during DIS compared with the WT (**Figure 3c,d**).

159 In senescing leaves, chlorophylls are sequentially degraded by chlorophyll-degrading
160 enzymes including SGR [4], NYC3 [10], and OsPAO [11]. Many other SAGs are also upregulated
161 during DIS in rice, with products identified as seed imbibition protein (Osh69), glyoxylate
162 aminotransferase (Osh36), and isocitrate lyase (Osl85) [12]. We therefore measured transcript
163 levels of CDGs and SAGs in detached leaves of three-week-old WT, *oswrky5-D*, and *oswrky5*
164 plants under DIS conditions as shown in Fig. 2. RT-qPCR analysis revealed that expression of
165 CDGs and SAGs was upregulated in *oswrky5-D* after 4 days of dark incubation (DDI) (**Figure**
166 **4a–f**) but downregulated in *oswrky5* after 5 DDI when compared with the WT (**Figure 4g–l**).
167 These results demonstrate that *OsWRKY5* promotes the onset and progression of leaf senescence
168 by upregulating expression of CDGs and SAGs.

169 To further examine how *OsWRKY5* overexpression affects leaf senescence during vegetative
170 and reproductive stages, we monitored age-dependent leaf yellowing in WT and *oswrky5-D* plants
171 grown under NLD conditions (>14 h daylight) in the field (37° N latitude, Suwon, South Korea).
172 While there was no significant difference in leaf color between the WT and *oswrky5-D* until
173 heading (**Figure 5a**), the leaves of *oswrky5-D* showed a precocious leaf senescence phenotype at
174 40 days after heading (DAH) (**Figure 5b,c**). The SPAD value, a parameter for leaf greenness,
175 indicated lower levels of green pigments in flag leaves of *oswrky5-D* compared with the WT at 24
176 DAH (**Figure 5d**). Leaf greenness is closely linked to photosynthetic capacity [38, 39]. Thus,
177 reduced SPAD value led to a relatively lower *Fv/Fm* ratio (efficiency of photosystem II) in
178 *oswrky5-D* than in WT at 24 DAH (**Figure 5e**). Similar to expression patterns of CDGs and SAGs
179 during DIS, CDG and SAG transcripts were more abundant in the senescing flag leaves of
180 *oswrky5-D* than in those of WT at 40 DAH (**Figure 5f**). These results indicate that *OsWRKY5*
181 acts as a positive regulator of leaf senescence during both NS and DIS.

182

183 **2.4. *OsWRKY5* Upregulates *SenNAC* Genes**

184 Previous studies have shown that senNACs including *OsNAP* and *OsNAC2* promote leaf
185 senescence by upregulating expression of CDGs and SAGs [25, 40]. To determine whether
186 *OsWRKY5* participates in NAC TF-mediated senescence pathways, we examined the expression
187 levels of *OsNAP* and *OsNAC2* in detached leaves of WT, *oswrky5-D*, and *oswrky5* under DIS
188 conditions. RT-qPCR showed that compared with the WT, in *oswrky5* the expression levels of
189 *OsNAP* and *OsNAC2* were higher during dark incubation (**Figure 6a,b**), while they were
190 downregulated at 0 and 4 DDI compared with the WT (**Figure 6c,d**). These results suggest that
191 *OsWRKY5* acts upstream of the *OsNAP* and *OsNAC2* regulatory pathways to promote leaf
192 senescence.

193 WRKY TFs regulate the transcription of their target genes by recognizing a consensus *cis*-
194 element, the so-called W-box [26]. The W-box has been generally defined as 5'-TTGAC(C/T)-3'
195 with an invariant TGAC core sequence essential for WRKY binding [37, 41]. Since repetitive
196 TGAC sequences enhance WRKY binding efficiency, we searched for the TGAC core sequence
197 within 2 kb upstream of the transcriptional initiation sites of *OsNAP* and *OsNAC2*, and found two
198 regions (−1001 ~ −765 and −657 ~ −575) in the promoter of *OsNAP* and five regions (−1760 ~ −
199 1574, −1411 ~ −1309, −1135 ~ −1021, −660 ~ −480, and −352 ~ −98) in the promoter of *OsNAC2*
200 (**Figure 6e**). To investigate whether the *OsWRKY5* TF directly binds to the promoters of *OsNAP*
201 and *OsNAC2*, we performed yeast one-hybrid assays. However, we could not find any difference
202 between GAL4AD and GAL4AD-*OsWRKY5* by measuring β-galactosidase activity of *lacZ*
203 reporter genes, indicating that *OsWRKY5* does not bind directly to the promoter of *OsNAP* or
204 *OsNAC2* (**Figure 6f**).

205 Previous studies have reported that the microRNA *osa-miR164b* is closely associated with the
206 post-transcriptional regulation of *OsNAC2*, resulting in reduction of *OsNAC2* mRNA levels [42,
207 43]. To examine whether *OsWRKY5* regulates endogenous levels of *osa-miR164b* during DIS,
208 we determined the expression of *osa-miR164b* in detached leaves of three-week-old WT, *oswrky5-D*,
209 and *oswrky5* plants using stem-loop RT-PCR analysis. This revealed no difference in the levels
210 of *osa-miR164b* among genotypes (**Figure S3**), suggesting that *OsWRKY5* indirectly regulates
211 *OsNAC2* independent of *osa-miR164b*.

212

213 **2.5. *OsWRKY5* Is Involved in Negative Feedback Regulation of ABA Biosynthesis**

214 Among phytohormones affecting the onset and progression of leaf senescence [2], ABA
215 activates senescence-associated regulatory pathways, leading to acceleration of leaf senescence
216 [44]. Genetic studies have revealed that the endogenous ABA concentration is delicately controlled
217 by senNACs such as *OsNAP* and *OsNAC2* [25, 40]. Considering that *OsWRKY5* upregulated the
218 expression of *OsNAP* and *OsNAC2*, we speculated that *OsWRKY5* is mainly involved in
219 regulating ABA biosynthesis. Indeed, the endogenous ABA concentration was significantly higher
220 in leaves of three-week-old *oswrky5-D* plants than in those of the WT (**Figure 7a**). RT-qPCR
221 analysis showed that ABA biosynthesis genes including *OsNCED3*, *OsNCED4*, and *OsNCED5*
222 were significantly upregulated in *oswrky5-D* leaves compared with the WT (**Figure 7b**). This
223 strongly suggests that the early leaf senescence of *oswrky5-D* is mainly due to an increase in ABA
224 biosynthesis after heading.

225 To investigate whether phytohormones affect the expression of *OsWRKY5*, we next measured
226 the expression of *OsWRKY5* in ten-day-old WT seedlings exogenously treated with epibrassinolide
227 (BR), gibberellic acid (GA), indole-3-acetic acid (IAA), 6-benzylaminopurine (6-BA), salicylic
228 acid (SA), methyl jasmonic acid (MeJA), ABA, or 1-aminocyclopropane-1-carboxylic acid (ACC).
229 RT-qPCR showed that *OsWRKY5* expression was significantly reduced by MeJA and ABA
230 treatments (**Figure 7c**), indicating that excessive levels of ABA decrease the expression of
231 *OsWRKY5* in a negative feedback manner.

232

233 **3. Discussion**

234 *3.1. OsWRKY5 Promotes Leaf Yellowing during NS and DIS*

235 We found that *OsWRKY5* participates in the ABA-mediated regulatory pathways of leaf
236 senescence. *OsWRKY5* was expressed in leaves and its transcription was activated by aging and
237 dark treatment (**Figure 1b,c**). The WRKY domain of *OsWRKY5* has the highest amino acid
238 similarity to that of *AtWRKY6* (**Figure S1**). Similar to the early leaf senescence phenotype of
239 *AtWRKY6-OX* in *Arabidopsis* [29], the progression of leaf senescence was much faster in the
240 *oswrky5-D* mutant than in WT plants under NS and DIS conditions. (**Figures 3 and 5**), and the
241 *oswrky5* knockdown mutant showed markedly delayed leaf senescence (**Figure 3**).

242 Many senescence-induced TFs directly or indirectly regulate expression of their target genes,
243 including CDGs, SAGs, and other senescence-associated TFs. *OsNAP* directly binds to the

244 promoters of *SGR*, *NYC1*, *NYC3*, *RCCR1*, and *Os157* (encoding a putative 3-ketoacyl-CoA
245 thiolase). OsNAP also indirectly regulates the expression of *Osh36* and *Osh69*, whose amino acid
246 sequences are quite similar to those of *Arabidopsis thaliana* aminotransferase and *Brassica*
247 *oleracea* seed imbibition protein, respectively [25]. OsNAC2 enhances chlorophyll degradation
248 by directly interacting with the promoters of *SGR* and *NYC3* [40]. We therefore speculate that
249 *OsWRKY5* upregulates the expression of CDGs and SAGs by regulating senNACs. Upregulation
250 of *OsNAP* and *OsNAC2* was observed in *oswrky5-D*, resulting in early leaf yellowing (**Figures 4**
251 **and 5**). However, *OsWRKY5* does not bind to the promoter regions of *OsNAP* and *OsNAC2*
252 despite the presence of repetitive TGAC core sequences (**Figure 6e,f**), suggesting that it indirectly
253 regulates expression of these genes.

254 WRKY TFs can physically interact with other TFs involved in leaf senescence. For example,
255 Besseau et al. (2012) showed that expression of *Arabidopsis WRKY30*, *WRKY53*, *WRKY54*, and
256 *WRKY70* is induced during leaf senescence and *WRKY53*, *WRKY54*, and *WRKY70* interact
257 independently with *WRKY30* in yeast two-hybrid assays [32]. In *Arabidopsis*, *WRKY45*
258 functions in GA-mediated leaf senescence by interacting with the DELLA protein RGA-LIKE1
259 (RGL1) characterized as a repressor of GA signaling [33]. Recently, TT2, a MYB family member,
260 was identified as an interacting partner of *WRKY27* in upland cotton (*Gossypium hirsutum* L.)
261 [45]. Therefore, exploring the possible interaction networks of the *OsWRKY5* TF in the regulation
262 of senNACs should provide more insight into the mechanism of leaf senescence.

263

264 *3.2. OsWRKY5 Mediates ABA-Induced Leaf Senescence*

265 ABA promotes the onset and progression of leaf senescence [46]. Thus, endogenous ABA
266 levels are elevated by upregulation of ABA biosynthesis genes during leaf senescence, promoting
267 further ABA-induced leaf senescence [44, 47]. *Arabidopsis 9-CIS-EPOXYCAROTENOID*
268 *DIOXYGENASE (NCED)* genes, encoding a rate-limiting enzyme in ABA biosynthesis, are
269 upregulated during NS [19, 48]. Dark incubation induces expression of *OsNCED3* in rice leaves
270 [49], and overexpression of *OsNCED3* accelerates leaf yellowing in rice during dark incubation.
271 *NAP* increases ABA biosynthesis by directly upregulating transcription of *ABSCISIC ALDEHYDE*
272 *OXIDASE3 (AAO3)*, leading to chlorophyll degradation during dark incubation in *Arabidopsis* [20].
273 In rice, although transcription of ABA biosynthesis genes, such as *OsNCED1*, *OsNCED3*,
274 *OsNCED4*, and *OsZEP*, is inhibited by OsNAP, the functional ortholog of *Arabidopsis NAP*,

275 overexpression of *OsNAP* leads to precocious leaf senescence by directly regulating CDGs and
276 SAGs [25]. *OsNAC2* elevates endogenous ABA content by directly binding to the promoters of
277 *OsNCED3* and *OsZEP*, thereby promoting leaf senescence [40]. Transgenic Arabidopsis plants
278 heterologously expressing foxtail millet (*Setaria italica*) *NAC1* (*SiNAC1*) show enhanced
279 transcription of ABA biosynthesis genes, *NCED2* and *NCED3*, resulting in early leaf senescence
280 [50]. Although ABA signaling pathways mediated by WRKY TFs are involved in multiple aspects
281 of plant development including leaf senescence [51], molecular evidence for WRKY TF
282 involvement in ABA biosynthesis is limited. In this study, we found that *OsWRKY5* upregulates
283 transcription of ABA biosynthesis genes, *OsNCED3*, *OsNCED4*, and *OsNCED5* (**Figure 7b**),
284 suggesting that *OsWRKY5* functions in the promotion of leaf senescence by increasing ABA
285 biosynthesis (**Figure 7a**). Furthermore, based on the involvement of *OsWRKY5* in *OsNAC2*
286 expression (**Figure 6b,d**), *OsWRKY5* probably activates an *OsNAC2*-mediated ABA biosynthetic
287 pathway (**Figure 8**).

288 Plants have developed several regulatory mechanisms to restore ABA homeostasis during leaf
289 senescence. For example, in tomato, *NAP2* directly regulates expression of genes regulating ABA
290 biosynthesis (*NCED1*) and ABA degradation (*CYP707A2*) to establish ABA homeostasis during
291 leaf senescence [52]. ABA-induced *OsNAP* represses the accumulation of endogenous ABA in
292 rice, indicating that *OsNAP* participates in a negative feedback mechanism on ABA biosynthesis
293 [25]. Expression of *OsNAC2* is differentially regulated by ABA concentration; *OsNAC2*
294 expression is upregulated by 20 μ M ABA, but inhibited by ABA concentrations over 40 μ M [40].
295 Because the expression of *OsWRKY5* is reduced by excessive ABA treatment (**Figure 7c**), it is
296 highly possible that *OsWRKY5* transcription is repressed by excessive concentrations of ABA via
297 a negative feedback regulatory mechanism.

298

299 **4. Experimental Section**

300 *4.1. Plant Materials, Growth Conditions, and Experimental Treatments*

301 The *Oryza sativa japonica* cultivar ‘Dongjin’ (parental line), and the *oswrky5-D* and *oswrky5*
302 mutants were grown in a growth chamber under LD conditions (14 h light at 28°C/10 h dark at
303 25°C) and in a rice paddy field under NLD conditions (\geq 14 h sunlight/day, 37°N latitude) in Seoul,
304 Republic of Korea. The T-DNA insertion activation-tagged *oswrky5-D* and knockdown *oswrky5*

305 mutants were obtained from the Crop Biotech Institute at Kyung Hee University, Republic of
306 Korea [53, 54].

307 For dark treatment, detached leaves of rice plants grown in the growth chamber for 3 weeks
308 were incubated in 3 mM 2-(N-morpholino)ethanesulfonic (MES) buffer (pH 5.8) with the abaxial
309 side up at 28°C in complete darkness. To detect *OsWRKY5* transcript levels under various hormone
310 treatments, WT seeds were sterilized with 70% ethanol and 2% NaClO, and then germinated and
311 grown on half-strength Murashige and Skoog (0.5X MS, Duchefa, The Netherlands) solid medium
312 under LD conditions for 10 days in a growth chamber. Ten-day-old plants were transferred to 0.5X
313 MS liquid medium containing 50 µM epibrassinolide (BR), 50 µM GA, 50 µM IAA, 50 µM 6-BA,
314 100 µM SA, 50 µM MeJA, 50 µM ABA, or 50 µM ACC. Total RNA was extracted from leaves
315 harvested at 0 and 6 h of treatment.

316

317 *4.2. Subcellular Localization*

318 Full-length cDNA of *OsWRKY5* was amplified using gene-specific primers (**Table S1**),
319 cloned into pCR8/GW/TOPO vector (Invitrogen), and then transferred into pEarleyGate104
320 (pEG104) gateway binary vector using Gateway LR clonase II enzyme mix (Invitrogen), resulting
321 in a *35S::YFP-OsWRKY5* construct. The pEG104 vector and recombinant constructs were
322 introduced into onion (*Allium cepa*) epidermal cells using a DNA particle delivery system
323 (Biolistic PDS-1000/He, Bio-Rad, USA). After incubation at 25°C for 16 h, green fluorescence
324 was detected using a confocal laser scanning microscope (SP8X, Leica, Germany). To visualize
325 nuclei, samples were stained with 10 mL of 1 µg mL⁻¹ 4',6-diamidino-2-phenylindole
326 dihydrochloride (DAPI) dissolved in water for 10 min then viewed using a fluorescence
327 microscope under ultraviolet light irradiation with appropriate filters.

328

329 *4.3. Determination of Photosynthetic Activity, Total Chlorophyll, and SPAD Value*

330 To evaluate photosynthetic activity, the middle section of the flag leaf of plants grown in a
331 paddy field under NLD conditions was adapted in the dark for 10 min. The *Fv/Fm* ratio was then
332 measured using an OS-30p+ instrument (Opti-Sciences, USA). Total chlorophyll content was
333 measured in rice leaves grown in the growth chamber for 4 weeks. Pigment was extracted from
334 detached leaves incubated in complete darkness using 80% ice-cold acetone. After centrifugation

335 at 10,000 g for 15 min at 10°C, the absorbance of supernatants was measured at 647 nm and 663
336 nm using a UV/VIS spectrophotometer (BioTek Instruments, USA). The concentration of
337 chlorophyll was calculated as previously described [55]. The change of SPAD value was
338 determined in the flag leaf of plants grown in a paddy field under NLD conditions using a SPAD-
339 502 instrument (KONICA MINOLTA, UK).

340

341 *4.4. RT-qPCR and Stem-Loop RT-qPCR Analysis*

342 Total RNA was extracted from rice tissues using an RNA Extraction kit (MG Med, Republic
343 of Korea), according to the manufacturer's instructions. For synthesis of first-strand cDNA, 2 µg
344 of total RNA was used for reverse transcription (RT) in 20 µl volume with oligo(dT)₁₅ primer and
345 M-MLV reverse transcriptase (Promega). For quantification of miR164b, stem-loop pulsed RT
346 was conducted from 2 µg of total RNA in 20 µl volume using a miR164b-specific stem-loop primer
347 and M-MLV reverse transcriptase (Promega) with the following conditions: 16°C for 30 min
348 followed by pulsed RT of 40 cycles at 16°C for 2 min, 42°C for 1 min, and 50°C for 1 s, and then
349 inactivation of reverse transcription at 70°C for 5 min [56]. All RT products were diluted with 80
350 µl distilled water.

351 qPCR was performed with gene-specific primers and normalized to *UBIQUITIN5* (*UBQ5*)
352 (Os01g22490) or rice U6 snRNA (**Table S1**) according to the 2^{-ΔΔCt} method [57]. The 20 µl
353 reaction mixture included 2 µl cDNA from RT or stem-loop pulsed RT, 1 µl 0.5 µM primer, and
354 10 µl 2X GoTaq master mix (Promega). qPCR amplifications were conducted with a LightCycler
355 480 (Roche) using the following program: 94°C for 2 min followed by 40 cycles of 94°C for 15 s
356 and 60°C for 1 min.

357

358 *4.5. Yeast One-Hybrid Assays*

359 The coding sequence of *OsWRKY5* was amplified by PCR. The PCR product was subcloned
360 into the *Eco*RI and *Pst*I sites of pGAD424 vector (Clontech). Fragments of *OsNAP* and *OsNAC2*
361 promoters containing the repetitive W-box core sequence (TGAC) were amplified by PCR and
362 then cloned into pLacZi vector using *Eco*RI-*Xba*I, *Eco*RI-*Xba*I, *Sal*I-*Xho*I, *Sal*I-*Xho*I, *Sal*I-*Xho*I,
363 *Sal*I-*Xho*I, and *Sal*I-*Xho*I sites, generating *OsNAP-1::LacZi*, *OsNAP-2::LacZi*, *OsNAC2-1::LacZi*,
364 *OsNAC2-2::LacZi*, *OsNAC2-3::LacZi*, *OsNAC2-4::LacZi*, and *OsNAC2-5::LacZi* reporter

365 constructs, respectively (Clontech, USA). These vectors and empty vector were transformed into
366 yeast strain YM4271 using the PEG/LiAc method, and yeast cells were incubated in SD/-His/-Leu
367 liquid medium. β -Galactosidase activity was determined by absorbance of chloramphenicol red, a
368 hydrolysis product of chlorophenol red- β -D-galactopyranoside (CPRG), at 595 nm using a
369 UV/VIS spectrophotometer (BioTek Instruments, USA) according to the Yeast Protocol
370 Handbook (Clontech, USA).

371

372 *4.6. Determination of ABA Content*

373 Four-week-old leaves of WT and *oswrky5-D* were pulverized in liquid nitrogen and then
374 homogenized in 80% methanol containing 1 mM butylated hydroxytoluene as an antioxidant.
375 Extracts incubated for 12 h at 4°C were centrifuged at 4000 g for 20 min. The supernatant was
376 passed through a Sep-Pak C18 cartridge (Waters, USA) as described previously [58], and the
377 eluate was subjected to an enzyme-linked immunosorbent assay (ELISA) using an ABA ELISA
378 kit (MyBioSource, USA) according to the manufacturer's instructions.

379

380 **5. Conclusions**

381 We investigated a WRKY TF family member in rice, OsWRKY5, which acts as a positive
382 regulator of ABA-induced leaf senescence. OsWRKY5 upregulates both ABA biosynthesis and
383 transcription of CDGs and SAGs during leaf senescence, thereby promoting leaf yellowing. A
384 negative feedback loop of ABA on *OsWRKY5* transcription contributes to maintaining ABA
385 homeostasis during leaf senescence in rice.

386

387 **Acknowledgments:** This work was carried out with the support of the Cooperative Research
388 Program for Agricultural Science & Technology Development (PJ013146), Rural Development
389 Administration, South Korea, and the Basic Science Research Program through the National
390 Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF-
391 2017R1A2B3003310).

392

393 **Author Contributions:** TK and KK performed experiments and analyzed data. KK and N-CP
394 conceived the study, designed and supervised the project. TK, KK, and N-CP wrote and edited

395 the manuscript. S-HK assisted in analyzing the data. GA developed plant materials and provided
396 advice about the manuscript. All authors read and approved the final manuscript.

397

398 **Conflicts of Interest:** The authors declare no conflict of interest.

399

400 **Abbreviations:** ABA, abscisic acid; DDI, day(s) of dark-induced senescence; DAH, day(s) after
401 heading; NS, natural senescence; LD, long day; NLD, natural long day; DIS, dark-induced
402 senescence; RT-qPCR, reverse transcription-quantitative PCR; CDG, chlorophyll degradation
403 gene; SAG, senescence-associated gene; TF, transcription factor; senNAC, senescence-associated
404 NAC gene; WT, wild-type.

405

406 **References**

- 407 1. Guo, Y.; Gan, S. Leaf senescence: Signals, execution, and regulation. *Curr. Top. Dev. Biol.*
408 **2005**, *71*, 83-112.
- 409 2. Lim, P.O.; Kim, H.J.; Nam, H.G. Leaf senescence. *Annu. Rev. Plant Biol.* **2007**, *58*, 115-136.
- 410 3. Liu, L.; Zhou, Y.; Zhou, G.; Ye, R.; Zhao, L.; Li, X.; Lin, Y. Identification of early
411 senescence-associated genes in rice flag leaves. *Plant Mol. Biol.* **2008**, *67*, 37-55.
- 412 4. Park, S.-Y.; Yu, J.-W.; Park J.-S.; Li, J.; Yoo, S.-C.; Lee, N.-Y.; Lee, S.-K.; Jeong, S.-W.;
413 Seo, H.S.; Koh, H.-J.; et al. The senescence-induced staygreen protein regulates chlorophyll
414 degradation. *Plant Cell* **2007**, *19*, 1649-1664.
- 415 5. Shimoda, Y.; Ito, H.; Tanaka, A. Arabidopsis *STAY-GREEN*, Mendel's green cotyledon gene,
416 encodes magnesium-dechelatase. *Plant Cell* **2016**, *28*, 2147-2160.
- 417 6. Ren, G.; An, K.; Liao, Y.; Zhou, X.; Cao, Y.; Zhao, H.; Ge, X.; Kuai, B. Identification of a
418 novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence
419 in Arabidopsis. *Plant Physiol.* **2007**, *144*, 1429-1441.
- 420 7. Sato, Y.; Morita, R.; Nishimura, M.; Yamaguchi, H.; Kusaba, M. Mendel's green cotyledon
421 gene encodes a positive regulator of the chlorophyll-degrading pathway. *Proc. Natl. Acad.*
422 *Sci. USA* **2007**, *104*, 14169-14174.
- 423 8. Barry, C.S.; McQuinn, R.P.; Chung, M.-Y.; Besuden, A.; Giovannoni, J.J. Amino acid
424 substitutions in homologs of the STAY-GREEN protein are responsible for the *green-flesh*
425 and *chlorophyll retainer* mutations of tomato and pepper. *Plant Physiol.* **2008**, *147*, 179-187.

426 9. Fang, C.; Li, C.; Li, W.; Wang, Z.; Zhou, Z.; Shen Y.; Wu, M.; Wu, Y.; Li, G.; Kong, L.A.; et
427 al. Concerted evolution of *D1* and *D2* to regulate chlorophyll degradation in soybean. *Plant J.*
428 **2014**, *77*, 700-712.

429 10. Morita, R.; Sato, Y.; Masuda, Y.; Nishimura, M.; Kusaba, M. Defect in non-yellow coloring
430 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence
431 in rice. *Plant J.* **2009**, *59*, 940-952.

432 11. Tang, Y.; Li, M.; Chen, Y.; Wu, P.; Wu, G.; Jiang H. Knockdown of *OsPAO* and *OsRCCR1*
433 cause different plant death phenotypes in rice. *J. Plant Physiol.* **2011**, *168*, 1952-1959.

434 12. Lee, R.-H.; Wang, C.-H.; Huang, L.-T.; Chen, S.-C.G. Leaf senescence in rice plants: cloning
435 and characterization of senescence up-regulated genes. *J. Exp Bot.* **2001**, *52*, 1117-1121.

436 13. Häffner, E.; Konietzki, S.; Diederichsen, E. Keeping Control: The role of senescence and
437 development in plant pathogenesis and defense. *Plants* **2015**, *4*, 449-488.

438 14. Piao, W.; Kim, E.-Y.; Han, S.-H.; Sakuraba, Y.; Paek, N.-C. Rice phytochrome B (OsPhyB)
439 negatively regulates dark- and starvation-induced leaf senescence. *Plants* **2015**, *4*, 644-663.

440 15. Rivero, R.M.; Kojima, M.; Gepstein, A.; Sakakibara, H.; Mittler, R.; Gepstein, S.; Blumwald,
441 E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. *Proc.
442 Natl. Acad. Sci. USA* **2007**, *104*, 19631-19636.

443 16. Chandler, P.M.; Robertson, M. Gene expression regulated by abscisic acid and its relation to
444 stress tolerance. *Annu. Rev. Plant Biol.* **1994**, *45*, 113-141.

445 17. Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a
446 core signaling network. *Annu. Rev. Plant Biol.* **2010**, *61*, 651-679.

447 18. Hauser, F.; Li, Z.; Waadt, R.; Schroeder, J.I. SnapShot: Abscisic acid signaling. *Cell* **2017**,
448 *171*, 1708.e1.

449 19. Finkelstein, R. Abscisic acid synthesis and response. *Arabidopsis Book.* **2013**, *11*, e0166.

450 20. Yang, J.; Worley, E.; Udvardi, M. A. NAP-AAO3 regulatory module promotes chlorophyll
451 degradation via ABA biosynthesis in Arabidopsis leaves. *Plant Cell* **2014**, *26*, 4862-4874.

452 21. Gao, S.; Gao, J.; Zhu, X.; Song, Y.; Li, Z.; Ren, G.; Zhou, X.; Kuai, B. ABF2, ABF3, and
453 ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional
454 activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis.
455 *Mol Plant* **2016**, *9*, 1272-1285.

456 22. Park, D.-Y.; Shim, Y.; Gi, E.; Lee, B.-D.; An, G.; Kang, K.; Paek, N.-C. The MYB-related

457 transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence
458 and salt sensitivity in rice. *Environ. Exp. Bot.* **2018**, *156*, 86-95.

459 23. Robatzek, S.; Somssich, I.E. A new member of the *Arabidopsis* WRKY transcription factor
460 family, AtWRKY6, is associated with both senescence-and defense-related processes. *Plant J.*
461 **2001**, *28*, 123-133.

462 24. Zhang, K.; Gan, S.-S. An Abscisic Acid-AtNAP Transcription factor SAG113 protein
463 phosphatase 2C regulatory chain for controlling dehydration in senescing *Arabidopsis* leaves.
464 *Plant Physiol.* **2012**, *158*, 961-969.

465 25. Liang, C.; Wang, Y.; Zhu, Y.; Tang, J.; Hu, B.; Liu, L.; Ou, S.; Wu, H.; Sun, X.; Chu, J.; et
466 al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid
467 biosynthesis and directly targeting senescence-associated genes in rice. *Proc. Natl. Acad. Sci.*
468 *USA* **2014**, *111*, 10013-10018.

469 26. Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. *Trends*
470 *Plant Sci.* **2010**, *15*, 247-258.

471 27. Guo, Y.; Cai, Z.; Gan, S. Transcriptome of *Arabidopsis* leaf senescence. *Plant Cell Environ.*
472 **2004**, *27*, 521-549.

473 28. Liu, L.; Xu, W.; Hu, X.; Liu, H.; Lin, Y. W-box and G-box elements play important roles in
474 early senescence of rice flag leaf. *Sci. Rep.* **2016**, *6*, 20881.

475 29. Robatzek, S.; Somssich, I.E. Targets of AtWRKY6 regulation during plant senescence and
476 pathogen defense. *Genes Dev.* **2002**, *16*, 1139-1149.

477 30. Miao, Y.; Laun, T.; Zimmermann, P.; Zentgraf, U. Targets of the WRKY53 transcription
478 factor and its role during leaf senescence in *Arabidopsis*. *Plant Mol. Biol.* **2004**, *55*, 853-867.

479 31. Zhou, X.; Jiang, Y.; Yu, D. WRKY22 transcription factor mediates dark-induced leaf
480 senescence in *Arabidopsis*. *Mol. Cells* **2011**, *31*, 303-313.

481 32. Besseau, S.; Li, J.; Palva, E.T. WRKY54 and WRKY70 co-operate as negative regulators of
482 leaf senescence in *Arabidopsis thaliana*. *J. Exp. Bot.* **2012**, *63*, 2667-2679.

483 33. Chen, L.; Xiang, S.; Chen, Y.; Li, D.; Yu, D. *Arabidopsis* WRKY45 interacts with the
484 DELLA protein RGL1 to positively regulate age-triggered leaf senescence. *Mol. Plant* **2017**,
485 *10*, 1174-1189.

486 34. Guo, P.; Li, Z.; Huang, P.; Li, B.; Fang, S.; Chu, J.; Guo, H. A tripartite amplification loop
487 involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species

488 accelerates leaf senescence. *Plant Cell* **2017**, *29*, 2854-2870.

489 35. Jing, S.; Zhou, X.; Song, Y.; Yu, D. Heterologous expression of *OsWRKY23* gene enhances
490 pathogen defense and dark-induced leaf senescence in *Arabidopsis*. *Plant Growth Regul.*
491 **2009**, *58*, 181-190.

492 36. Han, M.; Kim, C.-Y.; Lee, J.; Lee, S.-K.; Jeon, J.-S. *OsWRKY42* represses *OsMT1d* and
493 induces reactive oxygen species and leaf senescence in Rice. *Mol. Cells* **2014**, *37*, 532-539.

494 37. Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY superfamily of plant
495 transcription factors. *Trends Plant Sci.* **2000**, *5*, 199-206.

496 38. Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic
497 pigments, nitrogen, chlorophyll *a* fluorescence and SPAD-502 readings in coffee leaves. *Sci.*
498 *Hort.* **2005**, *104*, 199-209.

499 39. Sim, C.C.; Zaharah, A.R.; Tan, M.S.; Goh, K.J. Rapid determination of leaf chlorophyll
500 concentration, photosynthetic activity and NK concentration of *Elaeis guineensis* via
501 correlated SPAD-502 chlorophyll index. *Asian J. Agric. Res.* **2015**, *9*, 132-138.

502 40. Mao, C.; Lu, S.; Lv, B.; Zhang, B.; Shen, J.; He, J.; Luo, L.; Xi, D.; Chen, X.; Ming, F. A
503 rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. *Plant Physiol.*
504 **2017**, *174*, 1747-1763.

505 41. Ciolkowski, I.; Wanke, D.; Birkenbihl, R.P.; Somssich, I.E. Studies on DNA-binding
506 selectivity of WRKY transcription factors lend structural clues into WRKY-domain function.
507 *Plant Mol. Biol.* **2008**, *68*, 81-92.

508 42. Fang, Y.; Xie, K.; Xiong, L. Conserved miR164-targeted NAC genes negatively regulate
509 drought resistance in rice. *J. Exp. Bot.* **2014**, *65*, 2119-2135.

510 43. Jiang, D.; Chen, W.; Dong, J.; Li, J.; Yang, F.; Wu, Z.; Zhou, H.; Wang, W.; Zhuang, C.
511 Overexpression of miR164b-resistant *OsNAC2* improves plant architecture and grain yield in
512 rice. *J. Exp. Bot.* **2018**, *69*, 1533-1543.

513 44. Zhang, H.; Zhou, C. Signal transduction in leaf senescence. *Plant Mol. Biol.* **2013**, *82*, 539-
514 545.

515 45. Gu, L.; Dou, L.; Guo, Y.; Wang, H.; Li, L.; Wang, C.; Ma, L.; Wei, H.; Yu, S. The WRKY
516 transcription factor *GhWRKY27* coordinates the senescence regulatory pathway in upland
517 cotton (*Gossypium hirsutum* L.). *BMC Plant Biol.* **2019**, *19*, 116.

518 46. Noodén, L.D. Abscisic acid, auxin, and other regulators of senescence. In: Noodén LD,

519 Leopold AC, editors. Senescence and aging in plants. San Diego: Academic Press; **1988**,
520 p.329–355.

521 47. Breeze, E.; Harrison, E.; McHattie, S.; Hughes, L.; Hickman, R.; Hill, C.; Kiddle, S.; Kim,
522 Y.-S.; Penfold, C.A.; Jenkins, D.; et al. High-resolution temporal profiling of transcripts
523 during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation.
524 *Plant Cell* **2011**, *23*, 873-894.

525 48. van der Graaff, E.; Schwacke, R.; Schneider, A.; Desimone, M.; Flügge, U.-I.; Kunze, R.
526 Transcription analysis of Arabidopsis membrane transporters and hormone pathways during
527 developmental and induced leaf senescence. *Plant Physiol.* **2006**, *141*, 776-792.

528 49. Huang, Y.; Guo, Y.; Liu, Y.; Zhang, F.; Wang, Z.; Wang, H.; Wang, F.; Li, D.; Mao, D.;
529 Luan, S.; et al. 9-cis-Epoxyxcarotenoid dioxygenase 3 regulates plant growth and enhances
530 multi-abiotic stress tolerance in rice. *Front. Plant Sci.* **2018**, *9*, 162.

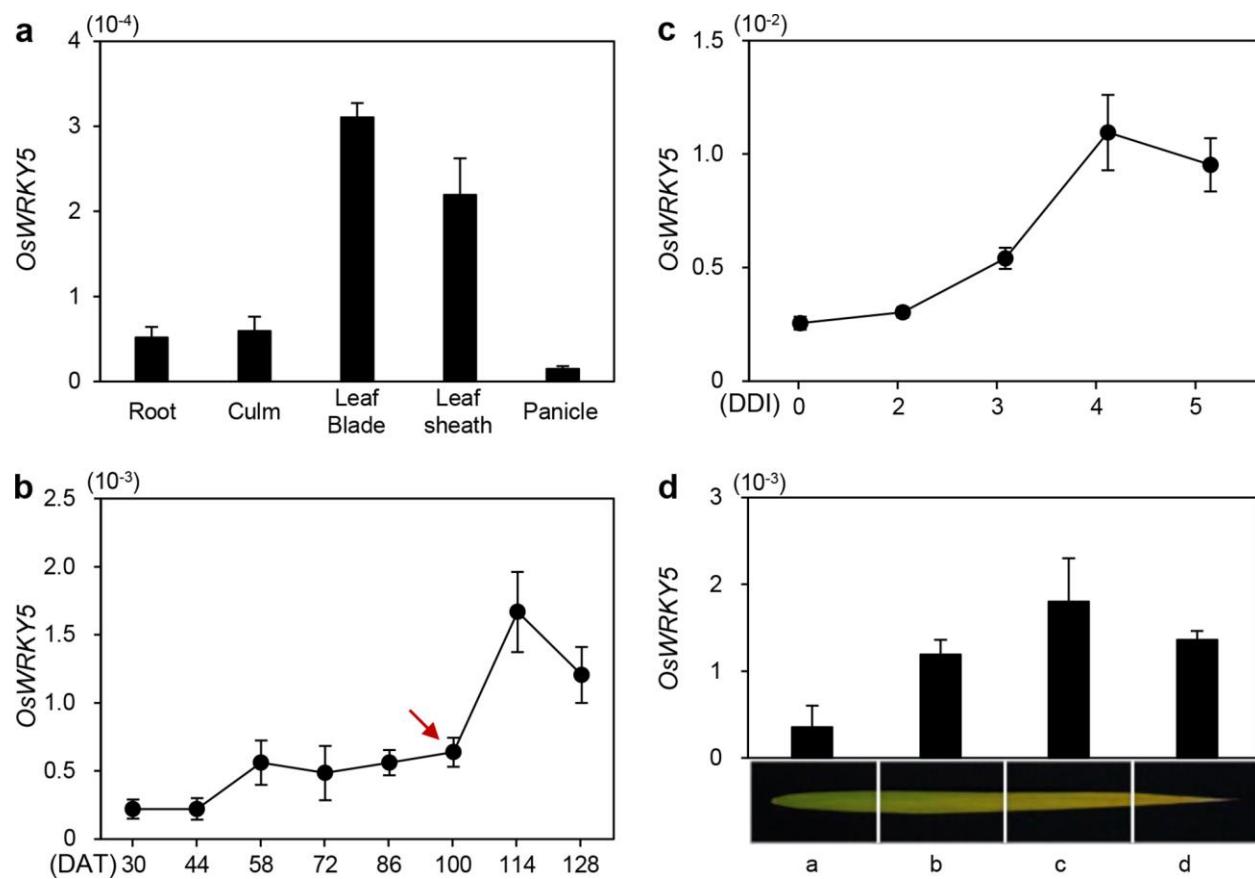
531 50. Ren, T.; Wang, J.; Zhao, M.; Gong, X.; Wang, S.; Wang, G.; Zou, C. Involvement of NAC
532 transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf
533 senescence in foxtail millet. *Planta* **2018**, *247*, 53-68.

534 51. Rushton, D.L.; Tripathi, P.; Rabara, R.C.; Lin, J.; Ringler, P.; Boken, A.K.; Langum, T.J.;
535 Smidt, L.; Boomsma, D.D.; Emme, N.J.; et al. WRKY transcription factors: key components
536 in abscisic acid signaling. *Plant Biotechnol. J.* **2012**, *10*, 2-11.

537 52. Ma, X.; Zhang, Y.; Turečková, V.; Xue, G.-P.; Fernie, A.R.; Mueller-Roeber, B.; Balazadeh,
538 S. The NAC transcription factor SINAP2 regulates leaf senescence and fruit yield in tomato.
539 *Plant Physiol.* **2018**, *177*, 1286-1302.

540 53. Jeon, J.-S.; Lee, S.; Jung, K.-H.; Jun, S.-H.; Jeong, D.-H.; Lee, J.; Kim, C.; Jang, S.; Yang,
541 K.; Nam, J.; et al. T-DNA insertional mutagenesis for functional genomics in rice. *Plant J.*
542 **2000**, *22*, 561-570.

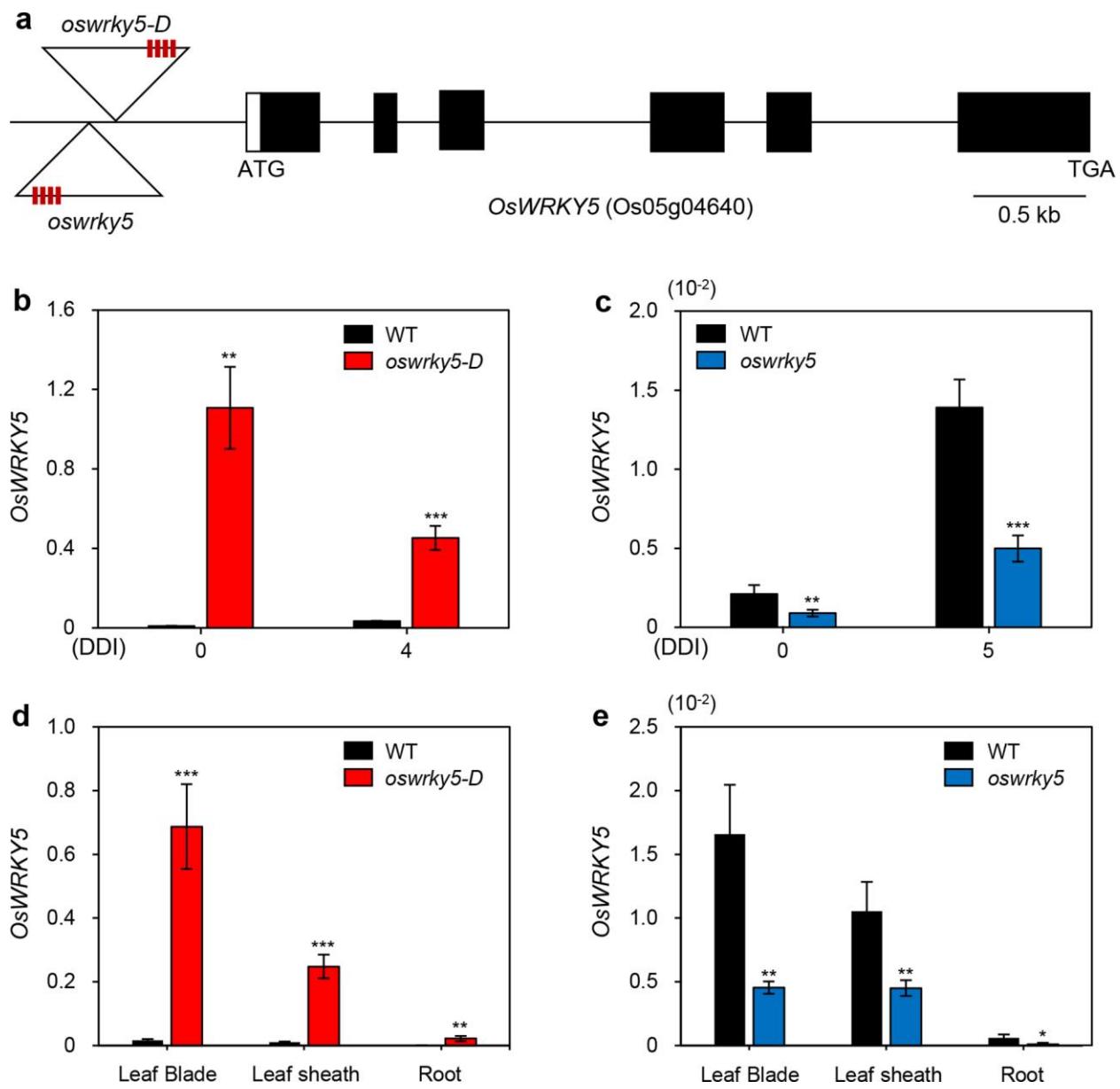
543 54. Jeong, D.-H.; An, S.; Park, S.; Kang, H.-G.; Park, G.-G.; Kim, S.-R.; Sim, J.; Kim, Y.O.;
544 Kim, M.K.; Kim, S.R.; et al. Generation of a flanking sequence-tag database for activation-
545 tagging lines in japonica rice. *Plant J.* **2006**, *45*, 123-132.


546 55. Porra, R.J. Thompson WA, Kriedemann PE. Determination of accurate extinction
547 coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four
548 different solvents: verification of the concentration of chlorophyll standards by atomic
549 absorption spectroscopy. *Biochim. Biophys. Acta BBA - Bioenerg.* **1989**, *975*, 384-394.

550 56. Varkonyi-Gasic, E.; Wu, R.; Wood, M.; Walton, E.F.; Hellens, R.P. Protocol: a highly
551 sensitive RT-PCR method for detection and quantification of microRNAs. *Plant Methods*.
552 **2007**, *3*, 12.

553 57. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time
554 quantitative PCR and the $2^{-\Delta\Delta C_T}$ method. *Methods*. **2001**, *25*, 402-408.

555 58. Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q.; Wang, W. Hormonal changes in the grains of rice
556 subjected to water stress during grain filling. *Plant Physiol.* **2001**, *127*, 315-323.

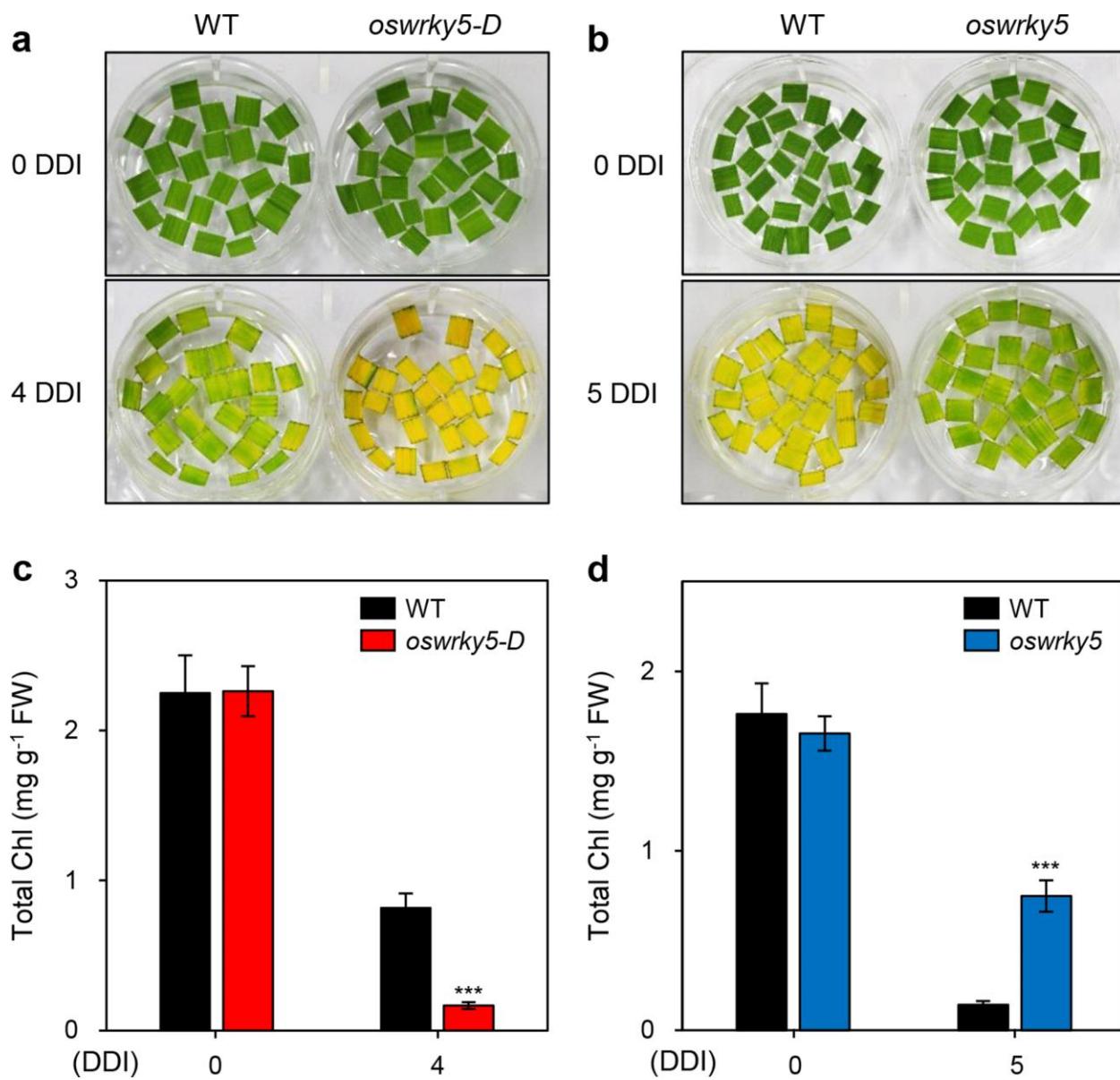

557

558 **Figure 1.** Expression profiles of *OsWRKY5* in rice

559
560 **(a)** *OsWRKY5* mRNA levels in detached organs from the *japonica* cultivar ‘Dongjin’ (hereafter
561 wild type; WT) at the heading stage. *OsWRKY5* was mainly expressed in leaf blade and leaf
562 sheath. **(b, c)** Changes in *OsWRKY5* expression level in leaf blades of WT rice grown in a paddy
563 field **(b)** or in the greenhouse **(c)** under natural long day conditions (≥ 14 h light/day). Red arrow
564 indicates heading date. **(d)** Expression of *OsWRKY5* measured in flag leaves divided into four
565 regions from the green sector **(a)** to the yellow sector **(d)** at 128 days after transplanting (DAT).
566 *OsWRKY5* mRNA levels were determined by RT-qPCR analysis and normalized to that of
567 *OsUBQ5* (Os01g22490). Mean and SD values were obtained from at least three biological
568 samples. Experiments were repeated twice with similar results. DDI, day(s) of dark incubation.

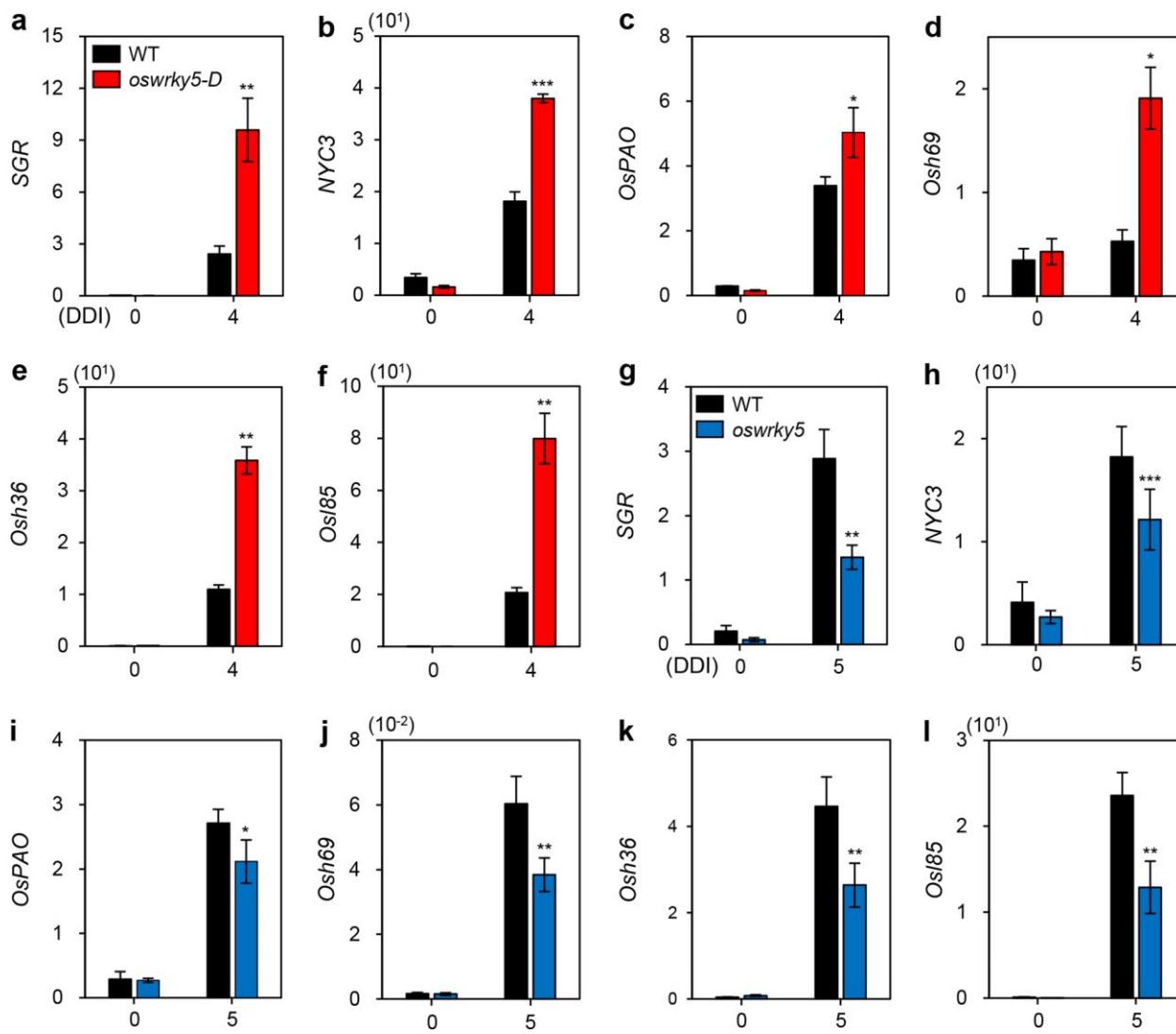
569
570

571


572

573 **Figure 2.** Mutation of *OsWRKY5* by T-DNA insertion.

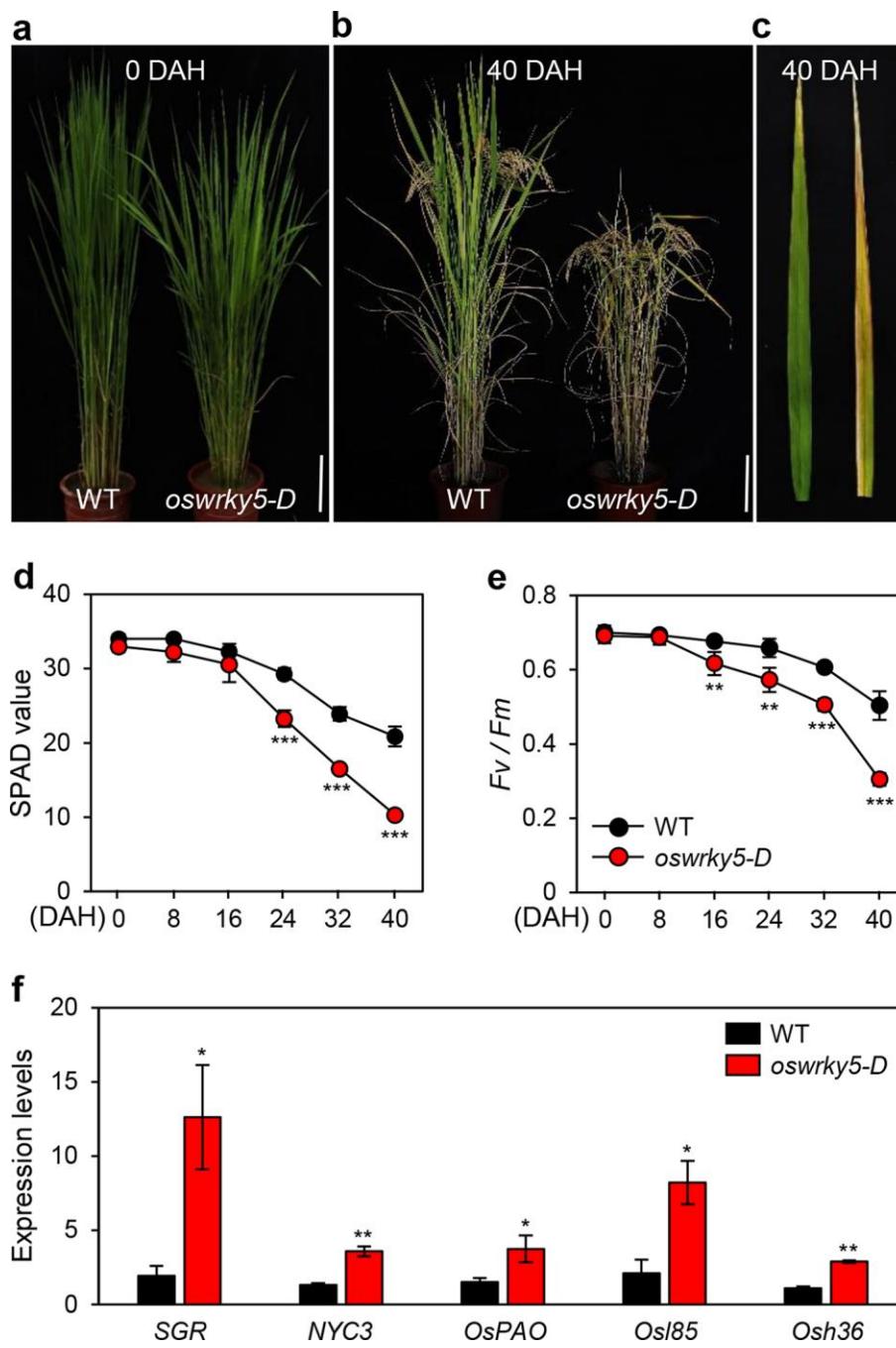
574 (a) Schematic diagram depicting the positions of T-DNA insertions in the promoter region of
 575 *OsWRKY5* (LOC_Os05g04640). Black and white bars represent exons and 5'-untranslated
 576 region, respectively. Open triangles indicate the location of the *OsWRKY5* T-DNA insertions
 577 (*oswrky5-D*, PFG_3A-15928; *oswrky5*, PFG_3A-06060). Red boxes on triangles represent
 578 tetramerized 35S enhancers (4× 35S). (b, c) Total RNA was isolated from detached leaves of
 579 WT and mutant lines (*oswrky5-D* and *oswrky5*) under DIS as shown in Figure 3a and 3b. (d, e)
 580 *OsWRKY5* mRNA levels were measured in rice tissues separated from three-week-old WT and


581 mutant lines. Transcript levels of *OsWRKY5* in *oswrky5-D* (**b**, **d**) and *oswrky5* (**c**, **e**) were
582 determined by RT-qPCR and normalized to the transcript levels of *OsUBQ5*. Mean and SD
583 values were obtained from more than three biological replicates. Asterisks indicate a statistically
584 significant difference from WT, as determined by Student's *t*-test (**P* < 0.05, ***P* < 0.01, ****P* <
585 0.001). DDI, day(s) of dark incubation.

586

587 **Figure 3.** *OsWRKY5* promotes leaf yellowing under DIS conditions.

588 WT and mutant lines (*oswrky5-D* and *oswrky5*) were grown in paddy soil for four weeks under
 589 natural long day conditions (≥ 14 h light/day). **(a, b)** Yellowing of detached leaves induced in 3
 590 mM MES buffer (pH 5.8) at 28°C under complete darkness. Changes in leaf color **(a, b)** and
 591 total chlorophyll (Chl) contents **(c, d)** of *oswrky5-D* or *oswrky5* mutants compared with the WT
 592 after 4 or 5 days of dark incubation (DDI), respectively. Mean and SD values were obtained from
 593 more than three biological replicates. Asterisks indicate a statistically significant difference from
 594 WT, as determined by Student's *t*-test ($***P < 0.001$). Experiments were repeated twice with
 595 similar results. FW, fresh weight.

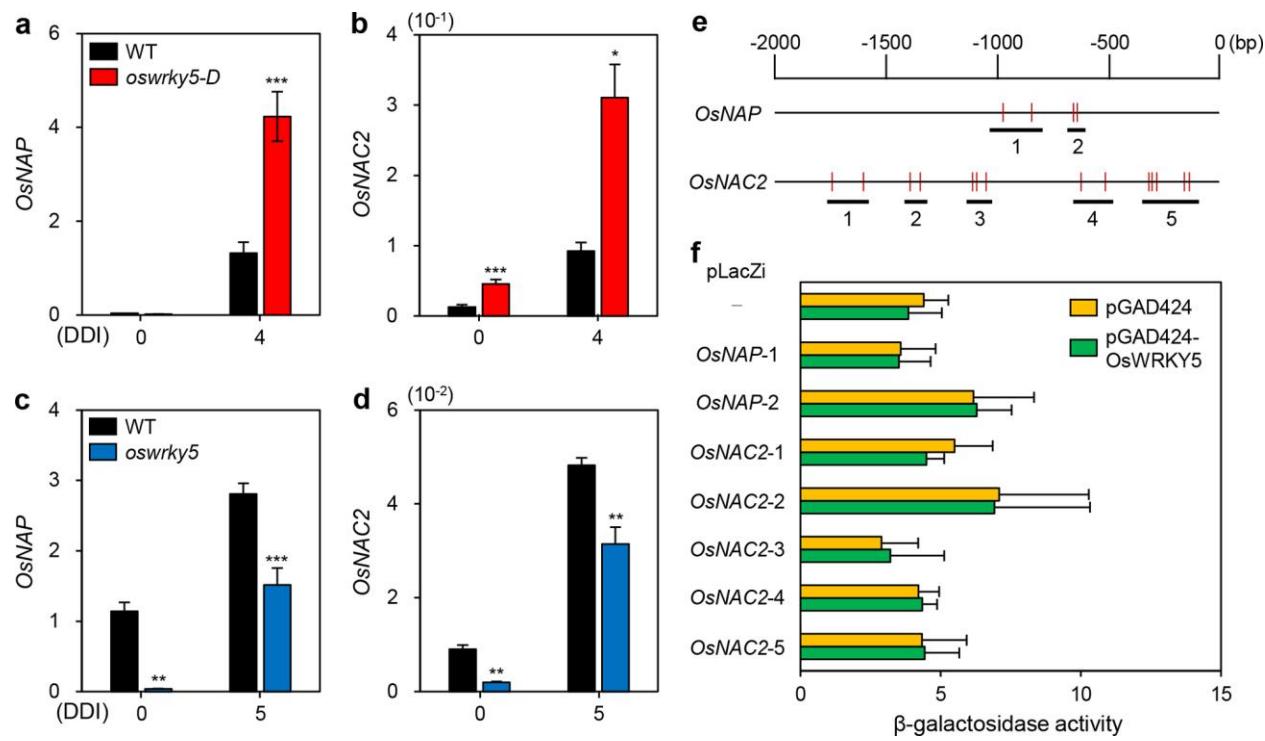


597

598

599 **Figure 4.** Altered expression of CDGs and SAGs in *oswrky5-D* and *oswrky5* during DIS.

600 Total RNA was isolated from detached leaves of WT and mutant lines (*oswrky5-D* and *oswrky5*)
 601 under DIS as shown in Fig. 2(a, b). Expression of CDGs and SAGs in *oswrky5-D* (a-f) or
 602 *oswrky5* (g-l) was compared with that in the WT after 4 or 5 DDI, respectively. Transcript levels
 603 of CDGs (a-c and g-i) and SAGs (d-f and j-l) were determined by RT-qPCR analysis and
 604 normalized to that of *OsUBQ5*. Mean and SD values were obtained from more than three
 605 biological replicates. Asterisks indicate a statistically significant difference from WT, as
 606 determined by Student's *t*-test (**P* < 0.05, ***P* < 0.01, ****P* < 0.001). Experiments were
 607 repeated twice with similar results. CDGs, Chl degradation genes; DDI, day(s) of dark
 608 incubation; SAGs, senescence-associated genes.

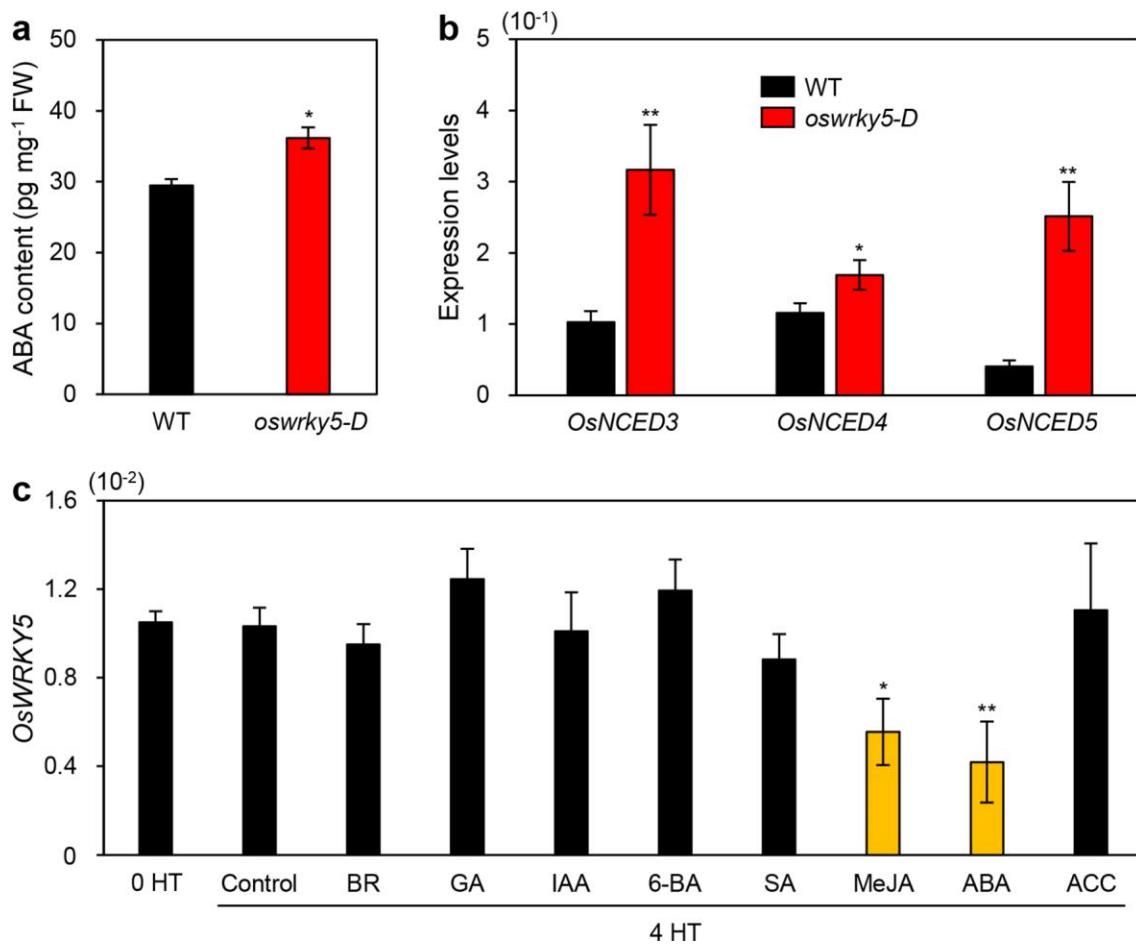


611 **Figure 5.** *oswrky5-D* promotes leaf senescence during NS.

612 WT and *oswrky5-D* plants were grown in a paddy field under natural long-day conditions (≥ 14 h
 613 light/day). (a, b) Phenotypes of WT and *oswrky5-D* plants at heading (0 DAH) (a) and 40 days
 614 after heading (DAH) (b). White scale bars = 20 cm. (c) Senescing flag leaves of WT (left) and
 615 *oswrky5-D* (right) at 40 DAH. Photos shown are representative of five independent plants. (d–e)
 616 Changes in SPAD value (d) and photosystem II (PSII) activity (F_v/F_m) (e) in flag leaves at

617 heading. (f) Expression of CDGs and SAGs measured in senescing flag leaves (c). Transcript
618 levels were determined by RT-qPCR analysis and normalized to that of *OsUBQ5*. Mean and SD
619 values were obtained from more than three biological replicates. Asterisks indicate a statistically
620 significant difference from WT, as determined by Student's *t*-test (**P* < 0.05, ***P* < 0.01, ****P* <
621 0.001).

622


623

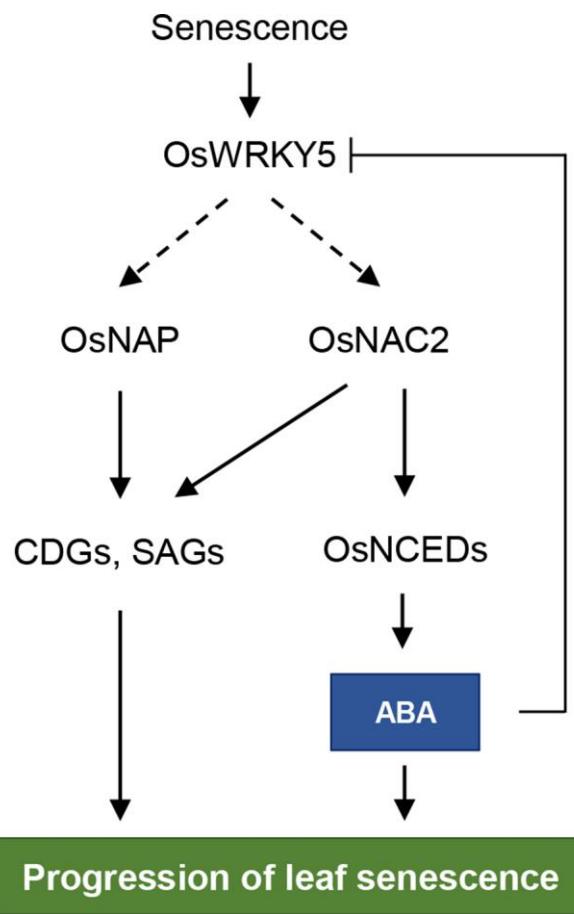
624

625 **Figure 6.** OsWRKY5 indirectly regulates expression of senescence-induced NAC TFs.

626 (a-d) Total RNA was isolated from detached leaves of WT and mutant lines (*oswrky5-D* and
 627 *oswrky5*), as shown in Figure 2(a, b). Transcript levels of *OsNAP* (a, c) and *OsNAC2* (b, d) were
 628 determined by RT-qPCR analysis and normalized to the transcript levels of *OsUBQ5*. Mean and
 629 SD values were obtained from more than three biological replicates. Asterisks indicate a
 630 statistically significant difference from WT, as determined by Student's *t*-test (**P* < 0.05, ***P* <
 631 0.01, ****P* < 0.001). (e, f) Interaction of OsWRKY5 with the promoters of *OsNAP* and *OsNAC2*
 632 by yeast one-hybrid assays. (e) Numbers represent upstream base pairs from the transcriptional
 633 initiation sites of *OsNAP* and *OsNAC2*. Vertical red lines represent the W-box core sequence
 634 (TGAC). Horizontal black bars represent regions containing repetitive TGAC sequences. (f) β-
 635 Galactosidase activity of bait plasmids (pGAD424 and pGAD424-OsWRKY5) evaluated by the
 636 absorbance of chloramphenicol red, a hydrolysis product of chlorophenol red-β-D-
 637 galactopyranoside (CPRG). Empty bait (pGAD424) and prey plasmids (-) were used for negative
 638 controls. Experiments were repeated twice with similar results. DDI, day(s) of dark incubation.

639

640


641

642 **Figure 7.** *OsWRKY5* participates in ABA-mediated senescence pathways.

643 (a) Endogenous ABA contents measured in leaves of WT and *oswrky5-D* plants grown in paddy
 644 soil for 3 weeks under LD conditions. FW, fresh weight. (b) Total RNA was extracted from
 645 leaves of the same WT and *oswrky5-D* plants used for the analysis shown in Figure 6A.
 646 Transcript levels of ABA biosynthetic genes including *OsNCED3*, *OsNCED4*, and *OsNCED5*
 647 were determined by RT-qPCR analysis and normalized to transcript levels of *OsUBQ5*. Mean
 648 and SD values were obtained from more than three biological replicates. Asterisks indicate a
 649 statistically significant difference from WT, as determined by Student's *t*-test (**P* < 0.05, ***P* <
 650 0.01). (c) Ten-day-old WT seedlings grown on 0.5X MS phytoagar medium at 28°C under
 651 continuous light conditions were transferred to 0.5X MS liquid medium only (control) or 0.5X
 652 MS liquid medium containing 50 µM epibrassinolide (BR), 50 µM gibberellic acid (GA), 50 µM
 653 3-indoleacetic acid (IAA), 50 µM 6-benzylaminopurine (6-BA), 100 µM salicylic acid (SA), 50
 654 µM methyl jasmonic acid (MeJA), 50 µM abscisic acid (ABA), or 50 µM 1-aminocyclopropane-

655 1-carboxylic acid (ACC). Total RNA was isolated from leaves after 4 h of treatment. *OsWRKY5*
656 mRNA levels were determined by RT-qPCR analysis and normalized to transcript levels of
657 *OsUBQ5*. Mean and SD values were obtained from more than three biological replicates.
658 Asterisks on orange bars indicate a statistically significant difference from the control, as
659 determined by Student's *t*-test (**P* < 0.05, ***P* < 0.01). Experiments were repeated twice with
660 similar results.

661

662

663

664 **Figure 8.** Proposed model for the role of OsWRKY5 in leaf senescence. Arrows indicate
665 activation and bar-ended line represents inhibition. Solid and dashed arrows represent direct and
666 indirect regulation, respectively.