
 

Initial Results on Deep Learning-based Pilot Contamination Mitigation in Massive 
MIMO Systems 

 
Felipe Augusto P. de Figueiredo 

Department of Information Technology, Ghent University - Gent - Belgium 
felipe.pereira@ugent.be 

 
Abstract 
 

In this brief letter we report our initial results on the application of deep-learning to the                
massive MIMO channel estimation challenge. We show that it is possible to estimate wireless              
channels and that the possibility of mitigating pilot-contamination with deep-learning is possible            
given that the leaning model underwent an extensive training-phase and that it has been              
presented with a large number of different channel conditions. 
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Introduction 

Pilot contamination occurs when two terminals use the same pilot sequence (also known             
as reference signal) at the same time/frequency resource. It can be suppressed by using              
different pilots in adjacent cells - for example, by having a large number of pilots sequences and                 
switching randomly between them. Conventional systems can afford to have many more pilot             
sequences than active terminals, which makes the risk of pilot "collision" rather small. In              
contrast, Massive MIMO cannot afford that since it is supposed to have 20-40 times more active                
terminals on the same time/frequency resource than conventional systems. In other words, if a              
system has 30x more terminals the pilot contamination will be 30x more severe [1, 2]. 

Therefore, techniques to mitigate such problem become of utter importance in Massive            
MIMO systems. 

This work presents our initial results in deep learning for channel estimation, pilot             
contamination mitigation and symbol detection. It demonstrates that DNNs have the ability to             
learn and analyze the characteristics of wireless channels in massive MIMO systems. 
 
Problem definition 

We assume as illustrated in Fig. 1 a multi-cell system with L cells, where each cell has a                  
BS at its center with ​M co-located antenna elements and ​K randomly located single antenna               
users. We also assume ​flat Rayleigh fading channels being independent across users and             
antennas. Let represent the complex gain of the channel from the ​k​th user in the ​l​th cell to  gilkm                 
the ​m​th BS antenna in the ​i​th cell. We can write = where is the large-scale           giikm    √βilk  hiikm   βilk     
coefficient encompassing both path loss and log-normal shadowing. We assume the same            
large-scale coefficient value for all BS colocated antennas, and is the small-scale         hilkm     
coefficient with a circularly-symmetric complex normal distribution ​CN​(0,1). We assume that the            
large-scale fading coefficients do not depend on the antenna index ​m of a given BS because                
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typically, the distance between a user and a BS is significantly larger than the distance between                
the BS antennas. The wireless channels are considered static during the channel coherence             
time, ​τ​, (i.e., channel estimates are effective only in this time interval) and independent across               
users and antennas. 
 

 
Figure 1​ - Problem definition. 

 
Uplink Training 

Each user transmits an uplink training sequence so that the user serving BS can              
estimate the channels per antenna and subsequently detect the transmitted user data. We             
assume that users in different cells transmit data at the same time-frequency resource (a typical               
scenario in massive MIMO) and that the pilot reuse factor is one, the worst possible use case                 
scenario. As all BSs reuse the same set of pilots and transmit at the same time-frequency                
resource, the pilot contamination problem arises, consequently, all the other BSs will also             
receive the pilots sent by users being served by other BSs, limiting the quality of the channel                 
estimation. 

The pilot signals of K users are represented by a N x K matrix ​S of the form ​S = [ , ,                    s1  s2  
…, ], where ​N is the length of the pilot sequences. Each pilot sequence is of the form = [ sK                  sk    

, , ..., . The pilot matrix, ​S​, exhibits orthogonal property = N . Within a cell,s0
k  s1

k   sk
N−1  ]T         SSH    IK     

the K terminals always use orthogonal pilot sequences to eliminate intra-cell pilot interference (τ              
≥ K)​. 

The received uplink training sequences at the ​i​th BS can be represented as a ​M x N                 
matrix defined as  
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As can be seen by analysing the LS equation above, we notice that the received pilot                
signal is contaminated with transmissions from terminals in other cells reusing the same pilot              
sequence.  

The Least Squares (LS) estimator is given by the equation below​. 
 

 
 

As can be seen by analysing the equation above, the channel estimate of is             giik   
contaminated by the channels of other cells reusing the same pilot sequence. 

 
Deep Learning Methods 
 

Deep learning has been successfully applied in a wide range of areas with significant              
performance improvement, including computer vision, natural language processing, speech         
recognition, and so on. A comprehensive introduction to deep learning and machine learning             
can be found in [14]. Generally speaking, DNNs are deeper versions of ANNs by increasing the                
number of hidden layers in order to improve the ability in representation or recognition. Each               
layer of the network consists of multiple neurons, each of which has an output that is a nonlinear                  
function of a weighted sum of neurons of its preceding layer. The nonlinear function may be the                 
Sigmoid function, or the Relu function. The parameters of the model are the weights for the                
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neurons, which need to be optimized before the online deployment. The optimal weights are              
usually learned on a training set, with known desired outputs, i.e., labels. 
 
Precoding techniques 
 

Maximum ratio transmission (MRT, also known as conjugate beamforming) is an           
approach that focuses transmitted signal power to the location of desired terminal, while not              
considering its impact on interference at rest of the terminals. MRT is therefore an              
SNR-maximizing technique. On the other hand, zero-forcing (ZF) design places nulls at the             
location of the rest of the terminals to minimize interference at those terminals. However, it               
transmits the signal in all other directions, a fraction of which may be received by the desired                 
terminal. In general, MRT is preferable for noise-dominated regime, while ZF is preferred for              
high-SNR regime where interference dominates the SINR. 
 
Downlink transmission 
 

During downlink transmission, pilot contamination adversely affects the precoding weight          
vectors for the kth terminal. In case of MRT precoding, the BS uses the channel estimates to                 
focus signal energy at the location of the kth terminal. Due to the contaminated channel               
estimates, some of the transmit power leaks towards the kth terminals in other cells, attenuating               
the signal power at the desired terminal. Moreover, this leakage appears as focused             
interference at these terminals, decreasing their SINR. Thus, the impact of pilot contamination             
on downlink data transmission with MRT precoding is twofold: the signal power lost for desired               
terminal appears as sharply focused interference at other terminals that reuse the same pilot              
sequence. 

 
Remarks 
 

1. MMSE Estimation 
 

The Bayesian MMSE estimator is optimal if the channel statistics are known [5]-[9], while              
the minimum variance unbiased (MVU) estimator is applied otherwise [5]. If , are jointly           zik   gkii    
Gaussian, then the linear MMSE estimator and the optimal (Bayesian) MMSE estimator            
coincide. 

This makes the LMMSE estimator particularly suitable for practical implementations,          
where these moments can be estimated relatively easily, while the full PDF is very hard to                
estimate since it may not follow any known distribution. Note that the MMSE estimator of a                
Gaussian random variable that is observed in independent Gaussian noise, which was            
considered in Lemma B.17, is a linear estimator and thus equals the LMMSE estimator; in other                
words, there exists no better non-linear Bayesian estimators in this special case [10]. 
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The estimator in Theorem 3.1 is therefore sometimes called the linear MMSE (LMMSE)             
estimator. However, we prefer to use the MMSE notion to make it clear that one cannot further                 
reduce the MSE by using a non-linear estimator [10]. 
 

2. Large Scale fading 
 

The measurements in [11] suggest that the large-scale fading is constant for a time              
interval around 100 times longer than the coherence time. The measurements in [12] suggest              
roughly two orders of magnitude slower variations. 

According to [13] in a mobile scenario where Bs = 10 MHz, Ts = 0.5 s, Bc = 200 KHz                    
and Tc = 1 ms, the number of coherence blocks where the large-scale fading can be considered                 
static is equal to 25000. 

 
Performance Assessment 
 

In this section we highlight a few metrics and points to evaluation the performance of the 
deep learning-based pilot-contamination mitigation schemes. 
 

● Flat Rayleigh Fading Channel Model​: initially, we will adopt this model once it is simple 
and will give us a better/faster insight of the possible results of applying deep learning to 
channel estimation and pilot contamination problems. 

 
● Frequency Selective Channel Model 

 
● Realistic Channel Models 

 
● Comparison of MSE and BER with LS/MMSE/Proposed  

 
● Impact of the number of pilots on the performance 

 
● Impact of the number of hidden layers on the performance 

 
● Assess the performance with different deep learning architectures? 

○ Feedforward Neural Networks 
○ Convolutional Neural Networks 
○ Recursive Neural Networks 
○ Recurrent Neural Networks 

 
● How long does it take to train? Relation between number of training vectors and 

observed performance. 
 

Ideas 
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● It might not be necessary to consider other users’ signals as interference, i.e., we could               
try to estimate all the other channels at the same time based on the observation we                
have. Current techniques focus only on estimating the channel from the k-th user in the               
i-th cell and consider the other channels as interference. 

 
Realistic channel models 
 

In this section we list some channel models that represent realistic representation of             
wireless channels.  
 

Geometry-based stochastic models (GSCM) 
○ WINNER II Channel Model for Communications System Toolbox 

■ Widely used for its scalability and reasonable low complexity with respect 
to Ray Tracing. 

■ https://nl.mathworks.com/matlabcentral/fileexchange/59690-winner-ii-cha
nnel-model-for-communications-system-toolbox 

■ The channel model supports: 
● RF frequencies up to 6 GHz, and signal bandwidths up to 100 

MHz. 
● Line-of-sight (LOS) and non-LOS propagation. 
● 12 indoor and outdoor propagation scenarios. 
● Arbitrarily large antenna arrays (for massive MIMO applications). 
● Isotropic, dipole and user-defined antenna element patterns  
● A variety of antenna array types (linear, circular, and user-defined) 

○ Quadriga Channel Model 
■ Quadriga channel model is provided by the Fraunhofer Institute. 
■ Extension of WINNER II and WINNER+ models with full 3D          

characterization of the channel, including a geometric polarization model. 
■ Quasi-deterministic radio channel generator 
■ The model supports: 

● RF frequencies from 500 MHz to 100 GHz, ​and signal bandwidths 
up to ​100 MHz (from version 2 onwards). 

● Line-of-sight (LOS) and non-LOS propagation. 
● 3D spatial consistency of large and small-scale fading based on 

the sum-of-sinusoids method. 
● Multi-frequency simulations (supporting carrier aggregation and 

functional split). 
● Support for scenarios: Indoor office, outdoor, satellite, Rural 

Macrocell and combinations of them. 
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● Scalability from a single input single output (SISO) or 
multiple-input multiple-output (MIMO) link to a multi-link MIMO 
scenario. 

● Support of multi-antenna technologies, polarization, multi-user, 
multi-cell, and multi-hop networks 

■ http://quadriga-channel-model.de/ 
 
Training Scenarios 
 

The training scenarios are based on the ones employed in [4]. In [4], we adopt a typical                 
multi-cell structure as the one shown in Fig. 1 with L = 7 cells, i.e., one central cell surrounded                   
by 6 other cells, K = 10 users in each cell, the frequency reuse factor of 1 and N = K pilot                      
symbols. We consider two different types of setups for setting the large-scale fading coefficients              
{ }:βilk   
 
Fixed values 

For the fixed case, we set = 1 and = a, , where ​a represents the      βiik      βilk     =l / i      
cross-cell interference level. The value selected for “​a” in the fixed case is 0.05 and it is chosen                  
so that there is moderate cross-cell interference level from users being served by other BSs,               
i.e., not being served by the central cell. 
 

● 1st scenario: Channel Estimation MSE versus uplink pilot power​:  
○ M = 70, ​a​ = 0.05, and ​q​ = -10 up to 30 dB. 
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Figure 1 -  Scenario 1: Channel Estimation MSE versus uplink pilot power. 

 
● 2nd scenario: Channel estimation MSE versus cross-cell interference level​:  

○ M = 30,​ q​ = 10 dB, ​a​ = 1e-2 up to 1.  
○ M = 90,​ q​ = 10 dB, ​a​ = 1e-2 up to 1.  
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Figure 2 - Scenario 2: Channel estimation MSE versus cross-cell interference level 

 
 
Conclusions 
 

In this work we have shown that it is possible to estimate wireless channels and that the 
possibility of mitigating pilot-contamination with deep-learning is possible given that the leaning 
model underwent an extensive training-phase and that it has been presented with a large 
number of different channel conditions. 
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