

1 Article

2 **Analysis of factors giving the opportunity for**
3 **implementation of innovations on the example of**
4 **manufacturing enterprises in the Silesian province**

5 **Henryk Wojtaszek¹, Ireneusz Miciuła^{2,*}**

6 ¹ Social Academy of Sciences in Warsaw; h.wojtaszek@interia.pl

7 ² University of Szczecin, Institute of Finance; ireneusz.miciula@usz.edu.pl

8 * Correspondence: ireneusz.miciula@usz.edu.pl;

9

10 **Abstract:** The paper analyzes the actions that improve innovativeness in production enterprises in
11 the Silesian province. Innovation is one of the elements that allows to achieve a competitive
12 advantage. It turns out justified to research various factors that are important in improving
13 innovativeness. The research includes selected production enterprises in the Silesian province,
14 adopting the descriptive statistics measures and statistic tests: random sample test, chi-square
15 independence test and the non-parametric Kruskal-Wallis test based on a survey questionnaire. As
16 part of the most important factors determining the possibilities of innovation by manufacturing
17 companies were detected contacts with other enterprises, R&D centers and counseling institutions,
18 competitive position of the company and creating appropriate incentive systems.

19 **Keywords:** innovation; innovative activities; analysis of factors; production enterprises.

20

21 **1. Introduction**

22 At the beginning of this study the basic knowledge of innovation, competitiveness and
23 specificity of functioning of production enterprises was assumed.

24 The research objective was to conduct an analysis in terms of innovative actions undertaken by
25 production enterprises in the Silesian province. These were small, medium and large enterprises.
26 The group of respondents was composed of owners of managers of the production enterprises as
27 well as their employees. The subject of the research activities included production enterprises in
28 the Silesian province. The research area covered the Silesian province. The research period was
29 2011-2016. A total of 310 production enterprises were surveyed in that time. The main reason for
30 limitation of the surveyed population was the cost and the time-consuming nature of the project.
31 Statistical Offices, Town Halls or Country Office did not have any data on the actual status of active
32 enterprises. The reasons for lack of this information were:

33 - no consistency in the provision of information by entrepreneurs, for example in relation to
34 cessation of activities,
35 - changing formats of reporting on economic operators,
36 - intended fraudulent behaviors of entrepreneurs, e.g. operating on the grey market [1-3].

37 Data from the Central Statistical Office were regarded as the most reliable source of information in
38 the Silesian province. The population data were generated from *www.gov.pl*, which were updated on
39 the basis of data from the Central Statistical Office in Katowice. Therefore, the population of

40 production enterprises was composed of the enterprises classified by the Central Statistical Office in
41 section C of the Classification of Economic Activities, namely "Industrial processing", including:
42 - Division 10 - manufacture of food products,
43 - Division 11 - manufacture of beverages,
44 - Division 12 - manufacture of tobacco products,
45 - Division 13 - manufacture of textiles,
46 - Division 14 - manufacture of wearing apparel,
47 - Division 15 - Manufacture of leather and related products,
48 - Division 16 - manufacture of wood and of products of wood and cork, except
49 furniture;
50 manufacture of articles of straw and plaiting materials,
51 - Division 17 - manufacture of paper and paper products,
52 - Division 20 - manufacture of chemicals and chemical products,
53 - Division 21 - manufacture of basic pharmaceutical products, medicines and
54 pharmaceutical preparations,
55 - Division 22 - manufacture of rubber and plastic products,
56 - Division 23 - manufacture of other non-metallic mineral products,
57 - Division 24 - manufacture of basic metals,
58 - Division 25 - manufacture of fabricated metal products, except machinery
59 and equipment,
60 - Division 26 - manufacture of computers, electronic and optical products,
61 - Division 27 - manufacture of electrical equipment,
62 - Division 28 - Manufacture of machinery and equipment n.e.c.,
63 - Division 29 - manufacture of motor vehicles, trailers and semi-trailers,
64 except for motorcycles,
65 - Division 30 - manufacture of other transport equipment,
66 - Division 31 - manufacture of furniture,
67 - Division 32 - other manufacturing.

68 As of 03 April 2017, there were 36 731 manufacturing enterprises registered in the Silesian province.
69 The status of the surveyed manufacturing enterprises was active during the analysis [4-7].
70

71 **2. Materials and Methods**

72 10% of enterprises meeting the time and spatial criteria were selected for the preliminary
73 research. A random number generator was applied to determine which enterprises from the list are
74 included in the sample. A request for participation in the survey was sent to the selected enterprises.
75 A positive reply was received from 310 enterprises. Regarding the size of the sample (research of
76 both the enterprises and employees of the selected enterprises), high costs, time-consuming nature
77 of the research, the sample was not broadened. For the survey of employee motivation, 2 employees
78 were selected for each of the micro enterprises, 5 for small enterprises, 10 for medium-sized
79 enterprises and 20 for large enterprises, with a total sample of 911 employees [8, 9].

80 The surveying process was carried out during meetings in the production enterprises'
81 premises, through telephone and electronic interviews (receiving the filled-in survey questionnaire
82 by electronic means). One of the employed motivating elements intended to obtain a greater number
83 of responses was the organization of free OHS trainings and other courses available to choose from

84 for employee teams in the surveyed production enterprises [10]. The research was carried out
85 between 01.10.2016 and 03.10.2017, additionally confirming the validity of data in April 2018
86 (verification of the economic activity status in the analyzed enterprises), complementing and
87 obtaining additional data from the interviews conducted with employees of the production
88 enterprises.

89 The survey questionnaires included questions allowing to obtain information about:

- 90 – the age of the enterprise, its size and range of activities,
- 91 – types of innovations introduced by the enterprises and barrier to implementation,
- 92 – evaluation of the innovation levels when compared to the competition, according to the
- 93 – respondents,
- 94 – having an innovation unit responsible for implementation of innovations,
- 95 – factors that motivate the employees to implement innovation,
- 96 – employing the measures that help in implementing the innovations.

97 The main hypothesis was put forward.

98 **Main hypothesis:** *Creating appropriate incentive systems improved the opportunity for implementation*
99 *of innovations in production enterprises.*

100 In order to verify the main hypothesis, detailed hypotheses were put forward:

- 101 – The type of implemented innovations depended on the size of the company, the range of its
- 102 – activity and its age.
- 103 – The employment size does not determine the type of implemented innovation.
- 104 – The range of company's activity determines the implementation of innovation [11].
- 105 – Having an innovation unit does not depend on the size of the company.
- 106 – The range of the company's activities significantly determined the fact of having an
- 107 – innovation unit [12].
- 108 – The type of implemented innovations depended on whether a company had an innovation
- 109 – unit.
- 110 – The reason for not implementing any innovations is lack of development capital [13].
- 111 – The barriers to growth faced by the surveyed enterprises depended on the size of the
- 112 – enterprises.
- 113 – The range of company's operations posed a significant determinant for the barriers to growth
- 114 – [14, 15].

115 Statistical analysis methods were used to develop the research results: descriptive statistics
116 measures and statistical tests: random sample test, chi-square independence test and non-parametric
117 Kruskal-Wallis test. The random sample test, also called the series test, verifies the zero hypothesis:

118 H_0 : the sample is random

119 towards the alternative hypothesis:

120 H_1 : the sample is not random.

121 The hypothesis verification procedure is as follows:

- 122 1. the determination of Me median from the sample,
- 123 2. assign each element of the sample with x_i , according to the order of sampling
- 124 – the test items, the symbol a , if $x_i < Me$, or the symbol b , if $x_i > Me$,
- 125 – the result $x_i = Me$ can be ignored,

126 3. determination of the total number of k series, where a series is any sub-string of a series of a
 127 and b element, having the property that all consecutive elements of the sub-string are of the
 128 same type,
 129 4. assuming that the zero hypothesis is true, the number of k series has a known and tabulated
 130 distribution,
 131 5. the rejection area is two-sided. From the distribution tables for the series numbers for the
 132 presumed significance α , n_1 and n_2 (abundance a and b) we take such critical values k_1 and k_2 ,
 133 so relationships $P(k \leq k_1) = \frac{\alpha}{2}$ and $P(k \leq k_2) = 1 - \frac{\alpha}{2}$ can occur,
 134 6. provided $k \leq k_1$ or $k \geq k_2$ the hypothesis of randomness of the sample is rejected,
 135 whereas
 136 when $k_1 < k < k_2$ there's no basis for rejecting the hypothesis of randomness of the sample.
 137 Where the sample is large, i.e. $n_1 > 20$ or $n_2 > 20$ the above tables cannot be used because, with the
 138 increase in the number of n_1 and n_2 the distribution of the number of series k tends to a normal
 139 distribution, so that the value of the Z statistic has the following form:

$$Z = \frac{k - \frac{2n_1 n_2}{n_1 + n_2} + 1}{\sqrt{\frac{2n_1 n_2 (2n_1 n_2 - n_1 - n_2)}{(n_1 + n_2)^2 (n_1 + n_2 - 1)}}} \quad (1)$$

140 From the normal distribution tables $N(0,1)$ a critical value is determined u_α to have the following
 141 relationship for a predetermined materiality level α : $P(|Z| \geq u_\alpha)$. If the value of the sample U
 142 statistics is such that $|Z| \geq u_\alpha$, we reject the H_0 hypothesis, whereas when $|Z| < u_\alpha$, there are no
 143 grounds to reject the H_0 hypothesis.

144 The *chi-square* independence test verifies the zero hypothesis:

145 H_0 : two variables are independent.

146 towards the alternative hypothesis:

147 H_1 : variables are dependent.

148 A verifying statistics is:

$$\chi^2 = \sum_{i=1}^l \sum_{j=1}^k \frac{(n_{ij} - \hat{n}_{ij})^2}{\hat{n}_{ij}} \quad (2)$$

149 where:

150 - n_{ij} - actual values

151 - \hat{n}_{ij} - theoretical values calculated according to the formula $\hat{n}_{ij} = \frac{n_i n_j}{n}$

152 The test statistic, assuming that the zero hypothesis is true, has the following distribution χ^2 with
 153 $(k - 1)(l - 1)$ degrees of freedom, where k indicates the number of columns (number of variants of
 154 the first attribute) of the analyzed cross table and l indicates the number of rows (number of variants
 155 of the second attribute). The critical area of this test is the right-hand area $[\chi_\alpha^2; \infty]$ where χ_α^2 is the
 156 critical value read from the distribution tables χ^2 for the predetermined significance level α .

157 The Kruskal-Wallis test is used to compare average values between groups. It is a
 158 non-parametric alternative for the single-factor variance analysis, ANOVA. ANOVA single-factor
 159 variance analysis can be used in the case of random samples, compliant with a normal distribution
 160 with groups similar in terms of numbers. The Kruskal-Wallis test does not demand meeting the

161 requirements for the ANOVA variance analysis. These requirements are often difficult to be met,
162 especially in a situation where lack of funds does not allow to broaden the sample, or when the
163 surveyed population is small. The only requirements for the Kruskal-Wallis test are [10, 16]:

- 164 • the dependent variable should be measured on at least an ordinal scale (it can also be
165 measured on a quantitative scale)
- 166 • the observations in the analyzed groups should be independent of each other, which means
167 that a person remaining in one group should also be available in another comparable group.

168 The research results are presented in the paper in a graphic and table format.

169 **3. Results**

170 The survey covered owners and managers of 310 production enterprises operating in the
171 Silesian province. These enterprises were randomly selected from a population of all production
172 enterprises, resulting in a sample of varied enterprises, in terms of both the profile of activity and its
173 age. The obtained sample was random and was confirmed by the results of the series test $Z =$
174 $-1,538; p = 0,124$. There were no grounds to reject the hypothesis of a random character of the
175 sample.

176 The surveyed production enterprises had existed on the market for 20.8 years on average. The
177 youngest company was 1 year old, and the oldest one was 141 years old. The standard deviation of
178 the surveyed enterprises' age was 18.16 years, meaning that the coefficient of variation was at the
179 level of 87%. This means a very large diversity of the surveyed enterprises. A typical company had
180 existed on the market for 2.6 - 39.9 years, thus typical enterprises were almost 94% of the sample.
181 Only 3 enterprises were younger than those typical. There were 16 older enterprises, and they
182 accounted for almost 5% of the surveyed group. The surveyed group was characterized by a right
183 asymmetry, meaning that there were more young enterprises (figure 1).

185

186 **Figure 1.** The age of the surveyed production enterprises. Source: own study based on data from
187 questionnaires.

188 The vast majority of surveyed enterprises, i.e. as much as 72.58%, were micro enterprises employing
189 up to 9 employees. Every fifth enterprise (21.94%) was a small enterprise with 10 to 49 employees.
190 Less than 5% of enterprises were medium enterprises employing from 50 to 249 employees. Large
191 companies account for only 0.65% of the surveyed manufacturing enterprises (figure 2).

192

193

194
195

Figure 2. Structure of the surveyed production enterprises by employment size. Source: own study based on data from questionnaires.

196
197
198
199
200
201

Having the data on the enterprises age and employment size, the hypothesis that the average age of companies depends on the enterprise size has been verified. Results of the Kruskal-Wallis test $H(3) = 3,757; p = 0,289$ carried out did not allow to confirm this hypothesis. No differences were found between the average ages of particular groups of enterprises by size of employment. The average age of micro, small and large enterprises was 17 years (figure 3). The average age of the medium-sized enterprises was 20 years. The difference was not statistically significant [9,15].

202

203
204

Figure 3. Average age of enterprises by employment size. Source: own study based on data from questionnaires.

205
206
207

The majority of surveyed enterprises (69%) covered the area of the whole country with their scope of activity. Every fifth enterprise (20%) operated on the international market. The smallest group was constituted by enterprises of local range (11%).

208
209
210

The enterprise age may determine the range of enterprises operations. Longer-established companies may have greater range of the operation. Results of the Kruskal-Wallis test $H(2) = 0,934; p = 0,627$ carried out did not allow to confirm this assumption. There were no statistically

211 significant differences in the length of existence of enterprises by the range of their operations. The
212 average age of the enterprises operating on a regional and international market was 16 years, and
213 the enterprises operating on the national market 0 17 years.

214 The range of operations of the companies can also depend on the size of the enterprise. Larger
215 companies may need a larger range of activities. Results of the conducted *chi-square independence*
216 $\chi^2(6) = 2,012; p = 0,919$ did not confirm this presumption in relation to the surveyed
217 companies. The majority of micro, small and medium-sized enterprises were of nationwide range.
218 All analyzed large enterprises covered the territory of the whole country with their range. Difference
219 in enterprise structure by employment size and range of operations were not statistically significant
220 (figure 4).

221

222

223 **Figure 4.** Structure of enterprises by employment size and range of activity. Source: own study
224 based on data from questionnaires.

225 The success of an enterprise may depend on its competitive advantage resulting from the introduced
226 innovations. Innovations may be of various character. The majority of surveyed enterprises (58%)
227 introduced such innovations which the respondents were unable to determine the character of or
228 could not decide whether the innovations have been implemented at all. 15% of companies
229 introduced product innovations. Every tenth surveyed company introduced technological
230 innovations (10%) or process innovations (10%). Marketing innovations were introduced by 7% of
231 the surveyed production enterprises. In total, about 42% of the surveyed enterprises introduced
232 some specific innovations (figure 5).

233

234

235
236

Figure 5. Structure of surveyed enterprises by the range of activity. Source: own study based on data from questionnaires.

237
238
239
240
241
242
243
244
245
246

The type of introduced innovations may depend on how long the company has been operating on the market. Results of the Kruskal-Wallis test $H(4) = 2,380; p = 0,666$ did not confirm this hypothesis. There were no statistically significant differences between the average length of existence of the surveyed enterprises by the type of innovations introduced. The enterprises that introduced the product innovations had existed on the market for 18 years on average, similarly to the enterprises that introduced the marketing innovation. The enterprises which introduced the technological innovations had existed on the market for 16 years on average. The longest-established companies on the market were those that introduced process innovations. Companies that did not introduce any innovations or introduced some innovations of other nature had existed on the market for 16 years.

247
248
249
250
251

The employment size may determine the type of introduced innovations. Results of the conducted *chi-square independence test* $\chi^2(12) = 15,066; p = 0,238$ however, they do not confirm this presumption for the surveyed production enterprises. The type of introduced innovations did not depend on the size of surveyed enterprises. Micro, small and medium-sized enterprises introduced the process, technological, product or marketing innovations to a similar degree (figure 6).

252

253
254

Figure 6. Structure of enterprises by employment size and type of introduced innovations. Source: own study based on data from questionnaires.

255 The range of enterprise's activity may determine the introduction of innovations. This assumption
 256 made in relation to the surveyed production enterprises has not been confirmed. Results of the
 257 *Chi-square independence test* $\chi^2(8) = 5,979; p = 0,650$ clearly indicate that there is no link between
 258 the type of innovation introduced and the range of activity of the surveyed manufacturing
 259 enterprises. However, they do not confirm this presumption for the investigated companies.
 260 Regardless of the range of enterprise's activity, the largest number of companies did not introduce
 261 any innovations or introduced some innovations of an unspecified nature (figure 7).
 262

263 **Figure 7.** Structure of enterprises by range of activity and type of introduced innovations. Source:
 264 own study based on data from questionnaires.
 265

266 Introduction of innovations may be supported by an innovation unit in some enterprises. Only 9% of
 267 the surveyed enterprises had such an innovation unit (figure 8).
 268

269 **Figure 8.** Structure of surveyed enterprises depending on whether they have an innovation unit or
 270 not. Source: own study based on data from questionnaires.
 271

272 Having an innovation unit could depend on the age of the enterprise, its size and range of
 273 activity. The results of the *U-Mann-Whitney test* $Z = -1,000; p = 0,317$ did not show any
 differences between the average company's existence due to the fact that there is an innovation unit.
 274

274 Average age of an enterprise having such a unit and not having such a unit was the same, and
 275 amounted to 17 years (figure 9).

276
 277 **Figure 9.** Average age of the enterprises depending on whether they have an innovation unit or not.
 278 Source: own study based on data from questionnaires.

279 The surveyed manufacturing enterprises most often did not have an innovation unit regardless
 280 of the size of the company (figure 10), which was confirmed by the results of the *chi-square*
 281 *independence test* $\chi^2(3) = 5,373; p = 0,146$.

282
 283 **Figure 10.** Structure of enterprises by employment size and type of introduced innovations. Source:
 284 own study based on data from questionnaires.

285 In the case of the surveyed enterprise, a statistically significant determinant for having an innovation
 286 unit was the range of the enterprise's activity which was confirmed by the *chi-square independence test*
 287 *results* $\chi^2(2) = 6,962; p = 0,031$. In most cases these were the local-range enterprises that had the

288 innovation unit, and such a unit was present in the international-range companies least often. The
 289 greater the range of an enterprise, the less often it had an innovation unit (figure 11).

290
 291 **Figure 11.** Structure of enterprises by employment size and type of introduced innovations. Source:
 292 own study based on data from questionnaires.

293 In the surveyed enterprises, having an innovation unit did not influence the type of innovations
 294 introduced, which was confirmed by the *chi-square* independence test $\chi^2(4) = 1,017; p = 0,907$.
 295 Therefore, having an innovation unit did not improve the frequency of innovations introduction
 296 among the surveyed enterprises (figure 12). The innovations were introduced regardless of works
 297 carried out in the specialized units of the surveyed enterprises.

298
 299 **Figure 12.** Structure of enterprises depending on whether they have an innovation unit or not and
 300 the type of introduced innovations. Source: own study based on data from questionnaires.

301 In conclusion, it should be noted that the surveyed enterprises were diverse in terms of age,
302 range of activities and size of employment. These features did not have a significant statistical
303 impact on the type of innovations introduced. The innovations were also not dependent on whether
304 an enterprises had an innovation unit or not. The age of the enterprise and its size also did not
305 impact the fact of having an innovation unit or not. However, this was statistically significantly
306 influenced by the range of the enterprise's operation. The lower the range, the more often an
307 enterprise had an innovation unit. It should therefore be recognized that the determinant of
308 introducing innovations should be sought outside factors such as the age of the enterprise, the range
309 of the enterprise's activity, the size of the enterprise and the fact of having an innovation unit or not.
310 Therefore, the factors that decide about the innovations may include: barriers for introduction of
311 innovations in the enterprise, contacts with other enterprises, R&D centers and counseling
312 institutions, competitive position of the company.

313 In the vast majority, the surveyed manufacturing enterprises (65%) faced a lack of capital for
314 growth, which may be reflected in issues with introducing innovations. One in five enterprises
315 reported a lack of skilled workers as a barrier to growth, while 15% reported outdated technology
316 (figure 13).

317
318 **Figure 13.** Structure of researched enterprises by barriers to growth. Source: own study based on
319 data from questionnaires.

320 Barriers faced by the analyzed companies did not depend on the age of the enterprises, which
321 was confirmed by the results of the Kruskal-Wallis test $H(2) = 2,648; p = 0,266$. The enterprises
322 complaining of lack of capital for growth had operated on the market for 17 years on average. The
323 companies that recognized an outdated technology as the barrier to growth had existed for 14 years
324 on average, the the companies complaining about lack of skilled workers - 18 years. The differences
325 among the listed average values were not statistically significant.

326 **4. Discussion and Conclusions**

327 Authors discuss the results and how they can be interpreted in perspective of previous studies
328 and of the working hypotheses. The research objective was achieved by performing an analysis of
329 activities influencing innovative actions in manufacturing enterprises of the Silesian province. Small,

330 medium and large enterprises were surveyed. The group of respondents was composed of owners of
331 managers of the production enterprises as well as their employees. The subject of the research
332 activities included production enterprises in the Silesian province. The research area covered the
333 Silesian province. The research period was 2011-2016. A total of 310 production enterprises were
334 surveyed in that time. The main reason for limitation of the researched population was the cost and
335 the time-consuming nature of the project. Statistical Offices, Town Halls or Country Office did not
336 have any data on the actual status of active enterprises. The reasons for lack of this information were:
337 inconsistency in the provision of information by entrepreneurs, for example in relation to cessation
338 of activities, changing reporting formats regarding the enterprise, intended fraudulent behaviors of
339 the entrepreneurs.

340 The conducted research suggests that the average age of the enterprises did not depend on their
341 size. The enterprise age may determine the range of enterprises operations. The success of an
342 enterprise may depend on its competitive advantage resulting from the introduced innovations [17].
343 Innovations may be of various character [18]. The longest-established companies on the market were
344 those that introduced process innovations.

345 The type of introduced innovations does not depend on the size of surveyed enterprises, which
346 is confirmed by many other studies [19, 20]. Micro, small and medium-sized enterprises introduced
347 the process, technological, product or marketing innovations to a similar degree. The range of
348 enterprise's activity does not determine the introduction of innovations. Introduction of innovations
349 may be supported by an innovation unit in some enterprises. Only 9% of the surveyed enterprises
350 had an innovation unit. Having an innovation unit could depend on the age of the enterprise, its size
351 and range of activity [21].

352 In the case of the surveyed enterprise, a statistically significant determinant for having an
353 innovation unit was the range of the enterprise's activity which was confirmed by the *chi-square*
354 *independence test results* $\chi^2(2) = 6,962; p = 0,031$. In most cases these were the local-range enterprises
355 that had the innovation unit, and such a unit was present in the international-range companies least
356 often. The greater the range of an enterprise, the less often it had an innovation unit.

357 In the surveyed enterprises, having an innovation unit did not influence the type of innovations
358 introduced, which was confirmed by the *chi-square independence test* $\chi^2(4) = 1,017; p = 0,907$.
359 Therefore, having an innovation unit did not improve the frequency of innovations introduction
360 among the surveyed enterprises. The innovations were introduced regardless of works carried out in
361 the specialized units of the surveyed enterprises in relation to age, range of activity and
362 employment size. These features did not have a significant statistical impact on the type of
363 innovations introduced. The innovations were also not dependent on whether an enterprises had an
364 innovation unit or not. The age of the enterprise and its size also did not impact the fact of having an
365 innovation unit or not [22]. However, this was statistically significantly influenced by the range of
366 the enterprise's operation. The lower the range, the more often an enterprise had an innovation unit.
367 It should therefore be recognized that the determinant of introducing innovations should be sought
368 outside factors such as the age of the enterprise, the range of the enterprise's activity, the size of the
369 enterprise and the fact of having an innovation unit or not. Therefore, the factors that decide about
370 the innovations may include: barriers for introduction of innovations in the enterprise, contacts with
371 other enterprises, R&D centers and counseling institutions, competitive position of the company.

372 In the vast majority, the surveyed manufacturing enterprises (65%) faced a lack of capital for
373 growth [23, 24], which may be reflected in issues with introducing innovations. One in five
374 enterprises reported a lack of skilled workers as a barrier to growth, which is also confirmed by
375 other studies [25]. In addition, an important factor reported in the study was (15%) outdated
376 technology. The barriers that the analyzed enterprises had to face did not depend on the age of the
377 companies.

378

379 **Author Contributions:** "conceptualization, H.W.; methodology, H.W. and I.M.; software, H.W. and I.M.;
380 validation, H.W. and I.M.; formal analysis, H.W. and I.M.; investigation, H.W. and I.M.; resources, H.W. and
381 I.M.; data curation, H.W. and I.M.; writing—original draft preparation, H.W. and I.M.; writing—review and
382 editing, H.W. and I.M.; visualization, H.W. and I.M.; supervision, H.W. and I.M.; project administration, I.M.;
383 funding acquisition, I.M.".

384 **Funding:** "The project is financed within the framework of the program of the Minister of Science and Higher
385 Education in Poland under the name "Regional Excellence Initiative" in the years 2019-2022, project number
386 001/RID/2018/19, the amount of financing PLN 10,684,000.00".

387 **Acknowledgments:** Many thanks to Professor Joanna Nowakowska-Grunt and Professor Leon Dorozik for
388 scientific support and Justyna Miciuła for administrative and spiritual support.

389 **Conflicts of Interest:** The authors declare no conflict of interest.

390 References

1. Ja-Shen, Ch.; Hung, T.T.; Russell, Ch. Co-production and its effects on service innovation. *Industrial Marketing Management*, 2011, 40(8), 1331-1346, <https://dx.doi.org/10.1016/j.indmarman.2011.03.001>.
2. Behrouzi, F.; Wong, K. Y. Lean performance evaluation of manufacturing systems: a dynamic and innovative approach. *Procedia Computer Science*, 2011, 3, 388-395. <https://dx.doi.org/10.1016/j.procs.2010.12.065>.
3. Ponds, R.; Oort, F. V.; Frenken, K. Innovation, spillovers and university–industry collaboration: an extended knowledge production function approach. *Journal of Economic Geography*, 2009, 10(2), 231-255. <https://dx.doi.org/10.1093/jeg/lbp036>.
4. Bathelt, H. Geographies of production: growth regimes in spatial perspective 1-innovation, institutions and social systems. *Progress in Human Geography*, 2003, 27(6), 763-778. <https://dx.doi.org/10.1191/0309132503ph462pr>.
5. Mohnen, P.; Hall, B. H. Innovation and productivity: an update. *Eurasian Business Review*, 2013, 3(1), 47-65. <https://dx.doi.org/10.14208/BF03353817>.
6. Lewis, M. A. Lean production and sustainable competitive advantage. *International Journal of Operations & Production Management*, 2000, 20(8), 959-978. <https://dx.doi.org/10.1108/01443570010332971>.
7. Ngo, L. V.; O'cass, A. Innovation and business success: The mediating role of customer participation. *Journal of Business Research*, 2013, 66(8), 1134-1142. <https://dx.doi.org/10.1016/j.jbusres.2012.03.009>.
8. Roper, S.; Du, J.; Love, J. H. Modelling the innovation value chain. *Research policy*, 2008, 37(6-7), 961-977. <https://dx.doi.org/10.1016/j.respol.2008.04.005>.
9. Mairesse, J.; Mohnen, P. Using innovation surveys for econometric analysis. In *Handbook of the Economics of Innovation*, Bronwyn H.H., Nathan R., Eds.; Elsevier: Amsterdam, Holland, 2010; Volume 2, pp. 1129-1155. [https://dx.doi.org/10.1016/S0169-7218\(10\)02010-1](https://dx.doi.org/10.1016/S0169-7218(10)02010-1).
10. Love, J. H.; Roper, S. Organizing the innovation process: complementarities in innovation networking. *Industry and Innovation*, 2009, 16(3), 273-290. <https://dx.doi.org/10.1080/13662710902923776>.
11. Klingenberg, B.; Timberlake, R.; Geurts, T. G.; Brown, R. J. The relationship of operational innovation and financial performance—A critical perspective. *International Journal of Production Economics*, 2013, 142(2), 317-323. <https://dx.doi.org/10.1016/j.ijpe.2012.12.001>.
12. Dorenbosch, L.; Engen, M. L.; Verhagen, M. On-the-job innovation: The impact of job design and human resource management through production ownership. *Creativity and innovation management*, 2005, 14(2), 129-141. <https://dx.doi.org/10.1111/j.1476-8691.2005.00333.x>.

421 13. Veza, I.; Mladineo, M.; Gjeldum, N. Managing innovative production network of smart factories.
422 *IFAC-PapersOnLine*, 2015, 48(3), 555-560. <https://dx.doi.org/10.1016/j.ifacol.2015.06.139>.

423 14. Stern, S.; Porter, M. E.; Furman, J. L. The determinants of national innovative capacity. *Research Policy*,
424 2002, 31(6), 899-933. [https://dx.doi.org/10.1016/S0048-7333\(01\)00152-4](https://dx.doi.org/10.1016/S0048-7333(01)00152-4).

425 15. Peri, G. Determinants of knowledge flows and their effect on innovation. *The Review of Economics and*
426 *Statistics*, 2005, 87(2), 308-322. <https://dx.doi.org/10.1162/0034653053970258>.

427 16. Aguado, S.; Alvarez, R.R.; Domingo, R. Model of efficient and sustainable improvements in a lean
428 production system through processes of environmental innovation. *Journal of Cleaner Production*, 2013, 47,
429 141-148. <https://dx.doi.org/10.1016/j.jclepro.2012.11.048>.

430 17. Miciuła, I. Methods of Creating Innovation Indices Versus Determinants of Their Values. *Eurasian*
431 *Economic Perspectives. Eurasian Studies in Business and Economics*, 2018, 8(2), 357-366.
432 https://dx.doi.org/10.1007/978-3-319-67916-7_23.

433 18. Giuseppe, I.; Szopik-Depczyńska, K.; Stajniak, M.; Konecka, S. Supply chain and innovation activity in
434 transport related enterprises in Eastern Poland. *Logforum* 2016, 12 (4), 227-236. <https://dx.doi.org/10.17270/J.LOG.2016.4.4>.

436 19. Capel, C. Mindfulness, indigenous knowledge, indigenous innovations and entrepreneurship. *Journal of*
437 *Research in Marketing and Entrepreneurship*, 2014, 16(1), 63-83. <https://dx.doi.org/10.1108/JRME-10-2013-0031>.

439 20. Galindo, M.A.; Mendez, M.T. Entrepreneurship, economic growth, and innovation: Are feedback effects at
440 work?. *Journal of Business Research*, 2014, 67(5), 825-829. <https://dx.doi.org/10.1016/j.jbusres.2013.11.052>.

441 21. Zhao, F. Exploring the synergy between entrepreneurship and innovation. *International Journal of*
442 *Entrepreneurial Behaviour & Research*, 2005, 11(1), 25-41, <https://dx.doi.org/10.1108/13552550510580825>.

443 22. Zwolak, J. The Effectiveness of Innovation projects in Polish industry. *Review of Innovation and*
444 *Competitiveness: A Journal of Economic and Social Research*, 2016, 2(1), 97-110.
445 <https://dx.doi.org/10.32728/ric.2016.21/6>.

446 23. Kraus, S.; Richter, Ch.; Brem, A.; Cheng, Ch.F.; Chang, M.L. Strategies for reward-based crowdfunding
447 campaigns. *Journal of Innovation & Knowledge*, 2016, 1(1), 13-23. <https://dx.doi.org/10.1016/j.jik.2016.01.010>.

448 24. Miciuła, I. Financial innovations on the currency market as new instruments to risk management. *Journal of*
449 *International Studies*, 2015, 8(1), 138-149. <https://dx.doi.org/10.14254/2071-8330.2015/8-1/12>.

450 25. Garcia, S.; Luis, J.; Perez-Ruiz S. Development of capabilities from the innovation of the perspective of
451 poverty and disability. *Journal of Innovation & Knowledge*, 2017, 2(2), 74-86.
452 <https://dx.doi.org/10.1016/j.jik.2017.03.005>.