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The study found an error in current literature, including numerous textbooks, about the number
of independent unknowns in the Reynolds stress tensor and/or in Reynolds-averaged Navier-Stokes
equations (RANS). Current literature claims that the Reynolds stress tensor has six unknowns;
however, this article shows that the Reynolds stress tensor only has independent three unknowns,
which are functions of the three components of fluctuation velocity. This research discovers that the
misconception about the number of independent unknowns in the RANS could stem from misinter-
preting the Reynolds stress tensor. The misconception has hampered the development of turbulence
for longtime. In order to find a way out of this difficult situation, we return to the time of Reynolds
in 1895 and revisit Reynolds’ averaging formulation of turbulence. The present investigation can be
considered as a renaissance of Reynolds’ work in 1895, which might shed light on the well-known
closure problem of turbulence, and help to understand the puzzle of the turbulence closure problem
that has eluded scientists and mathematicians for more than a century.

Keywords: Turbulence, number of independent unknowns, Reynolds stress tensor, RANS, turbulence closure
problem

I. INTRODUCTION

/I am an old man now, and when I die
and go to heaven there are two matters on
which I hope for enlightenment. One is rela-
tivity/quantum mechanics/quantum electro-
dynamics [in various versions], and the other
is turbulent motion of fluids. About the for-
mer I am rather optimistic.0–Horace Lamb
[1]

You’re on a airplane when you feel a sudden jolt. Out-
side your window nothing seems to be happening, as yet
the plane continues to rattle you and your fellow passen-
gers as it passes through turbulent air in the atmosphere,
and yet, turbulence is ubiquitous, springing up in virtu-
ally any system that has moving fluids. That includes
that airflow in your respiratory tract. The blood mov-
ing through your arteries. And the coffee in your cup
as you stir it. Clouds are governed by turbulence, as are
waves crashing along the shore and the gusts of plasma in
our Sun. Understanding precisely how this phenomenon
works would have a bearing on so many aspects of our
lives [2–28, 30–42, 44–53, 55–65].

The turbulence phenomenon is one of the greatest pre-
vailing unsolved mysteries of physics. After more than a
century of studying turbulence, we’ve found a few an-
swers on how it works, and affects the world around us.
Most scientists argue that this will be by achieved relying
on statistics and increased computing power. Extremely
high-speed computer simulations of turbulent flows may
help to identify patterns that lead to a theory that or-
ganizes and unifies predictions for different situations.
Other scientists state that the phenomenon is so com-
plex that such a full-fledged theory will not be possible

[2–28, 30–42, 44–53, 55–65].

In respect of the turbulence problem, a myriad of ten-
tative theories have been proposed and each with its own
doctrines and beliefs, which often focused on particular
experiments; however, there is not much in the way of
a coherent theoretical framework [6, 8–17, 39–41]. Tur-
bulence is a unique subject, which engineers, mathemati-
cians and physicists view differently [36]. Many engineers
promote the use of semi-empirical models of turbulence
[36], while mathematicians advocate the use of purely
statistical models [5, 7, 30, 31, 45–48, 55, 56], the reno-
malization model [34], and the formalism of chaos theory
and fractals [49–51].

In 1972 a new chapter was launched in turbulence the-
ory: [52] demonstrated that it was possible to perform di-
rect numerical simulation (DNS) of a fully turbulent flow.
It is important to understand that DNS does not require
any turbulence model to parameterize influence of the
turbulent eddies. Rather, every eddy, from the largest to
the smallest, is computed. From a technical perspective,
the turbulence can be solved by DNS if computers have
infinite speed. However, a huge chasm remains between
what the engineer needs to know, and what can be re-
alized by DNS, using current computers. Even if DNS
can assist to solve turbulence issues and problems, one
still requires turbulence modelling to acquire a physical
understanding of it [37].

Although the above-mentioned professionals have dif-
ferent views about turbulence, there is consensus that the
deterministic Navier-Stokes equation probably contain-
s all the information about turbulence [6]. Turbulence
prediction can be attained by understanding solutions
to the Navier-Stokes equations [5, 6, 8–25, 27, 28, 30–
42, 44–53, 55–62, 64, 65]. Navier [21] and Poisson [22]
first obtained these equations, which were finally shown
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by St. Venant and Sir Gabbriel Stokes [23, 24] on vari-
ous considerations as to the mutual action of the ultimate
molecules of fluids [19, 20]. Hence, numerous works have
been reported on various aspects of the Navier-Stokes
equations. [6, 8–19, 25, 28, 39–41].

The article adopts Reynolds’s deterministic view on
the turbulence [19], and revisits the Reynolds-averaged
Navier-Stokes equations (RANS). This article deals with
a basic problem in turbulence analysis, namely the num-
ber of unknowns in the Reynolds stress tensor. This is
obviously a fundamental question in fluid mechanics as
well. The research in this paper reveals that the RAN-
S only has three independent unknowns instead of six,
is stated in current literature, including textbooks [8–
15, 18, 30–33, 39–41].

Although the Reynolds-averaged-Navier-Stokes-
Equations (RANS) have been formulated for more than
120 years, much of current literature and standard
turbulence textbooks have incorrect information about
the number of unknowns and this prevented solving
the turbulence problem. Hence, if the number of
unknowns are incorrect, no solutions will be possible.
This situation must be corrected immediately, else it
will be harmful for turbulence studies.

In view of the fact that no essential result on turbu-
lence definition has been made, it would probably be fit-
ting to return to the beginning of turbulent research, that
is, in 1895, to study Reynolds’ seminal studies to redis-
cover certain useful information.

The aims of this paper are to revisit Reynolds’ aver-
aging formulation of turbulence, and to clarify the num-
ber of unknowns in the Reynolds stress tensor and/or in
RANS. The paper is organized as follows: following an
introduction, we introduce Reynolds velocity decompo-
sition and reformulate Reynolds-averaged Navier-Stokes
equations in tensorial form; we point out an importan-
t question about the number of independent unknowns
in both the Reynolds stress tensor and the RANS; we
provide three mathematical lemma and evidence about
the number of independent unknowns. Finally, the pa-
per concludes with perspectives about the future devel-
opment of turbulence research.

II. REYNOLDS-AVERAGED NAVIER-STOKES
EQUATIONS AND DETERMINISTIC NATURE

From the infinitesimal analysis of the Naviers-Stokes e-
quation [43], there are 10 Lie groups have been founded,
however there is no one group is suitable to the turbu-
lence solution.

In ground-breaking research, Reynolds [19], considered
turbulence from a different perspective. Assuming that
turbulent motion already exists, he sought to establish a
criterion, which decides whether the turbulent character
will increase or diminish, or remain stationary [20].

From experiments, Reynolds [19], discovered the tur-
bulence solution could be expressed in the sum of mean

and fluctuation part of velocity field, which is the so-
lution not been founded by the Lie group analysis [19].
Reynolds’ solution method is a quite general approach for
any nonlinear partial differential equations (PDE), which
transfers the PDE to integro-differential equations.

In 1895 Reynolds proposed that flow velocity u and
pressure p are decomposed into its time-averaged quan-
tities, ū, p̄, and fluctuating quantities, u′, p′; thus, the
Reynolds’ decompositions are:

u = ū(x) + u′(x, t), (1)

p(x, t) = p̄(x) + p′(x, t), (2)

where coordinates and time are (x, t). According to
Reynolds, ū represent a mean-motion at each point and
u′ a motion at the same point as the mean-motion at the
point. Therefore, Reynolds called the ū mean-motion
and u′ relative-mean-motion [19]. Both velocity and ve-
locity and pressure time-averaging definitions are defined
as

ū(x) = lim
T→∞

1

T

∫ t0+T

t0

u(x, t)dt, (3)

p̄(x) = lim
T→∞

1

T

∫ t0+T

t0

p(x, t)dt, (4)

where T is the period of time when the averaging takes
place and must be sufficiently large to give meaningful
averages to measure mean values. Naturally, the time-
fluctuation velocity u′ = u−ū(x), pressure p′ = p−p̄(x);
and their time-averaging vanish, namely ū′ = 0 and p̄′ =
0.

Decomposition causes the Navier-Stokes equation to
transform into Reynolds-averaged Navier-Stokes equa-
tions (RANS), as follows

ρ∇ · (ū⊗ ū) + ∇p̄ = µ∇2ū+ ∇ · τ , (5)

∇ · ū = 0, (6)

where dynamic viscosity µ, gradient operator ∇ = ei∇i,
base vector in the i-coordinate ei, and tensor product ⊗,
and the Reynolds stress tensor is given by

τ (x) = −ρu′ ⊗ u′ = −ρ lim
T→∞

1

T

∫ t0+T

t0

(u′ ⊗ u′)dt, (7)

which reveals that Reynolds stress is apparent, depending
on the fluctuating velocity field u′.

In order to obtain more information about the
Reynolds’ stress tensor, Reynolds [19] derived veloci-
ty fluctuation equations, namely the equation (16) in
[19]), called the equations of momentum of relative-mean-
motion at each point. Chou [32] reformulated these e-
quations into index-tensorial at form. The equations are
presented in below bold-face tensorial form as follows

ρu′
,t + ρ∇ · (ū⊗ u′ + u′ ⊗ ū+ u′ ⊗ u′) + ∇p′

= µ∇2u′ + ρ limT→∞
1
T

∫ t+T
t

∇ · (u′ ⊗ u′)dt, (8)

∇ · u′ = 0. (9)
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These are integral-differential equations governing ū, u′

and p′.

In above Eqs.5,6, 10 and 11 and relevant relations, why
we express the problem in tensorial format instead of in
cartesian components one, it is because that such formu-
lations will not reply on any choice of coordinates, there-
fore, the results in this paper will be more general and
universal. A basic philosophy of modern physics is that
the universe does not come equipped with a coordinate
system. While coordinate systems are necessary for doing
specific calculations, the choice of the coordinate system
to use is a matter of convenience, and there is often no
”best” coordinate system. One should strive to write the
laws of physics in a manifestly coordinate-independent
manner, so one can see what they are really saying and
not get distracted by things that might depend on the
coordinates [54].

Denoting kinematic viscosity ν = µ/ρ, the Eqs.5,6 can
be equivalently rewritten in conventional form, namely

ū ·∇ū+ limT→∞
1
T

∫ t0+T
t0

(u′ ·∇u′)dt

= − 1
ρ∇p̄+ ν∇2ū (10)

∇ · ū = 0. (11)

These integro-differential equations are called Reynolds-
averaged Navier-Stokes equations (RANS), which were
the equations (15) in [19] that Reynolds formulated, call-
ing them equations of mean-motion at every point. It is
clear that the RANS are deterministic equations rather
than statistical ones [19, 20].

It is worth pointing out that for the deterministic ve-
locity field u(x, t), the Reynolds decomposition in Eqs.
1 and 2 can always be well-defined by Eqs. 3 and 4. In
other words, Reynolds decomposition can always be con-
structed for any flow motion, regardless of turbulent flow
or not.

The governing equations of flows are deterministic, not
random. So fundamentally turbulent fields are not ran-
dom because their generating dynamics is not random
[29]. Random is not intrinsic properties of turbulent
field while extrinsic ones. It is misleading to consider
the essence of turbulence as a random motion, and the
flow velocity field u as a statistical function [30]. Be-
cause there is consensus on turbulence, namely that the
deterministic Navier-Stokes equations contain all the re-
quired information about turbulence [6], means that the
essence of the flow velocity and its Navier-Stokes equa-
tions is deterministic, rather than random. Taylor [30]
introduced a statistical approach and attempted to study
turbulence from a statistical point of view; however, the
approach is merely a mathematical method for solution-
s, which cannot change the deterministic nature of flow
velocity u and Navier-Stokes equations. In physics, tur-
bulence cannot be considered as a random motion simply
because it is difficulty to solve. Generally speaking, any
mathematical method used for solving a problem should
not change the physics of the problem.

III. HOW MANY UNKNOWNS ARE THERE IN
THE REYNOLDS STRESS TENSOR AND/OR
REYNOLDS-AVERAGED NAVIER-STOKES

EQUATIONS ?

All current literature including textbooks, report that
the Reynolds stresses τ have six unknowns (Later we
will show that the Reynolds stresses only have three un-
knowns instead of six). This traditional understanding
has resulted in consensus that there are 10 unknowns as
shown in Eqs.5, 6 and/or Eqs.10, 11.

In his 1895 paper [19], Reynolds did not discuss the
number of unknowns in the RANS. However, from his
presentation we note that he never considered the term
ρu′ ⊗ u′ as independent unknowns, while for some cases
he proposed explicit expressions for the velocity fluctu-
ation u′ on page 149, and equation (50) on page 158 of
his paper [19]. For instance, one expression he proposed
on page 149 of [19] is:∑[

Ar cos

{
r

(
nt+

2π

a
x

)}]
and in the section, Expressions for the components of
possible relative-mean-motion, he proposed a similar ex-
pression on page 15 of [19], as follows:

u′ =

∞∑
0

{
(
dαn
dy

+
dγn
dz

cos(nlx) + (
dβn
dy

+
dδn
dz

) sin(nlx)

}
,

v′ =

∞∑
0

{nαn sin(nlx)− nlβn cos(nlx)} ,

w′ =

∞∑
0

{nγn sin(nlx)− nlδn cos(nlx)} .

Reynolds also compiled integrations by using the above
expressions, for example, equation (58) on page 159 of
Reynolds’s research [19], which is shown below:∫∫

ρu′v′
dū

dy
dydz

=
1

2

∫∫ ∑[
nl

(
αn

dβn
dy
− βn

dαn
dy

)
dū

dy

]
dydz.

Giving the above expressions means that Reynolds re-
garded the velocity fluctuation u′ not only as indepen-
dent unknowns but also deterministic quantity (not a
random one !). Please see Reynolds research paper [19]
for the meaning of the notations in the above expression-
s..

Due to limited references, the author does not know
who was the first person who proposed the 10-unknowns
perception in the RANS. This mistake in classical physics
has hampered the development of turbulence.

The RANS in equation 5 and 6 have four independent
equations that governs the mean velocity field, namely
the three components of the Reynolds equation; equa-
tion 5 together with the mean continuity equation 6. As
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a matter of fact, these four equations contain more than
four independent unknowns. In addition to ū and p̄,
there are also the Reynolds stresses τ , which results in
the Reynolds-averaged Navier-Stokes equations being un-
closed. The closure problem has been considered as the
number one topic in turbulence during the past several
decades, while scientists and engineers have made many
attempts to solve this closure problem, however, no uni-
versal modelling has been proposed.

Regarding the RANS closure problem, the curren-
t consensus is that there are six unknown components
in the symmetric Reynolds stress tensor τ , namely
τ11, τ12, τ13, τ22, τ23, τ33. However, this research study
presents a complete different perspectives. The Reynold-
s stress tensor τ only has three independent unknown-
s, which are fully determined by the velocity fluctua-
tion components u′i (i = 1, 2, 3) owing to the fact that
the Reynolds stress tensor is simply an integration of a
second order dyadic tensor of flow velocity fluctuations
rather than a general symmetric tensor.

IV. LEMMA

Following lemmas support the above statement.

Lemma 1 Given two vectors, v(x, t) = viei = v1e1 +
v2e2 + v3e3 and w(x, t) = wjej = w1e1 + w2e2 + w3e3,
we can define a dyadic tensor v ⊗w as follows [66]

v ⊗w = viei ⊗ wjej = viwjei ⊗ ej
= v1w1e1 ⊗ e1 + v1w2e1 ⊗ e2 + v1w3e1 ⊗ e3
+ v2w1e2 ⊗ e1 + v2w2e2 ⊗ e2 + v2w3e2 ⊗ e3
+ v3w1e3 ⊗ e1 + v3w2e3 ⊗ e2 + v3w3e3 ⊗ e3. (12)

In general, in the case of v 6= w, the dyadic tensor
v ⊗w is a general tensor with 9 components (elements)
and has 6 independent unknowns, namely v1, v2 and v3
and w1, w2 and w3, since the 9 components can be fully
determined by the 6 independent unknowns.

If v = w, the tensor v ⊗w is a 2rd order tensor with
9 components (elements), and have 3 independent un-
knowns, namely v1, v2 and v3 and/or w1, w2 and w3,
since the 9 components can be fully determined by the 3
independent unknowns.

Lemma 2 Given three vectors, u(x, t) = uiei = u1e1 +
u2e2 + u3e3 , v(x, t) = viei = v1e1 + v2e2 + v3e3 and
w(x, t) = wjej = w1e1 + w2e2 + w3e3, we can define a
3rd order tensor v ⊗w as follows

u⊗ v ⊗w = uiek ⊗ vkei ⊗ wjej
= ukviwjek ⊗ ei ⊗ ej . (13)

In general, in the case of u 6= v 6= w, the tensor u ⊗
v⊗w is a general tensor with 27 components (elements)
and has 9 unknowns, namely u1, u2 and u3, v1, v2 and
v3 and w1, w2 and w3, since the 27 components can be
fully determined by the 9 unknowns.

If u = v = w, the tensor u⊗v⊗w is a 3rd order ten-
sor with 27 components (elements) and has 3 unknowns,
namely u1, u2 and u3, or v1, v2 and v3 and/or w1, w2

and w3, since the 27 components can be fully determined
by the 3 unknowns.

Lemma 3 Given a vector, v(x, t) = viei = v1e1+v2e2+
v3e3, we can define a 2nd order symmetric dyadic tensor
v ⊗ v and its mean value A(x) as follows

A(x) = lim
T→∞

1

T

∫ t0+T

t0

v ⊗ vdt

= lim
T→∞

1

T

∫ t0+T

t0

vivjei ⊗ ejdt

= lim
T→∞

1

T

∫ t0+T

t0

[v1v1e1 ⊗ e1 + v1v2e1 ⊗ e2

+ v1v3e1 ⊗ e3 + v2v1e2 ⊗ e1 + v2v2e2 ⊗ e2
+ v2v3e2 ⊗ e3 + v3v1e3 ⊗ e1
+ v3v2e3 ⊗ e2 + v3v3e3 ⊗ e3]dt, (14)

where vivj = vjvi.

Although A(x) has six independent compo-
nents,namely v1v1, v1v2, v1v3, v2v2, v2v3, v3v3, it is
clear that there are only three independent quantities,
namely v1, v2 and v3, in the A(x). It is because the
quantities v1v1, v1v2, v1v3, v2v2, v2v3, v3v3 can be fully
determined by v1, v2 and v3.

Lemma 3 actually states that any (time) averaging op-
eration is merely a method of data processing and will
not change the number of unknowns within the problem.

It is clear that A(x) will be the Reynolds stress tensor
τ if replacing v1, v2 and v3 by the components of velocity
fluctuations u′i (i = 1, 2, 3), respectively, namely v1 =
u′1, v2 = u′2, v3 = u′3.

V. TWO PROOFS

The number of unknowns in the Reynolds stress ten-
sor and/or in the RANS should not been a issue at all,
since you can simply find it from Reynolds’ papers [19].
However, due to the long-time misconception in turbu-
lence research community, it has affected people’s mind.
To make it clear, it is necessary to explain the issue from
the following aspects.

A. Direct proof by the definition of Reynolds
stress tensor

The Lemma shows that the Reynolds stress tensor has
three independent unknown components. This is proved
when the Reynolds stress tensor is defined in the follow-
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ing

τ (x) = −ρu′ ⊗ u′ = −ρu′iei ⊗ u′jej
= −ρu′iu′jei ⊗ ej

= −ρ lim
T→∞

1

T

∫ t0+T

t0

(u′iu
′
jei ⊗ ej)dt

=

[
−ρ lim

T→∞

1

T

∫ t0+T

t0

u′iu
′
jdt

]
ei ⊗ ej

= τijei ⊗ ej , (15)

and the fluctuation velocity convective terms are:

u′ ·∇u′ = u′iei · [ek∂k ⊗ (u′jej)]

= u′iu
′
j,kei · (ek ⊗ ej) = u′iu

′
j,k(ei · ek)ej

= u′iu
′
j,kδikej = u′iu

′
j,iej

=

(
lim
T→∞

1

T

∫ t+T

t

u′iu
′
j,idt

)
ej

= τij,iej = ∇ · τ, (16)

where the Reynolds stress tensor in index form τij is de-
fined by the following

τij = τji = −ρ lim
T→∞

1

T

∫ t0+T

t0

u′iu
′
jdt. (17)

The above indicates that any Reynolds stress tensor com-
ponent τij can be calculated by fluctuation velocity com-
ponents u′1, u

′
2 and u′3, which means that the τij is de-

pendent on components u′1, u
′
2 and u′3. In other words,

components u′1, u
′
2 and u′3 are real independent unknown-

s. This is the main reason why stating that that the
Reynolds stress tensor τ has 6 independent unknowns.

Therefore, the formulation in equation 15 reveals that
the Reynolds stress tensor τ = −ρu′ ⊗ u′ can be fully
calculated by three independent components of fluctua-
tion velocity, namely u′1, u

′
2 and u′3. In other words, the

Reynolds stress tensor only has three unknowns rather
than six. It means that the averaging technique is merely
a mathematical process, which can provide a mean value,
but cannot change the number of unknowns within the
problem.

The misinterpretation of the number of independen-
t unknown components in the literature may stem from
considering the Reynolds stress tensor as a general 2nd
order symmetric tensor with six independent compo-
nents. However, the Reynolds stress tensor is not an
arbitrary 2nd order tensor. In fact, its components are
made by the bi-product of the fluctuation velocity com-
ponents, which means that the Reynolds stress tensor
is a dyadic tensor of the velocity fluctuation. The un-
known components to construct the dyadic tensor are the
three components of fluctuation velocity u′. Therefore,
the Reynolds stress tensor only has three independent
unknowns, namely u′1, u

′
2 and u′3. For two dimensional

flow, of course, the 2D Reynolds stress tensor only has
two independent unknowns, namely u′1, u

′
2.

B. Proof of a particular case

One can use two scalar functions, u′ =
√

2U cos(ωt)

and v′ =
√

2V cos(ωt+ θ), as independent unknowns, to
construct a 2nd order tensor or matrix with 4 compo-
nents, as follows: (u′)2, u′v′, v′u′, (v′)2. Thus, the time
averages are:

lim
T→∞

1

T

∫ t0+T

t0

(u′u′)dt = U2, (18)

lim
T→∞

1

T

∫ t0+T

t0

(u′v′)dt = UV cos θ, (19)

lim
T→∞

1

T

∫ t0+T

t0

(v′u′)d = UV cos θ, (20)

lim
T→∞

1

T

∫ t0+T

t0

(v′v′)dt = V 2. (21)

In the definition of the Reynolds stress tensor, θ = 0, we
have u′ =

√
2U cos(ωt) and v′ =

√
2V cos(ωt) and, the

averaging are as follows

lim
T→∞

1

T

∫ t0+T

t0

(u′u′)dt = U2, (22)

lim
T→∞

1

T

∫ t0+T

t0

(u′v′)dt = UV, (23)

lim
T→∞

1

T

∫ t0+T

t0

(v′u′)dt = UV, (24)

lim
T→∞

1

T

∫ t0+T

t0

(v′v′)dt = V 2. (25)

Therefore, the Reynolds stress tensor is

τ = −ρ(U2e1 ⊗ e1 + UV e1 ⊗ e2
+ V Ue2 ⊗ e1 + V 2e2 ⊗ e2). (26)

The above process shows that, u′ or U , and v′ or V ,
are the independent unknowns, which culminate in the
Reynolds stress tensor τ .

If the θ remains, then we can refer to the time corre-
lation (autocorrelations) at the same point. The correla-
tion between the same (Greek autos = self or same) fluc-
tuating quantity measured at two different times (at the
same point in space) is not relevant to the behaviour of
turbulence, while its measurement requires a time delay
mechanism (usually a tape recorder with movable heads
or a digital sample-and-delay system).

In the same way, one can define the space correlation;
however, all the literature, including textbooks, mention
that the Reynolds stress tensor is the one-point or single-
point velocity fluctuation correlation. Therefore, θ = 0.

Even without θ = 0, the Reynolds stress still has three
independent unknowns, namely the three independent
components of the velocity fluctuations.

It is proven once again that both the tensor σ and
the Reynolds stress tensor τ are the only function of
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u′1, u
′
2, u

′
3. Summarily, the number of independent un-

knowns in the Reynolds stress tensor is shown in Table I
below:

TABLE I: Number of unknowns in the Reynolds stress tensor

Current literature This paper
Number 6 3

Unknowns τ11, τ12, τ13, τ22, τ23, τ33 u′
1, u

′
2 and u′

3

Although the Reynolds-averaged Navier-Stokes (RAN-
S) equations are unclosed, the four-equations RANS in
Eqs.5 and 6 contain only 7 independent unknowns in-
stead of 10 as stated in current literatures. The list of
unknowns in the RANS are summarized in the below Ta-
ble II:

TABLE II: Number of independent unknowns in the RANS

Current literature This paper
Number 10 7

Unknowns ū1, ū2, ū3 ū1, ū2, ū3

p̄ p̄
τ11, τ12, τ13, τ22, τ23, τ33 u′

1, u
′
2 and u′

3

VI. TRANSPORT EQUATION OF REYNOLDS
STRESS TENSOR

With the above new understanding of the number of
independent unknowns, he following presents complete-
ly new perceptions on the higher-order correction of the
Reynolds’ stress tensor.

Certain tensor algebra from Eqs.Eqs.10 and 11 resulted
in an important equation for the Reynolds’ stress tensor,
as follows

ū ·∇τ + τ ·∇ū+ ∇ū · τ
= 2µI : ∇u′ ⊗∇u′

+ u′ ⊗ (∇p′) + (∇p′)⊗ u′

+ µ∇2τ + ρ∇ · (u′ ⊗ u′ ⊗ u′). (27)

Current literature claims that Eq.27 has 31 independent
unknowns. However, this research has a different opinion,
and has proven that the Reynolds stress equation Eq. 27
only has 7 independent unknowns. Accoutring for all
symmetries, these are listed in Table III below.

The above statement is proven by the following:

u′ ⊗ u′ ⊗ u′ = u′iu
′
ju

′
kei ⊗ ej ⊗ ek

=

(
lim
T→∞

1

T

∫ t0+T

t0

u′iu
′
ju

′
kdt

)
ei ⊗ ej ⊗ ek, (28)

TABLE III: Number of unknowns in the Reynolds stress e-
quation

Current literature This paper
Number 31 7

Unknowns ū (3) ū1, ū2, ū3

u′ ⊗ u′ ⊗ u′ (10) p′

I : ∇u′ ⊗∇u′ (6) u′
1, u

′
2 and u′

3

u′ ⊗ (∇p′) (6)
τ (6)

and

I : ∇u′ ⊗∇u′ = (ek ⊗ ek) : (∇u′ ⊗∇u′)

= (ek ⊗ ek) : (∇u′ ⊗∇u′)

= (ek ·∇u′)⊗ (ek ·∇u′)

= (∇ku′)⊗ (∇ku′) = (∇kũiei)⊗ (∇kũjej)

= (∇kũi)(∇kũj)ei ⊗ ej =
∂u′i
∂xk

∂u′j
∂xk

ei ⊗ ej

=

(
lim
T→∞

1

T

∫ t0+T

t0

∂u′i
∂xk

∂u′j
∂xk

dt

)
ei ⊗ ej . (29)

It is clear that the mean value of u′iu
′
ju

′
k and

∂u′
i

∂xk

∂u′
j

∂xk
can

be calculated by the velocity fluctuations u′1, u
′
2 and u′3.

It means that u′1, u
′
2 and u′3 are unknowns. Similarly,

u′ ⊗ (∇p′) = u′i
∂p′

∂xj
ei ⊗ ej

=

(
lim
T→∞

1

T

∫ t0+T

t0

u′i
∂p′

∂xj
dt

)
ei ⊗ ej . (30)

The mean value of u′i
∂p′

∂xj
can be calculated by p′ and

u′1, u
′
2 and u′3.

The same can also be done for the fourth order and for
higher orders as in [32] and in textbooks. However, no
other unknowns can be created by any order equation in
respect of the Reynolds’ stress tensor.

VII. TRANSPORT EQUATION OF
TURBULENCE KINETIC ENERGY

The contraction operation for index i and j in Eq.27 re-
sulted in the following transport equation for turbulence
kinetic energy k

ρū ·∇k = τ : ∇ū
− µ∇u′ : ∇u′ + µ∇2k

−∇ · (p′u′)− 1

2
ρ∇ · [(u′ · u′)u′], (31)

where the kinetic energy k(x) = − 1
2τkk = 1

2u
′
ku

′
k =

1
2u

′ · u′ = limT→∞
1
T

∫ t0+T
t0

u′·u′dt. The number of inde-

pendent unknowns in the kinetic energy equation Eq.31
is listed in Table IV below.
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TABLE IV: Number of unknowns in the kinetic energy equa-
tion

Current literature This paper
Number 21 7

Unknowns k (3) u′
1, u

′
2 and u′

3

ū (3) ū1, ū2, ū3

τ (6) p′

∇u′ : ∇u′ (3)
p′u′ (3)

[(u′ · u′)u′] (3)

VIII. CONCLUSIONS

This article re-visited a fundamental problem in tur-
bulence analysis, namely the number of independent un-
knowns in the Reynolds’ stress tensor. The research s-
tudy found that there are 3 independent unknowns in the
Reynolds’ stress tensor, namely 3 components of velocity
fluctuations u′1, u

′
2 and u′3. This study has not only clar-

ified the number of independent unknowns in the formu-
lations of the Reynolds-averaged Navier-Stokes equation,
but has also discovered that the number of independen-
t unknowns is much less than traditionally found and
thought.

In future, turbulence modelling should focus on the
modelling of velocity fluctuations u′1, u

′
2, u

′
3, instead of

on the Reynolds stress τij . An advantage of modelling
the velocity fluctuations u′1, u

′
2, u

′
3 is that it reduces the

six components of τij into three ones, and from an ex-
perimental perspective, the components of velocity fluc-
tuations are easiest to measure than the Reynolds’ stress
tensor.

It is important to point out that this study’s ideas and
methodologies are also applicable to compressible turbu-
lence Navier-Stokes equations, where the mass density ρ
and the temperature T must be taken into account, and
their Reynolds decompositions, ρ = ρ̄+ ρ̃ and T = T̄ + T̃ ,
should be introduced.

The present investigation can be considered as a re-
naissance of Reynolds’ study in 1895, which might as-
sist with understanding the well-known closure problem
of turbulence, and the puzzle of the turbulence closure
problem that has eluded scientists and mathematicians
for centuries [63].
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