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Abstract: One ambitious objective of Integrated Computational Materials Engineering (ICME) is to 
shorten the materials development cycle by using computational materials simulation techniques 
at different length scales. In this regard, the most important aspects are the prediction of the 
microstructural evolution during material processing and the understanding of the contributions 
of microstructural features to the mechanical response of the materials. One possible solution to 
such a challenge is to apply the Phase Field (PF) method because it can predict the microstructural 
evolution under the influence of different internal or external stimuli, including d eformation. To 
accomplish this, it is necessary to take into account plasticity or, specifically, non-homogeneous plastic 
deformation, which is particularly important for investigating the size effects in materials emerging 
at the micron length scale. In this work, we present quasi-2D simulations of plastic deformation in a 
face centred cubic system using a finite strain formulation. Our model consists of dislocation-based 
strain gradient crystal plasticity implemented into a PF code. We apply this model to study the 
influence of grain size on the mechanical behavior of polycrystals, which includes dislocation storage 
and annihilation. Furthermore, the initial state of the material before deformation is also considered. 
The results show that a dislocation-based strain gradient crystal plasticity model can capture the 
Hall-Petch effect in many aspects. The model reproduced the correct functional dependence of the 
flow stress of the polycrystal on grain size without assigning any special properties to the grain 
boundaries. However, the predicted Hall-Petch coefficients are significantly smaller than those found 
typically in experiments. In any case, we found a good qualitative agreement between our findings 
and experimental results.

Keywords: phase field; crystal plasticity; Hall-Petch effect; dislocation density; micromechanics21

1. Introduction22

The properties of engineering materials are size-dependent if the microstructural length scale23

falls into an order of a few microns to less than a micron [1,2]. The pioneering work of Hall and Petch24

[3,4] motivated many researchers to study the underlying physics and the influence of the grain size25

effect on the mechanical behavior of materials [5–10]. Within the domain of metallic materials, the26

main plastic deformation mechanism is dislocation slip. This deformation mechanism depends on27

the density and evolution of the dislocations, crystal structures, and crystallographic orientations,28

and on the localization of deformation as a result of the gradients of the grain morphology and the29

distribution of grain sizes [11].30
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The grain size effect is the manifestation of the fact that a polycrystal with larger grains experiences31

larger strain incompatibility during plastic deformation. This generates higher internal stresses in32

the microstructure which leads to lowering of yield strength and as the grain size is reduced, an33

opposite phenomenon is observed [3,4]. For coarse grains, it is well understood that an increase of34

the dislocation density results in a strengthening of the microstructure, which can be described by35

Taylor’s hardening law [12]. In the case of fine or ultra-fine grained materials, their strength is grain36

size dependent [2,5,13,14]. Furthermore, this is associated with the state of the material, e.g. its initial37

dislocation density, which determines the strength of a material [15].38

Because of a significant improvement in computational power in recent decades, the mechanical39

behavior of crystals has been simulated extensively by using crystal plasticity (CP) models. Such40

plasticity models relate the evolution of the plastic flow of a crystal as a result of its state and the41

evolution of this state [11]. However, classical CP models do not posses any intrinsic microstructural42

length scale and therefore fail to describe the size dependent mechanical response of the materials [16].43

This drawback, can be coped with by employing strain-gradient CP models [17–19] that address size44

dependent plasticity. These models have proven their capability to describe the non-homogeneous45

deformation by taking into account the plastic strain at any material point and its influence on the46

neighbouring points. This involvement of the plastic strain gradient can therefore capture the grain47

size effect [17], and such models can also be formulated on the basis of dislocation mechanics. To48

serve this purpose, the dislocations can be divided into two relevant categories: (1) statistically stored49

dislocations (SSD) and (2) geometrically necessary dislocations (GND). The arbitrary dislocation50

configurations occurring during plastic deformation generates SSD, whereas GND emerge from sites51

of non-homogeneous deformation, mainly at the interfacial regions [20,21]. One main characteristic52

of SSD configurations is that their net Burgers vector is zero, whereas GND configurations possess a53

non-zero net Burgers vector. The evolution of SSD can be described on the basis of the Kocks-Mecking54

law [22], and GND can be evaluated on the basis of Nye’s dislocation tensor [23].55

Although strain-gradient CP models are sensitive to microstructural features, they still lack the56

capability to describe the plastic deformation of a material in connection to the evolution of the57

microstructure during the processing steps [24]. This microstructural evolution is essentially related58

to the movement of interfaces or a changing chemical composition of materials. Such changes can59

numerically be tracked with the help of phase field models [25]. These models are very flexible and60

can incorporate certain physical phenomena of interest by including properly defined energy densities61

into the description of the total energy of the system. Therefore, the characteristics of these two types62

of models can be superimposed to predict the mechanical response of materials along with their63

microstructural evolution.64

Phase field models found numerous applications in materials science during the last decades,65

mainly to predict solidification dynamics [25]. The pioneering work of Khachaturyan et. al. in the66

framework of phase-field microelasticity [26] set a new dimension of phase field modeling and enabled67

the development of phase field models to describe the elastic as well as the plastic deformation of68

materials. One variation of the PF method is the multi phase field model (MPF), which can predict the69

behavior of a system by incorporating an unlimited number of phase fields/physical quantities.70

Some studies report how the phase field is coupled with isotropic plasticity [27] or CP [28] to71

analyze the finite or infinitesimal strains in larger material volumes. Recent studies also show an72

increasing trend towards discrete-dislocation-dynamics-based phase field models [29–36] to describe73

plastic deformation, but such models can only be applied to smaller systems due to the associated74

computational cost. The non-homogeneous deformation in the framework of phase field modeling75

has, however, been addressed by only a few researchers, who employed strain-gradient CP coupled76

with a phase field model like, for example, the work by Aldakheel on fracture analysis of metals77

[37]. Such an approach of coupling is very significant because it has paved the way to predict the78

response of complex microstructures under various boundary conditions. It can simultaneously track79

the microstructural evolution during material processing and the non-homogeneous deformation80
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resulting from the external boundary conditions, which leads to the description of the mechanical81

properties of materials on the basis of their process history.82

In our work, we present a dislocation-based strain-gradient CP coupled with the MPF model.83

One prominent advantage of the proposed framework is its capability to capture not only the material84

process history by tracking the evolution of the microstructure but to assess at the same time the85

dislocation structures to the level of finite strains as a result of plastic deformation.86

The outline of this study is as follows: The second section comprises the model description87

including the MPF, deformation kinematics, and strain-gradient CP. The third section throws light on88

the simulation setup including the boundary conditions and the employed parameters. The fourth89

section presents and discusses the evolution of dislocation densities, the resulting flow stress and the90

governing mechanisms for the grain size effect. The fifth section discusses the results.91

2. Model92

The model used for our analysis consists of a MPF model as described in the subsection 2.1. It93

involves the contribution of the elastic energy which is explained in the subsection 2.2. This elastic94

energy is calculated with the help of the plastic strain predicted by a strain-gradient CP model, which95

is elaborated in the subsection 2.3.96

2.1. The Multi Phase Field model97

The MPF model followed in our work is the one developed by [38]. It can describe the
microstructural evolution under the influence of different internal or external stimuli because of
its strong interface tracking capability. It allows us not only to study a system with multiple
components/phase fields including thermodynamic phases, chemical elements, number of grains,
crystal orientations, and morphology, but also to address multi-physical phenomena simultaneously.
A basic constraint, however, is that the summation of the magnitudes of all the individual phase fields
fα and fβ should be equal to 1 in the respective bulks of the phases whereas the sum of the magnitudes
of all the phase fields should be equal to the unity inside the interfacial region. Hence the value of
each phase field φα varies as 0 6 φα 6 1 while traversing from the bulk of one phase field to the other
phase field and given as

N

∑
α=1

φα(x) = 1. (1)

The evolution of the phase fields/microstructure is driven by the minimization of the total energy of
the system. Therefore, an energy function is defined that can take into account all the energy densities
of interest. It usually includes, but is not limited to, the energy contributions of the chemical, interfacial,
and elastic aspects that lead to the evolution of a system. A general equation to describe the total
energy content of a system is as follows

F =
∫

Ω
( f int + f el). (2)

Here, F is defined as the energy functional to describe the state of the system, f int is the interfacial98

energy density, and f el is the elastic energy density. These quantities are integrated via the size of the99

domain Ω.100

f int =
N

∑
α=1,β>α

8σαβ

η

[
− η2

π2 (∇φα · ∇φβ) + φαφβ

]
. (3)

The interfacial energy density takes into account the interfacial thickness η and the energy σαβ of
the interface between the α and β phase/grain, which may be taken as isotropic or anisotropic. The
interfacial width is chosen in such a way that it forms a diffused and stable interface during the
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evolution. The elastic energy density is assumed to be a function of the elastic stiffness Cα, total strain

εα, eigen strain ε∗α, and plastic strain ε
(p)
α produced in each phase field φα as given below

f el =
1
2

N

∑
α=1

φα

[
εα − ε∗α − ε

(p)
α

]
Cα

[
εα − ε∗α − ε

(p)
α

]
, (4)

2.2. Elasticity101

To describe finite strain, a generalized stress-strain relation is used:102

σα = Cα : εel
α . (5)

In this equation Cα is the 4th order elastic stiffness tensor, σα is the 2nd Piola-Kirchhoff stress and
εel

α is the Lagrangian strain. Now, as the stiffness tensor and the elastic strains are known for each phase
field, the evaluation of the driving force is simple. The continuum mechanical homogenization sets
several rules and evaluates effective values of mechanical properties with the help of phase fraction
and the parameters related to the phase. The resulting total strain ε should be weighted as the average
of strains associated with a phase field as

ε =
N

∑
α=1

φα

(
εel

α + ε∗α + ε
(p)
α

)
=

N

∑
α=1

C−1
α : σ +

N

∑
α=1

φαε∗α +
N

∑
α=1

φαε
(p)
α . (6)

2.3. Plasticity103

Plastic deformation is described in terms of plastic shear rate γ̇s on a slip system s. It is calculated104

by using a dislocation-based strain-gradient CP model, which is taken from [39]. In such models, the105

plastic flow rule for a slip system is defined by Orowan’s Law. The shear strain rate of the slip system106

s is associated with the velocity νs and the total dislocation density ρtotal, which is assumed to be the107

mobile dislocations on the same slip system and given as follows108

γ̇s = ρs
totalbνs, (7)

where b defines the magnitude of the Burgers vector. The dislocation slip velocity νs on the same
slip system s is defined as

νs = ν0

∣∣∣∣τs

τs
c

∣∣∣∣ 1
m

. (8)

Here, m describes the strain rate sensitivity of the material, and ν0 is the reference velocity of
the dislocations, τs is the resolved shear stress along the slip system s, and τs

c is its critical value to
start the dislocation slip, known as critical resolved shear stress (CRSS). It is defined through Taylor’s
hardening law as

τs
c = τ0 + c1Gb

√
ρs

total, (9)

where τ0 is the lattice friction stress/static yield stress, c1 is a geometrical factor, and G is the shear
modulus. ρs

total is a measure of the total dislocation content of the slip system s, in our study it consists
of SSD and GND, as follows

ρs
total = ρs

SSD + ρs
GND. (10)

The magnitude of this total dislocation density in equation 9 at the initial state is ρtotal(i) and
it is assumed as equivalent to the initial magnitude of ρs

SSD. The evolution of SSD is based on the
Kocks-Mecking law as given below

ρ̇s
SSD = (k1

√
ρs

SSD + ρs
GND − k2ρs

SSD

)
γ̇s. (11)
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where k1 is a measure of storage of SSD k2 is the measure of annihilation of SSD. Plastic strain is
summation of the product of shear strain γ̇ and the symmetric part of the Schmidt tensor Ps for every
s slip system. Schmidt tensor is described through the direction vector of dislocation slip ds and the
vector of the slip plane normal ns. Thus, evolution of plastic strain is given by

ε̇(p) =
N

∑
s=1

γ̇sPs , Ps =
1
2
(ds ⊗ ns + ns ⊗ ds). (12)

The resulting plastic strain is then used in equation (4) to determine the contribution of the109

system’s elastic energy and to predict the concurrent microstructural evolution. The gradient of the110

evolution of this plastic strain defines the evolution of the Nye’s dislocation tensor described by111

Λ̇ = (−ejklε̇
(p)
il,k )

Tei⊗ej, (13)

where −ejkl is the third order permutation tensor, ε̇
(p)
il,k defines the partial derivative of the plastic112

strain rate with respect to the coordinate k, such that ejkl ε̇
(p)
il,k is the rotation of the plastic strain rate,113

and ⊗ represents the diadic product between the Cartesian ei and ej unit vectors, which define the114

components of the resulting tensor. The evolution of GND can now be described as follows115

ρ̇s
GND =

1
b
(|dsΛ̇ls|+ |dsΛ̇ds|). (14)

Here, d and l refer to the slip direction vector and to the tangent vector used to evaluate the edge116

and screw components of GND.117

3. Simulation Setup118

The dislocation-based strain-gradient CP model is implemented with an explicit integration119

scheme into the open source phase field code OpenPhase [40]. The mechanical problems in this context120

are solved by using the spectral elastic solver [28], which maintains the mechanical equilibrium on the121

basis of the Saint-Venant hyper elastic material model [41]. This material model extends the typical122

linear elasticity to the nonlinear regime and relates the Lagrangian strain with the 2nd Piola-Kirchoff123

stress. In the present study, we focus on the Face-Centred Cubic (FCC) system, and we consider the124

dislocation glide on the crystallographic slip systems {111}〈110〉. Furthermore, we assume the total125

dislocation density to be equivalent to SSD as well as to the mobile dislocation density at the start of the126

simulations. The material parameters that we apply, are mostly taken from the literature [20,39,42,43]127

and are summarized in Table 1.128
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Parameters Symbol Value Unit Ref.
Anisotropic elastic constant C11 108.2 GPa [42]
Anisotropic elastic constant C12 61.3 GPa [42]
Shear Modulus G 28.5 GPa [42]
Strain rate sensitivity m 0.025 -
Lattice friction stress τo 80 MPa
SSD storage parameter k1 2x109 - [39]
SSD annihilation parameter k2 10 - [39]
Initial total dislocation density ρtotal(i) 1x1013 m−2

Geomtrical factor for flow stress c1 0.3 - [20][43]
Referential dislocation velocity ν0 1x10−3 ms−1

Interfacial energy σαβ 0.24 Jm−2 [28]
Space discritization ∆x 0.1 µm
Time discritization ∆t 1 µs
Interfacial width η 4.5 ∆x
Domain size Ω 128 x 128 ∆x
Length of Burger’s vector b 0.286 nm

Table 1. Parameters used in this study

To perform micromechanical simulations, quasi-2D periodic Representative Volume Elements129

(RVE) consisting of 64 grains with a regular hexagonal shape, are generated with the general Voronoi130

tessellation by embedding the tessellation module of the Voro++ library [44] into OpenPhase. Four131

RVEs with grain diameters of 16, 1.6, 0.8 and 0.4 µm are created to investigate the influence of the grain132

size on the mechanical response of the material. To exclude the influence of texture on the deformation133

behavior, similar sets of random crystallographic orientations are assigned to all RVEs, resulting in134

a mircrostructural texture index close to 1. The geometry of an RVE used in this study is shown in135

Fig.1(a). The color of each grain corresponds to the color code of the Inverse Pole Figure (IPF), usually136

evaluated by an Electron Backscatter Diffraction (EBSD) analysis, and black arrows denote the loading137

direction.138

To solve the phase field evolution, interfaces between the crystals/grains are diffused for139

obtaining a certain interfacial thickness η. The interfacial energy σαβ is assumed to be isotropic in order140

to prevail any effect of interfacial anisotropy and subsequent influence on the grain size effect. The141

periodic boundary conditions are applied to all of the phase fields along the regular computational grid.142

Same boundary condition is applied in the thickness direction of RVE. Isothermal and uniaxial tensile143

strain is applied at room temperature as loading condition with a constant strain rate of 0.1 s−1 to144

produce a total deformation of 5%. Grain growth is restricted by assuming very low interfacial mobility.145

146
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Figure 1. (a) Orientation distribution, (b) flow stress for a polycrystal with grain diameter of 0.4 µm an
offest of 0.2% of global plastic strain to define the onset of plastic yielding

|ε(p)| =
√(

ε2
1 + ε2

2 + ε2
3 +

1
2

ε2
4 +

1
2

ε2
5 +

1
2

ε2
6

)
(15)

The flow stress is homogenized by taking the volume average of the von Mises equivalent stress147

σvM, whereas the equivalent plastic strain ε(p) is calculated by the Frobenius norm [45] as given in148

equation (15), in which ε1, ε2, ε3 represent the normal strains and ε4, ε5, ε6 represent the shear strains149

of the strain tensor in Voigt notation. Yield strength is calculated by taking an offset of the elastic part150

of the stress-strain curves at 0.2% of the total strain as shown in Fig.1(b).151

Figure 2. Distribution of (a) equivalent stress and (b) equivalent plastic strain corresponding to the
onset of plastic deformation, which is defined here by a global plastic strain of 0.2%.

The distribution of equivalent stress and strain in the RVEs with a grain diameter of 0.4 µm,152

corresponding to the green colored arrow pointing to the yield point in Fig.1(b), is shown in Fig. 2(a)153

and Fig. 2(b). Because this stage of deformation appears at the onset of plasticity, a certain degree of154

shear band is observable, and the stress concentration along grain boundaries is not pronounced. The155

global values of dislocation densities ρtotal, ρSSD and ρGND are evaluated by taking the volume average156

of the local quantities.157

4. Results and Discussion158

In order to investigate the influence of the grain size, first of all we evaluated the distributions159

of ρGND, ρSSD and ρtotal in all RVEs at 5% total strain, and then we applied the volume averaged160
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homogenization scheme to investigate the evolution of these quantities with respect to the plastic161

deformation. After that, we also analyzed the global flow stress σvM, ρGND, ρSSD and ρtotal from all162

RVEs at the onset of plasticity and at the total strain of 5.0%. Finally, the sensitivity of the selected163

material parameters is studied and reported.164

4.1. Effect of the grain size on the distribution of dislocation density165

Figure 3 shows the distribution of ρGND in all RVEs at a global plastic strain of 5%. Comparing166

to RVEs with a smaller grain diameter, the distribution of ρGND in the RVE in Fig. 3(d) with a grain167

diameter of 16 µm is rather small and negligible. By decreasing the grain diameter, ρGND increases168

and tends to concentrate along the grain boundaries. Such observed concentration of ρGND along the169

grain boundaries is consistent with the large strain gradients in these regions of strain incompatibility170

between neighboring grains.171

Figure 3. Distribution of geometrically necessary dislocation density ρGND in the deformed RVEs with
a grain diameter D of (a) 16µm (b) 1.6µm (c) 0.8µm (d) 0.4µm at a global plastic strain of 5%
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Figure 4. Distribution of statistically stored dislocation density ρSSD in the deformed RVEs with the
grain diameter D of (a) 16µm (b) 1.6µm (c) 0.8µm (d) 0.4µm at a global plastic strain of 5%

With respect to the modified form of the Kocks-Mecking law (equation (11)), the evolution of SSD172

ρ̇s
SSD depends directly upon the ρs

GND. Therefore, the distribution of the ρSSD in all RVEs as illustrated173

in Fig. 4, shows that ρSSD also increases with decreasing grain size. However, comparing to Fig. 3, the174

effect of the grain size is much less prominent. As the plastic deformation progresses, storage and175

annihilation of SSD compete with each other to maintain a state of dynamic equilibrium. In addition,176

the ρSSD distribution in all deformed RVEs shows patterns similar to those of the distribution of the177

equivalent plastic strain as shown in Fig. 2, which represents, however, the local plastic strain at a178

global value of 0.2%179
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Figure 5. Distribution of total dislocation density ρtotal in the deformed RVEs with a grain diameter D
of (a) 16µm (b) 1.6µm (c) 0.8µm (d) 0.4µm at a global plastic strain of 5%

The total dislocation density distribution in the deformed RVEs at a stage of 5% total strain is180

shown in Fig. 5. Because ρGND is much smaller than ρSSD, the pattern of the distribution of ρtotal for181

the RVE with a large grain diameter of 16 µm in Fig. 5(a) is similar to the ρSSD distribution in the182

same RVE, as shown in Fig. 4(a). By decreasing the grain diameter, the pattern of the total dislocation183

density distribution exhibits an equivalent combination of ρSSD and ρGND distributions, where both184

shear bands and localized dislocation density can be observed at grain boundaries.185

To investigate the contribution of grain size on the evolution of dislocation densities and on the186

hardening behavior of the material, global dislocation densities ρGND, ρSSD, ρtotal and flow stress σvM187

have been plotted versus the total strain in Fig. 6. From these curves, all dislocation densities start to188

increase sharply after a total strain of approximately 0.3%.189
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Figure 6. Effect of grain size on the evolution of the global (a) geometrically necessary dislocation
density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress

In the next step, the influence of grain size on dislocation densities and on the yield stress has190

been investigated at the onset of plasticity. Firstly, the yield stress measures taken at an offset of 0.2%191

and 0.5% strain are plotted against the inverse square root of the grain diameter as shown in Fig. 7(a).192

The fitted trend lines indicate that the yield stress increased linearly with respect to the inverse square193

root of the grain diameter and hence followed the Hall-Petch relationship.194

To understand the contribution of dislocation densities on grain boundary strengthening, the ρSSD195

and ρGND at a total strain of 0.5% and 5% are evaluated from all of the RVEs and plotted against the196

inverse square root of the grain diameter as shown in Fig. 7(b). Comparing the global plastic strains197

of 5.0% with 0.5%, ρSSD and ρGND rose in all simulations. The strain gradient or grain size affected198

the global ρSSD negligibly at the small plastic strain, but the effect got prominent at the higher plastic199

strain, which is indicated by a small increase in the slope of the linear regression i.e. solid red line.200

To understand this observation, we refer to the evolution of SSD (ρ̇SSD) given in equation (11), which201

involves GND (ρGND). For the case of ρGND, the influence of the grain size is strong at smaller plastic202

strain and stronger at larger plastic strain.203

The value of the Hall-Petch coefficient evaluated at 0.5% offset is 0.004 MPa m1/2, which is204

much lower as compared to the experimental findings reported in [5,9]. It is commonly observed in205

experiments [5,7,10] that a decrease in grain size leads to an increase in initial yield strength. This206

behavior is not captured by our model. In other work [13], it has been explained in terms of dislocation207

density concentration in the vicinity of grain boundaries. El-Awady [46] has discussed rigorously208

the dependence of initial yielding and initial dislocation density on grain size. However, the strain209

gradient plasticity models, which are based on the classical Kocks-Mecking dislocation evolution law,210

are not able to capture this behavior without the introduction of suitable prior adjustments. Cheong et.211

al. [8] have employed a grain size dependent initial SSD for different RVEs and [47] have assumed212

specific storage of GND at grain boundaries prior to plastic deformation and found a dependency of213

yielding stress on grain size with an exponent of -1.5. Our results follow qualitatively the trends of flow214
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curves reported by [6]. One observation shows that the value of Hall-Petch coefficient increases slightly215

with progressing plastic deformation, which is consistent with the experimental results reported by216

[8,10,48].217

Figure 7. (a) Hall-Petch coefficient calculated at an offset of 0.2% and 0.5% of total strain, (b) evolution
of ρSSD and ρGND at 0.5% and 5% of total strain with variation in grain size

The governing mechanism of strengthening does not only depend on the stored dislocations but218

also on their annihilation. Therefore, the next section of this work aims at investigating the influence219

of material parameters that control the initial state and influence of evolution of dislocation densities220

on the deformation mechanism.221

4.2. Averaged stress and dislocation density under the influence of model parameters222

Firstly, we have studied the influence of the initial total dislocation density ρtotal(i) on the grain223

size effect. The value of the initial total dislocation density is varied from 1012 to 1015 m−2, whereas224

other parameters are set according to the table 1. The higher value of initial total dislocation density225

corresponds to an unannealed material configuration whereas lower initial dislocation density mimics226

an annealed microstructure. We have plotted the evolution of ρGND, ρSSD, ρtotal, and flow stress σvM227

versus the total strain resulting from the simulations as shown in Fig. 8.228
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Figure 8. Effect of variation of initial total dislocation density on the global (a) geometrically necessary
dislocation density, (b) statistically stored dislocation density, and (c) total dislocation density (d) flow
stress

Since ρtotal(i) is assumed to be equivalent to ρSSD, an increase in ρtotal(i) results in an increasing229

ρSSD, but it does not lead to any significant change in ρGND. Furthermore, a larger value of ρtotal(i)230

suppresses minimally the influence of grain size on the evolution of ρSSD. This results into an increase231

of yield stress for all RVEs, but the effect of the grain size on the hardening behavior diminishes as232

shown in Fig. 8(d). This can be correlated to the experimental results from [10], that the grain size233

effect resulting from plastic deformation of unannealed (higher initial dislocation density) materials is234

weaker as compared to that resulting from plastic deformation of annealed specimens (lower initial235

dislocation density).236

Secondly, to investigate the influence of SSD storage parameter k1, we have compared simulations237

using parameters from Table 1 with simulations with k1 of 4x109 and 9x109, and the results are shown238

in Fig. 9. In general, a larger value of k1 elevates the evolution of ρSSD significantly but suppresses239

the evolution of ρGND. Consequently, by increasing k1, ρtotal increases non-linearly and results into a240

more pronounced hardening behavior. However, because the contribution of ρGND is suppressed, the241

influence of the grain size on the hardening behavior is minimized.242
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Figure 9. Influence of variation of SSD storage on the global (a) geometrically necessary dislocation
density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress

Thirdly, the effect of SSD annihilation parameter k2 on the evolution of global dislocation densities243

and flow stress is evaluated as plotted in Fig. 10. We have increased the magnitude of k2 to 30 and 50.244

With a lower value of k2, lesser SSD annihilate so the rate of storage of ρSSD is higher. The opposite245

of this happens with a larger k2, which also promotes the influence of the grain size on ρGND by246

increasing the rate of storage of ρGND as observable in Fig. 10(a). This effect is, however, of minor247

importance and it also results into an increase of ρtotal, but at a lower rate with increasing the total248

strain. As a consequence, a weaker strain hardening behavior is observed but because of the higher249

storage of the ρGND, the influence of the grain size is enhanced.250
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Figure 10. Effect of variation of dislocation annihilation on the global (a) geometrically necessary
dislocation density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow
stress

Figure 11. Effect of dislocation annihilation on ρSSD and ρGND at (a) 0.5% plastic strain and (b) 5%
plastic strain

Finally, the evolution of the global dislocation densities is investigated with respect to a change in251

the grain size at two particular strain levels with two different SSD annihilation parameters. From252

the global dislocation densities at 0.5% of the total strain i.e., at the onset of plasticity as shown in253

Fig. 11(a), ρGND becomes larger and surpasses ρSSD, The ρSSD does not increase significantly with a254

decreasing grain size at this strain. This means that the contribution of GND to the onset of plasticity255

is higher and overcomes SSD at smaller grain sizes. k2 does not, however, affect the evolution of the256
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dislocation densities because the material is still at the early stage of deformation. It is also clear that257

the chosen values 10 and 50 of k2 have a negligible effect on the behavior of dislocation densities.258

For the case of a larger plastic strain of 5.0% as plotted in Fig. 11(b), the effect of k2 is much more259

significant. With the relatively lower k2 of 10, an annihilation is not pronounced and resulted in an260

increase of the ρSSD. At 5.0% of plastic strain, ρGND does not exceed ρSSD. However, by increasing the261

value of k2 to 50, the evolution of SSD is more suppressed, therefore ρSSD becomes smaller than ρGND262

at a smaller grain size. This demonstrates that at a larger applied total strain, the dominating type of263

dislocations during plastic deformation, strongly depended on the values of of k1 and k2.264

5. Conclusions265

In this work, we have implemented dislocation based strain-gradient crystal plasticity into a266

multi-phase-field framework and investigated the grain size effect together with the contribution of267

statistically stored dislocation density (SSD) and geometrically necessary dislocation density (GND).268

Thus, this model is able to predict the behavior of materials in response to applied mechanical269

loads and describe the changes in mechanical behavior in relation to dislocation densities. The270

strain-gradient-based nature of the model allows us to analyze the influence of grain size on the271

strength of a polycrystal. The results are obtained through a series of quasi-2D simulations under272

different conditions imposed on RVEs with different grain sizes, and the results correlate with the273

literature. In summary, we can conclude that:274

• Our work shows that by applying a dislocation-based strain gradient crystal plasticity model,275

we can capture many aspects of grain boundary strengthening as it is observed in experiments.276

This conforms to the Hall-Petch model in which the introduction of special properties for grain277

boundaries is not necessary.278

• The model introduced in our work is capable of recapturing the Hall-Petch relation with an279

exponent of -0.5 for the grain size dependence. Furthermore our model is consistent with the280

experimental observations of the evolution of the Hall-Petch coefficient with progressing plastic281

deformation and initial state of the material with respect to dislocation density.282

• The value of the Hall-Petch coefficient predicted by our model is significantly smaller than those283

observed through experiments and the strain gradient plasticity is unable to explain the grain284

boundary strengthening at the onset of plastic yielding. This has been discussed in light of285

the initial state of the material in particular with respect to the initial GND density prior to286

mechanical testing.287
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Nomenclature295

CP Crystal plasticity
MPF Multi phase field
GND Geometrically necessary dislocations
SSD Statistically stored dislocations
RVE Representative volume element
τs Resolved shear stress on s slip system
τs

c Critical resolved shear stress on s slip system
νs Dislocation velocity on s slip system
ν0 Initial dislocation velocity
ε(p) Equivalent plastic strain
γ̇ Shear strain rate
c1 Geometrical constant
G Shear modulus
s Arbitrary slip system
Ω Domain/system size
φ Order parameter/phase field parameter
α Arbitrary name for a phase phase/grain
F Total free energy of the system
f int Interfacial free energy
f el Elastic or mechanical free energy
N Total number of slip systems or phases
η Interfacial width
ρtotal Density of dislocations
ρSSD Density of SSD
ρGND Density of GND
k1 SSD storage parameter
k2 SSD annihilation parameter
m Strain rate sensitivity parameter
σαβ Interfacial energy between arbitrary phase or grain α and β

Ps Symmetric part of Schmidt tensor on slip system s
σvM von Mises equivalent stress
ε Total strain tensor
εel Elastic strain tensor
ε∗ Eigen strain tensor
ε(p) Plastic strain tensor
σij Stress tensor
Λ Nye’s dislocation tensor
C Stiffness tensor
F Deformation gradient
b Burgers vector
d Slip direction vector
l Slip plane tangent vector
n Slip plane normal vector

296
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