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Abstract: One ambitious objective of Integrated Computational Materials Engineering (ICME) is to
shorten the materials development cycle by using computational materials simulation techniques
at different length scales. In this regard, the most important aspects are the prediction of the
microstructural evolution during material processing and the understanding of the contributions
of microstructural features to the mechanical response of the materials. One possible solution to
such a challenge is to apply the Phase Field (PF) method because it can predict the microstructural
evolution under the influence of different internal or external stimuli, including d eformation. To
accomplish this, it is necessary to take into account plasticity or, specifically, non-homogeneous plastic
deformation, which is particularly important for investigating the size effects in materials emerging
at the micron length scale. In this work, we present quasi-2D simulations of plastic deformation in a
face centred cubic system using a finite strain formulation. Our model consists of dislocation-based
strain gradient crystal plasticity implemented into a PF code. We apply this model to study the
influence of grain size on the mechanical behavior of polycrystals, which includes dislocation storage
and annihilation. Furthermore, the initial state of the material before deformation is also considered.
The results show that a dislocation-based strain gradient crystal plasticity model can capture the
Hall-Petch effect in many aspects. The model reproduced the correct functional dependence of the
flow stress of the polycrystal on grain size without assigning any special properties to the grain
boundaries. However, the predicted Hall-Petch coefficients are significantly smaller than those found
typically in experiments. In any case, we found a good qualitative agreement between our findings
and experimental results.

Keywords: phase field; crystal plasticity; Hall-Petch effect; dislocation density; micromechanics

1. Introduction

The properties of engineering materials are size-dependent if the microstructural length scale
falls into an order of a few microns to less than a micron [1,2]. The pioneering work of Hall and Petch
[3,4] motivated many researchers to study the underlying physics and the influence of the grain size
effect on the mechanical behavior of materials [5-10]. Within the domain of metallic materials, the
main plastic deformation mechanism is dislocation slip. This deformation mechanism depends on
the density and evolution of the dislocations, crystal structures, and crystallographic orientations,
and on the localization of deformation as a result of the gradients of the grain morphology and the
distribution of grain sizes [11].

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.
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31 The grain size effect is the manifestation of the fact that a polycrystal with larger grains experiences
sz larger strain incompatibility during plastic deformation. This generates higher internal stresses in
ss  the microstructure which leads to lowering of yield strength and as the grain size is reduced, an
s« Opposite phenomenon is observed [3,4]. For coarse grains, it is well understood that an increase of
ss the dislocation density results in a strengthening of the microstructure, which can be described by
s Taylor’s hardening law [12]. In the case of fine or ultra-fine grained materials, their strength is grain
sz size dependent [2,5,13,14]. Furthermore, this is associated with the state of the material, e.g. its initial
ss dislocation density, which determines the strength of a material [15].

39 Because of a significant improvement in computational power in recent decades, the mechanical
s behavior of crystals has been simulated extensively by using crystal plasticity (CP) models. Such
a1 plasticity models relate the evolution of the plastic flow of a crystal as a result of its state and the
a2 evolution of this state [11]. However, classical CP models do not posses any intrinsic microstructural
a3 length scale and therefore fail to describe the size dependent mechanical response of the materials [16].
4« This drawback, can be coped with by employing strain-gradient CP models [17-19] that address size
«s dependent plasticity. These models have proven their capability to describe the non-homogeneous
s deformation by taking into account the plastic strain at any material point and its influence on the
«z neighbouring points. This involvement of the plastic strain gradient can therefore capture the grain
4 size effect [17], and such models can also be formulated on the basis of dislocation mechanics. To
4 serve this purpose, the dislocations can be divided into two relevant categories: (1) statistically stored
so dislocations (SSD) and (2) geometrically necessary dislocations (GND). The arbitrary dislocation
s1 configurations occurring during plastic deformation generates SSD, whereas GND emerge from sites
s2 of non-homogeneous deformation, mainly at the interfacial regions [20,21]. One main characteristic
ss  of SSD configurations is that their net Burgers vector is zero, whereas GND configurations possess a
s« non-zero net Burgers vector. The evolution of SSD can be described on the basis of the Kocks-Mecking
ss law [22], and GND can be evaluated on the basis of Nye’s dislocation tensor [23].

56 Although strain-gradient CP models are sensitive to microstructural features, they still lack the
sz capability to describe the plastic deformation of a material in connection to the evolution of the
ss microstructure during the processing steps [24]. This microstructural evolution is essentially related
ss to the movement of interfaces or a changing chemical composition of materials. Such changes can
e numerically be tracked with the help of phase field models [25]. These models are very flexible and
&1 can incorporate certain physical phenomena of interest by including properly defined energy densities
ez into the description of the total energy of the system. Therefore, the characteristics of these two types
es of models can be superimposed to predict the mechanical response of materials along with their
es Mmicrostructural evolution.

o5 Phase field models found numerous applications in materials science during the last decades,
es mainly to predict solidification dynamics [25]. The pioneering work of Khachaturyan et. al. in the
ez framework of phase-field microelasticity [26] set a new dimension of phase field modeling and enabled
es the development of phase field models to describe the elastic as well as the plastic deformation of
e materials. One variation of the PF method is the multi phase field model (MPF), which can predict the
7 behavior of a system by incorporating an unlimited number of phase fields/physical quantities.

7 Some studies report how the phase field is coupled with isotropic plasticity [27] or CP [28] to
72 analyze the finite or infinitesimal strains in larger material volumes. Recent studies also show an
s increasing trend towards discrete-dislocation-dynamics-based phase field models [29-36] to describe
7a  plastic deformation, but such models can only be applied to smaller systems due to the associated
7 computational cost. The non-homogeneous deformation in the framework of phase field modeling
76 has, however, been addressed by only a few researchers, who employed strain-gradient CP coupled
7z with a phase field model like, for example, the work by Aldakheel on fracture analysis of metals
7e  [37]. Such an approach of coupling is very significant because it has paved the way to predict the
7 response of complex microstructures under various boundary conditions. It can simultaneously track
s the microstructural evolution during material processing and the non-homogeneous deformation
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a1 resulting from the external boundary conditions, which leads to the description of the mechanical
s2 properties of materials on the basis of their process history.

o3 In our work, we present a dislocation-based strain-gradient CP coupled with the MPF model.
s« One prominent advantage of the proposed framework is its capability to capture not only the material
e process history by tracking the evolution of the microstructure but to assess at the same time the
s dislocation structures to the level of finite strains as a result of plastic deformation.

o7 The outline of this study is as follows: The second section comprises the model description
ss including the MPF, deformation kinematics, and strain-gradient CP. The third section throws light on
s the simulation setup including the boundary conditions and the employed parameters. The fourth
%0 section presents and discusses the evolution of dislocation densities, the resulting flow stress and the
o1 governing mechanisms for the grain size effect. The fifth section discusses the results.

o2 2. Model

03 The model used for our analysis consists of a MPF model as described in the subsection 2.1. It
sa involves the contribution of the elastic energy which is explained in the subsection 2.2. This elastic
os energy is calculated with the help of the plastic strain predicted by a strain-gradient CP model, which
s is elaborated in the subsection 2.3.

o7 2.1. The Multi Phase Field model

The MPF model followed in our work is the one developed by [38]. It can describe the
microstructural evolution under the influence of different internal or external stimuli because of
its strong interface tracking capability. It allows us not only to study a system with multiple
components/phase fields including thermodynamic phases, chemical elements, number of grains,
crystal orientations, and morphology, but also to address multi-physical phenomena simultaneously.
A basic constraint, however, is that the summation of the magnitudes of all the individual phase fields
foand fg should be equal to 1 in the respective bulks of the phases whereas the sum of the magnitudes
of all the phase fields should be equal to the unity inside the interfacial region. Hence the value of
each phase field ¢, varies as 0 < ¢, < 1 while traversing from the bulk of one phase field to the other
phase field and given as

Z (Prx(x) =1 (1)

The evolution of the phase fields/microstructure is driven by the minimization of the total energy of
the system. Therefore, an energy function is defined that can take into account all the energy densities
of interest. It usually includes, but is not limited to, the energy contributions of the chemical, interfacial,
and elastic aspects that lead to the evolution of a system. A general equation to describe the total
energy content of a system is as follows

F:‘/Q (fint'f'fel)- 2)

s Here, F is defined as the energy functional to describe the state of the system, f"* is the interfacial
o energy density, and f¢! is the elastic energy density. These quantities are integrated via the size of the
100 domain Q).

SUaﬁ

2
|~ L(99x Vo) + 9us| ®

- i

fln —
a=1,>ua n
The interfacial energy density takes into account the interfacial thickness 77 and the energy o,p of
the interface between the « and B phase/grain, which may be taken as isotropic or anisotropic. The
interfacial width is chosen in such a way that it forms a diffused and stable interface during the
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evolution. The elastic energy density is assumed to be a function of the elastic stiffness C,, total strain
(p)

€y, eigen strain €, and plastic strain €; ’ produced in each phase field ¢, as given below

el 1 * (p) * (p)
f :Ezfpa[ea_ea_etx :|CDC|:€04_€(X_61X ]/ 4)
=1
w1 2.2. Elasticity
102 To describe finite strain, a generalized stress-strain relation is used:
0y =Cy: Sl (5)

In this equation C, is the 4t order elastic stiffness tensor, o, is the 2 Piola-Kirchhoff stress and
€¢! is the Lagrangian strain. Now, as the stiffness tensor and the elastic strains are known for each phase
field, the evaluation of the driving force is simple. The continuum mechanical homogenization sets
several rules and evaluates effective values of mechanical properties with the help of phase fraction
and the parameters related to the phase. The resulting total strain e should be weighted as the average
of strains associated with a phase field as

N ®) N N N ®)
e:Z(p,x(egl—l—e;—l-eap):ZC;lzo'—l-Z(pae;—l—Z(paeap. (6)
a=1 a=1 a=1 a=1
103 2.3. PlﬂStiCity
104 Plastic deformation is described in terms of plastic shear rate 4° on a slip system s. It is calculated

15 by using a dislocation-based strain-gradient CP model, which is taken from [39]. In such models, the
1 plastic flow rule for a slip system is defined by Orowan’s Law. The shear strain rate of the slip system
w7 s is associated with the velocity v® and the total dislocation density pyoa, Which is assumed to be the
108 mobile dislocations on the same slip system and given as follows

75 - pfotalbvs’ @)

where b defines the magnitude of the Burgers vector. The dislocation slip velocity v® on the same
slip system s is defined as
|
w

1/S

®)

Here, m describes the strain rate sensitivity of the material, and vy is the reference velocity of
the dislocations, 7° is the resolved shear stress along the slip system s, and ¢ is its critical value to
start the dislocation slip, known as critical resolved shear stress (CRSS). It is defined through Taylor’s
hardening law as

7o = T + 1Gby /05 a1 9)
where T is the lattice friction stress/static yield stress, ¢ is a geometrical factor, and G is the shear

modulus. o}, ., is a measure of the total dislocation content of the slip system s, in our study it consists
of SSD and GND, as follows

Protal = P3sD + PGND- (10)
The magnitude of this total dislocation density in equation 9 at the initial state is () and

it is assumed as equivalent to the initial magnitude of p3s,. The evolution of SSD is based on the
Kocks-Mecking law as given below

pisp = (kiy/p3sp + P — kaolsn ) 7° (1)
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where k; is a measure of storage of SSD kj is the measure of annihilation of SSD. Plastic strain is
summation of the product of shear strain  and the symmetric part of the Schmidt tensor P*® for every
s slip system. Schmidt tensor is described through the direction vector of dislocation slip d* and the
vector of the slip plane normal n®. Thus, evolution of plastic strain is given by

N
1
&) — Y °PS, P° = E(ds ®@n®+n°®d°). (12)
s=1
100 The resulting plastic strain is then used in equation (4) to determine the contribution of the

1o system’s elastic energy and to predict the concurrent microstructural evolution. The gradient of the
11 evolution of this plastic strain defines the evolution of the Nye’s dislocation tensor described by

A = (—eelT)Teioe;, (13)
(p)

112 where —e¢j is the third order permutation tensor, é;, defines the partial derivative of the plastic

us  strain rate with respect to the coordinate k, such that e el(lplz is the rotation of the plastic strain rate,
us  and ® represents the diadic product between the Cartesian e; and € unit vectors, which define the
us components of the resulting tensor. The evolution of GND can now be described as follows

P = g (°AF| + |@°Ad®)). (14)
116 Here, d and 1 refer to the slip direction vector and to the tangent vector used to evaluate the edge
uzr and screw components of GND.
us 3. Simulation Setup
110 The dislocation-based strain-gradient CP model is implemented with an explicit integration

120 scheme into the open source phase field code OpenPhase [40]. The mechanical problems in this context
121 are solved by using the spectral elastic solver [28], which maintains the mechanical equilibrium on the
122 basis of the Saint-Venant hyper elastic material model [41]. This material model extends the typical
123 linear elasticity to the nonlinear regime and relates the Lagrangian strain with the 2" Piola-Kirchoff
124 stress. In the present study, we focus on the Face-Centred Cubic (FCC) system, and we consider the
12 dislocation glide on the crystallographic slip systems {111}(110). Furthermore, we assume the total
126 dislocation density to be equivalent to SSD as well as to the mobile dislocation density at the start of the
127 simulations. The material parameters that we apply, are mostly taken from the literature [20,39,42,43]
12 and are summarized in Table 1.
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Parameters Symbol Value Unit Ref.
Anisotropic elastic constant Ci1 108.2 GPa [42]
Anisotropic elastic constant Ci2 61.3 GPa [42]
Shear Modulus G 28.5 GPa [42]
Strain rate sensitivity m 0.025 -
Lattice friction stress T 80 MPa
SSD storage parameter kq 2x10° - [39]
SSD annihilation parameter ko 10 - [39]
Initial total dislocation density Protal (i) 1x1013 m~—2
Geomtrical factor for flow stress | 0.3 - [20][43]
Referential dislocation velocity Vo 1x1073 ms~!
Interfacial energy Tap 0.24 Jm—2 [28]
Space discritization Ax 0.1 pym
Time discritization At 1 Us
Interfacial width 7 4.5 Ax
Domain size Q 128 x 128  Ax
Length of Burger’s vector b 0.286 nm
Table 1. Parameters used in this study
120 To perform micromechanical simulations, quasi-2D periodic Representative Volume Elements

130 (RVE) consisting of 64 grains with a regular hexagonal shape, are generated with the general Voronoi
11 tessellation by embedding the tessellation module of the Voro++ library [44] into OpenPhase. Four
132 RVEs with grain diameters of 16, 1.6, 0.8 and 0.4 ym are created to investigate the influence of the grain
133 size on the mechanical response of the material. To exclude the influence of texture on the deformation
1:a  behavior, similar sets of random crystallographic orientations are assigned to all RVEs, resulting in
135 a mircrostructural texture index close to 1. The geometry of an RVE used in this study is shown in
136 Fig.1(a). The color of each grain corresponds to the color code of the Inverse Pole Figure (IPF), usually
137 evaluated by an Electron Backscatter Diffraction (EBSD) analysis, and black arrows denote the loading
3¢ direction.

130 To solve the phase field evolution, interfaces between the crystals/grains are diffused for
1o obtaining a certain interfacial thickness 7. The interfacial energy 0, is assumed to be isotropic in order
11 to prevail any effect of interfacial anisotropy and subsequent influence on the grain size effect. The
12 periodic boundary conditions are applied to all of the phase fields along the regular computational grid.
13 Same boundary condition is applied in the thickness direction of RVE. Isothermal and uniaxial tensile
s strain is applied at room temperature as loading condition with a constant strain rate of 0.1 s~! to
s produce a total deformation of 5%. Grain growth is restricted by assuming very low interfacial mobility.
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Figure 1. (a) Orientation distribution, (b) flow stress for a polycrystal with grain diameter of 0.4 ym an
offest of 0.2% of global plastic strain to define the onset of plastic yielding

2

The flow stress is homogenized by taking the volume average of the von Mises equivalent stress
oom, whereas the equivalent plastic strain e(P) is calculated by the Frobenius norm [45] as given in
equation (15), in which €1, €, €3 represent the normal strains and €y, €5, €¢ represent the shear strains
of the strain tensor in Voigt notation. Yield strength is calculated by taking an offset of the elastic part
of the stress-strain curves at 0.2% of the total strain as shown in Fig.1(b).

1 1 1
|€(P)| = \/(e% + e% + e% + —eﬁ + Eeé + §€%> (15)

147
148
149
150

151
o,u (MPa) €® (%)
165.2 190.0 215.0 245.0 275.0 299.3 0.0 0.1 0.2 0.3 0.4 0.5 0.6

—_— e — h“ g

Figure 2. Distribution of (a) equivalent stress and (b) equivalent plastic strain corresponding to the
onset of plastic deformation, which is defined here by a global plastic strain of 0.2%.

The distribution of equivalent stress and strain in the RVEs with a grain diameter of 0.4 ym,
corresponding to the green colored arrow pointing to the yield point in Fig.1(b), is shown in Fig. 2(a)
and Fig. 2(b). Because this stage of deformation appears at the onset of plasticity, a certain degree of
shear band is observable, and the stress concentration along grain boundaries is not pronounced. The
global values of dislocation densities p,.;, Ossp and ponp are evaluated by taking the volume average

157 of the local quantities.

1ss 4. Results and Discussion
In order to investigate the influence of the grain size, first of all we evaluated the distributions
of pGND, Pssp and pPiorar in all RVEs at 5% total strain, and then we applied the volume averaged

159

160
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homogenization scheme to investigate the evolution of these quantities with respect to the plastic
deformation. After that, we also analyzed the global flow stress Tym, ponp, Psgp and Py, from all
RVEs at the onset of plasticity and at the total strain of 5.0%. Finally, the sensitivity of the selected
material parameters is studied and reported.

4.1. Effect of the grain size on the distribution of dislocation density

Figure 3 shows the distribution of pgnp in all RVEs at a global plastic strain of 5%. Comparing
to RVEs with a smaller grain diameter, the distribution of pgnp in the RVE in Fig. 3(d) with a grain
diameter of 16 ym is rather small and negligible. By decreasing the grain diameter, pgnp increases
and tends to concentrate along the grain boundaries. Such observed concentration of pgnp along the

grain boundaries is consistent with the large strain gradients in these regions of strain incompatibility
between neighboring grains.

(a)

Poxp (X108m=2)

Figure 3. Distribution of geometrically necessary dislocation density pgnp in the deformed RVEs with
a grain diameter D of (a) 16um (b) 1.6pm (c) 0.8um (d) 0.4um at a global plastic strain of 5%
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Figure 4. Distribution of statistically stored dislocation density psgp in the deformed RVEs with the
grain diameter D of (a) 16pm (b) 1.6um (c) 0.8um (d) 0.4um at a global plastic strain of 5%

172 With respect to the modified form of the Kocks-Mecking law (equation (11)), the evolution of SSD
173 Pggp depends directly upon the pi - Therefore, the distribution of the psgp in all RVEs as illustrated
17a  in Fig. 4, shows that psgp also increases with decreasing grain size. However, comparing to Fig. 3, the
s effect of the grain size is much less prominent. As the plastic deformation progresses, storage and
176 annihilation of SSD compete with each other to maintain a state of dynamic equilibrium. In addition,
177 the pggp distribution in all deformed RVEs shows patterns similar to those of the distribution of the
s equivalent plastic strain as shown in Fig. 2, which represents, however, the local plastic strain at a
170 global value of 0.2%
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Prota (X10°m72)

Figure 5. Distribution of total dislocation density pys1 in the deformed RVEs with a grain diameter D
of (a) 16pm (b) 1.6pum (c) 0.8um (d) 0.4um at a global plastic strain of 5%

180 The total dislocation density distribution in the deformed RVEs at a stage of 5% total strain is
e shown in Fig. 5. Because pgnp is much smaller than pssp, the pattern of the distribution of pyq for
12 the RVE with a large grain diameter of 16 ym in Fig. 5(a) is similar to the pggp distribution in the
1es  same RVE, as shown in Fig. 4(a). By decreasing the grain diameter, the pattern of the total dislocation
1es  density distribution exhibits an equivalent combination of pssp and pgnp distributions, where both
1es  shear bands and localized dislocation density can be observed at grain boundaries.

186 To investigate the contribution of grain size on the evolution of dislocation densities and on the
1z hardening behavior of the material, global dislocation densities oonp, Psspr Prorar @Nd flow stress Tym
1ee  have been plotted versus the total strain in Fig. 6. From these curves, all dislocation densities start to
10 increase sharply after a total strain of approximately 0.3%.
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Figure 6. Effect of grain size on the evolution of the global (a) geometrically necessary dislocation
density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress

190 In the next step, the influence of grain size on dislocation densities and on the yield stress has
101 been investigated at the onset of plasticity. Firstly, the yield stress measures taken at an offset of 0.2%
12 and 0.5% strain are plotted against the inverse square root of the grain diameter as shown in Fig. 7(a).
103 The fitted trend lines indicate that the yield stress increased linearly with respect to the inverse square
10a  root of the grain diameter and hence followed the Hall-Petch relationship.

195 To understand the contribution of dislocation densities on grain boundary strengthening, the pggp
1we and pgnp at a total strain of 0.5% and 5% are evaluated from all of the RVEs and plotted against the
17 inverse square root of the grain diameter as shown in Fig. 7(b). Comparing the global plastic strains
e 0Of 5.0% with 0.5%, psgp and pnp rose in all simulations. The strain gradient or grain size affected
100 the global pgg) negligibly at the small plastic strain, but the effect got prominent at the higher plastic
200 strain, which is indicated by a small increase in the slope of the linear regression i.e. solid red line.
201 To understand this observation, we refer to the evolution of SSD (gssp) given in equation (11), which
202 involves GND (pgnp). For the case of pgnp, the influence of the grain size is strong at smaller plastic
=203 strain and stronger at larger plastic strain.

204 The value of the Hall-Petch coefficient evaluated at 0.5% offset is 0.004 MPa m'/2, which is
20s much lower as compared to the experimental findings reported in [5,9]. It is commonly observed in
206 experiments [5,7,10] that a decrease in grain size leads to an increase in initial yield strength. This
20z behavior is not captured by our model. In other work [13], it has been explained in terms of dislocation
20 density concentration in the vicinity of grain boundaries. El-Awady [46] has discussed rigorously
200 the dependence of initial yielding and initial dislocation density on grain size. However, the strain
210 gradient plasticity models, which are based on the classical Kocks-Mecking dislocation evolution law,
2 are not able to capture this behavior without the introduction of suitable prior adjustments. Cheong et.
22 al. [8] have employed a grain size dependent initial SSD for different RVEs and [47] have assumed
213 specific storage of GND at grain boundaries prior to plastic deformation and found a dependency of
z1a yielding stress on grain size with an exponent of -1.5. Our results follow qualitatively the trends of flow
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a5 curves reported by [6]. One observation shows that the value of Hall-Petch coefficient increases slightly
26 with progressing plastic deformation, which is consistent with the experimental results reported by
2z [8,10,48].
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Figure 7. (a) Hall-Petch coefficient calculated at an offset of 0.2% and 0.5% of total strain, (b) evolution
of pssp and pgNp at 0.5% and 5% of total strain with variation in grain size

218 The governing mechanism of strengthening does not only depend on the stored dislocations but
210 also on their annihilation. Therefore, the next section of this work aims at investigating the influence
220 Of material parameters that control the initial state and influence of evolution of dislocation densities
2z on the deformation mechanism.

22 4.2, Averaged stress and dislocation density under the influence of model parameters

223 Firstly, we have studied the influence of the initial total dislocation density py,(;) on the grain
22a  size effect. The value of the initial total dislocation density is varied from 1012 t0 10'® m—2, whereas
225 other parameters are set according to the table 1. The higher value of initial total dislocation density
226 corresponds to an unannealed material configuration whereas lower initial dislocation density mimics
227 an annealed microstructure. We have plotted the evolution of pn\p, Ossp Piorarr @aNd flow stress oy
228 versus the total strain resulting from the simulations as shown in Fig. 8.
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Figure 8. Effect of variation of initial total dislocation density on the global (a) geometrically necessary
dislocation density, (b) statistically stored dislocation density, and (c) total dislocation density (d) flow
stress

Since pyopa (i) is assumed to be equivalent to psgp, an increase in ;) results in an increasing
Pssp- but it does not lead to any significant change in poyp. Furthermore, a larger value of pyga i)
suppresses minimally the influence of grain size on the evolution of pggp,. This results into an increase
of yield stress for all RVEs, but the effect of the grain size on the hardening behavior diminishes as
shown in Fig. 8(d). This can be correlated to the experimental results from [10], that the grain size
effect resulting from plastic deformation of unannealed (higher initial dislocation density) materials is
weaker as compared to that resulting from plastic deformation of annealed specimens (lower initial
dislocation density).

Secondly, to investigate the influence of SSD storage parameter k;, we have compared simulations
using parameters from Table 1 with simulations with k of 4x10° and 9x10%, and the results are shown
in Fig. 9. In general, a larger value of k; elevates the evolution of pggp, significantly but suppresses
the evolution of p\p- Consequently, by increasing ki, p,,,, increases non-linearly and results into a
more pronounced hardening behavior. However, because the contribution of p-\p is suppressed, the
influence of the grain size on the hardening behavior is minimized.

d0i:10.20944/preprints201908.0135.v1
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density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress

Thirdly, the effect of SSD annihilation parameter k; on the evolution of global dislocation densities
and flow stress is evaluated as plotted in Fig. 10. We have increased the magnitude of k; to 30 and 50.
With a lower value of kj, lesser SSD annihilate so the rate of storage of pggp, is higher. The opposite
of this happens with a larger ky, which also promotes the influence of the grain size on pg\p by
increasing the rate of storage of pgnp as observable in Fig. 10(a). This effect is, however, of minor
importance and it also results into an increase of p, .., but at a lower rate with increasing the total
strain. As a consequence, a weaker strain hardening behavior is observed but because of the higher

storage of the p\p, the influence of the grain size is enhanced.

d0i:10.20944/preprints201908.0135.v1
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Figure 10. Effect of variation of dislocation annihilation on the global (a) geometrically necessary
dislocation density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow

stress
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Figure 11. Effect of dislocation annihilation on pggp and poyp at (a) 0.5% plastic strain and (b) 5%
plastic strain

251 Finally, the evolution of the global dislocation densities is investigated with respect to a change in
=2 the grain size at two particular strain levels with two different SSD annihilation parameters. From
=3 the global dislocation densities at 0.5% of the total strain i.e., at the onset of plasticity as shown in
s Fig. 11(a), pgnp becomes larger and surpasses pggp, The pggr does not increase significantly with a
25 decreasing grain size at this strain. This means that the contribution of GND to the onset of plasticity
26 is higher and overcomes SSD at smaller grain sizes. k, does not, however, affect the evolution of the
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=7 dislocation densities because the material is still at the early stage of deformation. It is also clear that
zs  the chosen values 10 and 50 of ky have a negligible effect on the behavior of dislocation densities.
20 For the case of a larger plastic strain of 5.0% as plotted in Fig. 11(b), the effect of k; is much more
200 significant. With the relatively lower kj of 10, an annihilation is not pronounced and resulted in an
21 increase of the pggy. At 5.0% of plastic strain, o does not exceed pggp,. However, by increasing the
262 value of ky to 50, the evolution of SSD is more suppressed, therefore pgg, becomes smaller than oy
263 at a smaller grain size. This demonstrates that at a larger applied total strain, the dominating type of
2a  dislocations during plastic deformation, strongly depended on the values of of k; and kj.

26s 5. Conclusions

266 In this work, we have implemented dislocation based strain-gradient crystal plasticity into a
2 multi-phase-field framework and investigated the grain size effect together with the contribution of
2es  statistically stored dislocation density (55D) and geometrically necessary dislocation density (GND).
200 Thus, this model is able to predict the behavior of materials in response to applied mechanical
270 loads and describe the changes in mechanical behavior in relation to dislocation densities. The
xn  strain-gradient-based nature of the model allows us to analyze the influence of grain size on the
22 strength of a polycrystal. The results are obtained through a series of quasi-2D simulations under
s different conditions imposed on RVEs with different grain sizes, and the results correlate with the
27a  literature. In summary, we can conclude that:

275 e Our work shows that by applying a dislocation-based strain gradient crystal plasticity model,
276 we can capture many aspects of grain boundary strengthening as it is observed in experiments.
277 This conforms to the Hall-Petch model in which the introduction of special properties for grain
278 boundaries is not necessary.

279 e The model introduced in our work is capable of recapturing the Hall-Petch relation with an
280 exponent of -0.5 for the grain size dependence. Furthermore our model is consistent with the
201 experimental observations of the evolution of the Hall-Petch coefficient with progressing plastic
202 deformation and initial state of the material with respect to dislocation density.

203 o The value of the Hall-Petch coefficient predicted by our model is significantly smaller than those
284 observed through experiments and the strain gradient plasticity is unable to explain the grain
205 boundary strengthening at the onset of plastic yielding. This has been discussed in light of
286 the initial state of the material in particular with respect to the initial GND density prior to
287 mechanical testing.
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Nomenclature

CP Crystal plasticity

MPF  Multi phase field

GND  Geometrically necessary dislocations

SSD  Statistically stored dislocations

RVE  Representative volume element

T° Resolved shear stress on s slip system

e Critical resolved shear stress on s slip system

% Dislocation velocity on s slip system

Vo Initial dislocation velocity

e(P) Equivalent plastic strain

¥ Shear strain rate

1 Geometrical constant

G Shear modulus

s Arbitrary slip system

O Domain/system size

¢ Order parameter/phase field parameter

« Arbitrary name for a phase phase/grain

F Total free energy of the system

fint Interfacial free energy

fel Elastic or mechanical free energy

N Total number of slip systems or phases

n Interfacial width

Protal  Density of dislocations

pssp  Density of SSD

oonp  Density of GND

kq SSD storage parameter

ko SSD annihilation parameter

m Strain rate sensitivity parameter

Tap Interfacial energy between arbitrary phase or grain « and j

P* Symmetric part of Schmidt tensor on slip system s

OyM von Mises equivalent stress

€ Total strain tensor

el Elastic strain tensor

e* Eigen strain tensor

elP) Plastic strain tensor

ij Stress tensor

A Nye’s dislocation tensor

C Stiffness tensor

F Deformation gradient

b Burgers vector

d Slip direction vector

1 Slip plane tangent vector

n Slip plane normal vector
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