

1 Article

2

Initial field testing results from building-integrated 3 solar energy harvesting windows installation in 4 Perth, Australia

5 **Mikhail Vasiliev *, Mohammad Nur-E-Alam, and Kamal Alameh**6 Electron Science Research Institute (ESRI), School of Science, Edith Cowan University, 270 Joondalup Dr,
7 6027, WA, Australia

8 * Correspondence: m.vasiliev@ecu.edu.au

9

10 **Featured Application: Unconventional, highly transparent building integrated photovoltaics.**11 **Abstract:** We report on the field testing datasets and performance evaluation results obtained from
12 a commercial property-based visually-clear solar window installation site in Perth-Australia. This
13 installation was fitted into a refurbished shopping centre entrance porch, and showcases the
14 potential of glass curtain wall-based solar energy harvesting in built environments. In particular,
15 we focus on photovoltaic (PV) performance characteristics such as the electric power output, specific
16 yield, day-to-day consistency of peak output power, and the amounts of energy generated and
17 stored daily. The dependencies of the generated electric power and stored energy on multiple
18 environmental and geometric parameters are also studied. An overview of the current and future
19 application potential of high-transparency, visually-clear solar window-based curtain wall
20 installations suitable for practical building integration is provided.21 **Keywords:** Renewables; energy saving and generation; built environments; solar windows;
22 advanced glazings; photovoltaics.

23

24

25 **1. Introduction**26 The global building integrated photovoltaics (BIPV) market is likely to expand from USD 6.7
27 billion to USD 32.2 billion by 2024, witnessing a compound annual growth rate (CAGR) of 23.4% over
28 the forecast period [1]. This growth trend is due to both the increasing availability of new and
29 innovative BIPV products, and the growing attention of the architects, city planners, property
30 developers, and governments towards the sustainable construction practices and the integration of
31 renewable energy generators into urban landscapes. At the same time, the worldwide annual energy
32 consumption continues to grow, and is projected to exceed 0.74 billion TJ by 2040, with the generation
33 contributions from fuels other than coal (mainly renewables) being on the increase [2]. Global
34 warming-related concerns and environmental protection trends and policies also continue to favour
35 the development of renewable energy generation and storage facilities [3–6]. At present, the BIPV
36 technologies and products are only beginning to experience their expected widespread adoption, and
37 a range of different novel technologies are being introduced into the well-established market of
38 construction materials [7–12]. The benefits of distributed energy generation (an approach based on
39 employing a combination of small-scale technologies to produce electricity close to the end users of
40 power) include the avoidance of significant transmission-line losses and the provision of blackout
41 resistance. Generating electricity at the point of its use can also lead to making the urban built
42 environments potentially grid-independent, even if this energy supply independency is provided
43 only on limited time-scales. Multiple recent literature sources emphasize the importance of

44 distributed generation networks and the development of sustainable microgrids [13-15]. Advanced
45 building-scale integration of renewable energy generators utilising most of the available deployment
46 areas, including walls and windows, can lead towards future city-scale distributed generation
47 networks in “smart cities”. Additionally, the emergent concept of “smart facades” that provide
48 locally window-embedded self-powering environmental sensor systems integrated with window-
49 powered equipment, such as motorized blinds, is gaining increasing attention in commercial
50 engineering circles [16]. The most desired attributes of building wall-integrated PV are either the
51 highly-transparent, perfectly-clear visual appearance, or a possibility of significant (active or passive)
52 control over their transparency, appearance, and colour. A number of recent and detailed reviews
53 of the current trends in BIPV are available [17-20], with the most recent sources underscoring the
54 importance of transparent photovoltaics and solar windows, which have just started to appear on the
55 market at present, packaged as installation-ready framed systems suitable for long-term
56 environmental exposure.

57

58 The importance of energy-efficient construction practices is currently gaining substantial
59 attention from multiple governments and research groups worldwide, leading to the emergence of a
60 large range of principally new construction materials and their components, such as advanced
61 coatings which ensure improved thermal insulation and/or change transparency in response to
62 external conditions [21]. It is the combination of the energy saving and energy generation
63 functionalities possible to be engineered in modern windows that is of primary interest for leading
64 architects and property developers. In early 2019, Vicinity Centres (a real estate investment trust
65 company based in Melbourne, Australia) has installed 18 transparent solar windows supplied by
66 Clearvue Technologies Ltd. (Perth, Australia), into a refurbished entrance porch of Warwick Grove
67 Shopping Centre in Warwick (a northern suburb of Perth), in order to evaluate their suitability and
68 practical application potential in commercial property settings. The installation site is illustrated in
69 Figure 1.

70

71

72

73

74

75

76

77

78

79
80

81 **Figure 1.** Entrance porch (atrium) of Warwick Grove Shopping Centre in Warwick (Perth, WA, Australia)
82 constructed using 18 solar windows supplied by Clearvue Technologies Ltd. (Perth, WA, Australia). (a) front
83 view and (b) top view.

84

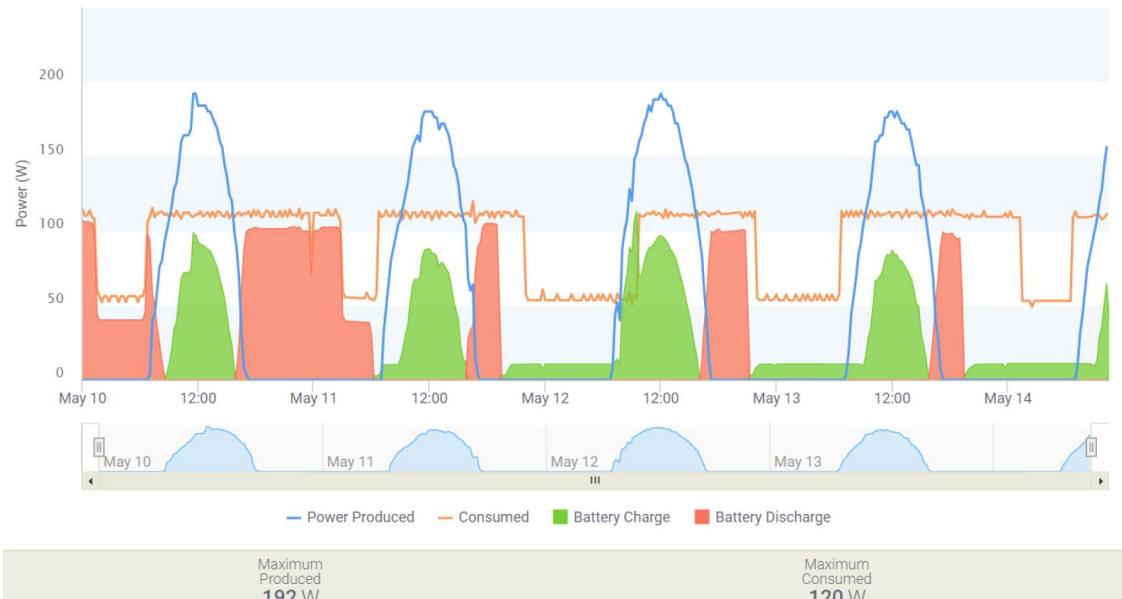
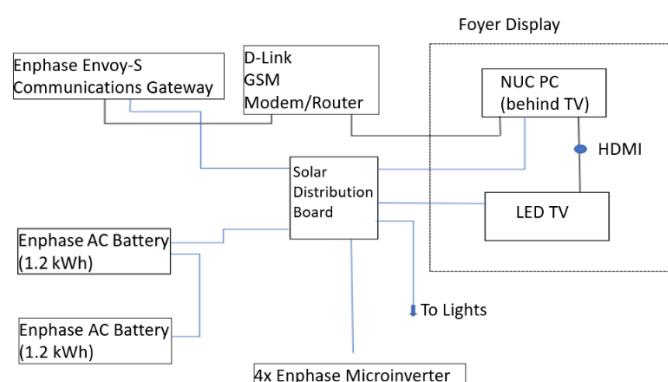
85 The solar window design type was derived from the previous transparent solar window designs,
86 multiple prototype models of which have been developed by Edith Cowan University (ECU) and
87 Clearvue Technologies over several recent years, and were trialled in 2017 at a grid-independent bus
88 stop in Melbourne [22]. Several engineering features related to the glazing system structure, window
89 size, system packaging-related details, and solar modules circuitry implementation have changed
90 since these were reported originally ([22]), improving the peak-rated electric power output of
91 transparent solar windows towards $30 \text{ W}_\text{p}/\text{m}^2$, measured at standard test conditions (STC) using the
92 manufacturer-sourced large-scale flash-lamp PV testing equipment. The core design and assembly-
93 related features of solar windows remained almost the same, and included the triple-glazed structure,
94 low-iron glass plates, low-emissivity heat-mirror coating, and particles of high Stokes-shift inorganic
95 luminescent materials embedded into a lamination interlayer. More technical details are available
96 from [23-26], whilst the general system design philosophy has been derived from the approaches
97 reported throughout the last several decades in [27-30], and in references therein.

98

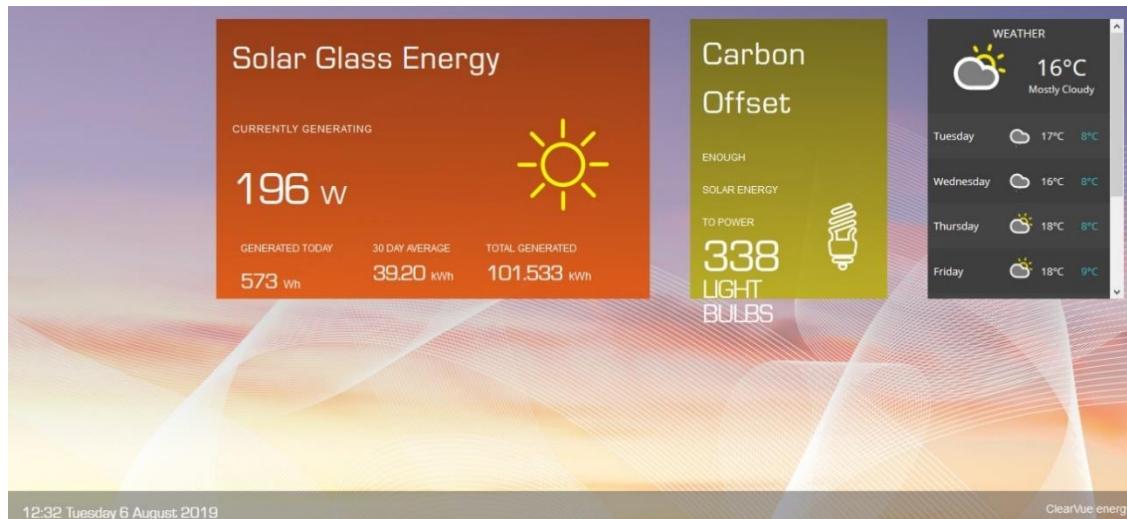
99 The following sections of this article provide the installation-specific microgrid configuration
100 details, and the results of a case study of the energy harvesting efficiency conducted over May-June
101 2019. We then summarise the data and main results, providing an outlook for the future application
102 potential of transparent solar windows, and propose some new future application areas.

103

104 **2. System Design Features, Methodologies of Energy Harvesting Performance Assessment, and**
105 **Principal Results**



106 Each of the 18 solar windows, factory-assembled at Qingdao Rocky Technical Glass Co., Ltd.
107 (Qingdao, China) have been re-tested following their shipment to Perth, in outdoor morning sunlight
108 conditions, confirming stable operation and the expected power outputs. Approximately (27 ± 1) W of
109 electric output has been obtained from each window at close to their optimal geometric orientation
110 and tilt angles towards the incoming natural sunlight, and at solar module surfaces being at > 37 °C.
111 The weather conditions in mid-April in Perth (at the time of testing) were typical for autumn, and
112 without strong UV irradiation background (likely at UV index near 5, out of the yearly maximum of
113 12 [31]). The typical measured output parameters from each window were as follows: open-circuit
114 voltage $V_{oc} = 58.85$ V, short-circuit current $I_{sc} = 0.723$ A, and Fill Factor $FF = 0.639$. The maximum power
115 point (MPP) parameters corresponded to $V_{MPP} = 49.5$ V and $I_{MPP} = 0.55$ A. The same windows of area
116 size near 1.3 m^2 ($1.087\text{m} \times 1.2\text{m}$) have been tested at STC previously, resulting in electric outputs
117 being in excess of 36 W; the differences with the outdoor test results were due to both the solar cell
118 temperature effects, and also the weather-dependent solar irradiation power density. Three principal
119 deployment areas were available on-site for the installation of 16 unshaded solar window units: (i)
120 an East-facing tilted roof section, with 4 parallel-connected windows; (ii) a North-facing vertical wall
121 section, containing 8 windows, and (iii) a West-facing tilted roof section with 4 windows. An
122 additional deployment area on the east-facing vertical wall housed 2 more window units, which were
123 strongly shaded by the nearby car-park roofing during most of the daylight hours. The shopping
124 centre atrium installation at Warwick Grove Shopping Centre (Fig. 1) was completed in early 2019
125 [32], and a systematic study of its energy harvesting performance commenced in May 2019, following
126 a short period of initial configuration tests and some reconfiguration of the microgrid equipment and
127 circuitry used. Vicinity Centres has stated their commitment to achieving Net Zero carbon emissions
128 by 2030 [33], and solar energy harvesting can be expected to play a major role in reaching this
129 objective. Vicinity Centres' giant solar energy program and roadmap of renewable energy
130 installations have led to winning the "People's Choice" award at the Property Council of
131 Australia/Rider Levett Bucknall Innovation and Excellence Awards 2019 [34].

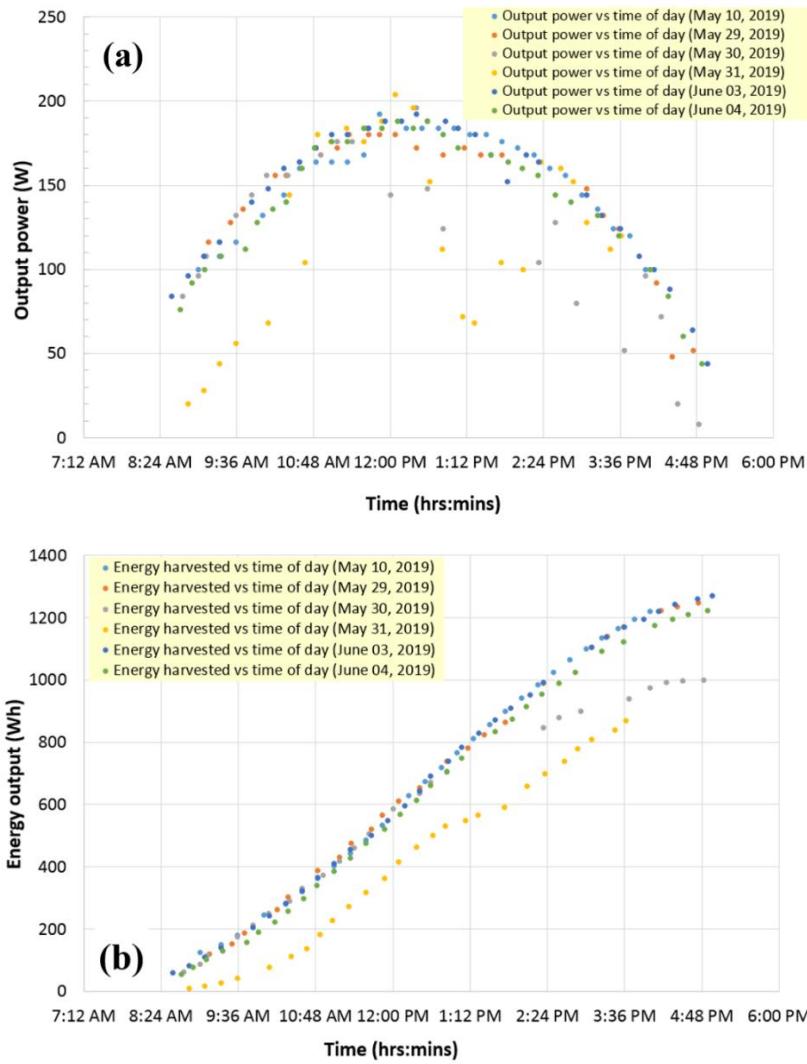
132 Figure 2 shows a graphical summary of the microgrid circuitry details and equipment
133 configuration installed, as well as sample plots of the daily power generation and use waveforms
134 recorded by Enphase Energy's Enlighten Systems applications programming interface (API) over
135 several days in May 2019. Four Enphase microinverters (Enphase Energy Inc., Fremont, CA, USA)
136 were installed to service the four separate solar window installation areas described above; each
137 microinverter collected the combiner-box bundled parallel-connected electric output from the
138 windows placed into each installation area. A LED TV panel (powered by the generated energy
139 stored in batteries) was installed in the shopping centre entrance foyer, and was configured to display
140 a graphic summary of the system operation state (also shown in Fig. 2). The main system parameters
141 displayed, related to the generation of energy and carbon offset capacity, were also configured for
142 online live internet broadcasting at <http://tcp.iotstream.io/vicinity-warwickgrove/index.php>. The live
143 power generation data are being refreshed every 15–20 minutes, and the amounts of daily and total
144 generated energy (since May 14, 2019) are also shown. Electric loads other than LED TV included a
145 computer system (Intel NUC small-form mini PC), modem (D-Link GSM), and two 30 W LED ceiling
146 lamps within the foyer area, used continually for about 12 h daily. The energy storage was enabled
147 by installing twin LiFePO₄ Enphase AC batteries providing 1.2 kWh capacity each. The Enphase
148 Envoy-S Metered™ communications gateway system delivered the real-time solar production and
149 energy consumption data to Enphase Enlighten™ monitoring and analysis software for
150 comprehensive, remote maintenance and management of the complete microgrid system. Fuses were
151 installed into each window's output cabling lines to safeguard against any possible issues related to
152 the accidental (however unlikely) electric faults leading to the high reverse-current loading of any
153 individual modules. These protective components were necessary, considering the high maximum
154 I_{sc} (~ 0.75 A) generated by individual PV windows, and the numbers (up to 8) of the parallel-connected
155 window modules installed into bundles. Parallel electric connection of the individual windows


156 placed into the same deployment areas (presumed uniformly lit in clear weather conditions) has been
 157 selected to improve the stability of the combined electric output to differential shading effects,
 158 originating from the possible glass surface contamination and variable cloud-related shading.
 159 Additionally, this allowed minimisation of the system output voltage to safe levels, and the selection
 160 of a suitable low-power microinverter model with matched electric input characteristics and having
 161 maximum power point tracking (MPPT) capabilities. The benefits of using the parallel and also the
 162 massively-parallel electric circuit configurations of PV modules installed into low-power solar energy
 163 harvesters have been well documented and reported previously [35].
 164
 165

166
 167

168

169
170
171
172
173
174


Figure 2. A graphical summary of the microgrid configuration details, sample data logs for the daily energy generation and use, and a photo of TV screen data showing a summary of system state (also available through live Internet broadcast at <http://tcp.iotstream.io/vicinity-warwickgrove/index.php> with 15-minute data sampling intervals).

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

After configuring the microgrid connections, electric loads, storage system, and system management software in May 2019, a case study of the system performance started, and the electric characteristics were monitored almost daily, at regular time intervals, and in varying weather conditions. The amounts of storage-ready electric energy generated by all four individual (differently-oriented) bundles of solar windows were monitored in different conditions. Energy losses at the microinverters and inside cabling would have amounted to several percent of the total generated energy, yet these were ignored and not monitored specifically. Regular system performance and electric output observations continued until the end of June 2019, resulting in obtaining a large dataset suitable for system performance characterisation. Weather-dependent solar irradiation and cumulative daily solar exposure data were also collected (at the same times as the electric outputs) from the online live data broadcasts of nearby Wanneroo Weather Station operated by the Department of Primary Industries and Regional Development, Government of Western Australia [36]. Additional solar geometry-related data for the current (and local) Sun azimuth and Sun altitude angles at the times of data logging were recorded from SunCalc.org online solar astronomy calculator [37].

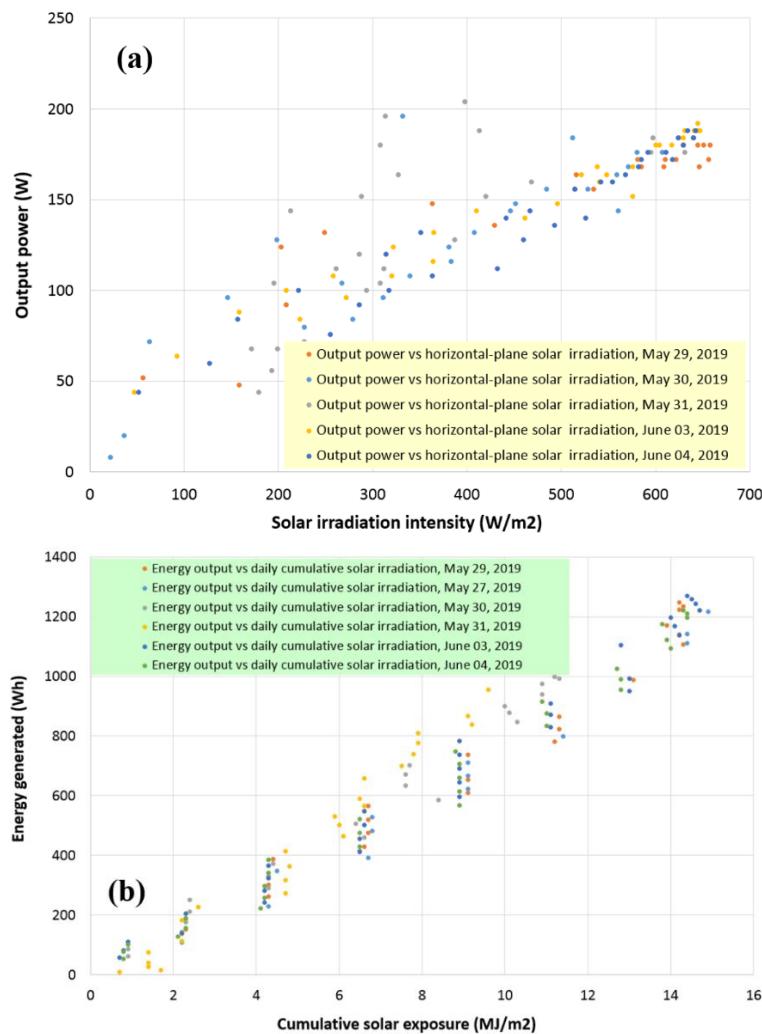
190
191
192
193

Figure 3 shows the dependencies of the generated electric power and stored energy on the time of day, measured over several sunny days in May and June of 2019. It is interesting to note the high consistency of the power generation on different sunny days, even measured weeks apart. The effects of variable weather conditions such as cloud cover are also seen in the graphs.

194

195

196 **Figure 3.** Energy harvesting performance of 18-window solar atrium versus time of day. **(a)** Electric power
 197 output readings recorded over several days in May–June 2019; **(b)** the amounts of stored electric energy vs time
 198 of day; the data points used are from the same dataset of system-state records as in part (a).


199

200 It can also be noted from the data of Fig. 3 that the time distribution of the power generation
 201 follows the “bell curve” shape well-known in conventional roof-based PV installations. This is despite
 202 the fact that this installation does not include any optimally-tilted, north-oriented roof sections, but
 203 rather is composed of an unequal number of PV generators placed into four deployment areas of
 204 substantially different geometric orientations, tilts, and shading exposure conditions. Also notable is
 205 the almost-linear time dependency of the stored electric energy, observed until late afternoons on
 206 sunny days. Considering that the sun-path geometry over the course of day involves large changes
 207 in both the azimuth and sun altitude angles, all occurring simultaneously with weather- and time-
 208 dependent irradiation intensity variations across all planes, these data confirm that all four main parts
 209 of this solar-window atrium provided important contributions to the daily energy generation
 210 function.

211 Figure 4 shows the solar irradiation intensity dependencies of the output power (recorded on
 212 different sunny days during the study), and the dependency of stored electric energy on the total
 213 cumulative amount of incoming solar energy received during the day by each 1m^2 of horizontal (land)
 214 surface area. Both datasets are notable in terms of the data points clustering around nearly-linear
 215 function shapes. Since only the horizontal-plane solar irradiation intensity was measured by the
 216 weather station, and because most of the daily total energy was being generated by the eight
 217 vertically-mounted north-facing windows, the data trends seen in Fig. 4(a, b) (and also in Fig. 3(b))

218 confirm the relative insensitivity of the electric power output and energy storage rate on the geometry
 219 of sunlight incidence. This is because the transparent solar windows are of solar concentrator design
 220 type, which improves the angular stability of power generation compared to conventional PV panels.
 221

222

223

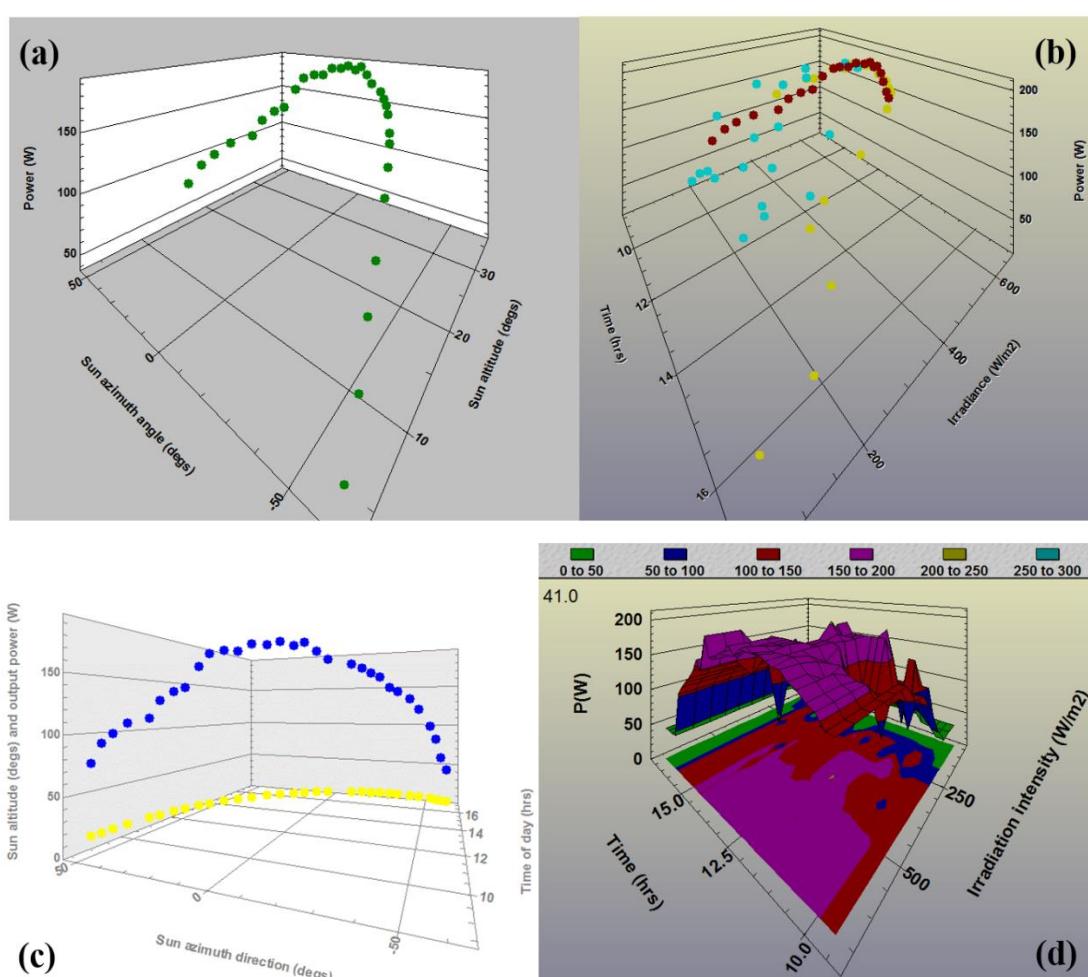
224 **Figure 4.** Energy harvesting performance vs solar exposure parameters. (a) Output power vs solar
 225 irradiation intensity measured in the horizontal plane by a local weather station; (b) generated electric energy
 226 vs daily land-area cumulative solar exposure (measured by the same weather station since midnight of the same
 227 day).

228 It can be noted from Fig. 4(a) that the maximum output power readings have been recorded for
 229 moderate horizontal-plane solar irradiance values between 300-400 W/m². These irradiances
 230 correspond to the smaller Sun altitude angles during the morning hours, when a stronger UV
 231 irradiation background is usually present (compared to the afternoon hours), and colder ambient air
 232 temperatures. A combination of incidence angles (in both the horizontal and vertical planes) thus
 233 exists, favouring the power generation from the east-tilted roof and also the north-facing wall sections.
 234 A maximum electric power output registered so far was 232 W, recorded on May 08, 2019, shortly
 235 after 11 am. Since this data point was acquired outside a systematic study conducted later, it hasn't
 236 been included in the dataset of Fig. 4. For sunny Australian autumn days in May, each 1 kWh (3.6
 237 MJ) of harvested electric energy corresponded to approximately 11 MJ/m² of daily land-area
 238 cumulative solar exposure. Considering the land-area footprint of this atrium structure being approx.
 239 12.5 m² (5m×2.5 m), the combined (installation-scale) direct estimate of its actual solar energy
 240 harvesting efficiency is then approximately 2.6%. This figure is only marginally smaller than the rated
 241 efficiency of individual solar windows at standard test conditions (~3.0%), despite the absence of any
 242 optimally-tilted deployment areas and seasonal weather conditions without strong UV irradiation
 243 background. Interestingly, these field-measured performance data show some contrast with the

244 recently reported figures for the “real” (field-measured) energy harvesting efficiencies of
 245 conventional PV generator types (solar panels) evaluated in major Australian cities [38]. In particular,
 246 these field-evaluated (“real”) efficiencies of most conventional solar panel types stood at only about
 247 one-half of their rated energy conversion efficiency specifications. Environmental factors such as
 248 partial shading and soiling of solar panels, and installation-related geometric factors such as panel
 249 orientation and tilt angles, all affect the energy harvesting performance characteristics significantly
 250 [39-42].

251 Table 1 shows an example of a typical daily system-related and environmental data-related
 252 dataset obtained during the study. It is important to note, that Enphase data interface has always
 253 rounded the output power readings to the nearest even number of Watts; this is possibly related to
 254 the fact that the live data were sampled in 3-minute intervals, followed by the data averaging
 255 occurring every 15 minutes prior to internet broadcasting. Also, the cumulative solar exposure
 256 figures have apparently been adjusted by the weather station (however infrequently), to sometimes
 257 correct the sensor readings towards smaller values (compared to the data published at previous data
 258 sampling intervals) during the course of day.

259
 260
 261
 262


Table 1. Example of the daily dataset collected from the installation data interface and online data sources on June 4th, 2019.

Time	Energy stored (Wh)	Power (W)	Solar exposure (MJ/m ²)	Horiz. Irradiance (W/m ²)	Sun Altitude (degs)	Sun Azimuth (degs)
8:43	54	76	0.8	255	15.8	50.09
8:54	77	92	0.8	286	17.56	48.17
9:06	102	100	0.9	317	19.41	46.01
9:21	129	108	2.1	363	21.64	43.18
9:44	157	112	2.3	432	24.83	38.55
9:55	189	128	2.3	460	26.24	36.21
10:10	223	136	4.1	493	28.04	32.88
10:22	258	140	4.2	526	29.37	30.11
10:37	298	160	4.2	554	30.88	26.5
10:49	341	172	4.3	585	31.95	23.51
11:05	385	176	4.3	592	33.19	19.37
11:20	429	176	6.5	611	34.14	15.37
11:35	475	184	6.5	624	34.87	11.25
11:52	521	184	6.5	640	35.42	6.5
12:07	568	188	8.9	642	35.67	2.25
12:22	614	184	8.9	640	35.67	357.98
12:35	661	188	8.9	634	35.48	354.3
12:50	706	180	8.9	629	35.05	350.08
13:04	749	172	8.8	618	34.44	346.22
13:35	834	168	11	582	32.42	337.98
13:51	875	164	11	568	31.03	333.95
14:04	915	160	10.9	542	29.76	330.8
14:19	954	156	12.8	514	28.12	327.31
14:35	990	144	12.8	467	26.2	323.76
14:50	1025	140	12.7	441	24.25	320.6
15:15	1093	132	14	351	20.71	315.66
15:35	1123	120	13.9	314	17.66	311.99
16:04	1175	100	13.8	221	12.93	307.09
16:21	1196	84	14.4	157	10.02	304.42
16:35	1211	60	14.4	127	7.57	302.32
16:53	1222	44	14.3	52	4.36	299.74

263
 264

265 The datasets shown in Figure 5 illustrate the details of the atrium’s power generation trends with
 266 respect to the variables such as the solar path-related angles, instantaneous irradiance intensity, time
 267 of day, and weather conditions. During this study conducted over autumn and winter months, the
 268 Sun altitude angle reached a maximum of only about 36° near mid-day, and therefore the solar
 269 atmospheric path-length always exceeded its standardized value (air-mass 1.5, corresponding to the
 270 AM1.5 NREL standard for solar spectrum measurements). Solar azimuth angles, on the other hand,
 271 varied across a wide range between about 40° (NNE) and -60° (WNW) between 9:00 and 17:00. The
 272 electric output power correlated well with both the Sun altitude angle and horizontal-plane
 273 irradiance, despite most of the power generation obtained consistently (throughout the days) from
 274 the north-oriented vertical wall of windows. It is important to note (Fig. 5(d)) that the output power
 275 readings exceeding 150 W (out of the typical maximum-recorded output powers near 200W) have
 276 been obtained consistently on different days, in a range of solar exposure conditions, between 10:00

277 and 15:00, and at a large range of horizontal-plane solar irradiance variations (between about 250 –
 278 650 W/m²). This confirms the capability of this solar window atrium to collect energy efficiently in a
 279 wide range of solar incidence geometry conditions, at least during clear and sunny weather
 280 conditions. The dataset of Fig. 5(d) has only been collected over several weeks (and therefore, not all
 281 possible independent time/solar irradiation variable combinations could be evaluated); it also
 282 contains some weather-related “noise” affecting the low-power readings. This dataset is, however,
 283 quite representative of the system power generation capabilities seen during most winter conditions
 284 on sunny, cloudless days. We included this additional two-dimensional surface-plot representation
 285 as “a guide for the eye” only, to demonstrate and visualize the time- and weather-related correlations
 286 of the output power. The irradiation data used for plotting Fig. 5(d) have been grouped, so that all
 287 data points for the horizontal irradiation values measured inside small intervals between eg 150–200
 288 W/m² were all assigned a 200 W/m² value for plotting. For all “missing” output power data points
 289 (due to the limited duration of study not covering all possible weather conditions) corresponding to
 290 some locations across the time-irradiance data grid used, these points were approximated to
 291 correspond to the minimum actually measured power values observed at boundaries of the
 292 corresponding data intervals.
 293

294

295
296
297

298 **Figure 5.** Electric output power trends observed with respect to the solar geometry and irradiation-related
 299 parameters. (a) 3D scatter plot of the output power vs the Sun azimuth and Sun altitude angles; (b) 3D scatter
 300 plot of the output power vs the time of day and the horizontal-plane solar irradiation intensity; (c) 3D scatter
 301 plot of the output power shown in correlation with the Sun altitude angle, vs the Sun azimuth direction and the
 302 time of day; (d) 3D surface plot (and its corresponding 2D contour plot shown in the X-Y plane underneath)
 303 illustrating the variations in the electric output power with both the time of day, and the instantaneous weather-

304 dependent (horizontal-plane) solar irradiation intensity. The data were collected over the entire period of study
305 (about 2 months) covering a wide range of weather conditions observed at regular intervals at most times of day.
306

307 The amounts of electric energy generated by each individual sub-section of the atrium
308 installation have also been monitored. On May 28, by 7 pm, the two shaded east-wall windows have
309 only produced 54 Wh of electric energy, whereas the four east-roof windows produced 268 Wh, the
310 8 windows on northern wall contributed 743 Wh, and 4 west-roof windows generated 191 Wh. On a
311 slightly sunnier day (June 03, 2019), the 8 front-wall windows produced 794 Wh of energy during the
312 day. Therefore, the vertically-mounted north-oriented wall windows, which were often shaded
313 temporarily by the people traffic near the shopping centre entrance, contributed daily, on average,
314 almost 100 Wh per window unit, in late-autumn conditions. Per unit window module, the daily
315 energy generation from shaded windows (on eastern wall) was a factor of 3.4 smaller compared to
316 the north-facing vertically-mounted units. Increased energy collection efficiencies are expected to be
317 observed during the spring and summer months, due to both the stronger solar irradiation intensity
318 levels, and (most importantly) the substantially longer daily sunshine durations. The angle-
319 dependent solar illumination flux-cross-section differences between the vertically-mounted and
320 peak-tilted window orientations (eg if placed onto optimally-tilted North-facing roof section) are also
321 significant. These geometric factors correspond to approximately a factor of $(1/\cos 45^\circ)$ in peak-power
322 output difference, which allows predicting the orientation-related increases in the energy outputs per
323 window by up to several tens of percent, in future optimally-mounted units. A yearly-averaged
324 estimate for the daily energy output per 1m^2 of solar window area can therefore be made, based on
325 the observed data, being near 0.1 kWh/m^2 , presuming that installation sites are configured favouring
326 the north-facing, azimuth-optimized window orientations. For future dome-type installations, the
327 average daily energy outputs per window can be predicted, by averaging the data from the three
328 main (unshaded) parts of Warwick Grove atrium installation, leading to estimates near 70 Wh/m^2 .
329 These estimates can be considered conservative, since only the seasonal increases in the daily
330 sunshine durations were factored in to produce these year-scale averages. In other geographic
331 locations, where stronger yearly insolations are typically measured (eg, Middle East, or the north-
332 west of Australia), higher energy yields will be obtained.
333

334 **3. Discussion and Assessment of Future Application Areas**

335 In order to assess the practical applications potential of this emergent class of transparent solar
336 window-based PV, it is necessary to refer to the industry-standard system-level performance
337 indicators, the most common of which is Specific Yield. Specific yield (SY) quantifies the amounts of
338 electric energy (in kWh) harvested annually (per typical calendar year, in each installation location),
339 per each 1 kW_p of installed PV generation capacity [43]. SY values are commonly used in industry to
340 directly compare the performance of different PV system configurations installed at different
341 locations. Typically measured SY values in the United States reach up to about 1500 kWh/kW_p ,
342 according to the data reported in [43] for conventional solar PV module installations. For
343 conventional (silicon modules-based) rooftop PV installations in Perth, Australia, average daily
344 energy generation outputs of about 4.4 kWh/kW_p have been reported [44], which translates into the
345 estimated approx. SY values of near 1320 kWh/kW_p , based on 300 sunny days per year in this location.
346 Accounting for the PV generation amounts during the other 65 days showing at least about a third of
347 maximum generation (compared to the stable-sunshine days, from our observations of Warwick
348 Grove Atrium energy outputs measured on rainy days in winter), a more detailed estimate for the
349 SY figure for typical Perth-based PV systems is then also close to 1500 kWh/kW_p . These data sets are
350 only valid, however, for the optimally-oriented, optimally-tilted roof-based, completely unshaded
351 silicon PV module installations.
352

353 In order to evaluate the expected annual energy generation and specific yield of Warwick Grove
354 Atrium, local meteorological datasets for the monthly and yearly cumulative solar exposure values

355 can be used, in conjunction with the data of Fig. 4(b) for the energy yield per each MJ/m^2 of solar
356 exposure. Quantified during sunny days in May, a conservative estimate (due to the weather being
357 more suitable for PV generation over many other months over the year) for this energy yield per unit
358 solar exposure, is near $1/11 \text{ kWh}/(\text{MJ/m}^2)$. According to the yearly solar exposure data summaries
359 available from a local weather station [36], the annual cumulative solar exposure figures were
360 consistently at near $7400 \text{ MJ/m}^2/\text{year}$, in several recent years. Therefore, a conservative annual energy
361 output estimate can be obtained, being at least 673 kWh . This figure will likely be exceeded be up to
362 several hundred kWh, due to weather conditions being much more conducive to PV energy
363 harvesting in spring and summer, when both the UV and near-IR irradiation levels are much higher,
364 due to drier atmospheric conditions. Substantially stronger diffused and reflected solar irradiation
365 backgrounds are also present during the warmer months, leading (in our group's experience) to
366 improved energy capture rates in solar windows.
367

368 It is possible to evaluate the (over-conservative) lower limit for the expected specific yield of
369 Warwick Grove Atrium installation, by using a nominal, sum-total-based installed generation
370 capacity of 18 solar windows ($\sim 0.54 \text{ kW}_p$). Then, a standardized expected SY figure of $\sim 1246 \text{ kWh/kW}_p$
371 is obtained, which is still quite competitive to the typical conventional (even optimally tilted) PV
372 installations in sunny locations like Perth, especially if shading considerations are taking into account,
373 which strongly affected 2 out of 18 windows. Accounting for the real measured peak output powers,
374 and the local site-specifics of windows deployment at Warwick Grove, particularly the geometric
375 orientations of most modules being far from optimal, the actual electric output-related installed
376 capacity rating cannot exceed about 300 W_p . Using this figure, an adjusted (however non-standard)
377 estimate for the SY can be re-calculated, now exceeding 2240 kWh/kW_p . This SY figure estimate
378 confirms the relative strengths of the energy harvesting approach using solar windows, compared to
379 many common types of PV systems. These strengths are due to the improved efficiency of solar
380 energy collection for light rays incident onto harvesting surfaces at large angles, which is a known
381 characteristic of luminescent concentrator-type devices, including transparent energy-generating
382 window systems.
383

384 Significant seasonal variations in the daily amounts of generated energy are expected, due to
385 local climate-related variables. A graphical summary of seasonal climate-related solar irradiation
386 parameter variations for Perth, Australia is presented in Figure 6. It can be noted from Fig. 6 that very
387 strong monthly variations exist between the monthly-averaged direct-beam solar irradiation
388 intensities, the horizontal-plane illuminance, and also the mean daily total sunshine hours. The local-
389 based monthly distribution of peak output-equivalent sunshine hours for many Australian locations
390 is also known from specialized PV industry sources (eg [46]), and generally scales in correlation with
391 the mean daily total sunshine hours shown in Fig. 6(c). All of the above parameters are directly
392 relevant to the expected daily energy generation from all PV module types; further, longer-term
393 studies are necessary to generate the expected energy generation data per each calendar month.
394
395
396
397
398
399

Figure 6. Seasonal yearly climate-related solar irradiation parameter variations for Perth, Australia. (a) Monthly averaged and maximum-recorded direct-beam solar irradiation intensities measured across horizontal plane; (b) monthly averaged and maximum-recorded direct-beam solar illuminance values measured across horizontal plane; (c) monthly distributions of the total daylight hours and the daily sunshine durations. The datasets shown in parts (a) and (b) have been obtained using COMFEN 5 software [45]; the dataset of part (c) has been published online by [31].

The results of this initial pilot-trial study of shopping centre entrance-based solar windows installation lead to a preliminary conclusion regarding the generally expected suitability (and relevance) of transparent solar windows in commercial property-based settings. It is particularly important to note that the amounts (and usefulness) of the generated electric power and renewable energy both scale favourably with the installation size, presuming that the geographic location is suitable, and the architectural design features are adjusted to maximizing the generated energy. For example, considering a semi-spherical dome-type installation housing 2000 m² of solar window surfaces, the diameter of this dome-shaped roof-based installation area will be near 35 m, a size not uncommon in shopping centre properties. Based on 70 Wh/m² estimate for the system-averaged, seasonally-averaged daily energy generation, about 140 kWh of daily energy production can be expected. This corresponds to the total daily energy consumption requirements of about 10 3-bedroom Australian households. The area under the modelled solar-window dome and its surrounds will be approximately 40 m x 40 m in footprint, requiring a square 21 x 21 grid of 441 LED lamps separated by about 2 m. Presuming 30W LED lamps and using the calculated daily-average energy production figure, this area-lighting circuit of lamps can be run for approximately 10.5 hours. Accounting for the high visual transparency of windows, with >65% of total (direct and diffused)

425 visible-range transparency, significant reduction in the lighting-related energy consumption can be
426 predicted. Additionally, a large degree of electricity supply blackout resistance provided by on-site
427 distributed generation using these building-material-integrated PV can be expected, provided that
428 suitable battery storage systems are installed. Other expected future application areas of highly
429 transparent energy-generating construction materials and solar windows will likely include roof-top
430 canopies, balcony glazings, skylights, and airport roofs.

431 4. Conclusions

432 A case study of a small-scale transparent solar windows installation in Perth (Australia) over the
433 period of May-June 2019 has been reported. The photovoltaic power and energy outputs have been
434 characterized during varying weather conditions and times of day. The results reported elucidate the
435 practical application potential of the described type of solar window products in various public
436 infrastructure and commercial property-based applications. In particular, a small-scale (18 windows,
437 with none installed at optimum orientation) solar window microgrid generated about 1 kWh of
438 stored electric energy per 11 MJ/m² of land-area cumulative solar exposure, as measured by a local
439 weather station, in variable weather conditions. Each vertically-placed, north-facing window unit of
440 area near 1.3 m² harvested approximately 0.1 kWh on each sunny winter day of total sunshine
441 duration ~6-7 h. It can be expected that multiple new commercial and residential building-based
442 installations of the latest transparent BIPV products and technologies will continue to be constructed
443 and trialled, broadening the acceptance of transparent energy-generating construction materials.

444 **Author Contributions:** All authors (M. V., M. N. A., and K. A.) have contributed to the design features of test
445 installation at Warwick Grove Shopping Centre (Perth, Australia), the design features of solar window modules,
446 the conceptualization of this article, and data collection; M. V. collected and analyzed the electric output and
447 weather-related datasets, and prepared the manuscript. All authors discussed the data, graphics, and the
448 presentation; M. N. A. contributed substantially to the data curation and the original draft preparation; M. V.
449 and K. A. further reviewed and edited the manuscript.

450 **Acknowledgements:** The authors would like to acknowledge the contributions of Gemtek Automation Pty. Ltd.
451 (Malaga, WA, Australia) and Steve Coonen (independent PV Consultant Engineer, California, USA) to the
452 microgrid configuration design and electrical installation works.

453 **Funding:** This research was funded by the Australian Research Council (ARC grant LP160101589) and Edith
454 Cowan University. Clearvue Technologies Ltd is Industry Partner Organisation co-operating in ARC-funded
455 research with Edith Cowan University, and have also funded the solar windows manufacture and construction
456 works at Warwick Grove Shopping Centre.

457 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
458 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
459 publish the results.

460 References

1. Global Building Integrated Photovoltaics (BIPV) market to witness a CAGR of 23.4% during 2018-2024, Bloomberg Press Release, 25 April 2019, Available Online: <https://www.bloomberg.com/press-releases/2019-04-25/global-building-integrated-photovoltaics-bipv-market-to-witness-a-cagr-of-23-4-during-2018-2024> (sighted on 23 July 2019).
2. L. Capuano, International Energy Outlook 2018 (IEO2018), published by the US Energy Information administration.
3. Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. *Science* **2002**, *298*, 981.
4. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. *Nature* **2012**, *488*, 294–303.
5. Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédihiou, I.; Grodsky, S.M.; Saul-Gershenson, L.; Davis, R.; Macknick, J.; Mulvaney, D.; Heath, G.A.; Easter, S.B.; Hoffacker, M.K.; Allen, M.F.; Kammen, D.M. Techno-ecological synergies of solar energy for global sustainability, *Nature Sustainability* **2019**, *2*, 560-568, DOI: 10.1038/s41893-019-0309-z.

475 6. 20 overlooked benefits of distributed solar energy, online publication by TechXplore, **2019**, Available
476 Online: <https://techxplore.com/news/2019-07-overlooked-benefits-solar-energy.html> (sighted on 26 July
477 2019).

478 7. Wang, W.; Shi, Y.; Zhang, C.; Hong, S.; Shi, L.; Chang, J.; Li, R.; Jin, Y.; Ong, C.; Zhuo, S.; Wang, P.
479 Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane
480 distillation. *Nat. Commun.* **2019**, *10*, 3012.

481 8. Ravyts, S.; Dalla Vecchia, M.; Van den Broeck, G.; Driesen, J. Review on Building-Integrated Photovoltaics
482 Electrical System Requirements and Module-Integrated Converter Recommendations. *Energies* **2019**, *12*,
483 1532.

484 9. Attoye, D. E.; Aoul, K. A. T.; Hassan, A. A Review on Building Integrated Photovoltaic Façade
485 Customization Potentials. *Sustainability* **2017**, *9*, 2287; doi:10.3390/su9122287.

486 10. Rezaei, S.D., Shannigrahi, S. Ramakrishna, S. A review of conventional, advanced, and smart glazing
487 technologies and materials for improving indoor environment. *Sol. Energy Mater. Sol. Cells* **2017**, *159*, 26–51.

488 11. Barman, S.; Chowdhury, A.; Mathur, S.; Mathur, J. Assessment of the efficiency of window integrated CdTe
489 based semitransparent photovoltaic module. *Sustainable Cities and Society* **2018**, *37*, 250–262.

490 12. Balin, I.; Garmider, V.; Long, Y.; Abdulhalim, I. Training artificial neural network for optimization of
491 nanostructured VO₂-based smart window performance. *Opt. Express* **2019**, *27*(16), A1030-A1040.

492 13. United States Environmental Protection Agency, Distributed Generation of Electricity and its
493 Environmental Impacts. **2018** Available Online: <https://www.epa.gov/energy/distributed-generation-electricity-and-its-environmental-impacts> (sighted 15 July, 2019).

495 14. Ramalingam, K; Indulkar, C. Distributed Generation Systems - Design, Operation and Grid Integration,
496 Chapter 3 - Solar Energy and Photovoltaic Technology, Butterworth Heinemann **2017**, 69-147,
497 <https://doi.org/10.1016/B978-0-12-804208-3.00003-0>

498 15. Gao, D. W. Energy Storage for Sustainable Microgrid. Academic Press **2015** ISBN 978-0-12-803374-6, DOI
499 <https://doi.org/10.1016/C2014-0-04144-5>.

500 16. Online video presentation by Arup Group and Clearvue Technologies Ltd. **2019** Available Online:
501 <http://www.clearvuepv.com/wp-content/uploads/2019/05/Arup-ClearVue-Smart-Facade-v2-900x506.mp4>
502 (sighted 26 July 2019.)

503 17. Biyik, E.; Araz, M.; Hepbasli,A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A. C.; del Caño, T.;
504 Rico, E.; Lechón, J. L.; Andrade, L.; Mendes, A.; Atlı, Y. B. A key review of building integrated photovoltaic
505 (BIPV) systems. *Engineering Science and Technology, an International Journal* **2017**, *20*, 833-858.

506 18. Cornaro, C., Basciano, G., Puggioni, V.A., Pierro, M. Energy Saving Assessment of Semi-Transparent
507 Photovoltaic Modules Integrated into NZEB. *Buildings* **2017**, *7*, 9.

508 19. Husain, A. A. F.; Hasan, W. Z. W.; Shafie, S.; Hamidon, M. N.; Pandey, S. S. A review of transparent solar
509 photovoltaic technologies. *Renew. Sust. En. Rev.* **2018**, *94*, 779–791.

510 20. Vasiliev, M.; Nur-E-Alam, M.; Alameh, K. Recent Developments in Solar Energy-Harvesting Technologies
511 for Building Integration and Distributed Energy Generation. *Energies* **2019**, *12*(6), 1080;
512 <https://doi.org/10.3390/en12061080>.

513 21. Dalapati, G. K., Kushwaha, A. K., Sharma, M., Suresh, V., Shannigrahi, S., Zhuk, S., and Masudy-Panah, S.
514 Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact
515 of materials design, micro-structural, and interface quality on the THR performance. *Prog. Mater. Sci.* **2018**,
516 95, 42-131.

517 22. Vasiliev, M.; Alameh, K.; Nur-E-Alam, M. Spectrally-Selective Energy-Harvesting Solar Windows for
518 Public Infrastructure Applications. *Appl. Sci.* **2018**, *8*(6), 849; <https://doi.org/10.3390/app8060849>.

519 23. Alghamedi, R., Vasiliev, M., Nur-E-Alam, M., and Alameh, K. Spectrally-Selective All-Inorganic Scattering
520 Luminophores For Solar Energy-Harvesting Clear Glass Windows. *Sci. Rep.* **2014**, *4*, 6632.

521 24. Vasiliev, M., Alghamedi, R., Nur-E-Alam, M., and Alameh, K. Photonic microstructures for energy-
522 generating clear glass and net-zero energy buildings. *Sci. Rep.* **2016**, *6*, 31831.

523 25. Rosenberg, V., Vasiliev, M., Alameh, K. (2017) A Spectrally Selective Luminescence Concentrator Panel
524 with a Photovoltaic cell. Patent EP 2 726 920 B1.

525 26. Vasiliev, M.; Alameh, K.; Rosenberg, V. A device for generating electric energy. **2016** Patent Appl.
526 US20160204297A1.

527 27. Goetzberger, A.; Greube, W. Solar-energy conversion with fluorescent collectors. *Appl. Phys.* **1977**, *14*, 123–
528 139.

529 28. Debije, M.G.; Verbunt, P.P.C. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for
530 the Built Environment. *Adv. Energy Mater.* **2012**, *2*, 12–35.

531 29. Mazzaro, R., and Vomiero, A. The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic
532 Nanomaterials. *Adv. Energy Mater.* **2018**, 1801903.

533 30. Liu, H.; Li, S.; Chen, W.; Wang, D.; Li, C.; Wu, D.; Hao, J.; Zhou, Z.; Wang, X.; Wang, K. Scattering enhanced
534 quantum dots based luminescent solar concentrators by silica microparticles. *Solar Energy Materials and*
535 *Solar Cells* **2018**, *179*, 380–385.

536 31. Monthly weather forecast and climate in Perth, Australia, Available Online: https://www.weather-atlas.com/en/australia/perth-climate#uv_index (sighted on 31 July, 2019).

537 32. Online publication by Shopping Centre News, Global-first trial of a clear solar glass structure at Vicinity
538 Centres. **2019**, Available Online: <https://www.shoppingcentrenews.com.au/shopping-centre-news/industry-news/global-first-trial-of-a-clear-solar-glass-structure-at-vicinity-centres/> (sighted 26 July
539 2019).

540 33. Vicinity Centres publication, Vicinity to reach Net Zero carbon emissions by 2030. **2019**, Available Online:
541 [https://www.vicinity.com.au/media-centre/media-and-news/190807_netzero-carbon-emissions-by-2030](https://www.vicinity.com.au/media-centre/media-and-news/190807_net-zero-carbon-emissions-by-2030)
542 (sighted 26 July 2019).

543 34. Vicinity Centres and Mirvac celebrated for sustainability achievements, online publication by The Fifth
544 Estate, Australia, **2019**. Available Online: <https://www.thefifthestate.com.au/events-tfeevents/awards-event-news/vicinity-centres-and-mirvac-celebrated-for-sustainability-achievements/> (sighted 31 July 2019).

545 35. Gao, L.; Dougal, R.A.; Liu, S.; Iotova, A.P. Parallel-connected solar PV system to address partial and rapidly
546 fluctuating shadow conditions. *IEEE Trans. Indust. Electron.* **2009**, *56*(5), 1548–1556.

547 36. Wanneroo Weather Station, Wanneroo, Western Australia. Live internet broadcasts of the local weather-
548 related data. Available Online: <https://weather.agric.wa.gov.au/station/WN> (sighted on 1 August 2019).

549 37. SunCalc.org solar astronomy online data calculator. Available Online: <https://www.suncalc.org/#/31.9452,115.8816,15/2019.06.01/14:34/1/3> (sighted on 1 August 2019).

550 38. Imteaz, M. A.; Ahsan, A. Solar panels: Real efficiencies, potential productions and payback periods for
551 major Australian cities. *Sust. En. Technol. Assessm.* **2018**, *25*, 119–125.

552 39. Maghami, M. R.; Hizam, H.; Gomes, C.; Radzi, M. A.; Rezadad, M. I.; Hajighorbani, S. Power loss due to
553 soiling on solar panel: A review. *Ren. Sust. En. Rev.* **2016**, *59*, 1307–1316.

554 40. Mousazadeh, H.; Keyhani, A.; Javadi, A.; Hossein Mobli, H.; Abrinia, K.; Sharifi, A. A review of principle
555 and sun-tracking methods for maximizing solar systems output. *Ren. Sust. En. Rev.* **2009**, *13*, 1800–1818.

556 41. Meggers, F.; Aviv, D.; Charpentier, V.; Teitelbaum, E.; Ainslie, A.; Adriaenssens, S. Co-optimization of solar
557 tracking for shading and photovoltaic energy conversion. Proceedings of the 15th IBPSA Conference, San
558 Francisco, CA, USA, Aug. 7–9, **2017**, 2224–2231, <https://doi.org/10.26868/25222708.2017.605>.

559 42. Nfaoui, M.; El-Hami, K. Extracting the maximum energy from solar panels. *En. Reports* **2018**, *4*, 536–545.

560 43. Zhang, T. What's a good value for kWh/kWp? An overview of specific yield. **2017**, Solar Power World,
561 Available Online: <https://www.solarpowerworldonline.com/2017/08/specific-yield-overview/> (sighted on
562 5 August 2019).

563 44. Solar Calculator Ltd., Photovoltaic output of solar panels. **2018**, Available Online:
564 <https://solarcalculator.com.au/solar-panel-output/> (sighted on 5 August 2019).

565 45. COMFEN5 software, Berkeley Lab, USA. Available online:
566 <https://windows.lbl.gov/tools/comfen/software-download> (sighted on 6 August 2019).

567 46. Australian Solar Radiation Figures, data reproduced from from the Australian Solar Radiation Handbook,
568 April 1995 (Energy Research and Development Corporation). Available online:
569 https://www.rpc.com.au/pdf/Solar_Radiation_Figures.pdf (sighted on 6 August, 2019).

570

571

572

573