

Conservation Tillage Increases Water Use Efficiency of Spring Wheat by Optimizing Water Transfer in a Semi-Arid Environment

Zhengkai Peng^{a,b}, Linlin Wang^{a,b}, Junhong Xie^{a,b}, Lingling Li^{a,b*}, Jeffrey A. Coulter^c, Renzhi Zhang^{a,d}, Zhuzhu Luo^{a,d}, Jana Kholova^e, Sunita Choudhary^e

^a Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China

^b College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

^c Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA

^d College of Resource and Environment, Gansu Agricultural University, Lanzhou 730070, China

^e International Crops Research Institute for Semi-arid Tropics (ICRISAT), Patancheru 502324, India

*Corresponding author at College of Agronomy / Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.

E-mail address: lill@gsau.edu.cn (L. Li)

1 **Abstract**

2 Water availability is a major constraint for spring wheat production on the
3 western Loess Plateau of China. The impact of tillage practices on water
4 potential, water potential gradient, water transfer resistance, yield, and water
5 use efficiency (WUE_g) of spring wheat was monitored on the western Loess
6 Plateau in 2016 and 2017. Six tillage practices were assessed, including
7 conventional tillage with no straw (T), no-till with straw cover (NTS), no-till
8 with no straw (NT), conventional tillage with straw incorporated (TS),
9 conventional tillage with plastic mulch (TP), and no-till with plastic mulch
10 (NTP). No-till with straw cover, TP, and NTP significantly improved soil water
11 potential and root water potential at the seedling stage and leaf water potential
12 at the seedling, tillering, jointing, and flowering stages, compared to T. These
13 treatments also significantly reduced the soil-leaf water potential gradient at
14 the 0-10 cm soil layer at the seedling stage and at the 30-50 cm soil layer at
15 flowering, compared to T. Thus, NTS, TP, and NTP reduced soil-leaf water
16 transfer resistance and enhanced transpiration. Compared to T, the NTS, TP,
17 and NTP treatments significantly increased biomass yield (BY) by 18, 36, and
18 40%, respectively, and grain yield (GY) by 28, 22, and 24%, respectively, with
19 corresponding increases in WUE_g of 24, 26, and 24%, respectively. These results
20 demonstrate that NTS, TP, and NTP improved GY and WUE_g of spring wheat
21 by decreasing the soil-leaf water potential gradient and soil-leaf water transfer
22 resistance and enhancing transpiration, and are suitable tillage practices for

23 sustainable intensification of wheat production in semi-arid areas.

24 **Keywords:** Conservation tillage; Water potential; Water potential gradient;
25 Water transfer resistance; Water use efficiency

26

27 1. Introduction

28 Wheat (*Triticum aestivum* L.) is a major food crop in China and in the world,
29 which plays an important role in ensuring China's food security [1]. The
30 western Loess Plateau of China is characterized by harsh climatic conditions,
31 including frequent spring drought, severe wind erosion, and water erosion [2,
32 3]. Spring wheat is one of the dominant crops in this region, but its growth is
33 restricted by limited and erratic rainfall [4, 5]. Thus, yield of spring wheat in
34 this region is far less than potential yield, ranging from 1500 to 3000 kg ha⁻¹ [6-
35 8]. Increasing water use efficiency is a major goal for advancing sustainable
36 intensification of crop production on the western Loess Plateau that will have
37 great impact at local and regional scales [9].

38 Water use efficiency depends on the amount of water absorbed by plants,
39 of which the majority is lost by transpiration [10]. Water absorption depends
40 on the free energy of water in plants, which is shown as the level of water
41 potential in the soil-plant-atmosphere continuum [11]. The lower the water
42 potential of plant, the stronger the water absorption capacity. Kang [12] found
43 that transpiration rate was positively correlated with the water potential
44 difference of the leaf-atmosphere system. Yang et al. [13] found that leaf water

45 potential of maize (*Zea mays* L.) decreased from the lower to upper part of the
46 canopy and that there was relatively large resistance among the different
47 interfaces of water flow in the transmission process. Xerophytes have
48 moderately deep roots and display a rapid drop in leaf water potential with
49 increasing leaf water deficit, which generates a steep water potential gradient
50 in the soil-plant continuum that enhances water uptake by roots [14].

51 Conservation tillage is a technique that reduces soil disturbance and
52 retains crop residues on the soil surface [15]. It can effectively reduce wind
53 erosion [16], water erosion [17], and soil bulk density, and enhance soil total
54 porosity and saturated water conductivity [18, 19], thereby increasing rainfall
55 infiltration and soil water holding capacity [20, 21], reducing soil evaporation
56 and enhancing crop growth, yield, and water use efficiency [22-24]. No-till with
57 straw cover has been shown to improve grain yield by 13%, and water use
58 efficiency 7.6% in winter spring wheat on the Loess Plateau of China [25]. No-
59 till with straw cover has been shown to improve grain yield by 153%, and water
60 use efficiency by 46% in wheat and maize (*Zea mays* L.) relay-planting system
61 on Hexi Corridor of northwestern China with typical temperate arid zone of
62 continent [26]. Subsoil tillage with 50% chopped straw mulching has been
63 shown to improve grain yield by 5-7%, and water use efficiency by 51-52% in
64 maize on the Huang-Huai-Hai valley with mean annual precipitation is 556.2
65 mm [27]. Ridge mulched with plastic film has been shown to improve grain
66 yield by 30%, and water use efficiency 35% in wheat on the Loess Plateau of

67 China [4]. However, the mechanism by which conservation tillage improves
68 water use efficiency from the perspective of water potential gradient has not
69 been reported. Therefore, the objectives of this study were to assess the effects
70 of different tillage practices on soil, root, and leaf water potential indexes, soil-
71 leaf water transfer resistance, transpiration, yield, and water use efficiency of
72 spring wheat to provide a theoretical basis for improving water use efficiency
73 and conservation tillage development on the western Loess Plateau.

74

75 **2. Materials and methods**

76 **2.1. Experimental site**

77 This study was conducted in 2016 and 2017 based on a long-term field
78 experiment initiated in 2001. The experiment was located at the Rainfed
79 Agricultural Experimental station of Gansu Agricultural University (35°28'N,
80 104°44'E, elevation: 1971 m above sea level) in Gansu Province in northwestern
81 China, a typical rainfed area on the western Loess Plateau. The area is
82 characterized by a hilly landscape and is prone to soil erosion. The aeolian soil
83 at the experimental site is locally known as Huangmian [28], is a Calcaric
84 Cambisol according to the FAO (1990) [29], soil classification, and is primarily
85 used for annual crop production [30]. This soil type has a sandy loam texture
86 with ≥50% sand. Detailed soil physical and water characteristics at the
87 experimental site before sowing in 2001 are presented in Table 1. Annual
88 precipitation at the experimental site was 300.2 mm in 2016, 361.4 mm in 2017,

89 and 396.7 mm for the 2001-2015 average, and is shown monthly in Fig. 1.
90 Annual (January through December), fallow period (January through March
91 and August through December), and growing season (April through July)
92 rainfall, drought index (DI), and soil water condition at the experimental site
93 for 2016, 2017, and the 2001-2017 average are shown in Table 2. Daily maximum
94 air temperature at the experimental site can reach 38°C in July, while minimum
95 air temperature can drop to -22°C in January. Long-term climatic records show
96 that annual cumulative air temperature $>10^{\circ}\text{C}$ is 2240°C and annual radiation is
97 5930 MJ/m², with 2480 hours of sunshine per year. Average annual evaporation
98 at the experimental site is 1531 mm (coefficient of variation: 24.3%), which is
99 three- to four-fold greater than precipitation.

100

101 **2.2. Experimental design and agronomic management**

102 The experimental design was a randomized complete block with four
103 replications. Each plot was 4 m wide \times 20 m long. The long-term experiment
104 included six tillage practice treatments in a two-year spring wheat/pea (*Pisum*
105 *sativum* L.) rotation, with both phases of the rotation present in each year. All
106 measurements in this study were made from plots planted to wheat. The
107 conventional tillage with no straw (T) treatment included removal of all
108 aboveground crop residues at the time of grain harvest before moldboard
109 plowing to a depth of 20 cm. The conventional tillage with straw incorporated
110 (TS) treatment was the same as T, except that all residues from the previous

111 crops were retained and incorporated into the soil with tillage. The no-till with
112 no straw (NT) treatment had all aboveground crop residues removed at the
113 time of grain harvest and no tillage operations. The no-till with straw cover
114 (NTS) treatment was the same as NT, except that all residues from the previous
115 crops were retained. The conventional tillage with plastic mulch (TP) treatment
116 was the same as T, except that alternating ridges (10 cm high \times 40 cm wide) and
117 furrows (10 cm wide) were made after harrowing with a ridging implement
118 and all ridges and furrows were covered with colorless plastic film mulch using
119 a plastic mulch laying machine prior to sowing crops in the furrows. The no-
120 till with plastic mulch (NTP) treatment was the same as NT, except that the
121 entire plot area was covered with colorless plastic film mulch using a plastic
122 mulch laying machine. There were same ridges and furrows with TP.

123 The spring wheat and pea cultivars were Dingxi 40 and Lvnong 2,
124 respectively. Wheat was sown at a rate of 187.5 kg ha⁻¹ in rows spaced 20 cm
125 apart and pea was seeded at 180 kg ha⁻¹ in rows spaced 24 cm apart.
126 Immediately prior to the time of plastic mulch laying in the treatments with
127 plastic mulch, all treatments were fertilized with calcium superphosphate (105
128 kg P₂O₅ ha⁻¹ for wheat and pea) and urea (105 and 20 kg N ha⁻¹ for wheat and
129 pea, respectively) that was broadcast uniformly over the entire plot area. Wheat
130 was sown on 27 March 2016 and 26 March 2017, and harvested on 25 July 2016
131 and 20 July 2017. Weeds were removed by hand during the growing season and
132 controlled with herbicides during the fallow period.

133

134 **2.3. Measurements and calculation**135 **2.3.1. Precipitation and drought index**

136 Daily precipitation was measured with a rainfall canister at the
137 experimental site and DI was calculated as follows [9]:

138
$$DI = \frac{Ar - M}{\delta} \quad (1)$$

139 where Ar is annual rainfall, M is average annual rainfall, and δ is the standard
140 deviation for annual rainfall. Drought index can be used to distinguish among
141 wet ($DI > 0.35$), normal ($-0.35 \leq DI \leq 0.35$), and dry ($DI < -0.35$) soil water
142 conditions for various time periods, including on an annual basis, for a growing
143 season, and for a fallow period [9]. Therefore, rainfall during the growing
144 season and fallow period were used to also calculate DI for these periods in the
145 two study years.

146

147 **2.3.2. Water potential and soil-leaf resistance**

148 Water potential indexes were measured at four growth stages of wheat,
149 including the seedling stage (30 April 2016 and 12 May 2017), tillering stage (20
150 May 2016 and 27 May 2017), jointing stage (30 May 2016 and 10 June 2017), and
151 flowering stage (15 June 2016 and 27 June 2017). Three Representative plants
152 were randomly selected in per plot, their leaves were removed with a scissors
153 and placed into the leaf sample box. Next, a root and soil sample for the selected
154 plants was taken using a soil corer (9-cm inner diameter) from the 0-10 cm soil

155 layer at the seedling stage, at the 0-10 and 10-30 cm soil layers at tillering and
156 jointing, and 0-10, 10-30, 30-50 cm soil layer at flowering, respectively. Sampled
157 root systems were gently shaken to let rhizosphere soil fall into the soil sample
158 box, then the root system was placed into the root sample box. Leaf water
159 potential, root water potential, and soil water potential were measured
160 immediately after each were sampled using a dew point water potential meter
161 (WP4C Dewpoint PotentiaMeter, METER Group, Pullman, WA, USA) [31, 32].

162 Transpiration rate and net photosynthetic rate was measured at 9:00 to
163 11:00 on the morning of flowering stage (15 June 2016 and 27 June 2017) of
164 wheat with a portable photosynthesis system (model GFS3000, Heinz Walz
165 GmbH, Effeltrich, Germany). Three wheat plants were randomly selected in
166 each plot, the flag leaves of each plant were measured, and the average value
167 of the three plants was obtained as the transpiration rate and net photosynthetic
168 rate of the plot. Soil-leaf water transfer resistance (R_{sl}) was calculated using
169 following equation [12]:

$$170 \quad R_{sl} = \frac{\Psi_s - \Psi_l}{CT} \quad (2)$$

171 where R_{sl} is the soil-leaf water transfer resistance, Ψ_s is soil water potential, Ψ_l
172 is leaf water potential, and CT is also transpiration rate.

173

174 **2.3.3. Soil water content, evapotranspiration, and evaporation**

175 Soil water content was measured to a depth of 2 m before sowing and after
176 harvest in 2016 and 2017 using the oven-dry method [33] for the 0-5 and 5-10

177 cm soil layers, and using a time domain reflectometry soil moisture sensor
178 (TRIME-PICO IPH/T3, IMKO GmbH, Ettlingen, Germany) for the 10-30, 30-50,
179 50-80, 80-110, 110-140, 140-170, and 170-200 cm soil layers. Evapotranspiration
180 (ET) was calculated using following equation [9]:

181
$$ET = P + W_1 - W_2 \quad (3)$$

182 where ET is evapotranspiration during the growing season, P is precipitation
183 during the growing season, and W_1 and W_2 are water storage in the 0-200m soil
184 layer before sowing and after harvest, respectively.

185 Soil evaporation was measured with a micro-evaporator made from
186 polyvinylchloride tubing with the length of 150 mm, internal diameter of 110
187 mm, and external diameter of 115 mm [34]. One tube per plot was installed to
188 remove undisturbed soil at 07:00 h, with plastic film used to seal the base of the
189 undisturbed soil. Mass of the soil core was measured using an electronic
190 balance with a sensitivity of 0.01 g. The soil was then placed back in its original
191 location in the field and the soil was measured at 07:00 h on the next day. The
192 loss in mass was the amount of evaporation (equivalent to 0.1051 mm g⁻¹). Soil
193 inside the micro-evaporator was changed every 3 days and after precipitation,
194 tube emptied of soil and placed in a new location in the field, which ensure that
195 soil moisture inside the micro-evaporator is consistent with the surrounding
196 soil. The calculation of evaporation in a growth period is based on the daily
197 average evaporation measured during the growth stage multiplied by the
198 number of days during the growth period without precipitation. The amount

199 of transpiration during a growing season is the sum of that for all growth
200 periods in the growing season using following equation [35]:

201
$$T = ET - E \quad (4)$$

202 where T is transpiration during growing season, ET is evapotranspiration
203 during growing season, and E is soil evaporation during growing season.

204

205 **2.3.4. Yield and water use efficiency**

206 The whole plot was harvested manually using sickles at 5 cm above
207 ground. The edges (0.5 m) of the plot were trimmed and discarded. Biological
208 yield (BY) was measured by natural drying and before threshing. The grain
209 moisture content after threshing was measured by the PM-8188 grain moisture
210 meter, repeated 5 times, and the mean was taken. In addition, grain yield (GY)
211 at 13% water content is calculated. All straw and chaff from stubble
212 incorporated treatments were returned to the original plots immediately after
213 threshing. water use efficiency was calculated using following equations [9]:

214
$$WUE_g = \frac{GY}{ET} \quad (5)$$

215
$$WUE_b = \frac{BY}{ET} \quad (6)$$

216 where WUE_g and WUE_b are water use efficiency of grain and biomass yield,
217 respectively.

218

219 **2.4. Statistical analysis**

220 Data were analyzed at $P \leq 0.05$ using SPSS 19.0 software (IBM Corp.,

221 Chicago, USA). Analysis of variance was conducted for all dependent variables.
222 Year and tillage practice were considered fixed effects, and replication was
223 considered a random effect. Differences among means were determined using
224 Tukey's honestly significant different test. The linear relationship of water
225 potential indexes with transpiration, BY, GY, WUE_g, and WUE_b were assessed
226 using Pearson's correlation coefficient.

227

228 3. Results

229 3.1. Effect of tillage practices on water potential at different growth stages

230 Soil water potential varied with year, tillage practice, soil layer, and growth
231 stage of wheat (Table 3). In 2016, soil water potential with NTS and TP were
232 significantly greater in the 0-10 cm soil layer at the seedling and jointing stages
233 compared to T. In 2017, soil water potential with the different treatments had
234 similar pattern to that in 2016. On average, compared with T, soil water
235 potential with NTS was significantly greater in the 0-10 cm soil layer at the
236 seedling and jointing stages. Soil water potential with TP was significantly
237 greater than that with T in the 0-10 cm soil layer at the seedling stage and in the
238 0-10 and 10-30 cm soil layers at jointing stage. Compared to T, soil water
239 potential with NTP was significantly increased in the 0-10 cm soil layer at the
240 seedling stage, in the 10-30 cm soil layer at tillering stage, and in the 10-30 cm
241 soil layer at jointing stage.

242 Year, tillage practice, soil layer, and growth stage of wheat influenced root

243 water potential (Table 4). In general, compared to T, root water potential was
244 significantly increased with NTS and NT in the 0-10 cm soil layer at the seedling
245 and jointing stages, and with NTS in the 30-50 cm soil layer at flowering. Root
246 water potential was not significantly different between TS and T in all soil
247 layers at every growth stage. Root water potential with TP was significantly
248 greater than that with T in the 0-10 cm soil layer at the seedling, tillering, and
249 jointing stages, and in the 0-10 and 30-50 cm soil layers at flowering. Root water
250 potential with NTP was significantly greater than that with T in the 0-10 cm soil
251 layer at the seedling stage, in the 0-10 and 10-30 cm soil layers at tillering and
252 jointing, and in the 0-10 and 30-50 cm soil layers at flowering.

253 Leaf water potential differed with year, tillage practice, soil layer, and
254 growth stage of wheat (Table 5). In 2016, compared to T, leaf water potential
255 with NTS was significantly increased at the seedling stage, and not significantly
256 different with NT and TS at any growth staged. Leaf water potential in 2016
257 significantly greater with NTP and TP at the seedling stage, and with TP at
258 flowering, compared to T. In 2017, compared to T, leaf water potential with NTS
259 was significantly increased at the seedling and tillering stages; however, leaf
260 water potential with NT was not significantly increased at any growth stage.
261 Leaf water potential was significantly greater with TS than T at the seedling
262 and tillering stages, and with TP than T increased at the seedling, tillering, and
263 jointing stages. On average, leaf water potential with NTS and NTP was
264 significantly greater than that with T at the seedling, tillering, and jointing

265 stages. Leaf water potential with NT and TP was not significantly different
266 compared to that with T at any growth stage. However, leaf water potential
267 with TS was significantly greater than that with T at the seedling stage.

268

269 **3.2. Effect of tillage practices on water potential gradient at different growth**
270 **stages**

271 The soil-root water potential gradient was affected by year, tillage practice,
272 soil layer, and growth stage of wheat (Table 6). In 2016, the soil-root water
273 potential gradient was not significantly different among tillage practices at all
274 soil layers at all growth stages. In 2017, the soil-root water potential gradient
275 was significantly reduced with NTS and NTP compared to the other tillage
276 practices in the 0-10 cm soil layer at jointing stage and in the 0-10 and 30-50 cm
277 soil layers at flowering stage.

278 The root-leaf water potential gradient varied with year, tillage practice, soil
279 layer, and growth stage of wheat (Table 7). On average, compared to T, the root-
280 leaf water potential gradient with NTS was significantly reduced at the 0-10 cm
281 soil layer at the seedling stage, 10-30 cm soil layer at jointing stage, and 30-50
282 cm soil layer at flowering stage; however, the root-leaf water potential gradient
283 with NT was significantly increased at 0-10 cm soil layer at tillering stage. The
284 root-leaf water potential gradient was significantly decreased with TS at the 0-
285 10 cm soil layer at the seedling stage, and with TP at the 0-10 cm soil layer at
286 the seedling stage and 30-50 cm soil layer at flowering, compared to T. The root-

287 leaf water potential gradient with NTP was significantly reduced at the 0-10 cm
288 soil layer at the seedling stage and 30-50 cm soil layer at flowering, compared
289 to T.

290 The soil-leaf water potential gradient varied with year, tillage practice, soil
291 layer, and growth stage of wheat (Table 8). On average, the soil-leaf water
292 potential gradient with NTS was significantly less than that with T at the 0-10
293 cm soil layer at the seedling stage and 30-50 cm soil layer at flowering. The soil-
294 leaf water potential gradient with NT and TS was not significantly different
295 from that with T at all soil layers and growth stages. Compared to T, the soil-
296 leaf water potential gradient was significantly decreased with TP at the 0-10 cm
297 soil layer at the seedling stage and at the 30-50 cm soil layer at flowering, and
298 with NTP at the 0-10 cm soil layer at the seedling and jointing stages and at the
299 30-50 cm soil layer at flowering.

300

301 **3.3. Effects of tillage practices on transpiration rate and soil-leaf water
302 transfer resistance at flowering**

303 Transpiration rate of wheat at flowering varied with tillage practice (Fig.
304 2). In 2016 and 2017, compared with T, transpiration rate was significantly
305 increased with NTS, TP, and NTP, but not significantly different with NT and
306 TS (Fig. 2A, B). On average, compared with T, NTS, TP, and NTP significantly
307 increased transpiration rate by 103, 143, and 91%, respectively (data not shown).

308 Net photosynthetic rate of wheat at flowering varied among tillage

309 practices (Fig. 2). In 2016 and 2017, compared with T, net photosynthetic rate
310 was significantly increased with NTS, TP, and NTP, but not significantly
311 different with NT and TS (Fig. 2C, D). On average, NTS, TP, and NTP
312 significantly increased net photosynthetic rate by 20, 19, and 19%, respectively,
313 compared to T (data not shown).

314 Soil-leaf water transfer resistance of wheat at flowering was also affected
315 by tillage practice (Fig. 3). In 2016 and 2017, compared to T, soil-leaf water
316 transfer resistance at all soil layers was significantly reduced with NTS, TP, and
317 NTP, but not significantly different with NT and TS (Fig. 3A, B). Averaged
318 across years and soil layers, compared to T, soil-leaf water transfer resistance
319 with NTS, TP, and NTP was significantly decreased by 66, 70, and 63%,
320 respectively (data not shown).

321

322 **3.4. Effect of tillage practices on yield and water use efficiency**

323 Tillage practice significantly affected transpiration at flowering, BY, WUE_b,
324 GY, and WUE_g (Table 9). In 2016, transpiration with NTS, TP, and NTP was
325 significantly increased by 19, 22 and 43%, respectively, compared to T, and BY
326 with NTS, TS, TP, and NTP was significantly increased by 17, 6, 14, and 25%,
327 respectively. Water use efficiency of BY with TS, TP, and NTP was significantly
328 increased by 11, 18, and 12%, respectively, compared to T. Grain yield with NTS,
329 TP, and NTP was significantly increased by 30, 18, and 29%, respectively,
330 compared to T, and WUE_g was significantly increased by 21, 22, and 15%,

331 respectively. On average, compared with T, transpiration with NTS, TP, and
332 NTP was significantly increased by 40, 64 and 76%, respectively; however,
333 transpiration was not significantly different with NT and TS. Compared to T,
334 BY was significantly increased with NTS, TP, and NTP by 18, 36, and 40%,
335 respectively; however, it was not significantly different with NT and TS. Water
336 use efficiency of BY was significantly increased with TP and NTP by 25 and
337 22%, respectively, but was not significantly different with NTS and TS,
338 compared to T. Grain yield with NTS, TP, and NTP was significantly increased
339 by 28, 22 and 24%, respectively, compared to T; however, it was not significantly
340 different among NT, TS, and T. Water use efficiency of GY with NTS, TP and
341 NTP was significantly increased by 24, 26, and 24%, respectively, but not
342 significantly different with NT and TS, compared to T.

343

344 **3.5. Correlations of water potential indexes with transpiration, biomass and**
345 **grain yields, and water use efficiency of grain and biomass yields**

346 Significant correlations among water potential indexes, transpiration at
347 growing season, BY, WUE_b, GY, and WUE_g of wheat were observed (Table10).
348 Soil water potential in the 0-10 cm soil layer at the seedling stage was highly
349 significant and positively associated with transpiration , BY, WUE_b, GY, and
350 WUE_g. Soil water potential in the 0-10 cm soil layer at tillering was positively
351 associated with transpiration ($r = 0.615, P < 0.01$) and BY ($r = 0.480, P < 0.05$).
352 Soil water potential in the 10-30 cm soil layer at tillering was significantly

353 positively associated with transpiration, BY, WUE_b, and GY. Soil water potential
354 in the 0-10 cm soil layer at jointing was significantly positively associated with
355 transpiration and BY. Soil water potential in the 10-30 cm soil layer at jointing
356 was significantly positively associated with transpiration, BY, and WUE_b. Soil
357 water potential in the 0-10 cm soil layer at flowering was positively associated
358 with transpiration, BY, WUE_b, and GY. Soil water potential in the 10-30 cm soil
359 layer at flowering was positively associated with transpiration, BY, and WUE_b.

360 Root water potential in the 0-10 cm soil layer at the seedling stage of wheat
361 was significantly positively associated with transpiration, BY, WUE_b, GY, and
362 WUE_g (Table 10). Root water potential in the 0-10 cm soil layer at tillering was
363 positively associated with transpiration ($r = 0.649, P < 0.01$) and BY ($r = 0.561, P$
364 < 0.05). Root water potential in the 10-30 cm soil layer at tillering was positively
365 associated with transpiration ($r = 0.511, P < 0.05$). Root water potential in the 0-
366 10 cm soil layer at jointing was significantly positively associated with
367 transpiration, BY, and WUE_b. Root water potential in the 10-30 cm soil layer at
368 jointing was significantly positively associated with transpiration and BY. Root
369 water potential in the 0-10 cm soil layer at flowering exhibited a significant
370 positive association with transpiration, BY, and WUE_b. Root water potential in
371 the 30-50 cm soil layer at flowering was significantly positively associated with
372 transpiration, BY, WUE_b, GY, and WUE_g.

373 Leaf water potential at the seedling stage of wheat had a significant
374 positive association with transpiration at flowering, BY, WUE_b, GY, and

375 WUE_g (Table 10). Leaf water potential at tillering was significantly positively
376 associated with transpiration, BY, WUE_b, GY, and WUE_g. Leaf water potential
377 at jointing was significantly and positively associated with transpiration, BY,
378 and GY. Leaf water potential at flowering was positively associated with
379 transpiration, BY, WUE_b, GY, and WUE_g.

380 The soil-root water potential gradient in the 10-30 cm soil layer at tillering
381 of wheat was significantly positively associated with WUE_b (Table 10). The soil-
382 root water potential gradient in the 0-10 cm soil layer at jointing had a
383 significant negative correlation with transpiration, BY, and WUE_b. The soil-root
384 water potential gradient in the 30-50 cm soil layer at flowering showed a
385 negative correlation with transpiration, BY, WUE_b, and GY.

386 The root-leaf water potential gradient at the 0-10 cm soil layer at the
387 seedling stage of wheat had a significant negative correlation with
388 transpiration, BY, WUE_b, GY, and WUE_g (Table 10). The root-leaf water
389 potential gradient at the 0-10 cm soil layer at tillering was significantly
390 negatively associated with GY. The root-leaf water potential gradient at the 10-
391 30 cm soil layer at tillering was significantly negatively associated with
392 transpiration, BY, WUE_b, GY, and WUE_g. The root-leaf water potential gradient
393 at the 10-30 cm soil layer at jointing exhibited a significant negatively
394 correlation with transpiration, BY, and GY. The root-leaf water potential
395 gradient at the 10-30 cm soil layer at flowering was significantly negatively
396 associated with BY and WUE_b. The root-leaf water potential gradient at the 30-

397 50 cm soil layer at flowering had a significant negative correlation with
398 transpiration, BY, WUE_b, GY, and WUE_g.

399 The soil-leaf water potential gradient at the 0-10 cm soil layer at the
400 seedling stage of wheat showed a significant negatively association with
401 transpiration, BY, WUE_b, GY, and WUE_g. The soil-leaf water potential gradient
402 at the 0-10 cm soil layer at tillering was significantly negatively associated with
403 GY and WUE_g. The soil-leaf water potential gradient at the 0-10 cm soil layer at
404 jointing was had a significant negative correlation with transpiration, BY, and
405 GY. The soil-leaf water potential gradient at the 10-30 cm soil layer at jointing
406 was significantly negatively associated with transpiration, BY, and GY. The soil-
407 leaf water potential gradient at the 10-30 cm soil layer at flowering exhibited a
408 significantly negative associated with transpiration, BY, and GY. The soil-leaf
409 water potential gradient at the 30-50 cm soil layer at flowering was significantly
410 negatively associated with transpiration, BY, WUE_b, GY, and WUE_g.

411

412 **4. Discussion**

413 **4.1. Effects of tillage practices on water potential in the soil-plant system**

414 Soil, roots, and leaves are important indicators of whether plants are
415 subject to drought stress [36-38], and have been employed in the selection of
416 appropriate tillage practices. Tillage practices can affect soil, root, and leaf
417 water potential [39, 40]. In this study, NTS significantly increased soil water
418 potential in the 0-10 cm soil layer at the seedling and jointing stages of wheat

419 compared to T because NTS increased topsoil moisture at the seedling stage.
420 However, with wheat growth and development, canopy coverage increased,
421 transpiration dominated evapotranspiration, and the positive effect of straw
422 mulching on topsoil moisture gradually weakened [24, 41], thus NTS did not
423 significantly increase soil water potential at flowering. Conventional tillage and
424 no-till improved soil water potential compared to T in the 0-30 cm soil layers at
425 all growth stages, mainly because plastic film mulching reduced soil
426 evaporation, which lead to greater soil water moisture throughout the growing
427 season [42]. No-till with straw cover, TP, and NTP increased leaf water potential
428 compared to T at all growth stages, in agreement with results from previous
429 studies [39, 43]. However, Zhang et al [44] found that NTS reduced leaf water
430 potential by 11% compared to T. This discrepancy is likely due to differences in
431 soils and early rainfall prior to measurement. The study reported by Zhang et
432 al. (1999) was conducted on a quaternary red clay soil with high viscosity, and
433 long-term no-till led to subsurface soil compaction and shallow root systems.
434 The present study was conducted on a deep loess soil with deep uniform
435 texture and high water storage capacity [45], which is favorable for the growth
436 and development of crop root systems.

437 Water potential gradients drive water transport from soil to plants, with a
438 greater water potential gradient resulting in faster water absorption[46]. In this
439 study, NTS, TP, and NTP reduced the soil-root water potential gradient in the
440 30-50 cm soil layer at flowering of wheat. No-till with straw cover, TP, and NTP

441 significantly decreased the root-leaf water potential gradient compared to T at
442 the 0-10 cm soil layer at the seedling stage and 30-50 cm soil layer at flowering.
443 These treatments also significantly reduced the soil-leaf water potential
444 gradient at the 0-10 cm soil layer at the seedling stage and 30-50 cm soil layer
445 at flowering, likely because they stored more water from the fallow period.
446 Moreover, wheat canopy coverage reaches a maximum at flowering, thereby
447 limiting evaporation after this stage.

448 Water transfer resistance exists in the process of water transport from soil
449 to plants [47]. In this study, NTS, TP, and NTP reduced soil-leaf water transfer
450 resistance at flowering of wheat compared to T. This could be due to NTS, TP,
451 and NTP having increased root length and root surface area, and more
452 favorable spatial distribution of roots for water uptake [48]. This was
453 demonstrated in this study, as NTS, TP, and NTP had greater soil water
454 absorption by plants than T.

455 In this study, NTS, TP, and NTP significantly increased transpiration and
456 net photosynthetic rate of wheat at flowering compared to T, as shown in
457 previous studies [49-51]. The net photosynthetic rate of wheat flag leaves has
458 been reported as 24 to 39% higher with NTS compared to conventional tillage,
459 and also have a significantly higher transpiration rate [49, 52]. In contrast, Jiang
460 et al.[53] found that NTS reduced the photosynthetic rate of wheat, likely
461 because their straw cover was applied after sowing, resulting in less soil
462 moisture stored during the fallow season. Straw coverage in this study

463 occurred after harvest, leading to more soil moisture stored during the fallow
464 season, thereby enabling an increase in photosynthetic rate. Transpiration is
465 fundamental to understanding crop water use efficiency [54]. In this study,
466 transpiration with NTS, TP, and NTP was significantly increased compared to
467 T, mainly because NTS, TP, and NTP increased precipitation infiltration and
468 reduced soil evaporation [21, 42, 55].

469 Biomass yield of wheat was significantly greater with NTS, TP, and NTP
470 compared to T. Garofalo and Rinaldi [56] found that a greater rate of
471 transpiration was associated with greater BY. However, Dam et al. [57] found
472 that long-term BY of maize did not differ between NTS and T. This may be
473 attributable to differences in soil texture at the experimental sites, which was
474 sandy loam in their study and loess in the present study. In agreement with our
475 results, Zhang et al. [58] found that plastic mulching increased BY of maize.
476 This could be due to enhanced crop growth resulting from greater soil
477 temperature [59, 60], soil moisture [58], and radiation capture [61] with plastic
478 mulching.

479

480 **4.2. Effects of tillage practices on grain yield and water use efficiency**

481 Conservation tillage practices have been shown to increase soil water
482 storage, wheat yield, and WUE on the semiarid Loess Plateau of China [25, 62].
483 However, Pittelkow et al. [15] found that conservation tillage practices did not
484 increase GY of cereals in moist regions. This is likely because the impact of

485 conservation tillage on yield varies among climatic zones. The improvement of
486 wheat GY and WUE_g with NTS, TP, and NTP compared to T in this study is
487 attributed to increased water potential and decreased water potential gradient
488 and water transfer resistance, thus enhancing transpiration and BY.

489

490 **5. Conclusion**

491 This study demonstrates that NTS, TP, and NTP significantly increased
492 grain yield and WUE_g as a result of increased water potential, decreased water
493 potential gradient and water transfer resistance, and lead to increases in
494 transpiration rate, transpiration, and biomass yield. These results demonstrate
495 that NTS, TP, and NTP are suitable tillage practices for sustainable
496 intensification of wheat production in semi-arid areas.

497

498 **Author Contributions:** Conceptualization, Lingling Li; Data curation,
499 Zhengkai Peng; Formal analysis, Zhengkai Peng, Linlin Wang and Zhuzhu Luo;
500 Funding acquisition, Lingling Li; Investigation, Linlin Wang; Methodology,
501 Junhong Xie and Zhuzhu Luo; Project administration, Junhong Xie;
502 Supervision, Lingling Li and Renzhi Zhang; Validation, Junhong Xie; Writing –
503 original draft, Zhengkai Peng; Writing – review & editing, Lingling Li, Jeffrey
504 A. Coulter, Renzhi Zhang, Jana Kholova and Sunita Choudhary.

505

506 **Funding:** This work was supported by the National Natural Science

507 Foundation of China (31761143004 and 31660373), the Department of Education
508 of Gansu Province (2017C-12), and the Research Program of the Gansu
509 Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural
510 University (GSCS-2017-4).

511

512 **Conflicts of Interest:** The authors declare no conflict of interest.

513 **References**

- 514 1. Wei T, Dong Z, Zhang C, et al. Effects of rainwater harvesting planting combined with
515 deficiency irrigation on soil water use efficiency and winter wheat (*Triticum aestivum L.*)
516 yield in a semiarid area [J]. *Field Crops Research*, 2018, 218, 231-242.
- 517 2. Li F M, Wang J, Xu J Z, et al. Productivity and soil response to plastic film mulching
518 durations for spring wheat on entisols in the semiarid Loess Plateau of China [J]. *Soil &*
519 *Tillage Research*, 2004, 78(1): 9-20.
- 520 3. Wu J, Miao C, Tang X, et al. A nonparametric standardized runoff index for characterizing
521 hydrological drought on the Loess Plateau, China [J]. *Global and planetary change*, 2018,
522 161, 53-65.
- 523 4. Zhang S, Sadras V, Chen X, et al. Water use efficiency of dryland wheat in the Loess Plateau
524 in response to soil and crop management [J]. *Field Crops Research*, 2013, 151(9): 9-18.
- 525 5. Deng X P, Lun S, Zhang H, et al. Improving agricultural water use efficiency in arid and
526 semiarid areas of China [J]. *Agricultural Water Management*, 2006, 80(1): 23-40.
- 527 6. Huang Y, Chen L, Bojie F U, et al. The wheat yields and water-use efficiency in the Loess
528 Plateau: straw mulch and irrigation effects [J]. *Agricultural Water Management*, 2005,
529 72(3): 209-222.
- 530 7. Wang Y, Xie Z, Malhi S S, et al. Effects of rainfall harvesting and mulching technologies on
531 water use efficiency and crop yield in the semi-arid Loess Plateau, China [J]. *Agricultural*
532 *Water Management*, 2009, 96(3): 374-382.
- 533 8. Yeboah S, Zhang R, Cai L, et al. Greenhouse gas emissions in a spring wheat-field pea
534 sequence under different tillage practices in semi-arid Northwest China [J]. *Nutrient*
535 *Cycling in Agroecosystems*, 2016, 106(1): 77-91.
- 536 9. Wang L, Palta J A, Wei C, et al. Nitrogen fertilization improved water-use efficiency of
537 winter wheat through increasing water use during vegetative rather than grain filling [J].
538 *Agricultural Water Management*, 2018, 197, 41-53.
- 539 10. Unkovich M, Baldock J, Farquharson R. Field measurements of bare soil evaporation and
540 crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia—A
541 review [J]. *Agricultural water management*, 2018, 205, 72-80.
- 542 11. Fu A, Chen Y, Li W, et al. Research advances on plant water potential under drought and
543 salt stress [J]. *Journal of Desert Research*, 2005, 25(05): 744-749.

544 12. Kang S. Distribution of hydraulic resistance and water potential in soil-plant-atmosphere
545 continuum [J]. *Journal of Hydraulic Engineering*, 1990.

546 13. Yang X G, Liu H L, Hu-Ning Y U. The changing of water transfer potential in soil-plant-
547 atmosphere continuum system of maize field [J]. *Chinese Journal of Eco-Agriculture*, 2003,
548 11(1): 27-29.

549 14. Kalapos T. Leaf water potential-leaf water deficit relationship for ten species of a semiarid
550 grassland community [J]. *Plant & Soil*, 1994, 160(1): 105-112.

551 15. Pittelkow C M, Liang X Q, Linquist B A, et al. Productivity limits and potentials of the
552 principles of conservation agriculture [J]. *Nature*, 2015, 517(7534): 365.

553 16. Young D L, Schillinger W F. Wheat farmers adopt the undercutter fallow method to reduce
554 wind erosion and sustain profitability [J]. *Soil & Tillage Research*, 2012, 124(4): 240-244.

555 17. Tan C, Cao X, Yuan S, et al. Effects of Long-term Conservation Tillage on Soil Nutrients in
556 Sloping Fields in Regions Characterized by Water and Wind Erosion [J]. *Scientific Reports*,
557 2015, 5, 17592.

558 18. Wu J, Cai L Q, Luo Z Z, et al. Effects of conservation tillage on soil physical properties of
559 rainfed field of the Loess Plateau in Central of Gansu [J]. *Journal of Soil & Water
560 Conservation*, 2014, 28(2): 112-117.

561 19. Peng Z K, Li L L, Xie J H, et al. Effects of conservational tillage on water characteristics in
562 dryland farm of central Gansu,Northwest China [J]. *Chinese Journal of Applied Ecology*,
563 2018, 29(12): 4022-4028.

564 20. Bescansa P, Imaz M J, Virto I, et al. Soil water retention as affected by tillage and residue
565 management in semiarid Spain [J]. *Soil & Tillage Research*, 2006, 87(1): 19-27.

566 21. Cai L Q, Luo Z Z, Zhang R Z, et al. Effect of Different Tillage Methods on Soil Water
567 Retention and Infiltration Capability of Rainfed Field [J]. *Journal of Desert Research*, 2012,
568 32(5): 1362-1368.

569 22. Shao Y, Xie Y, Wang C, et al. Effects of different soil conservation tillage approaches on soil
570 nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China [J].
571 *European Journal of Agronomy*, 2016, 81, 37-45.

572 23. Brunel N, Seguel O, Acevedo E. Conservation tillage and water availability for wheat in
573 the dryland of central Chile [J]. *Journal of Soil Science & Plant Nutrition*, 2013, 13(3): 622-
574 637.

575 24. Li L L, Huang G B, Zhang R Z, et al. Effects of no-till with stubble retention on soil water
576 regimes in rainfed areas [J]. *Journal of Soil and Water Conservation*, 2005, 19(05): 96-8+118.

577 25. Su Z, Zhang J, Wu W, et al. Effects of conservation tillage practices on winter wheat water-
578 use efficiency and crop yield on the Loess Plateau, China [J]. *Agricultural Water
579 Management*, 2007, 87(3): 307-314.

580 26. Yin W, Yu A Z, Chai Q, et al. Wheat and maize relay-planting with straw covering increases
581 water use efficiency up to 46% [J]. *Agronomy for Sustainable Development*, 2015, 35(2):
582 815-825.

583 27. Tao Z, Li C, Li J, et al. Tillage and straw mulching impacts on grain yield and water use
584 efficiency of spring maize in Northern Huang-Huai-Hai Valley [J]. *The Crop Journal*, 2015,
585 3(5): 445-450.

586 28. Gong Z. Chinese soil taxonomy [M]. Science press, 2001.

587 29. FAO. Soil map of the world: revised legend. *World Soil Resources Report 60*. Food and

632 47. Liu C M. Study on interface processes of water cycle in soil-plant-atmosphere continuum
633 [J]. *Acta Geographica Sinica*, 1997, 4, 366-373.

634 48. Zhang M J, Li L L, Xie J H, et al. Effects of tillage practices on root spatial distribution and
635 yield of spring wheat and pea in the dry land farming areas of central Gansu, China [J].
636 *Chinese Journal of Applied Ecology*, 2017, 28(12): 3917-3925.

637 49. Wang J B, Yan C R, Liu E K, et al. Effects of long-term no-tillage with straw mulch on
638 photosynthetic characteristics of flag leaves and dry matter accumulation and
639 translocation of winter wheat in dryland [J]. *Journal of Plant Nutrition & Fertilizer*, 2015,
640 21(2): 296-305.

641 50. Hou X, Jia Z, Han Q, et al. Effects of rotational tillage practices on soil water characteristics
642 and crop yields in semi-arid areas of north-west China [J]. *Soil Research*, 2011, 49(7): 625-
643 632.

644 51. Wang J, Lin Q, Ni Y J, et al. Effect of conservation tillage on photosynthetic characteristics
645 and yield of winter wheat in dry land [J]. *Journal of Triticeae Crops*, 2009, 480-483.

646 52. Liu N, Yang W X. Photosynthetic Rate and Water Utilization of Rainfed Wheat with Plastic
647 Mulching on the Semi-arid Loess Plateau, China [J]. *Proceedings of the National Academy
648 of Sciences, India Section B: Biological Sciences*, 2018, 1-10.

649 53. Jiang X, Yun W, Hou L, et al. Effects of minimum tillage and no-tillage systems on
650 photosynthetic characteristics at late growth stages of winter wheat [J]. *Transactions of the
651 Chinese Society of Agricultural Engineering*, 2006, 22(5): 66-69.

652 54. Unkovich M, Baldock J, Farquharson R. Field measurements of bare soil evaporation and
653 crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia – A
654 review [J]. *Agricultural Water Management*, 2018, 205, 72-80.

655 55. Wang X J, Huang G B, Li Q P, et al. Characteristics of the evapotranspiration and its yield
656 performance of rainfed spring wheat and peas fields [J]. *Journal of Arid Land Resources
657 and Environment* 2010, 24(05): 172-177.

658 56. Garofalo P, Rinaldi M. Water-use efficiency of irrigated biomass sorghum in a
659 Mediterranean environment [J]. *Spanish Journal of Agricultural Research*, 2013, 11(4):
660 1153-1169.

661 57. Dam R F, Mehdi B B, Burgess M S E, et al. Soil bulk density and crop yield under eleven
662 consecutive years of corn with different tillage and residue practices in a sandy loam soil
663 in central Canada [J]. *Soil & Tillage Research*, 2005, 84(1): 41-53.

664 58. Zhang S, Li P, Yang X, et al. Effects of tillage and plastic mulch on soil water, growth and
665 yield of spring-sown maize [J]. *Soil and Tillage Research*, 2011, 112(1): 92-97.

666 59. Anikwe M A N, Mbah C N, Ezeaku P I, et al. Tillage and plastic mulch effects on soil
667 properties and growth and yield of cocoyam (*Colocasia esculenta*) on an ultisol in
668 southeastern Nigeria [J]. *Soil & Tillage Research*, 2007, 93(2): 264-272.

669 60. Li X Y, Gong J D, Gao Q Z, et al. Incorporation of ridge and furrow method of rainfall
670 harvesting with mulching for crop production under semiarid conditions [J]. *Agricultural
671 Water Management*, 2001, 50(3): 173-183.

672 61. Liu Y, Yang S, Li S, et al. Growth and development of maize (*Zea mays L.*) in response to
673 different field water management practices: Resource capture and use efficiency [J].
674 *Agricultural & Forest Meteorology*, 2010, 150(4): 606-613.

675 62. Jin H, Wang Q, Li H, et al. Effect of alternative tillage and residue cover on yield and water

676 use efficiency in annual double cropping system in North China Plain [J]. *Soil & Tillage*
677 *Research*, 2009, 104(1): 198-205.

678

679

680 Table 1. Soil physical and water characteristics in 2001.

Soil layer (cm)	Bulk density (g cm ⁻³)	Upper limit of soil drainage (cm ³ cm ⁻³)	Lower limit of effective moisture in wheat (cm ³ cm ⁻³)
0–5	1.29	0.27	0.09
5–10	1.23	0.27	0.09
10–30	1.32	0.27	0.09
30–50	1.20	0.27	0.09
50–80	1.14	0.26	0.09
80–110	1.14	0.27	0.11
110–140	1.13	0.26	0.11
140–170	1.12	0.26	0.12
170–200	1.11	0.26	0.13

681

Table 2. Annual, fallow period, and growing season rainfall, drought index (DI), and soil water condition for 2016, 2017, and the 2001–2015 average.^a

Year	Annual rainfall (mm)	DI for annual rainfall	Annual soil water condition ^b	Fallow period rainfall	DI for fallow period rainfall	Fallow period soil water condition	Growing season rainfall (mm)	DI for growing season rainfall	Growing season soil water condition
2016	300.2	-1.29	Dry	60.8	-2.25	Dry	239.4	0.85	Wet
2017	361.4	-0.47	Dry	175.4	-0.35	Normal	186.0	-0.31	Normal
Average (2001–2015)	396.7	—	—	196.5	—	—	200.2	—	—

^a Annual (January through December), fallow period (January through March and August through December), and growing season (April through July)

^b Classified as dry, normal, and wet for different time periods for $DI < -0.35$, $-0.35 \leq DI \leq 0.35$, and $DI > 0.35$, respectively.

Table 3. Soil water potential (MPa) as affected by tillage practice for different growth stages of wheat and soil layers (cm) in 2016 and 2017.

Year	Tillage practice ^a	Seedling		Tillering		Jointing		Flowering		
		0–10	0–10	10–30	0–10	10–30	0–10	10–30	30–50	
2016	T	-2.60b	-3.50a	-2.54a	-0.76b	-0.43ab	-2.95a	-2.25a	-2.17a	
	NTS	-1.50a	-3.30a	-2.53a	-0.42a	-0.25ab	-2.84a	-2.87a	-3.16a	
	NT	-3.03b	-3.00a	-2.66a	-0.53ab	-0.20a	-3.20a	-3.08a	-3.32a	
	TS	-2.61b	-3.36a	-3.08a	-0.73b	-0.82b	-2.32a	-2.20a	-3.54a	
	TP	-1.52a	-2.20a	-1.65a	-0.38a	-0.62ab	-1.89a	-2.11a	-3.16a	
	NTP	-1.15a	-1.92a	-0.94a	-0.51ab	-0.25ab	-2.23a	-2.78a	-2.66a	
2017	T	-1.39b	-1.91a	-2.12a	-0.76a	-1.61b	-5.54ab	-4.84b	-5.11c	
	NTS	-0.81a	-1.58a	-1.59a	-0.41a	-1.32b	-5.42ab	-4.17b	-3.57b	
	NT	-1.26b	-1.96a	-2.05a	-0.63a	-1.48b	-6.50b	-3.82ab	-3.25b	
	TS	-0.74a	-1.81a	-1.75a	-0.61a	-1.44b	-5.91b	-4.54b	-2.95ab	
	TP	-0.63a	-1.57a	-1.54a	-0.42a	-0.46a	-3.65a	-2.38a	-1.89a	
	NTP	-0.60a	-1.33a	-1.37a	-0.63a	-0.81ab	-3.86a	-3.30ab	-3.36b	
Average	T	-2.00bc	-2.71a	-2.33b	-0.76b	-1.02bc	-4.24ab	-3.54a	-3.64a	
	NTS	-1.16a	-2.44a	-2.06b	-0.41a	-0.79ab	-4.13ab	-3.52a	-3.37a	
	NT	-2.15c	-2.48a	-2.40b	-0.58ab	-0.84abc	-4.85b	-3.45a	-3.29a	
	TS	-1.68b	-2.59a	-2.42b	-0.67b	-1.13c	-4.11ab	-3.37a	-3.25a	
	TP	-1.07a	-1.89a	-1.60ab	-0.40a	-0.54a	-2.77a	-2.25a	-2.53a	
	NTP	-0.87a	-1.63a	-1.16a	-0.57ab	-0.53a	-3.04a	-3.04a	-3.01a	

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^aT, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 4. Root water potential (MPa) as affected by tillage practice for different growth stages of wheat and soil layers (cm) in 2016 and 2017.

Year	Tillage practice ^a	Seedling		Tillering		Jointing		Flowering		
		0–10	10–30	0–10	10–30	0–10	10–30	0–10	10–30	30–50
2016	T	-3.06b	-5.54b	-4.30a	-1.45bc	-1.04a	-3.34a	-4.69a	-5.65a	
	NTS	-1.94a	-4.52ab	-3.74a	-0.63ab	-1.71a	-3.92a	-4.55a	-6.01a	
	NT	-3.21b	-3.04a	-3.50a	-0.73ab	-0.85a	-3.24a	-4.70a	-6.20a	
	TS	-3.03b	-4.44ab	-3.65a	-2.01c	-1.17a	-2.98a	-4.23a	-5.27a	
	TP	-1.74a	-3.70ab	-3.60a	-0.41a	-1.79a	-2.37a	-4.25a	-4.29a	
	NTP	-1.55a	-2.48a	-2.65a	-0.56a	-1.22a	-2.95a	-4.87a	-5.63a	
2017	T	-1.55b	-2.25ab	-2.72b	-2.95d	-2.71c	-8.44c	-7.20c	-10.77c	
	NTS	-1.13ab	-2.14ab	-2.50ab	-1.24ab	-1.79abc	-5.82ab	-4.84a	-4.58a	
	NT	-1.43b	-2.55b	-2.70b	-1.83bc	-2.16c	-7.02bc	-6.82bc	-8.05b	
	TS	-1.26b	-1.94ab	-1.79a	-2.31cd	-1.96bc	-6.06ab	-6.74bc	-7.88b	
	TP	-1.24ab	-2.07ab	-2.40ab	-0.66a	-0.87a	-4.24a	-6.54bc	-5.54a	
	NTP	-0.73a	-1.65a	-2.01ab	-1.60b	-0.94ab	-4.35a	-5.75ab	-4.42a	
Average	T	-2.31c	-3.90c	-3.51b	-2.20c	-1.87b	-5.89b	-5.95a	-8.21b	
	NTS	-1.53b	-3.33bc	-3.12ab	-0.94b	-1.75ab	-4.87ab	-4.70a	-5.30a	
	NT	-2.32c	-2.80ab	-3.10ab	-1.28b	-1.51ab	-5.13ab	-5.76a	-7.13b	
	TS	-2.15c	-3.19bc	-2.72ab	-2.16c	-1.57ab	-4.52ab	-5.49a	-6.58ab	
	TP	-1.49ab	-2.89ab	-3.00ab	-0.54a	-1.33ab	-3.30a	-5.40a	-4.92a	
	NTP	-1.14b	-2.06a	-2.33a	-1.08b	-1.08a	-3.65a	-5.31a	-5.03a	

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 5. Leaf water potential (Mpa) as affected by tillage practice for different growth stages of wheat in 2016 and 2017.

Year	Tillage practice ^a	Seedling	Tillering	Jointing	Flowering
2016	T	-7.19c	-7.08abc	-5.27a	-9.41b
	NTS	-4.49ab	-5.73ab	-3.41a	-8.20ab
	NT	-6.77bc	-7.99c	-4.32a	-9.63b
	TS	-5.48abc	-7.39bc	-4.01a	-8.60b
	TP	-4.39a	-5.49ab	-3.48a	-5.87a
	NTP	-3.84a	-4.99a	-3.23a	-7.03ab
2017	T	-5.22c	-3.53b	-3.13b	-9.36b
	NTS	-3.30b	-2.64a	-2.64ab	-8.69ab
	NT	-5.03c	-3.05ab	-3.19b	-8.64ab
	TS	-4.04b	-2.67a	-2.77ab	-9.33ab
	TP	-2.11a	-2.56a	-2.23a	-7.99a
	NTP	-3.35b	-2.47a	-2.16a	-8.74ab
Average	T	-6.21c	-5.31b	-4.20c	-9.39b
	NTS	-3.90ab	-4.19a	-3.02ab	-8.44ab
	NT	-5.90c	-5.52b	-3.75bc	-9.14b
	TS	-4.77b	-5.03b	-3.39abc	-8.96b
	TP	-3.25a	-4.02a	-2.86ab	-6.93a
	NTP	-3.59a	-3.73a	-2.70a	-7.89ab

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^aT, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 6. Soil-root water potential gradient (MPa) as affected by tillage practice for different growth stages of wheat and soil layers (cm) in 2016 and 2017.

Year	Tillage practice ^a	Seedling		Tillering		Jointing		Flowering		
		0–10	0–10	10–30	0–10	10–30	0–10	10–30	30–50	
2016	T	0.46a	2.04a	1.77a	0.70ab	0.61a	0.39ab	2.45a	3.47a	
	NTS	0.43a	1.22a	1.21a	0.21b	1.46a	1.08a	1.68a	2.84a	
	NT	0.18a	0.05a	0.84a	0.20b	0.66a	0.04b	1.63a	2.87a	
	TS	0.42a	1.08a	0.57a	1.28a	0.35a	0.66ab	2.03a	1.73a	
	TP	0.22a	1.50a	1.95a	0.03b	1.17a	0.48ab	2.13a	1.13a	
	NTP	0.41a	0.55a	1.71a	0.06b	0.97a	0.73ab	2.09a	2.97a	
2017	T	0.15c	0.33a	0.60a	2.19a	1.09a	2.91a	2.36ab	5.67a	
	NTS	0.32bc	0.56a	0.90a	0.83cd	0.46a	0.40b	0.67b	1.01b	
	NT	0.16c	0.59a	0.65a	1.20bc	0.68a	0.52b	3.00ab	4.81a	
	TS	0.53ab	0.13a	0.04a	1.70ab	0.52a	0.15b	2.20ab	4.93a	
	TP	0.61a	0.50a	0.86a	0.24d	0.41a	0.59b	4.16a	3.65a	
	NTP	0.13c	0.32a	0.64a	0.97bcd	0.13a	0.50b	2.45ab	1.06b	
Average	T	0.31ab	1.19a	1.18a	1.44a	0.85a	1.65a	2.41a	4.57a	
	NTS	0.38ab	0.89a	1.06a	0.52ab	0.96a	0.74b	1.17a	1.93c	
	NT	0.17b	0.32a	0.75ab	0.70b	0.67a	0.28b	2.32a	3.84ab	
	TS	0.47a	0.61a	0.31b	1.49a	0.44a	0.41b	2.11a	3.33abc	
	TP	0.42ab	1.00a	1.40a	0.14c	0.79a	0.53b	3.15a	2.39bc	
	NTP	0.27ab	0.44a	1.17a	0.52bc	0.55a	0.61b	2.27a	2.01c	

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 7. Root-leaf water potential gradient (MPa) as affected by tillage practice for different growth stages of wheat and soil layers (cm) in 2016 and 2017.

Year	Tillage practice ^a	Seedling		Tillering		Jointing		Flowering		
		0–10	0–10	10–30	0–10	10–30	0–10	10–30	30–50	
2016	T	4.13a	1.54b	2.78a	3.82a	4.23a	6.07a	4.71a	3.76a	
	NTS	2.56a	1.21b	1.99a	2.78a	1.70b	4.27a	3.64a	2.19a	
	NT	3.56a	4.94a	4.49a	3.58a	3.46ab	6.39a	4.93a	3.43a	
	TS	2.45a	2.95ab	3.74a	2.00a	2.84ab	5.62a	4.37a	3.33a	
	TP	2.66a	1.78b	1.88a	3.07a	1.69b	3.50a	1.62a	1.57a	
	NTP	2.28a	2.51ab	2.34a	2.67a	2.01b	4.07a	2.16a	1.40a	
2017	T	3.67a	1.29a	0.81ab	0.18b	0.42b	0.92d	2.16ab	1.54c	
	NTS	2.17b	0.50a	0.14c	1.40a	0.85ab	2.87bc	3.85a	3.36ab	
	NT	3.60a	0.50a	0.35abc	1.36a	1.03ab	1.63cd	1.82ab	1.72c	
	TS	2.78ab	0.72a	0.87a	0.47b	0.81ab	3.27ab	2.58ab	2.93ab	
	TP	0.87c	0.49a	0.16bc	1.57a	1.36a	3.76ab	1.45b	2.60bc	
	NTP	2.62ab	0.82a	0.46abc	0.56b	1.23ab	4.39a	2.99ab	3.69a	
Average	T	3.90a	1.41b	1.80ab	2.00ab	2.33a	3.49a	3.44a	4.71a	
	NTS	2.36bc	0.85b	1.07b	2.09ab	1.28b	3.57a	3.75a	1.60c	
	NT	3.58ab	2.72a	2.42a	2.47a	2.25a	4.01a	3.37a	4.12ab	
	TS	2.61bc	1.84ab	2.31a	1.23b	1.82ab	4.44a	3.48a	4.13ab	
	TP	1.77c	1.14b	1.02b	2.32a	1.53ab	3.63a	1.54a	2.61bc	
	NTP	2.45bc	1.67ab	1.40ab	1.61ab	1.62ab	4.23a	2.58a	1.23c	

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 8. Soil–soil water potential gradient (MPa) as affected by tillage practice for different growth stages of wheat and soil layers (cm) in 2016 and 2017.

Year	Tillage practice ^a	Seedling		Tillering		Jointing		Flowering		
		0–10	0–10	10–30	0–10	10–30	0–10	10–30	30–50	
2016	T	4.59a	3.58a	4.55a	4.52a	4.84a	6.46a	7.16a	7.23a	
	NTS	2.99a	2.43a	3.20a	2.99a	3.15a	5.36a	5.32ab	5.03ab	
	NT	3.74a	4.99a	5.33a	3.79a	4.12a	6.43a	6.55ab	6.31ab	
	TS	2.87a	4.04a	4.31a	3.28a	3.18a	6.28a	6.40ab	5.06ab	
	TP	2.88a	3.28a	3.83a	3.10a	2.86a	3.98a	3.75b	2.70b	
	NTP	2.69a	3.06a	4.05a	2.72a	2.98a	4.80a	4.25b	4.36ab	
2017	T	3.83a	1.62a	1.41a	2.37a	1.52a	3.83ab	4.52a	11.33a	
	NTS	2.48bc	1.05a	1.04a	2.23a	1.32a	3.27bc	4.52a	2.02b	
	NT	3.76a	1.09a	1.00a	2.56a	1.70a	2.14c	4.82a	9.61a	
	TS	3.31ab	0.85a	0.92a	2.16a	1.33a	3.42bc	4.78a	9.86a	
	TP	1.48c	0.99a	1.01a	1.81a	1.77a	4.34ab	5.61a	7.30a	
	NTP	2.75ab	1.14a	1.10a	1.53a	1.36a	4.89a	5.44a	2.11b	
Average	T	4.21a	2.60a	2.98a	3.44a	3.18a	5.14a	5.84a	9.28a	
	NTS	2.74bc	1.74a	2.12a	2.61ab	2.24a	4.31a	4.92a	3.53c	
	NT	3.75ab	3.04a	3.16a	3.17ab	2.91a	4.29a	5.69a	7.96a	
	TS	3.09abc	2.45a	2.62a	2.72ab	2.26a	4.85a	5.59a	7.46ab	
	TP	2.18c	2.14a	2.42a	2.45ab	2.32a	4.16a	4.68a	5.00bc	
	NTP	2.72bc	2.10a	2.57a	2.13b	2.17a	4.84a	4.85a	3.24c	

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 9. Transpiration at the growing season, biomass and grain yields, and water use efficiency of grain yield and biomass yield (WUE_b and WUE_g, respectively) of wheat as affected by tillage practice in 2016 and 2017.

Year	Tillage practice ^a	Transpiration (mm)	Biomass yield (kg ha ⁻¹)	WUE _b (kg ha ⁻¹ mm ⁻¹)	Grain yield (kg ha ⁻¹)	WUE _g (kg ha ⁻¹ mm ⁻¹)
2016	T	176.4c	4107d	15.38bc	1430c	5.36bc
	NTS	209.1b	4798b	16.73ab	1859a	6.48a
	NT	177.3c	3916d	14.75c	1216d	4.50c
	TS	171.1c	4367c	17.08a	1560bc	6.13ab
	TP	214.5b	4669b	18.08a	1686ab	6.55a
	NTP	252.0a	5150a	17.25a	1839a	6.15ab
2017	T	58.7c	2498bc	13.77b	—	—
	NTS	120.2b	2994b	13.09bc	—	—
	NT	68.6c	2090c	10.70c	—	—
	TS	84.7c	2369bc	11.11bc	—	—
	TP	170.0a	4310a	18.23a	—	—
	NTP	161.4a	4074a	18.29a	—	—
Average	T	117.58c	3303c	14.58b	1460bc	5.48bc
	NTS	164.68b	3896b	14.91b	1862a	6.78a
	NT	122.96c	3003c	12.73c	1416c	5.56c
	TS	127.88c	3368c	14.10bc	1647b	6.28b
	TP	192.26a	4489a	18.16a	1776ab	6.90ab
	NTP	206.70a	4612a	17.77a	1815ab	6.78ab

Within a column for a given year, means followed by different letters are significantly different ($P \leq 0.05$).

^a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch.

Table 10. Pearson's correlation coefficient for correlations of water potential indexes with transpiration, biomass and grain yields, and water use efficiency of biomass and grain yields (WUE_b and WUE_g, respectively) across years for different growth stages of wheat and soil layers.

Growth stage	Soil layer (cm)	Water potential index ^a	Transpiration	Biomass yield	WUE _b	Grain yield	WUE _g
Seeding	0-10	S	0.888**	0.854**	0.757**	0.839**	0.646**
		R	0.892**	0.834**	0.738**	0.767**	0.531*
		L	0.839**	0.861**	0.705**	0.826**	0.732**
		S-R	0.104	0.171	0.158	0.333	0.443
		R-L	-0.639**	-0.699**	-0.543*	-0.689**	-0.689**
		S-L	-0.654**	-0.704**	-0.543*	-0.665**	-0.645**
Tillering	0-10	S	0.615**	0.480*	0.461	0.183	-0.043
		R	0.649**	0.561*	0.376	0.331	0.093
		L	0.875**	0.844**	0.764**	0.783**	0.547*
		S-R	-0.073	-0.128	0.090	-0.203	-0.177
		R-L	-0.282	-0.330	-0.414	-0.471*	-0.450
		S-L	-0.369	-0.463	-0.395	-0.676**	-0.634**
Jointing	10-30	S	0.769**	0.686**	0.657**	0.551*	0.327
		R	0.511*	0.357	0.278	0.335	0.092
		S-R	0.37	0.442	0.497*	0.301	0.300
		R-L	-0.505*	-0.588*	-0.566*	-0.543*	-0.485*
		S-L	-0.325	-0.370	-0.299	-0.428	-0.356
		S	0.490*	0.510*	0.371	0.442	0.483*
Flowering	0-10	R	0.687**	0.703**	0.542*	0.428	0.356
		L	0.765**	0.705**	0.461	0.614**	0.342
		S-R	-0.681**	-0.694**	-0.542*	-0.383	-0.285
		R-L	-0.131	-0.049	0.054	-0.234	-0.008
		S-L	-0.660**	-0.595**	-0.380	-0.518*	-0.233
		S	.765**	.735**	.644**	0.465	0.348
10-30	10-30	R	.551*	.581*	0.385	0.334	0.121
		S-R	-0.033	-0.085	0.053	-0.019	0.118
		R-L	-0.590**	-0.489*	-0.315	-0.557*	-0.36
		S-L	-0.526*	-0.472*	-0.236	-0.488*	-0.233
		S	0.664**	0.664**	0.786**	0.470*	0.407
		R	0.649**	0.607**	0.613**	0.455	0.419
Flowering	0-10	L	0.722**	0.730**	0.721**	0.530*	0.505*
		S-R	-0.235	-0.146	0.058	-0.156	-0.189
		R-L	-0.021	-0.115	-0.089	-0.057	-0.082
		S-L	-0.243	-0.258	-0.038	-0.205	-0.262
		S	0.489*	0.503*	0.634**	0.169	0.278
		R	0.289	0.239	0.124	0.248	-0.006
10-30	10-30	S-R	0.093	0.147	0.338	-0.096	0.201
		R-L	-0.444	-0.486*	-0.558*	-0.301	-0.455

	S-L	-0.554*	-0.552*	-0.428	-0.566*	-0.440
30-50	S	0.427	0.328	0.456	0.243	0.399
	R	0.807**	0.748**	0.585*	0.642**	0.471*
	S-R	-0.753**	-0.731**	-0.475*	-0.647**	-0.367
	R-L	-0.775**	-0.771**	-0.559*	-0.781**	-0.528*
	S-L	-0.803**	-0.790**	-0.547*	-0.757**	-0.479*

Correlation coefficients followed by * and ** are significant at $P \leq 0.05$ and 0.01, respectively.

^aS, soil water potential; R, root water potential; L, leaf water potential; S-R, soil-root water potential gradient; R-L, root-leaf water potential gradient; S-L, soil-leaf water potential gradient.

Figure captions

Figure 1. Monthly total precipitation for 2016, 2017, and the 2001-2015 average at the study area.

Figure 2. Transpiration rate at the flowering stage of wheat in 2016 (A) and 2017 (B) and net photosynthetic rate at the flowering stage of wheat in 2016 (C) and 2017 (D) as affected by tillage practice. T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch. Bars with different letters indicate treatment means that are significantly different ($P \leq 0.05$). Error bars denote standard errors of the means ($n = 4$).

Figure 3. Soil-leaf water transfer resistance (Rsl) at the flowering stage of wheat in 2016 (A) and 2017 (B) as affected by tillage practice for different soil layers.

T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch. Within a year for a given soil layer, bars with different letters indicate treatment means that are significantly different ($P \leq 0.05$). Error bars denote standard errors of the means ($n = 4$).

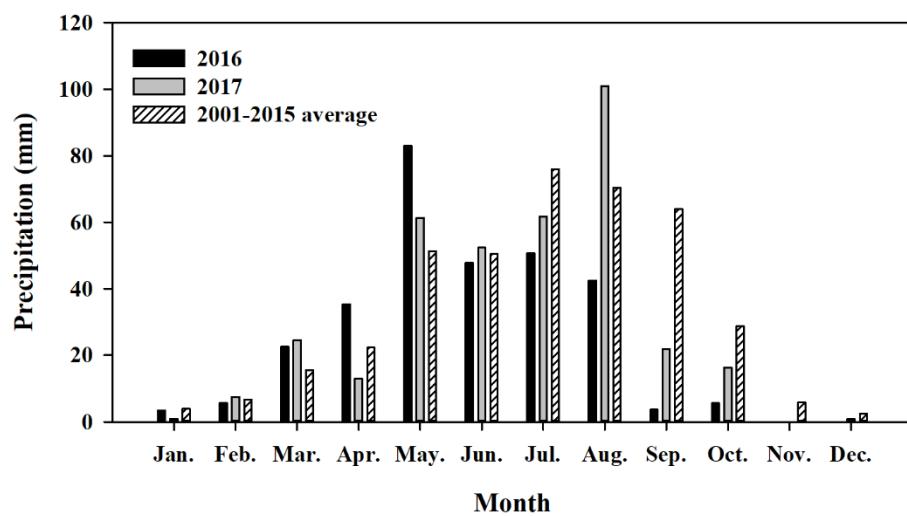


Figure 1. Monthly total precipitation for 2016, 2017, and the 2001-2015 average at the study area.

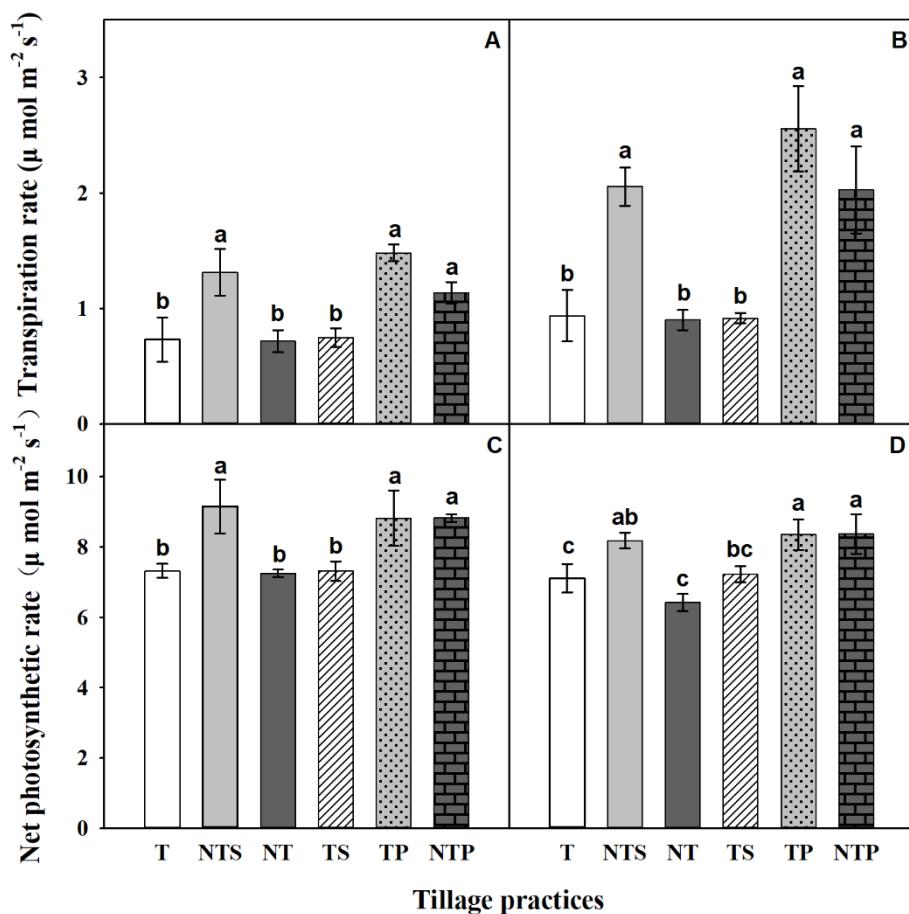


Figure 2. Transpiration rate at the flowering stage of wheat in 2016 (A) and 2017 (B) and net photosynthetic rate at the flowering stage of wheat in 2016 (C) and 2017 (D) as affected by tillage practice. T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch. Bars with different letters indicate treatment means that are significantly different ($P \leq 0.05$). Error bars denote standard errors of the means ($n = 4$).

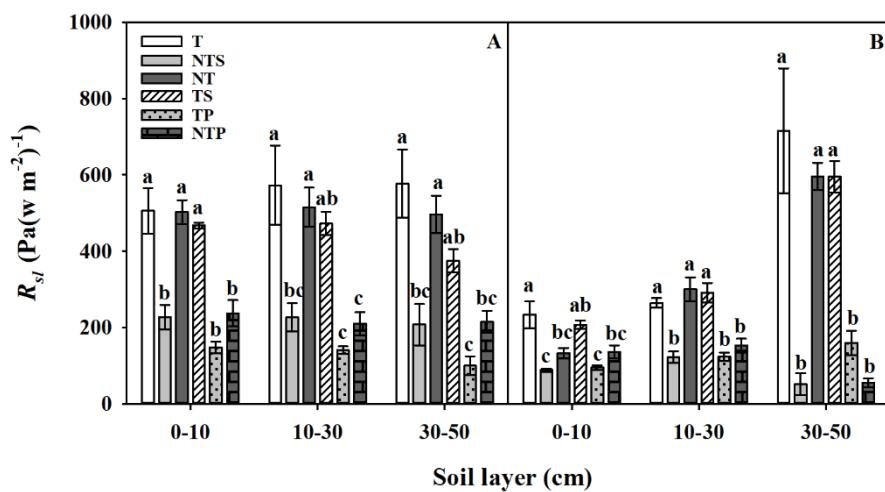


Figure 3. Soil-leaf water transfer resistance (R_{sL}) at the flowering stage of wheat in 2016 (A) and 2017 (B) as affected by tillage practice for different soil layers. T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with plastic mulch. Within a year for a given soil layer, bars with different letters indicate treatment means that are significantly different ($P \leq 0.05$). Error bars denote standard errors of the means ($n = 4$).