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Abstract 1 

Water availability is a major constraint for spring wheat production on the 2 

western Loess Plateau of China. The impact of tillage practices on water 3 

potential, water potential gradient, water transfer resistance, yield, and water 4 

use efficiency (WUEg) of spring wheat was monitored on the western Loess 5 

Plateau in 2016 and 2017. Six tillage practices were assessed, including 6 

conventional tillage with no straw (T), no-till with straw cover (NTS), no-till 7 

with no straw (NT), conventional tillage with straw incorporated (TS), 8 

conventional tillage with plastic mulch (TP), and no-till with plastic mulch 9 

(NTP). No-till with straw cover, TP, and NTP significantly improved soil water 10 

potential and root water potential at the seedling stage and leaf water potential 11 

at the seedling, tillering, jointing, and flowering stages, compared to T. These 12 

treatments also significantly reduced the soil-leaf water potential gradient at 13 

the 0-10 cm soil layer at the seedling stage and at the 30-50 cm soil layer at 14 

flowering, compared to T. Thus, NTS, TP, and NTP reduced soil-leaf water 15 

transfer resistance and enhanced transpiration. Compared to T, the NTS, TP, 16 

and NTP treatments significantly increased biomass yield (BY) by 18, 36, and 17 

40%, respectively, and grain yield (GY) by 28, 22, and 24%, respectively, with 18 

corresponding increases in WUEg of 24, 26, and 24%, respectively. These results 19 

demonstrate that NTS, TP, and NTP improved GY and WUEg of spring wheat 20 

by decreasing the soil-leaf water potential gradient and soil-leaf water transfer 21 

resistance and enhancing transpiration, and are suitable tillage practices for 22 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2019                   

Peer-reviewed version available at Agronomy 2019, 9, 583; doi:10.3390/agronomy9100583

https://doi.org/10.3390/agronomy9100583


3 
 

sustainable intensification of wheat production in semi-arid areas. 23 

Keywords: Conservation tillage; Water potential; Water potential gradient; 24 

Water transfer resistance; Water use efficiency 25 

 26 

1. Introduction 27 

Wheat (Triticum aestivum L.) is a major food crop in China and in the world, 28 

which plays an important role in ensuring China’s food security [1]. The 29 

western Loess Plateau of China is characterized by harsh climatic conditions, 30 

including frequent spring drought, severe wind erosion, and water erosion [2, 31 

3]. Spring wheat is one of the dominant crops in this region, but its growth is 32 

restricted by limited and erratic rainfall [4, 5]. Thus, yield of spring wheat in 33 

this region is far less than potential yield, ranging from 1500 to 3000 kg ha−1 [6-34 

8]. Increasing water use efficiency is a major goal for advancing sustainable 35 

intensification of crop production on the western Loess Plateau that will have 36 

great impact at local and regional scales [9]. 37 

Water use efficiency depends on the amount of water absorbed by plants, 38 

of which the majority is lost by transpiration [10]. Water absorption depends 39 

on the free energy of water in plants, which is shown as the level of water 40 

potential in the soil-plant-atmosphere continuum [11]. The lower the water 41 

potential of plant, the stronger the water absorption capacity. Kang [12] found 42 

that transpiration rate was positively correlated with the water potential 43 

difference of the leaf-atmosphere system. Yang et al. [13] found that leaf water 44 
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potential of maize (Zea mays L.) decreased from the lower to upper part of the 45 

canopy and that there was relatively large resistance among the different 46 

interfaces of water flow in the transmission process. Xerophytes have 47 

moderately deep roots and display a rapid drop in leaf water potential with 48 

increasing leaf water deficit, which generates a steep water potential gradient 49 

in the soil-plant continuum that enhances water uptake by roots [14]. 50 

Conservation tillage is a technique that reduces soil disturbance and 51 

retains crop residues on the soil surface [15]. It can effectively reduce wind 52 

erosion [16], water erosion [17], and soil bulk density, and enhance soil total 53 

porosity and saturated water conductivity [18, 19], thereby increasing rainfall 54 

infiltration and soil water holding capacity [20, 21], reducing soil evaporation 55 

and enhancing crop growth, yield, and water use efficiency [22-24]. No-till with 56 

straw cover has been shown to improve grain yield by 13%, and water use 57 

efficiency 7.6% in winter spring wheat on the Loess Plateau of China [25]. No-58 

till with straw cover has been shown to improve grain yield by 153%, and water 59 

use efficiency by 46% in wheat and maize (Zea mays L.) relay-planting system 60 

on Hexi Corridor of northwestern China with typical temperate arid zone of 61 

continent [26]. Subsoil tillage with 50% chopped straw mulching has been 62 

shown to improve grain yield by 5-7%, and water use efficiency by 51-52% in 63 

maize on the Huang–Huai–Hai valley with mean annual precipitation is 556.2 64 

mm [27]. Ridge mulched with plastic film has been shown to improve grain 65 

yield by 30%, and water use efficiency 35% in wheat on the Loess Plateau of 66 
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China [4]. However, the mechanism by which conservation tillage improves 67 

water use efficiency from the perspective of water potential gradient has not 68 

been reported. Therefore, the objectives of this study were to assess the effects 69 

of different tillage practices on soil, root, and leaf water potential indexes, soil-70 

leaf water transfer resistance, transpiration, yield, and water use efficiency of 71 

spring wheat to provide a theoretical basis for improving water use efficiency 72 

and conservation tillage development on the western Loess Plateau. 73 

 74 

2. Materials and methods 75 

2.1. Experimental site 76 

This study was conducted in 2016 and 2017 based on a long-term field 77 

experiment initiated in 2001. The experiment was located at the Rainfed 78 

Agricultural Experimental station of Gansu Agricultural University (35°28′N, 79 

104°44′E, elevation: 1971 m above sea level) in Gansu Province in northwestern 80 

China, a typical rainfed area on the western Loess Plateau. The area is 81 

characterized by a hilly landscape and is prone to soil erosion. The aeolian soil 82 

at the experimental site is locally known as Huangmian [28], is a Calcaric 83 

Cambisol according to the FAO (1990) [29], soil classification, and is primarily 84 

used for annual crop production [30]. This soil type has a sandy loam texture 85 

with ≥50% sand. Detailed soil physical and water characteristics at the 86 

experimental site before sowing in 2001 are presented in Table 1. Annual 87 

precipitation at the experimental site was 300.2 mm in 2016, 361.4 mm in 2017, 88 
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and 396.7 mm for the 2001-2015 average, and is shown monthly in Fig. 1. 89 

Annual (January through December), fallow period (January through March 90 

and August through December), and growing season (April through July) 91 

rainfall, drought index (DI), and soil water condition at the experimental site 92 

for 2016, 2017, and the 2001-2017 average are shown in Table 2. Daily maximum 93 

air temperature at the experimental site can reach 38oC in July, while minimum 94 

air temperature can drop to –22oC in January. Long–term climatic records show 95 

that annual cumulative air temperature >10oC is 2240oC and annual radiation is 96 

5930 MJ/m2, with 2480 hours of sunshine per year. Average annual evaporation 97 

at the experimental site is 1531 mm (coefficient of variation: 24.3%), which is 98 

three- to four-fold greater than precipitation.  99 

 100 

2.2. Experimental design and agronomic management 101 

The experimental design was a randomized complete block with four 102 

replications. Each plot was 4 m wide × 20 m long. The long-term experiment 103 

included six tillage practice treatments in a two-year spring wheat/pea (Pisum 104 

sativum L.) rotation, with both phases of the rotation present in each year. All 105 

measurements in this study were made from plots planted to wheat. The 106 

conventional tillage with no straw (T) treatment included removal of all 107 

aboveground crop residues at the time of grain harvest before moldboard 108 

plowing to a depth of 20 cm. The conventional tillage with straw incorporated 109 

(TS) treatment was the same as T, except that all residues from the previous 110 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2019                   

Peer-reviewed version available at Agronomy 2019, 9, 583; doi:10.3390/agronomy9100583

https://doi.org/10.3390/agronomy9100583


7 
 

crops were retained and incorporated into the soil with tillage. The no-till with 111 

no straw (NT) treatment had all aboveground crop residues removed at the 112 

time of grain harvest and no tillage operations. The no-till with straw cover 113 

(NTS) treatment was the same as NT, except that all residues from the previous 114 

crops were retained. The conventional tillage with plastic mulch (TP) treatment 115 

was the same as T, except that alternating ridges (10 cm high × 40 cm wide) and 116 

furrows (10 cm wide) were made after harrowing with a ridging implement 117 

and all ridges and furrows were covered with colorless plastic film mulch using 118 

a plastic mulch laying machine prior to sowing crops in the furrows. The no-119 

till with plastic mulch (NTP) treatment was the same as NT, except that the 120 

entire plot area was covered with colorless plastic film mulch using a plastic 121 

mulch laying machine. There were same ridges and furrows with TP.  122 

The spring wheat and pea cultivars were Dingxi 40 and Lvnong 2, 123 

respectively. Wheat was sown at a rate of 187.5 kg ha-1 in rows spaced 20 cm 124 

apart and pea was seeded at 180 kg ha-1 in rows spaced 24 cm apart. 125 

Immediately prior to the time of plastic mulch laying in the treatments with 126 

plastic mulch, all treatments were fertilized with calcium superphosphate (105 127 

kg P2O5 ha-1 for wheat and pea) and urea (105 and 20 kg N ha-1 for wheat and 128 

pea, respectively) that was broadcast uniformly over the entire plot area. Wheat 129 

was sown on 27 March 2016 and 26 March 2017, and harvested on 25 July 2016 130 

and 20 July 2017. Weeds were removed by hand during the growing season and 131 

controlled with herbicides during the fallow period. 132 
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 133 

2.3. Measurements and calculation 134 

2.3.1. Precipitation and drought index 135 

Daily precipitation was measured with a rainfall canister at the 136 

experimental site and DI was calculated as follows [9]: 137 

DI =
𝐴𝑟−𝑀

𝛿
         ⑴ 138 

where Ar is annual rainfall, M is average annual rainfall, and 𝛿 is the standard 139 

deviation for annual rainfall. Drought index can be used to distinguish among 140 

wet (DI > 0.35), normal (-0.35 ≤ DI ≤ 0.35), and dry (DI < -0.35) soil water 141 

conditions for various time periods, including on an annual basis, for a growing 142 

season, and for a fallow period [9]. Therefore, rainfall during the growing 143 

season and fallow period were used to also calculate DI for these periods in the 144 

two study years. 145 

 146 

2.3.2. Water potential and soil-leaf resistance 147 

Water potential indexes were measured at four growth stages of wheat, 148 

including the seedling stage (30 April 2016 and 12 May 2017), tillering stage (20 149 

May 2016 and 27 May 2017), jointing stage (30 May 2016 and 10 June 2017), and 150 

flowering stage (15 June 2016 and 27 June 2017). Three Representative plants 151 

were randomly selected in per plot, their leaves were removed with a scissors 152 

and placed into the leaf sample box. Next, a root and soil sample for the selected 153 

plants was taken using a soil corer (9-cm inner diameter) from the 0-10 cm soil 154 
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layer at the seedling stage, at the 0-10 and 10-30 cm soil layers at tillering and 155 

jointing, and 0-10, 10-30, 30-50 cm soil layer at flowering, respectively. Sampled 156 

root systems were gently shaken to let rhizosphere soil fall into the soil sample 157 

box, then the root system was placed into the root sample box. Leaf water 158 

potential, root water potential, and soil water potential were measured 159 

immediately after each were sampled using a dew point water potential meter 160 

(WP4C Dewpoint PotentiaMeter, METER Group, Pullman, WA, USA) [31, 32]. 161 

Transpiration rate and net photosynthetic rate was measured at 9:00 to 162 

11:00 on the morning of flowering stage (15 June 2016 and 27 June 2017) of 163 

wheat with a portable photosynthesis system (model GFS3000, Heinz Walz 164 

GmbH, Effeltrich, Germany). Three wheat plants were randomly selected in 165 

each plot, the flag leaves of each plant were measured, and the average value 166 

of the three plants was obtained as the transpiration rate and net photosynthetic 167 

rate of the plot. Soil-leaf water transfer resistance (Rsl) was calculated using 168 

following equation [12]: 169 

 Rsl =
𝛹𝑠 − 𝛹𝑙

CT
         ⑵ 170 

where Rsl is the soil-leaf water transfer resistance, Ψs is soil water potential, Ψl 171 

is leaf water potential, and CT is also transpiration rate. 172 

 173 

2.3.3. Soil water content, evapotranspiration, and evaporation 174 

Soil water content was measured to a depth of 2 m before sowing and after 175 

harvest in 2016 and 2017 using the oven-dry method [33] for the 0-5 and 5-10 176 
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cm soil layers, and using a time domain reflectometry soil moisture sensor 177 

(TRIME-PICO IPH/T3, IMKO GmbH, Ettlingen, Germany) for the 10-30, 30-50, 178 

50-80, 80-110, 110-140, 140-170, and 170-200 cm soil layers. Evapotranspiration 179 

(ET) was calculated using following equation [9]: 180 

ET = P + W1 − W2         ⑶ 181 

where ET is evapotranspiration during the growing season, P is precipitation 182 

during the growing season, and W1 and W2 are water storage in the 0-200m soil 183 

layer before sowing and after harvest, respectively. 184 

Soil evaporation was measured with a micro-evaporator made from 185 

polyvinylchloride tubing with the length of 150 mm, internal diameter of 110 186 

mm, and external diameter of 115 mm [34]. One tube per plot was installed to 187 

remove undisturbed soil at 07:00 h, with plastic film used to seal the base of the 188 

undisturbed soil. Mass of the soil core was measured using an electronic 189 

balance with a sensitivity of 0.01 g. The soil was then placed back in its original 190 

location in the field and the soil was measured at 07:00 h on the next day. The 191 

loss in mass was the amount of evaporation (equivalent to 0.1051 mm g-1). Soil 192 

inside the micro-evaporator was changed every 3 days and after precipitation, 193 

tube emptied of soil and placed in a new location in the field, which ensure that 194 

soil moisture inside the micro-evaporator is consistent with the surrounding 195 

soil. The calculation of evaporation in a growth period is based on the daily 196 

average evaporation measured during the growth stage multiplied by the 197 

number of days during the growth period without precipitation. The amount 198 
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of transpiration during a growing season is the sum of that for all growth 199 

periods in the growing season using following equation [35]: 200 

T = ET − E         ⑷ 201 

where T is transpiration during growing season, ET is evapotranspiration 202 

during growing season, and E is soil evaporation during growing season. 203 

 204 

2.3.4. Yield and water use efficiency 205 

The whole plot was harvested manually using sickles at 5 cm above 206 

ground. The edges (0.5 m) of the plot were trimmed and discarded. Biological 207 

yield (BY) was measured by natural drying and before threshing. The grain 208 

moisture content after threshing was measured by the PM-8188 grain moisture 209 

meter, repeated 5 times, and the mean was taken. In addition, grain yield (GY) 210 

at 13% water content is calculated. All straw and chaff from stubble 211 

incorporated treatments were returned to the original plots immediately after 212 

threshing. water use efficiency was calculated using following equations [9]: 213 

WUE𝑔 =
𝐺𝑌

𝐸𝑇
        ⑸ 214 

WUE𝑏 =
𝐵𝑌

𝐸𝑇
        ⑹ 215 

where WUEg and WUEb are water use efficiency of grain and biomass yield, 216 

respectively. 217 

 218 

2.4. Statistical analysis 219 

Data were analyzed at P ≤ 0.05 using SPSS 19.0 software (IBM Corp., 220 
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Chicago, USA). Analysis of variance was conducted for all dependent variables. 221 

Year and tillage practice were considered fixed effects, and replication was 222 

considered a random effect. Differences among means were determined using 223 

Tukey’s honestly significant different test. The linear relationship of water 224 

potential indexes with transpiration, BY, GY, WUEg, and WUEb were assessed 225 

using Pearson’s correlation coefficient. 226 

 227 

3. Results 228 

3.1.  Effect of tillage practices on water potential at different growth stages 229 

Soil water potential varied with year, tillage practice, soil layer, and growth 230 

stage of wheat (Table 3). In 2016, soil water potential with NTS and TP were 231 

significantly greater in the 0-10 cm soil layer at the seedling and jointing stages 232 

compared to T. In 2017, soil water potential with the different treatments had 233 

similar pattern to that in 2016. On average, compared with T, soil water 234 

potential with NTS was significantly greater in the 0-10 cm soil layer at the 235 

seedling and jointing stages. Soil water potential with TP was significantly 236 

greater than that with T in the 0-10 cm soil layer at the seedling stage and in the 237 

0-10 and 10-30 cm soil layers at jointing stage. Compared to T, soil water 238 

potential with NTP was significantly increased in the 0-10 cm soil layer at the 239 

seedling stage, in the 10-30 cm soil layer at tillering stage, and in the 10-30 cm 240 

soil layer at jointing stage.  241 

Year, tillage practice, soil layer, and growth stage of wheat influenced root 242 
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water potential (Table 4). In general, compared to T, root water potential was 243 

significantly increased with NTS and NT in the 0-10 cm soil layer at the seedling 244 

and jointing stages, and with NTS in the 30-50 cm soil layer at flowering. Root 245 

water potential was not significantly different between TS and T in all soil 246 

layers at every growth stage. Root water potential with TP was significantly 247 

greater than that with T in the 0-10 cm soil layer at the seedling, tillering, and 248 

jointing stages, and in the 0-10 and 30-50 cm soil layers at flowering. Root water 249 

potential with NTP was significantly greater than that with T in the 0-10 cm soil 250 

layer at the seedling stage, in the 0-10 and 10-30 cm soil layers at tillering and 251 

jointing, and in the 0-10 and 30-50 cm soil layers at flowering. 252 

Leaf water potential differed with year, tillage practice, soil layer, and 253 

growth stage of wheat (Table 5), In 2016, compared to T, leaf water potential 254 

with NTS was significantly increased at the seedling stage, and not significantly 255 

different with NT and TS at any growth staged. Leaf water potential in 2016 256 

significantly greater with NTP and TP at the seedling stage, and with TP at 257 

flowering, compared to T. In 2017, compared to T, leaf water potential with NTS 258 

was significantly increased at the seedling and tillering stages; however, leaf 259 

water potential with NT was not significantly increased at any growth stage. 260 

Leaf water potential was significantly greater with TS than T at the seedling 261 

and tillering stages, and with TP than T increased at the seedling, tillering, and 262 

jointing stages. On average, leaf water potential with NTS and NTP was 263 

significantly greater than that with T at the seedling, tillering, and jointing 264 
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stages. Leaf water potential with NT and TP was not significantly different 265 

compared to that with T at any growth stage. However, leaf water potential 266 

with TS was significantly greater than that with T at the seedling stage. 267 

 268 

3.2. Effect of tillage practices on water potential gradient at different growth 269 

stages  270 

The soil-root water potential gradient was affected by year, tillage practice, 271 

soil layer, and growth stage of wheat (Table 6). In 2016, the soil-root water 272 

potential gradient was not significantly different among tillage practices at all 273 

soil layers at all growth stages. In 2017, the soil-root water potential gradient 274 

was significantly reduced with NTS and NTP compared to the other tillage 275 

practices in the 0-10 cm soil layer at jointing stage and in the 0-10 and 30-50 cm 276 

soil layers at flowering stage. 277 

The root-leaf water potential gradient varied with year, tillage practice, soil 278 

layer, and growth stage of wheat (Table 7). On average, compared to T, the root-279 

leaf water potential gradient with NTS was significantly reduced at the 0-10 cm 280 

soil layer at the seedling stage, 10-30 cm soil layer at jointing stage, and 30-50 281 

cm soil layer at flowering stage; however, the root-leaf water potential gradient 282 

with NT was significantly increased at 0-10 cm soil layer at tillering stage. The 283 

root-leaf water potential gradient was significantly decreased with TS at the 0-284 

10 cm soil layer at the seedling stage, and with TP at the 0-10 cm soil layer at 285 

the seedling stage and 30-50 cm soil layer at flowering, compared to T. The root-286 
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leaf water potential gradient with NTP was significantly reduced at the 0-10 cm 287 

soil layer at the seedling stage and 30-50 cm soil layer at flowering, compared 288 

to T. 289 

The soil-leaf water potential gradient varied with year, tillage practice, soil 290 

layer, and growth stage of wheat (Table 8). On average, the soil-leaf water 291 

potential gradient with NTS was significantly less than that with T at the 0-10 292 

cm soil layer at the seedling stage and 30-50 cm soil layer at flowering. The soil-293 

leaf water potential gradient with NT and TS was not significantly different 294 

from that with T at all soil layers and growth stages. Compared to T, the soil-295 

leaf water potential gradient was significantly decreased with TP at the 0-10 cm 296 

soil layer at the seedling stage and at the 30-50 cm soil layer at flowering, and 297 

with NTP at the 0-10 cm soil layer at the seedling and jointing stages and at the 298 

30-50 cm soil layer at flowering. 299 

 300 

3.3. Effects of tillage practices on transpiration rate and soil-leaf water 301 

transfer resistance at flowering 302 

Transpiration rate of wheat at flowering varied with tillage practice (Fig. 303 

2). In 2016 and 2017, compared with T, transpiration rate was significantly 304 

increased with NTS, TP, and NTP, but not significantly different with NT and 305 

TS (Fig. 2A, B). On average, compared with T, NTS, TP, and NTP significantly 306 

increased transpiration rate by 103, 143, and 91%, respectively (data not shown). 307 

Net photosynthetic rate of wheat at flowering varied among tillage 308 
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practices (Fig. 2). In 2016 and 2017, compared with T, net photosynthetic rate 309 

was significantly increased with NTS, TP, and NTP, but not significantly 310 

different with NT and TS (Fig. 2C, D). On average, NTS, TP, and NTP 311 

significantly increased net photosynthetic rate by 20, 19, and 19%, respectively, 312 

compared to T (data not shown).  313 

Soil-leaf water transfer resistance of wheat at flowering was also affected 314 

by tillage practice (Fig. 3). In 2016 and 2017, compared to T, soil-leaf water 315 

transfer resistance at all soil layers was significantly reduced with NTS, TP, and 316 

NTP, but not significantly different with NT and TS (Fig. 3A, B). Averaged 317 

across years and soil layers, compared to T, soil-leaf water transfer resistance 318 

with NTS, TP, and NTP was significantly decreased by 66, 70, and 63%, 319 

respectively (data not shown). 320 

 321 

3.4. Effect of tillage practices on yield and water use efficiency 322 

Tillage practice significantly affected transpiration at flowering, BY, WUEb, 323 

GY, and WUEg (Table 9). In 2016, transpiration with NTS, TP, and NTP was 324 

significantly increased by 19, 22 and 43%, respectively, compared to T, and BY 325 

with NTS, TS, TP, and NTP was significantly increased by 17, 6, 14, and 25%, 326 

respectively. Water use efficiency of BY with TS, TP, and NTP was significantly 327 

increased by 11, 18, and 12%, respectively, compared to T. Grain yield with NTS, 328 

TP, and NTP was significantly increased by 30, 18, and 29%, respectively, 329 

compared to T, and WUEg was significantly increased by 21, 22, and 15%, 330 
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respectively. On average, compared with T, transpiration with NTS, TP, and 331 

NTP was significantly increased by 40, 64 and 76%, respectively; however, 332 

transpiration was not significantly different with NT and TS. Compared to T, 333 

BY was significantly increased with NTS, TP, and NTP by 18, 36, and 40%, 334 

respectively; however, it was not significantly different with NT and TS. Water 335 

use efficiency of BY was significantly increased with TP and NTP by 25 and 336 

22%, respectively, but was not significantly different with NTS and TS, 337 

compared to T. Grain yield with NTS, TP, and NTP was significantly increased 338 

by 28, 22 and 24%, respectively, compared to T; however, it was not significantly 339 

different among NT, TS, and T. Water use efficiency of GY with NTS, TP and 340 

NTP was significantly increased by 24, 26, and 24%, respectively, but not 341 

significantly different with NT and TS, compared to T. 342 

 343 

3.5. Correlations of water potential indexes with transpiration, biomass and 344 

grain yields, and water use efficiency of grain and biomass yields 345 

Significant correlations among water potential indexes, transpiration at 346 

growing season, BY, WUEb, GY, and WUEg of wheat were observed (Table10). 347 

Soil water potential in the 0-10 cm soil layer at the seedling stage was highly 348 

significant and positively associated with transpiration , BY, WUEb, GY, and 349 

WUEg. Soil water potential in the 0-10 cm soil layer at tillering was positively 350 

associated with transpiration (r = 0.615, P < 0.01) and BY (r = 0.480, P < 0.05). 351 

Soil water potential in the 10-30 cm soil layer at tillering was significantly 352 
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positively associated with transpiration, BY, WUEb, and GY. Soil water potential 353 

in the 0-10 cm soil layer at jointing was significantly positively associated with 354 

transpiration and BY. Soil water potential in the 10-30 cm soil layer at jointing 355 

was significantly positively associated with transpiration, BY, and WUEb. Soil 356 

water potential in the 0-10 cm soil layer at flowering was positively associated 357 

with transpiration, BY, WUEb, and GY. Soil water potential in the 10-30 cm soil 358 

layer at flowering was positively associated with transpiration, BY, and WUEb. 359 

Root water potential in the 0-10 cm soil layer at the seedling stage of wheat 360 

was significantly positively associated with transpiration, BY, WUEb, GY, and 361 

WUEg (Table 10). Root water potential in the 0-10 cm soil layer at tillering was 362 

positively associated with transpiration (r = 0.649, P < 0.01) and BY (r = 0.561, P 363 

< 0.05). Root water potential in the 10-30 cm soil layer at tillering was positively 364 

associated with transpiration (r = 0.511, P < 0.05). Root water potential in the 0-365 

10 cm soil layer at jointing was significantly positively associated with 366 

transpiration, BY, and WUEb. Root water potential in the 10-30 cm soil layer at 367 

jointing was significantly positively associated with transpiration and BY. Root 368 

water potential in the 0-10 cm soil layer at flowering exhibited a significant 369 

positive associated with transpiration, BY, and WUEb. Root water potential in 370 

the 30-50 cm soil layer at flowering was significantly positively associated with 371 

transpiration, BY, WUEb, GY, and WUEg. 372 

Leaf water potential at the seedling stage of wheat had a significant 373 

positively association with transpiration at flowering, BY, WUEb, GY, and 374 
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WUEg (Table 10). Leaf water potential at tillering was significantly positively 375 

associated with transpiration, BY, WUEb, GY, and WUEg. Leaf water potential 376 

at jointing was significantly and positively associated with transpiration, BY, 377 

and GY. Leaf water potential at flowering was positively associated with 378 

transpiration, BY, WUEb, GY, and WUEg.  379 

The soil-root water potential gradient in the 10-30 cm soil layer at tillering 380 

of wheat was significantly positively associated with WUEb (Table 10). The soil-381 

root water potential gradient in the 0-10 cm soil layer at jointing had a 382 

significant negative correlation with transpiration, BY, and WUEb. The soil-root 383 

water potential gradient in the 30-50 cm soil layer at flowering showed a 384 

negative correlation with transpiration, BY, WUEb, and GY.  385 

The root-leaf water potential gradient at the 0-10 cm soil layer at the 386 

seedling stage of wheat had a significant negative correlation with 387 

transpiration, BY, WUEb, GY, and WUEg (Table 10). The root-leaf water 388 

potential gradient at the 0-10 cm soil layer at tillering was significantly 389 

negatively associated with GY. The root-leaf water potential gradient at the 10-390 

30 cm soil layer at tillering was significantly negatively associated with 391 

transpiration, BY, WUEb, GY, and WUEg. The root-leaf water potential gradient 392 

at the 10-30 cm soil layer at jointing exhibited a significant negatively 393 

correlation with transpiration, BY, and GY. The root-leaf water potential 394 

gradient at the 10-30 cm soil layer at flowering was significantly negatively 395 

associated with BY and WUEb. The root-leaf water potential gradient at the 30-396 
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50 cm soil layer at flowering had a significant negative correlation with 397 

transpiration, BY, WUEb, GY, and WUEg. 398 

The soil-leaf water potential gradient at the 0-10 cm soil layer at the 399 

seedling stage of wheat showed a significant negatively association with 400 

transpiration, BY, WUEb, GY, and WUEg. The soil-leaf water potential gradient 401 

at the 0-10 cm soil layer at tillering was significantly negatively associated with 402 

GY and WUEg. The soil-leaf water potential gradient at the 0-10 cm soil layer at 403 

jointing was had a significant negative correlation with transpiration, BY, and 404 

GY. The soil-leaf water potential gradient at the 10-30 cm soil layer at jointing 405 

was significantly negatively associated with transpiration, BY, and GY. The soil-406 

leaf water potential gradient at the 10-30 cm soil layer at flowering exhibited a 407 

significantly negative associated with transpiration, BY, and GY. The soil-leaf 408 

water potential gradient at the 30-50 cm soil layer at flowering was significantly 409 

negatively associated with transpiration, BY, WUEb, GY, and WUEg. 410 

 411 

4. Discussion  412 

4.1. Effects of tillage practices on water potential in the soil-plant system 413 

Soil, roots, and leaves are important indicators of whether plants are 414 

subject to drought stress [36-38], and have been employed in the selection of 415 

appropriate tillage practices. Tillage practices can affect soil, root, and leaf 416 

water potential [39, 40]. In this study, NTS significantly increased soil water 417 

potential in the 0-10 cm soil layer at the seedling and jointing stages of wheat 418 
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compared to T because NTS increased topsoil moisture at the seedling stage. 419 

However, with wheat growth and development, canopy coverage increased, 420 

transpiration dominated evapotranspiration, and the positive effect of straw 421 

mulching on topsoil moisture gradually weakened [24, 41], thus NTS did not 422 

significantly increase soil water potential at flowering. Conventional tillage and 423 

no-till improved soil water potential compared to T in the 0-30 cm soil layers at 424 

all growth stages, mainly because plastic film mulching reduced soil 425 

evaporation, which lead to greater soil water moisture throughout the growing 426 

season [42]. No-till with straw cover, TP, and NTP increased leaf water potential 427 

compared to T at all growth stages, in agreement with results from previous 428 

studies [39, 43]. However, Zhang et al [44] found that NTS reduced leaf water 429 

potential by 11% compared to T. This discrepancy is likely due to differences in 430 

soils and early rainfall prior to measurement. The study reported by Zhang et 431 

al. (1999) was conducted on a quaternary red clay soil with high viscosity, and 432 

long-term no-till led to subsurface soil compaction and shallow root systems. 433 

The present study was conducted on a deep loess soil with deep uniform 434 

texture and high water storage capacity [45], which is favorable for the growth 435 

and development of crop root systems.  436 

Water potential gradients drive water transport from soil to plants, with a 437 

greater water potential gradient resulting in faster water absorption[46]. In this 438 

study, NTS, TP, and NTP reduced the soil-root water potential gradient in the 439 

30-50 cm soil layer at flowering of wheat. No-till with straw cover, TP, and NTP 440 
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significantly decreased the root-leaf water potential gradient compared to T at 441 

the 0-10 cm soil layer at the seedling stage and 30-50 cm soil layer at flowering. 442 

These treatments also significantly reduced the soil-leaf water potential 443 

gradient at the 0-10 cm soil layer at the seedling stage and 30-50 cm soil layer 444 

at flowering, likely because they stored more water from the fallow period. 445 

Moreover, wheat canopy coverage reaches a maximum at flowering, thereby 446 

limiting evaporation after this stage.  447 

Water transfer resistance exists in the process of water transport from soil 448 

to plants [47]. In this study, NTS, TP, and NTP reduced soil-leaf water transfer 449 

resistance at flowering of wheat compared to T. This could be due to NTS, TP, 450 

and NTP having increased root length and root surface area, and more 451 

favorable spatial distribution of roots for water uptake [48]. This was 452 

demonstrated in this study, as NTS, TP, and NTP had greater soil water 453 

absorption by plants than T. 454 

In this study, NTS, TP, and NTP significantly increased transpiration and 455 

net photosynthetic rate of wheat at flowering compared to T, as shown in 456 

previous studies [49-51]. The net photosynthetic rate of wheat flag leaves has 457 

been reported as 24 to 39% higher with NTS compared to conventional tillage, 458 

and also have a significantly higher transpiration rate [49, 52]. In contrast, Jiang 459 

et al.[53] found that NTS reduced the photosynthetic rate of wheat, likely 460 

because their straw cover was applied after sowing, resulting in less soil 461 

moisture stored during the fallow season. Straw coverage in this study 462 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2019                   

Peer-reviewed version available at Agronomy 2019, 9, 583; doi:10.3390/agronomy9100583

https://doi.org/10.3390/agronomy9100583


23 
 

occurred after harvest, leading to more soil moisture stored during the fallow 463 

season, thereby enabling an increase in photosynthetic rate. Transpiration is 464 

fundamental to understanding crop water use efficiency [54]. In this study, 465 

transpiration with NTS, TP, and NTP was significantly increased compared to 466 

T, mainly because NTS, TP, and NTP increased precipitation infiltration and 467 

reduced soil evaporation [21, 42, 55].  468 

Biomass yield of wheat was significantly greater with NTS, TP, and NTP 469 

compared to T. Garofalo and Rinaldi [56] found that a greater rate of 470 

transpiration was associated with greater BY. However, Dam et al. [57] found 471 

that long-term BY of maize did not differ between NTS and T. This may be 472 

attributable to differences in soil texture at the experimental sites, which was 473 

sandy loam in their study and loess in the present study. In agreement with our 474 

results, Zhang et al. [58] found that plastic mulching increased BY of maize. 475 

This could be due to enhanced crop growth resulting from greater soil 476 

temperature [59, 60], soil moisture [58], and radiation capture [61] with plastic 477 

mulching. 478 

 479 

4.2. Effects of tillage practices on grain yield and water use efficiency 480 

Conservation tillage practices have been shown to increase soil water 481 

storage, wheat yield, and WUE on the semiarid Loess Plateau of China [25, 62]. 482 

However, Pittelkow et al. [15] found that conservation tillage practices did not 483 

increase GY of cereals in moist regions. This is likely because the impact of 484 
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conservation tillage on yield varies among climatic zones. The improvement of 485 

wheat GY and WUEg with NTS, TP, and NTP compared to T in this study is 486 

attributed to increased water potential and decreased water potential gradient 487 

and water transfer resistance, thus enhancing transpiration and BY. 488 

 489 

5. Conclusion 490 

This study demonstrates that NTS, TP, and NTP significantly increased 491 

grain yield and WUEg as a result of increased water potential, decreased water 492 

potential gradient and water transfer resistance, and lead to increases in 493 

transpiration rate, transpiration, and biomass yield. These results demonstrate 494 

that NTS, TP, and NTP are suitable tillage practices for sustainable 495 

intensification of wheat production in semi-arid areas. 496 
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Table 1. Soil physical and water characteristics in 2001. 680 

Soil layer (cm) 
Bulk density 

(g cm−3) 

Upper limit of soil 

drainage 

(cm3 cm−3) 

Lower limit of effective 

moisture in wheat 

(cm3 cm−3) 

0−5 1.29 0.27 0.09 

5−10 1.23 0.27 0.09 

10−30 1.32 0.27 0.09 

30−50 1.20 0.27 0.09 

50−80 1.14 0.26 0.09 

80−110 1.14 0.27 0.11 

110−140 1.13 0.26 0.11 

140−170 1.12 0.26 0.12 

170−200 1.11 0.26 0.13 

681 
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Table 2. Annual, fallow period, and growing season rainfall, drought index (DI), and soil water condition for 2016, 2017, and the 

2001−2015 average.a  

Year 
Annual  

rainfall (mm) 

DI for  

annual 

rainfall 

Annual  

soil water 

conditionb 

Fallow 

period  

rainfall 

DI for  

fallow period 

rainfall 

Fallow 

period  

soil water  

condition 

Growing 

season  

rainfall (mm) 

DI for 

growing 

season 

rainfall 

Growing 

season 

soil water 

condition 

2016 300.2 −1.29 Dry 60.8 −2.25 Dry 239.4 0.85 Wet 

2017 361.4 −0.47 Dry 175.4 −0.35 Normal 186.0 −0.31 Normal 

Average 

(2001−2015) 
396.7 − − 196.5 − − 200.2 − − 

a Annual (January through December), fallow period (January through March and August through December), and growing season (April 

through July) 

b Classified as dry, normal, and wet for different time periods for DI < −0.35, −0.35 ≤ DI ≤ 0.35，and DI ＞0.35，respectively. 
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Table 3. Soil water potential (Mpa) as affected by tillage practice for different growth stages of wheat and soil layers (cm) in 2016 and 2017. 

Year 
Tillage  

practicea 

Seedling  Tillering  Jointing  Flowering 

0−10  0−10 10−30  0−10 10−30  0−10 10−30 30−50 

2016 

T −2.60b  −3.50a −2.54a  −0.76b −0.43ab  −2.95a −2.25a −2.17a 

NTS −1.50a  −3.30a −2.53a  −0.42a −0.25ab  −2.84a −2.87a −3.16a 

NT −3.03b  −3.00a −2.66a  −0.53ab −0.20a  −3.20a −3.08a −3.32a 

TS −2.61b  −3.36a −3.08a  −0.73b −0.82b  −2.32a −2.20a −3.54a 

TP −1.52a  −2.20a −1.65a  −0.38a −0.62ab  −1.89a −2.11a −3.16a 

NTP −1.15a  −1.92a −0.94a  −0.51ab −0.25ab  −2.23a −2.78a −2.66a 
             

2017 

T −1.39b  −1.91a −2.12a  −0.76a −1.61b  −5.54ab −4.84b −5.11c 

NTS −0.81a  −1.58a −1.59a  −0.41a −1.32b  −5.42ab −4.17b −3.57b 

NT −1.26b  −1.96a −2.05a  −0.63a −1.48b  −6.50b −3.82ab −3.25b 

TS −0.74a  −1.81a −1.75a  −0.61a −1.44b  −5.91b −4.54b −2.95ab 

TP −0.63a  −1.57a −1.54a  −0.42a −0.46a  −3.65a −2.38a −1.89a 

NTP −0.60a  −1.33a −1.37a  −0.63a −0.81ab  −3.86a −3.30ab −3.36b 
             

Average 

T −2.00bc  −2.71a −2.33b  −0.76b  −1.02bc  −4.24ab −3.54a −3.64a 

NTS −1.16a  −2.44a −2.06b  −0.41a −0.79ab  −4.13ab −3.52a −3.37a 

NT −2.15c  −2.48a −2.40b  −0.58ab −0.84abc  −4.85b −3.45a −3.29a 

TS −1.68b  −2.59a −2.42b  −0.67b −1.13c  −4.11ab −3.37a −3.25a 

TP −1.07a  −1.89a −1.60ab  −0.40a −0.54a  −2.77a −2.25a −2.53a 

NTP −0.87a  −1.63a −1.16a  −0.57ab −0.53a  −3.04a −3.04a −3.01a 

Within a column for a given year, means followed by different letters are significantly different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage with straw incorporated; TP, conventional 

tillage with plastic mulch; NTP, no-till with plastic mulch.
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Table 4. Root water potential (Mpa) as affected by tillage practice for different growth stages of 

wheat and soil layers (cm) in 2016 and 2017. 

Year 
Tillage  

practicea 

Seedling  Tillering  Jointing  Flowering 

0−10  0−10 10−30  0−10 10−30  0−10 10−30 30−50 

2016 

T −3.06b  −5.54b −4.30a  −1.45bc −1.04a  −3.34a −4.69a −5.65a 

NTS −1.94a  −4.52ab −3.74a  −0.63ab −1.71a  −3.92a −4.55a −6.01a 

NT −3.21b  −3.04a −3.50a  −0.73ab −0.85a  −3.24a −4.70a −6.20a 

TS −3.03b  −4.44ab −3.65a  −2.01c −1.17a  −2.98a −4.23a −5.27a 

TP −1.74a  −3.70ab −3.60a  −0.41a −1.79a  −2.37a −4.25a −4.29a 

NTP −1.55a  −2.48a −2.65a  −0.56a −1.22a  −2.95a −4.87a −5.63a 
             

2017 

T −1.55b  −2.25ab −2.72b  −2.95d −2.71c  −8.44c −7.20c −10.77c 

NTS −1.13ab  −2.14ab −2.50ab  −1.24ab −1.79abc  −5.82ab −4.84a −4.58a 

NT −1.43b  −2.55b −2.70b  −1.83bc −2.16c  −7.02bc −6.82bc −8.05b 

TS −1.26b  −1.94ab −1.79a  −2.31cd −1.96bc  −6.06ab −6.74bc −7.88b 

TP −1.24ab  −2.07ab −2.40ab  −0.66a −0.87a  −4.24a −6.54bc −5.54a 

NTP −0.73a  −1.65a −2.01ab  −1.60b −0.94ab  −4.35a −5.75ab −4.42a 
             

Average 

T −2.31c  −3.90c −3.51b  −2.20c −1.87b  −5.89b −5.95a −8.21b 

NTS −1.53b  −3.33bc −3.12ab  −0.94b −1.75ab  −4.87ab −4.70a −5.30a 

NT −2.32c  −2.80ab −3.10ab  −1.28b −1.51ab  −5.13ab −5.76a −7.13b 

TS −2.15c  −3.19bc −2.72ab  −2.16c −1.57ab  −4.52ab −5.49a −6.58ab 

TP −1.49ab  −2.89ab −3.00ab  −0.54a −1.33ab  −3.30a −5.40a −4.92a 

NTP −1.14b   −2.06a −2.33a   −1.08b −1.08a   −3.65a −5.31a −5.03a 

Within a column for a given year, means followed by different letters are significantly different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, 

conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with 

plastic mulch.
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Table 5. Leaf water potential (Mpa) as affected by tillage practice for different 

growth stages of wheat in 2016 and 2017. 

Year 
Tillage  

practicea 
Seedling Tillering Jointing Flowering 

2016 T −7.19c −7.08abc −5.27a −9.41b 

NTS −4.49ab −5.73ab −3.41a −8.20ab 

NT −6.77bc −7.99c −4.32a −9.63b 

TS −5.48abc −7.39bc −4.01a −8.60b 

TP −4.39a −5.49ab −3.48a −5.87a 

NTP −3.84a −4.99a −3.23a −7.03ab 
      

2017 T −5.22c −3.53b −3.13b −9.36b 

NTS −3.30b −2.64a −2.64ab −8.69ab 

NT −5.03c −3.05ab −3.19b −8.64ab 

TS −4.04b −2.67a −2.77ab −9.33ab 

TP −2.11a −2.56a −2.23a −7.99a 

NTP −3.35b −2.47a −2.16a −8.74ab 
      

Average T −6.21c −5.31b −4.20c −9.39b 
 NTS −3.90ab −4.19a −3.02ab −8.44ab 
 NT −5.90c −5.52b −3.75bc −9.14b 
 TS −4.77b −5.03b −3.39abc −8.96b 
 TP −3.25a −4.02a −2.86ab −6.93a 
 NTP −3.59a −3.73a −2.70a −7.89ab 

Within a column for a given year, means followed by different letters are significantly 

different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with 

no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage 

with plastic mulch; NTP, no-till with plastic mulch.
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Table 6. Soil-root water potential gradient (Mpa) as affected by tillage practice for different growth 

stages of wheat and soil layers (cm) in 2016 and 2017. 

Year 
Tillage  

practicea 

Seedling  Tillering  Jointing  Flowering 

0−10  0−10 10−30  0−10 10−30  0−10 10−30 30−50 

2016 

T 0.46a 
 

2.04a 1.77a 
 

0.70ab 0.61a 
 

0.39ab 2.45a 3.47a 

NTS 0.43a 
 

1.22a 1.21a 
 

0.21b 1.46a 
 

1.08a 1.68a 2.84a 

NT 0.18a 
 

0.05a 0.84a 
 

0.20b 0.66a 
 

0.04b 1.63a 2.87a 

TS 0.42a 
 

1.08a 0.57a 
 

1.28a 0.35a 
 

0.66ab 2.03a 1.73a 

TP 0.22a 
 

1.50a 1.95a 
 

0.03b 1.17a 
 

0.48ab 2.13a 1.13a 

NTP 0.41a 
 

0.55a 1.71a 
 

0.06b 0.97a 
 

0.73ab 2.09a 2.97a 
  

           

2017 

T 0.15c 
 

0.33a 0.60a 
 

2.19a 1.09a 
 

2.91a 2.36ab 5.67a 

NTS 0.32bc 
 

0.56a 0.90a 
 

0.83cd 0.46a 
 

0.40b 0.67b 1.01b 

NT 0.16c 
 

0.59a 0.65a 
 

1.20bc 0.68a 
 

0.52b 3.00ab 4.81a 

TS 0.53ab 
 

0.13a 0.04a 
 

1.70ab 0.52a 
 

0.15b 2.20ab 4.93a 

TP 0.61a 
 

0.50a 0.86a 
 

0.24d 0.41a 
 

0.59b 4.16a 3.65a 

NTP 0.13c 
 

0.32a 0.64a 
 

0.97bcd 0.13a 
 

0.50b 2.45ab 1.06b 
  

           

Average 

T 0.31ab 
 

1.19a 1.18a 
 

1.44a 0.85a 
 

1.65a 2.41a 4.57a 

NTS 0.38ab 
 

0.89a 1.06a 
 

0.52ab 0.96a 
 

0.74b 1.17a 1.93c 

NT 0.17b 
 

0.32a 0.75ab 
 

0.70b 0.67a 
 

0.28b 2.32a 3.84ab 

TS 0.47a 
 

0.61a 0.31b 
 

1.49a 0.44a 
 

0.41b 2.11a 3.33abc 

TP 0.42ab 
 

1.00a 1.40a 
 

0.14c 0.79a 
 

0.53b 3.15a 2.39bc 

NTP 0.27ab 
 

0.44a 1.17a 
 

0.52bc 0.55a 
 

0.61b 2.27a 2.01c 

Within a column for a given year, means followed by different letters are significantly different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, 

conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with 

plastic mulch.
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Table 7. Root-leaf water potential gradient (Mpa) as affected by tillage practice for different growth 

stages of wheat and soil layers (cm) in 2016 and 2017. 

Year 
Tillage  

practicea 

Seedling  Tillering  Jointing  Flowering 

0−10  0−10 10−30  0−10 10−30  0−10 10−30 30−50 

2016 

T 4.13a  1.54b 2.78a  3.82a 4.23a  6.07a 4.71a 3.76a 

NTS 2.56a  1.21b 1.99a  2.78a 1.70b  4.27a 3.64a 2.19a 

NT 3.56a  4.94a 4.49a  3.58a 3.46ab  6.39a 4.93a 3.43a 

TS 2.45a  2.95ab 3.74a  2.00a 2.84ab  5.62a 4.37a 3.33a 

TP 2.66a  1.78b 1.88a  3.07a 1.69b  3.50a 1.62a 1.57a 

NTP 2.28a  2.51ab 2.34a  2.67a 2.01b  4.07a 2.16a 1.40a 
             

2017 

T 3.67a  1.29a 0.81ab  0.18b 0.42b  0.92d 2.16ab 1.54c 

NTS 2.17b  0.50a 0.14c  1.40a 0.85ab  2.87bc 3.85a 3.36ab 

NT 3.60a  0.50a 0.35abc  1.36a 1.03ab  1.63cd 1.82ab 1.72c 

TS 2.78ab  0.72a 0.87a  0.47b 0.81ab  3.27ab 2.58ab 2.93ab 

TP 0.87c  0.49a 0.16bc  1.57a 1.36a  3.76ab 1.45b 2.60bc 

NTP 2.62ab  0.82a 0.46abc  0.56b 1.23ab  4.39a 2.99ab 3.69a 
             

Average 

T 3.90a  1.41b 1.80ab  2.00ab 2.33a  3.49a 3.44a 4.71a 

NTS 2.36bc  0.85b 1.07b  2.09ab 1.28b  3.57a 3.75a 1.60c 

NT 3.58ab  2.72a 2.42a  2.47a 2.25a  4.01a 3.37a 4.12ab 

TS 2.61bc  1.84ab 2.31a  1.23b 1.82ab  4.44a 3.48a 4.13ab 

TP 1.77c  1.14b 1.02b  2.32a 1.53ab  3.63a 1.54a 2.61bc 

NTP 2.45bc  1.67ab 1.40ab  1.61ab 1.62ab  4.23a 2.58a 1.23c 

Within a column for a given year, means followed by different letters are significantly different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, 

conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with 

plastic mulch.
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Table 8. Soil-leaf water potential gradient (Mpa) as affected by tillage practice for different growth 

stages of wheat and soil layers (cm) in 2016 and 2017. 

Year 
Tillage  

practicea 

Seedling  Tillering  Jointing  Flowering 

0−10  0−10 10−30  0−10 10−30  0−10 10−30 30−50 

2016 

T 4.59a  3.58a 4.55a  4.52a 4.84a  6.46a 7.16a 7.23a 

NTS 2.99a  2.43a 3.20a  2.99a 3.15a  5.36a 5.32ab 5.03ab 

NT 3.74a  4.99a 5.33a  3.79a 4.12a  6.43a 6.55ab 6.31ab 

TS 2.87a  4.04a 4.31a  3.28a 3.18a  6.28a 6.40ab 5.06ab 

TP 2.88a  3.28a 3.83a  3.10a 2.86a  3.98a 3.75b 2.70b 

NTP 2.69a  3.06a 4.05a  2.72a 2.98a  4.80a 4.25b 4.36ab 
             

2017 

T 3.83a  1.62a 1.41a  2.37a 1.52a  3.83ab 4.52a 11.33a 

NTS 2.48bc  1.05a 1.04a  2.23a 1.32a  3.27bc 4.52a 2.02b 

NT 3.76a  1.09a 1.00a  2.56a 1.70a  2.14c 4.82a 9.61a 

TS 3.31ab  0.85a 0.92a  2.16a 1.33a  3.42bc 4.78a 9.86a 

TP 1.48c  0.99a 1.01a  1.81a 1.77a  4.34ab 5.61a 7.30a 

NTP 2.75ab  1.14a 1.10a  1.53a 1.36a  4.89a 5.44a 2.11b 
             

Average 

T 4.21a  2.60a 2.98a  3.44a 3.18a  5.14a 5.84a 9.28a 

NTS 2.74bc  1.74a 2.12a  2.61ab 2.24a  4.31a 4.92a 3.53c 

NT 3.75ab  3.04a 3.16a  3.17ab 2.91a  4.29a 5.69a 7.96a 

TS 3.09abc  2.45a 2.62a  2.72ab 2.26a  4.85a 5.59a 7.46ab 

TP 2.18c  2.14a 2.42a  2.45ab 2.32a  4.16a 4.68a 5.00bc 

NTP 2.72bc  2.10a 2.57a  2.13b 2.17a  4.84a 4.85a 3.24c 

Within a column for a given year, means followed by different letters are significantly different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with no straw; TS, 

conventional tillage with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-till with 

plastic mulch.
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Table 9. Transpiration at the growing season, biomass and grain yields, and 

water use efficiency of grain yield and biomass yield (WUEb and WUEg, 

respectively) of wheat as affected by tillage practice in 2016 and 2017. 

Year 
Tillage  

practicea 

Transpiration 

(mm) 

Biomass 

yield 

(kg ha−1) 

WUEb 

 (kg ha−1 

mm−1) 

Grain 

yield 

(kg 

ha−1) 

WUEg 

(kg ha−1 

mm−1) 

2016 

T 176.4c 4107d 15.38bc 1430c 5.36bc 

NTS 209.1b 4798b 16.73ab 1859a 6.48a 

NT 177.3c 3916d 14.75c 1216d 4.50c 

TS 171.1c 4367c 17.08a 1560bc 6.13ab 

TP 214.5b 4669b 18.08a 1686ab 6.55a 

NTP 252.0a 5150a 17.25a 1839a 6.15ab 

       

2017 

T 58.7c 2498bc 13.77b − − 

NTS 120.2b 2994b 13.09bc − − 

NT 68.6c 2090c 10.70c − − 

TS 84.7c 2369bc 11.11bc − − 

TP 170.0a 4310a 18.23a − − 

NTP 161.4a 4074a 18.29a − − 

       

Average T 117.58c 3303c 14.58b 1460bc 5.48bc 

 NTS 164.68b 3896b 14.91b 1862a 6.78a 

 NT 122.96c 3003c 12.73c 1416c 5.56c 

 TS 127.88c 3368c 14.10bc 1647b 6.28b 

 TP 192.26a 4489a 18.16a 1776ab 6.90ab 

 NTP 206.70a 4612a 17.77a 1815ab 6.78ab 

Within a column for a given year, means followed by different letters are significantly 

different (P ≤ 0.05). 

a T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till with 

no straw; TS, conventional tillage with straw incorporated; TP, conventional tillage 

with plastic mulch; NTP, no-till with plastic mulch.
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Table 10. Pearson’s correlation coefficient for correlations of water potential 

indexes with transpiration, biomass and grain yields, and water use efficiency 

of biomass and grain yields (WUEb and WUEg, respectively) across years for 

different growth stages of wheat and soil layers. 

Growth  

stage 

Soil layer  

(cm) 

Water potential 

indexa 
Transpiration 

Biomass 

yield 
WUEb 

Grain 

yield 
WUEg 

Seeding 0−10 

S 0.888** 0.854** 0.757** 0.839** 0.646** 

R 0.892** 0.834** 0.738** 0.767** 0.531* 

L 0.839** 0.861** 0.705** 0.826** 0.732** 

S-R 0.104 0.171 0.158 0.333 0.443 

R-L −0.639** −0.699** −0.543* −0.689** −0.689** 

S-L −0.654** −0.704** −0.543* −0.665** −0.645** 

        

Tillering 

0−10 

S 0.615** 0.480* 0.461 0.183 −0.043 

R 0.649** 0.561* 0.376 0.331 0.093 

L 0.875** 0.844** 0.764** 0.783** 0.547* 

S-R −0.073 −0.128 0.090 −0.203 −0.177 

R-L −0.282 −0.330 −0.414 −0.471* −0.450 

S-L −0.369 −0.463 −0.395 −0.676** −0.634** 

       

10−30 

S 0.769** 0.686** 0.657** 0.551* 0.327 

R 0.511* 0.357 0.278 0.335 0.092 

S-R 0.37 0.442 0.497* 0.301 0.300 

R-L −0.505* −0.588* −0.566* −0.543* −0.485* 

S-L −0.325 −0.370 −0.299 −0.428 −0.356 

        

Jointing 

0−10 

S 0.490* 0.510* 0.371 0.442 0.483* 

R 0.687** 0.703** 0.542* 0.428 0.356 

L 0.765** 0.705** 0.461 0.614** 0.342 

S-R −0.681** −0.694** −0.542* −0.383 −0.285 

R-L −0.131 −0.049 0.054 −0.234 −0.008 

S-L −0.660** −0.595** −0.380 −0.518* −0.233 

       

10−30 

S .765** .735** .644** 0.465 0.348 

R .551* .581* 0.385 0.334 0.121 

S-R −0.033 −0.085 0.053 −0.019 0.118 

R-L −.590** −.489* −0.315 −.557* −0.36 

S-L −.526* −.472* −0.236 −.488* −0.233 

        

Flowering 

0−10 

S 0.664** 0.664** 0.786** 0.470* 0.407 

R 0.649** 0.607** 0.613** 0.455 0.419 

L 0.722** 0.730** 0.721** 0.530* 0.505* 

S-R −0.235 −0.146 0.058 −0.156 −0.189 

R-L −0.021 −0.115 −0.089 −0.057 −0.082 

S-L −0.243 −0.258 −0.038 −0.205 −0.262 

       

10−30 

S 0.489* 0.503* 0.634** 0.169 0.278 

R 0.289 0.239 0.124 0.248 −0.006 

S-R 0.093 0.147 0.338 −0.096 0.201 

R-L −0.444 −0.486* −0.558* −0.301 −0.455 
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S-L −0.554* −0.552* −0.428 −0.566* −0.440 

       

30−50 

S 0.427 0.328 0.456 0.243 0.399 

R 0.807** 0.748** 0.585* 0.642** 0.471* 

S-R −0.753** −0.731** −0.475* −0.647** −0.367 

R-L −0.775** −0.771** −0.559* −0.781** −0.528* 

S-L −0.803** −0.790** −0.547* −0.757** −0.479* 

Correlation coefficients followed by * and ** are significant at P ≤ 0.05 and 0.01, 

respectively.  

aS, soil water potential; R, root water potential; L, leaf water potential; S-R, soil-root 

water potential gradient; R-L, root-leaf water potential gradient; S-L, soil-leaf water 

potential gradient. 

 

 

Figure captions 

Figure 1. Monthly total precipitation for 2016, 2017, and the 2001-2015 average 

at the study area. 

 

Figure 2. Transpiration rate at the flowering stage of wheat in 2016 (A) and 2017 

(B) and net photosynthetic rate at the flowering stage of wheat in 2016 (C) and 

2017 (D) as affected by tillage practice. T, conventional tillage with no straw; 

NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage 

with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-

till with plastic mulch. Bars with different letters indicate treatment means that 

are significantly different (P ≤ 0.05). Error bars denote standard errors of the 

means (n = 4). 

 

Figure 3. Soil-leaf water transfer resistance (Rsl) at the flowering stage of wheat 

in 2016 (A) and 2017 (B) as affected by tillage practice for different soil layers. 
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T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till 

with no straw; TS, conventional tillage with straw incorporated; TP, 

conventional tillage with plastic mulch; NTP, no-till with plastic mulch. Within 

a year for a given soil layer, bars with different letters indicate treatment means 

that are significantly different (P ≤ 0.05). Error bars denote standard errors of 

the means (n = 4). 

 

 

Figure 1. Monthly total precipitation for 2016, 2017, and the 2001-2015 average 

at the study area. 
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Figure 2. Transpiration rate at the flowering stage of wheat in 2016 (A) and 2017 

(B) and net photosynthetic rate at the flowering stage of wheat in 2016 (C) and 

2017 (D) as affected by tillage practice. T, conventional tillage with no straw; 

NTS, no-till with straw cover; NT, no-till with no straw; TS, conventional tillage 

with straw incorporated; TP, conventional tillage with plastic mulch; NTP, no-

till with plastic mulch. Bars with different letters indicate treatment means that 

are significantly different (P ≤ 0.05). Error bars denote standard errors of the 

means (n = 4). 
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Figure 3. Soil-leaf water transfer resistance (Rsl) at the flowering stage of wheat 

in 2016 (A) and 2017 (B) as affected by tillage practice for different soil layers. 

T, conventional tillage with no straw; NTS, no-till with straw cover; NT, no-till 

with no straw; TS, conventional tillage with straw incorporated; TP, 

conventional tillage with plastic mulch; NTP, no-till with plastic mulch. Within 

a year for a given soil layer, bars with different letters indicate treatment means 

that are significantly different (P ≤ 0.05). Error bars denote standard errors of 

the means (n = 4). 
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