

1 Article

2

The Facility List Coder: A Tool to Evaluate 3 Community Food Environments

4 **Ana María Arcila-Agudelo¹, Juan Carlos Muñoz-Mora² and Andreu Farran-Codina^{1,*}**5 ¹ Department of Nutrition, Food Science, and Gastronomy, XaRTA – INSA, Faculty of Pharmacy, University
6 of Barcelona, Campus de l'Alimentació de Torribera, Av. Prat de la Riba, 171, Santa Coloma de Gramenet,
7 E-08921 Barcelona, Spain8 ² Department of Economics, Universidad EAFIT (Colombia)

9 * Author to whom correspondence should be addressed.

10

11 **Abstract:** A community food environment plays an essential role in explaining the healthy life-style
12 patterns of its community members. However, there is a lack of compelling quantitative approaches
13 to evaluate these environments. This study introduces and validates a new tool named the Facility
14 List Coder (FLC), whose purpose is to assess food environments based on data sources and
15 classification algorithms. Using the case of Mataró (Spain), we randomly selected 301 grids areas
16 (100 m²) where we conducted street audits in order to physically identify all the facilities by name,
17 address and type. Then, audit-identified facilities were matched with those automatically-identified
18 and were classified using the FLC in order to determine its quality. Our results suggest that
19 automatically-identified and audit-identified food environments have a high level of agreement.
20 The ICC estimates and their respective 95% confidence intervals for the overall sample, yield the
21 result “excellent” (ICC ≥ 0.9) for the level of reliability of the FLC.22 **Keywords:** community food environment; nutrition environment; geographical information
23 systems (GIS); Facility List Coder; Python

24

25

1. Introduction

26 There is growing interest in understanding how the physical environment affects health
27 outcomes, either directly or by creating a context in which people make health-related decisions (1).
28 Among the various different environs (e.g. sports facilities, etc.), community food environments have
29 received increasing attention in the public health sector and from policy makers due to their effects
30 on diet and health outcomes such as obesity (2). The transformation of the food and nutrition industry
31 during the last decade, the increase of the availability of high calorie food (e.g. fast-food) (availability),
32 the relative increase of healthy food prices over less healthy food options (affordability), the increase
33 of areas without a store where it is possible to buy fresh food (i.e. food desert) (accessibility), among
34 other factors, evidence the fact that community food environments have changed dramatically
35 during the last decades and are playing an important role in changing the food behaviors of adults
36 as well as children (3–5).37 Despite much qualitative evidence showing the influence of these new community food
38 environments on food behaviors and health outcomes such as obesity, quantitative studies have
39 found counter-intuitive or inconsistent results that suggest that the relationship between food
40 environments and eating patterns is still far from being understood (3,5–7). In a recent systematic
41 review of the relationship between local food environments and obesity, (3) find limited evidence of
42 the existence of this relationship due to results that were predominantly null. Likewise, Williams et
43 al (7) find very little evidence of an effect of community food environments surrounding schools on
44 food purchases and consumption, but did find some evidence of an effect on body weight.

45 Many systematic review articles have been published attempting to explain this lack of
46 quantitative evidence of the relationship between community food environments and health
47 outcomes. These publications have suggested that the absence of compelling direct evidence is
48 mainly due to one factor: the insufficient validity and reliability of food environment measurements.
49 McKinnon et al. (2009) and Lytle et al. (2017) survey peer-reviewed publications from 1990 to 2015
50 which assess food environments using quantitative approaches. They find four types of
51 methodologies: (i) geographic analysis, (ii) sales analysis, (iii) nutrient analysis, and (iv) menu
52 analysis. Only 25% of these studies show any metric evidence (i.e. validity and reliability indices) that
53 validate their quantitative approach for food environments. These instruments are standardized
54 assessment tools, such as the Nutrition Environment Measure Survey (NEMS) (8), which are typically
55 paper-based forms filled out by the subjects themselves (i.e. self-reported) or by a trained observer.
56 In general, these instruments present multiple methodological challenges that limit the
57 understanding of a particular food environment: (i) limited geographical coverage, (ii) high
58 sensitivity to the types of facilities included in the analysis, (iii) high implementation costs, among
59 others (9,10).

60 Other approaches that are receiving increasing attention for assessing food environments
61 quantitatively are those methodologies based on Geographical Information System (GIS)
62 technologies. These methods use the actual locations of the food facilities (i.e. stores, supermarkets,
63 etc.) to estimate different measures such as facility density or proximity to the nearest facility (11).
64 Based on these measures, researchers are able to build different definitions of the level and intensity
65 of exposure of a particular individual to a given food environment. Thereby, the GIS-based
66 alternatives solve the problems of traditional methods, which creates a new and important
67 opportunity to finally uncover the actual relationship between food environments and health
68 outcomes, quantitatively (11).

69 Nonetheless, thanks to the considerable heterogeneity in the use of GIS methods and empirical
70 evidence that utilize these techniques to analyze different food environments, their use has led to an
71 increasing number of null results for the establishment of a robust association between community
72 food environments and other health outcomes such as obesity, sedentarism, among others. In a recent
73 systematic review, Caspi et al. (11) conclude that the methodological constraints of using GIS
74 methods center around the lack of validation evidence and standardization of data sources. Generally,
75 information about facilities in community food environments, is obtained either by using
76 administrative records or commercial sources with no extra quality validation. The resulting poor
77 quality data can lead to uncertainty, bias and reduced statistical power (12). Thus, in order to boost
78 the potential of GIS-based solutions for studying food environments, developing new validated,
79 standardized and replicable GIS-based methods are necessary in order to take advantage of this type
80 of solution, and ultimately, to better understand food environments (11).

81 In our case, the need for a tool to assess urban environments arose when studying the prevalence
82 of diet inadequacy in the scholar population of the city of Mataró (Catalonia, Spain) (13). That study
83 demonstrated that adherence to a Mediterranean Diet was lower among adolescents and children
84 who had money to spend at school. Because the availability of money is not a risk factor *per se* if there
85 is no easily accessible unhealthy food, it was decided to study the food environment around schools.
86 Thus, the aim of this paper is to introduce and validate a new GIS-based tool called the Facility List
87 Coder (FLC), developed to meet the so mentioned need. This tool is based on secondary data, and
88 offers a low-cost, scalable, efficient, and user-friendly way to indirectly identify community
89 nutritional environments.
90

91 **2. Materials and Methods**

92 *Case Study Selection*

93

94 In order to validate the FLC we use the case of Mataró (Spain), a coastal city located near
95 Barcelona (25km) in Catalonia, Spain. The city has experienced an important increase in population
96 in the last 50 years (from 40,407 inhabitants in 1960 to 122,905 in 2010) due to migration from other
97 parts of Spain and, in recent years, from other nations (mainly from Morocco). The economy of
98 Mataró is mainly based on services (63% of total invoicing) and industry (31%) (14). The mixture of
99 population and culture have increased the risk of health related problems such as child overweight
100 and obesity (13). Among the main determinants of this situation, the food environment around
101 schools stands up. However, the lack of information on the number and type of facilities in this city
102 has obstructed the analysis of the influence of food environment on nutritional outcome (13).

103 *Secondary Data: Introducing the Facility List Coder (FLC)*

104

105 The FLC is an open source tool developed in Python 3.7 that combines GIS analysis with
106 standard data techniques. In the present text, the term 'facility' is used to name any installation,
107 equipment or place that could be an element of interest when assessing community food
108 environments. Besides other GIS-based solution(11,12), the FLC collects geographical information
109 and facility characteristics from two main GIS search-engines that are available on-line (Google Maps
110 and Open Street Maps) performing a spatial query around a pre-defined zone around a centroid (e.g.
111 homes or schools), then information is classified based on the meta-data available for each location
112 based on a comprehensive, multi-language list of key words that allows for the categorization of each
113 facility. These data sets are built utilizing the concept of nodes (or places), which include any
114 geographical objects, such as bridges, street lights, stores, schools, parks, among others. Besides the
115 geographical location, each place provides different types of information like their description,
116 characteristics, offers, among others. This information is a combination of self-reported data by users
117 and centrally collected information by each company or organization.

118 Thereby, the FLC performs a spatial query, retrieving all types of facilities present in a pre-
119 defined zone (e.g. buffer around an interest point or any geographic object). In the case of Google
120 Maps, we used the API that offers a low-cost and very efficient spatial query. For Open Street Map,
121 we implement a spatial query taking all nodes that could be classified as facilities. In order to avoid,
122 duplicates, FLC perform different techniques based on location as well as all available metadata for
123 each location. Once the complete list of facilities is obtained, each facility (e.g. convenience food store,
124 bar, bakery, etc.) is automatically classified using the meta-data available in each data set. We have
125 built a comprehensive, multi-language list of key words that allows for the categorization of each
126 facility into four types: (i) fast-food restaurants, (ii) bars/restaurants, (iii) supermarkets, and (iv)
127 convenience stores and others. These categories can be modified in order to fulfill the specific needs
128 of researchers, for example related to geographical location, multi-lingual search options or research
129 questions. Although other researchers have used similar categories (15), our pre-defined multi-
130 lingual key word list offers a contribution for researching community food environments within the
131 European context as empirical studies for Europe often use categories created for the United States,
132 which might incorrectly estimate the particularities of European food traditions. Furthermore, this
133 list can be easily modified and new terms incorporated or deleted depending on the needs of the
134 researchers. Finally, taking advantage of the different measures available for GIS, the FLC provides
135 different measures, such as: (i) the geographical distance taking into account the road network, in
136 kilometers, (ii) the average time of the walking distance, in minutes, and (iii) the average time of the
137 cycling distance, in minutes. As its main output, the FLC offers a detailed data set for all the classified
138 facilities located around each point of interest. Figure 1 resumes the FLC workflow.

139

140

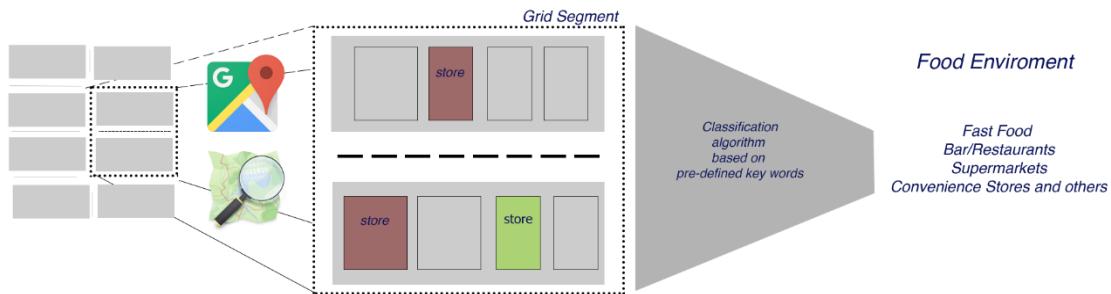
141
142

Figure 1. Facility List Coder workflow

143 *Street Audits (Physical Verification)*144
145
146
147
148

In order to validate the classification provided by the FLC, we employed a physical verification test (street audits). For the purpose of creating an exogenous unit of analysis, we divided the territory under study into grids of 100 m by 100 m. In total, we created 1,375 grids (see Figure 2).

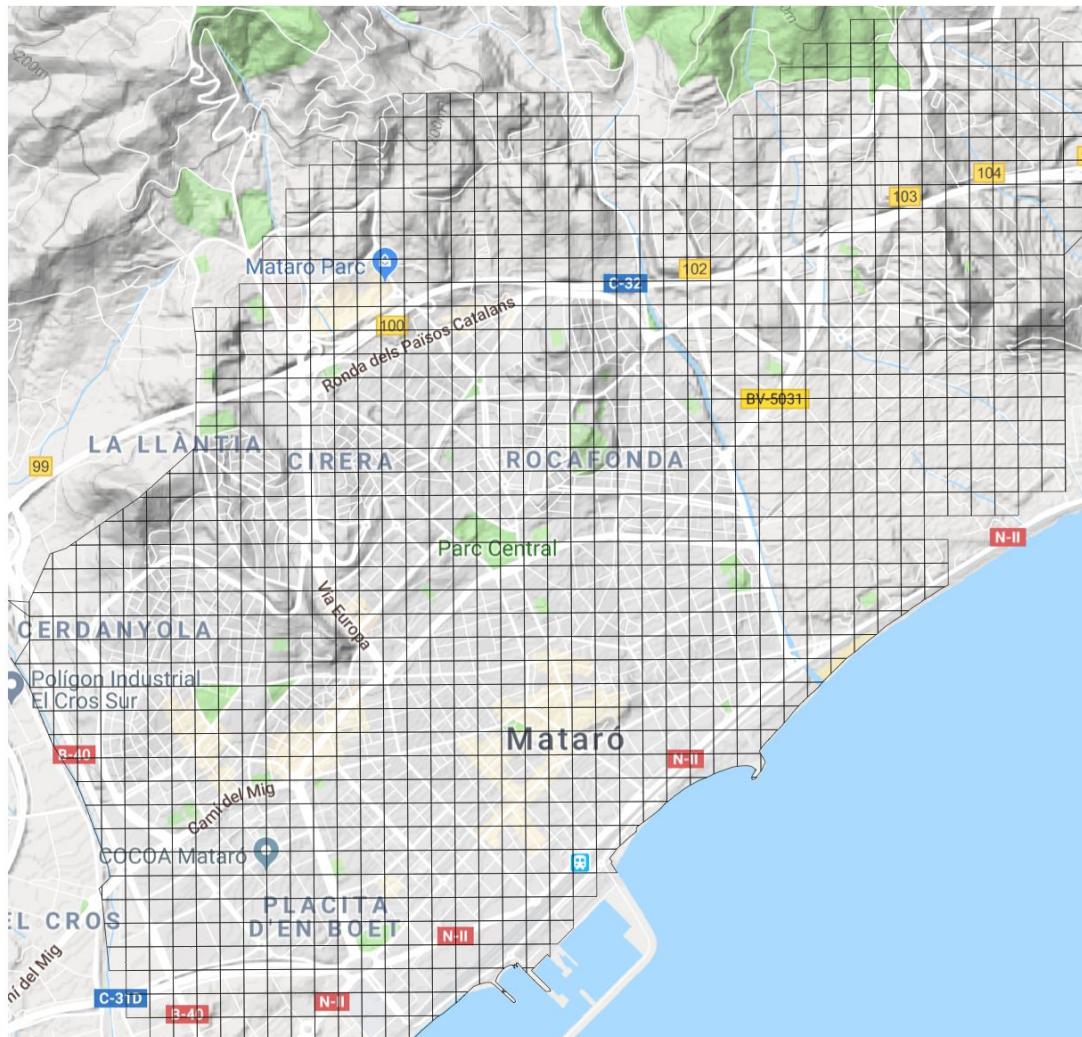
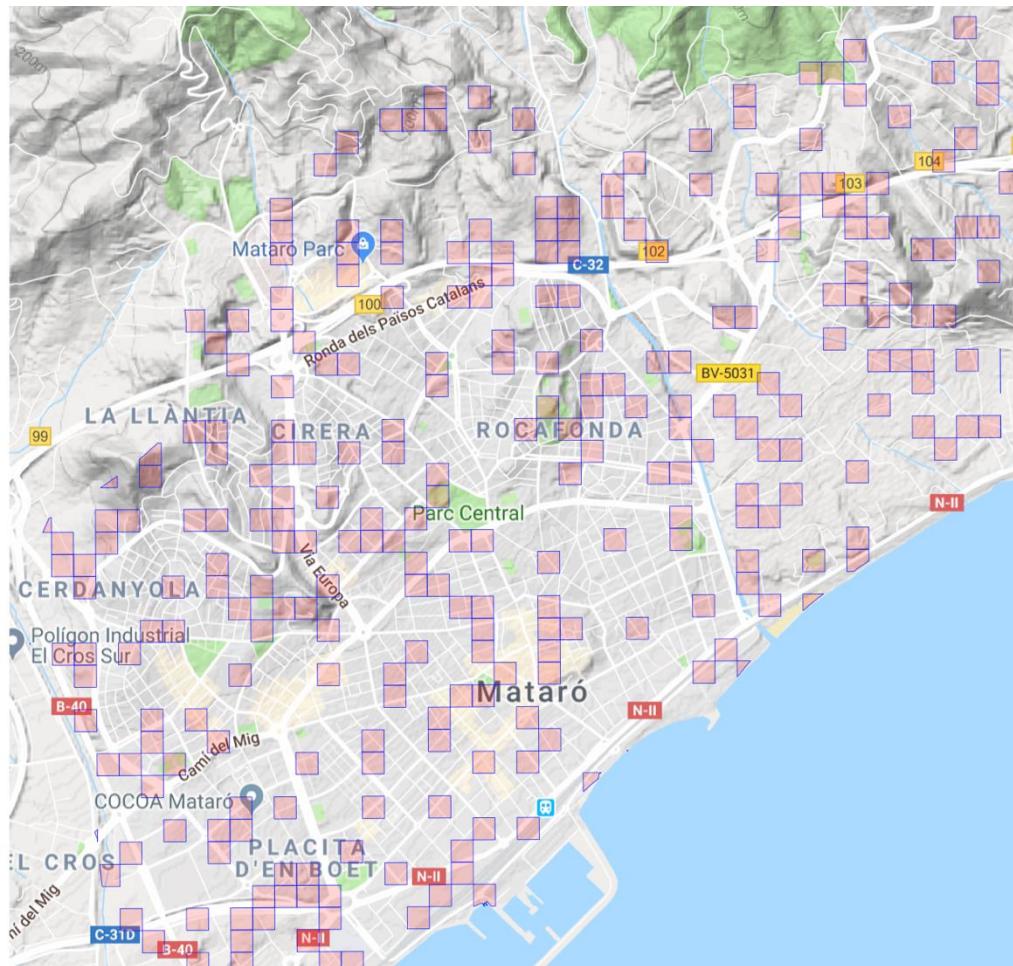
149
150

Figure 2. Sampling grids (100mts x 100mts) drawn over Mataró map and used to sample audit zones.

151
152
153

Based on this buffer zone, we built a simple random sample using a 95% confidence level, with a finite population. In order to estimate the sample size, we used the FLC results to define the

154 expected proportion and variance with a 95% confidence level. In total, 301 grids were randomly
155 chosen (22% of the total). Figure 3 shows the final sample selection.
156
157



158

159 **Figure 3.** Randomly Selected grids (100mts x 100mts) drawn over Mataró map with the sampled audit
160 zones marked in magenta.

161

162 Two trained people walked the buffer zone in order to record the facilities located along each
163 grids using a tool developed previously with Open Data Kit (<https://opendatakit.org/>). For each of
164 these facilities, they recorded its name, address and exact coordinates, and took a picture of each
165 storefront. Finally, based on the classification provided by Lake et al. (2010b), our team classified each
166 facility into four categories: (i) fast-food restaurants, (ii) bars/restaurants, (iii) supermarkets, and (iv)
167 convenience stores and others. This physical verification was carried out in February of 2018.

168

169 The physical verification test allowed us to find three types of facilities: (i) those facilities that
170 were found using the FLC, but that were not physically present (false positives); (ii) facilities that
171 exist, but were not identified by the FLC (false negatives); and (iii) those that were identified using
172 both methods.

173

Statistical Analysis

174

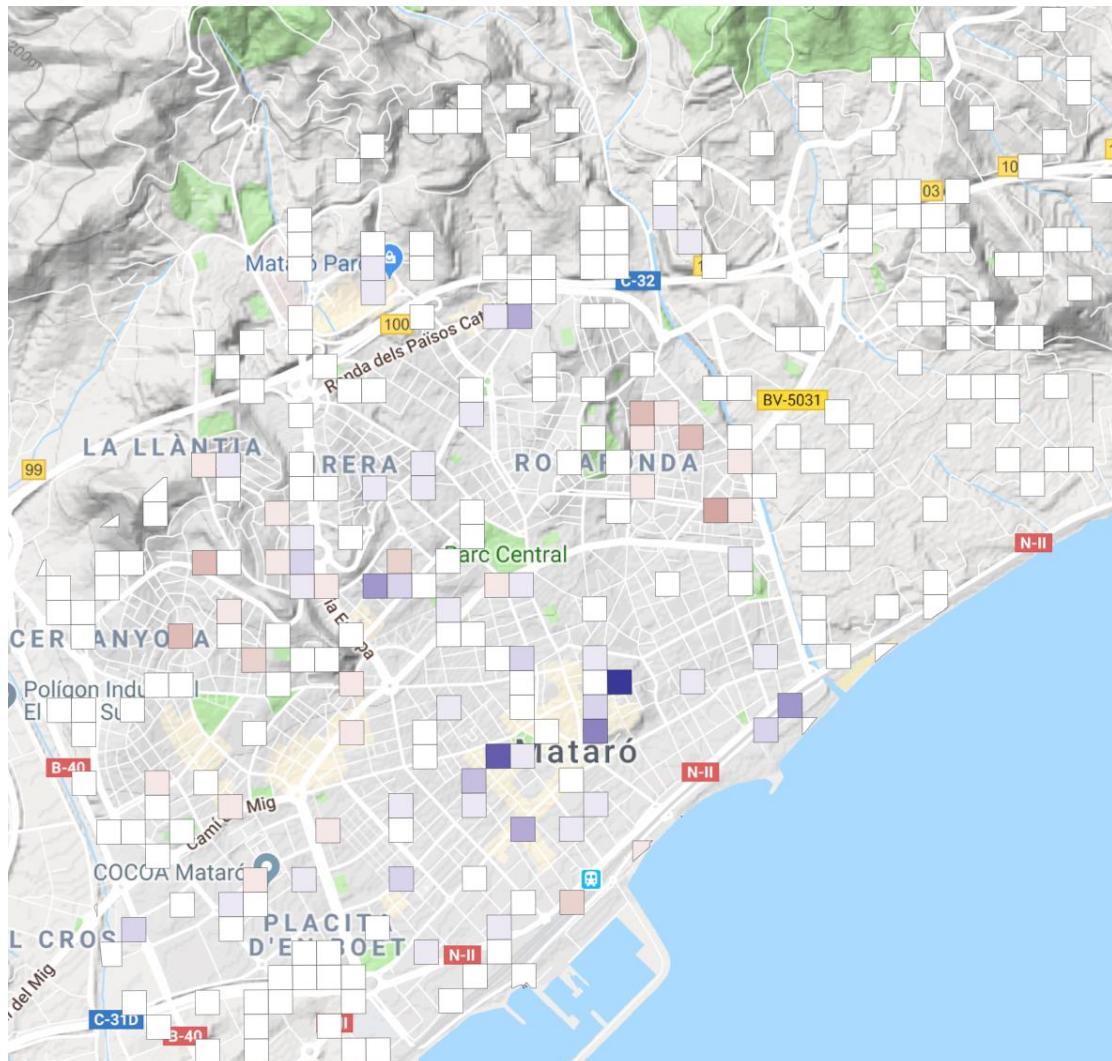
175 In order to assess the reliability index of our two methods for counting the number of facilities
176 on each grids, a descriptive agreement analysis based on the paired t-test and Bland-Altman plot was
177 performed. Whereas the former allowed us to determinate whether there exists a systematic
178 difference between the two methods, the latter allowed us to visually identify the agreement pattern
179 by plotting the difference between the two methods on the vertical axis of the diagram with the
180 average of these same methods on the horizontal axis (17).

181 Then, in order to establish the degree of correlation and agreement between the two methods,
182 we used the Intra-class Correlation Coefficient (ICC), widely used for doing inter-rater reliability
183 analysis. This index is based on McGraw and Wong (18) and there are 10 different forms of the ICC
184 corresponding to different contexts. In our context, as we were interested in assessing the reliability
185 based on the mean of the two methods (i.e. the FLC and field work), we estimated the ICC based on
186 a mean-rating ($k = 2$), absolute-agreement, two-way mixed-effects model. The ICC values that are less
187 than 0.5 are indicative of poor reliability, values between 0.5 and 0.75 indicate moderate reliability,
188 values between 0.75 and 0.9 indicate good reliability, and values greater than 0.90 indicate excellent
189 reliability (19). Moreover, in order to control for the potential bias of having a lot of pairs of zeroes
190 that may artificially inflate the apparent reliability, we use the Krippendorff's Alpha Reliability
191 Estimate which is alternative to estimate reliability, allowing controlling for the presence of zeros.
192 All analyses were performed using R.

193 3. Results

194
195 After applying the Facility List Coder (FLC) to Mataró using 100mts x 100mts grids, we
196 identified 935 facilities. According to our results, around the pre-defined grid zone in Mataró, the
197 most common type of facility was "bars/restaurants", representing 25.8% of all identified facilities,
198 followed by "fast-food restaurants" with 18.9%. According to the FLC results, only 571 grids had at
199 least one facility.

200
201 Figure 4 shows an overview of the results from comparing the field work and the FLC results.
202 Overall, we found that the FLC performed well compared with the street audit. In fact, for 78% of the
203 selected streets, we found the exact same number of facilities through both methods. Moreover, when
204 allowing for a tolerance rate of just one facility, this agreement rate rose to 92.4%. Likewise, we found
205 around 14% of false positives (those facilities that were found using the FLC, but that were not
206 physically present) and 8% of false negatives (facilities that exist, but were not identified by the FLC).
207 The paired t-test statistics is 0.976 with 573 degrees of freedom (p-value=0.329). Hence, there was no
208 evidence of a systematic difference between the results from the FLC and the field work.
209



210

211

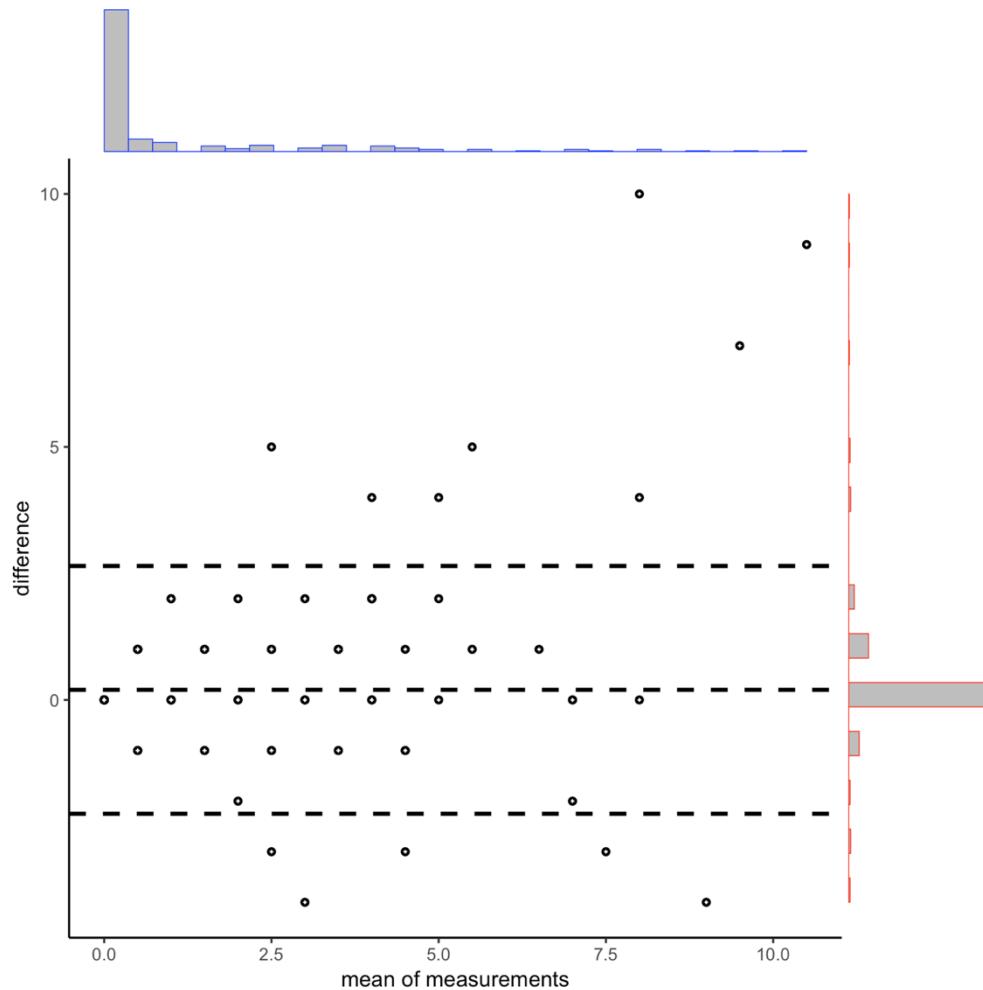
212
213
214

Figure 4. Spatial distribution of the difference between the FLC and the street audit (field work). The map shows the difference between facilities found using the FLC and street audit at the randomly selected grids.

215

The Bland-Altman diagram provides a first glance at the pattern of agreement between the two methods (see Figure 5). As we pointed out, we observed a high level of agreement between the two methods for the total number of facilities per grid. However, we did find an important disagreement between the FLC and the field work results on those grids with the two largest numbers of facilities (9 and 10). After checking manually, we found that these differences were mainly due to how local food markets were counted: they were treated as single facilities during the field work, yet the FLC coded each facility located within the markets.

223



224
225 **Figure 5.** Bland and Altman diagram for the comparison of results obtained with FLC versus street
226 audit.

227
228 The ICC estimates and their 95% confidence intervals for the overall sample indicated that the
229 level of reliability is in the range of good to excellent. When we corrected the data for the local markets,
230 our results got an excellent reliability index using the ICC, which were in any case always above 0.9.
231 Once we take into account the zero bias (Krippendorff's alpha) results are still significant showing a
232 high degree of reliability (see Table 1).

233 **Table 1.** Intra-class correlation coefficients calculated using a mean-rating ($k = 2$), absolute-
234 agreement, 2-way mixed-effects model.

ICC index	Interclass Correlation						Krippendorff's Alpha	False Positive Rate		
	95% Confidence Interval		F Test With True Value 0							
	Lower Bound	Upper Bound	Value	df1	df2	Sig				
Overall Sample	0.898	0.872	0.919	9.94	300	287	0.000	0.875		
Overall sample after correcting for markets	0.933	0.916	0.946	14.9	297	296	0.000	0.870		

235
236
237
238
239
240
241
242

When we compared the ICC results by type of facility, we found good to excellent results for all types of facilities (Table 2). The ICC for bars/restaurants was excellent (0.92), followed by fast-food restaurants (0.86) and supermarkets (0.82). The worst performance was found within the category of convenience stores and others, where the ICC was 0.76, still acceptable according the criteria mentioned above. These results suggest that the automatic classification of facilities performed by the FLC is consistent with the classification performed by direct observation. As before, the Krippendorff's alpha confirms our results as well as the false positive rate.

243
244

Table 2. Intra-class correlation coefficients calculated using a mean-rating ($k = 2$), absolute-agreement, 2-way mixed-effects model. Sample after correcting for markets

Interclass Correlation	95% Confidence Interval		F Test With True Value 0				Krippendorff's Alpha	False Positive Rate		
	Lower Bound	Upper Bound	Value	df1	df2	Sig				
Fast Food	0.861	0.825	0.889	7.18	297	298	0.000	0.770	2%	
Bar/Restaurants	0.926	0.907	0.941	13.5	296	297	0.000	0.840	11%	
Supermarkets	0.827	0.780	0.864	5.96	297	237	0.000	0.810	5%	
Convenience Stores and others	0.764	0.703	0.813	4.30	297	282	0.000	0.587	2%	

245 **4. Discussion**

246 Assessing food environments using GIS-based approaches offers an ample methodological
247 range of possibilities that can overcome the most traditional challenge to finding quantitative
248 evidence for the relationship between food environments and health outcomes (3,7). This study
249 sought to validate a new tool called the Facility List Coder (FLC), which allows for evaluating
250 community food environments, using secondary data obtained from the two most traditional
251 geographical on-line search-engines: Google Maps and Open Street Maps. We used the case of
252 Mataró (Spain) to validate this tool, comparing the automatic facility classification provided by the
253 FLC with the 'gold-standard' obtained using physical direct verification. Our results indicate that the
254 FLC has good to excellent reliability with respect to the street audit—hence, the FLC provides an
255 excellent source of information for studying food environments.

256 The FLC fulfills the five main requirements suggested by Wilkins et al. (2017b) for validating a
257 GIS-based approach to food environments: (i) food outlet data, (ii) extracting food outlets, (iii)
258 defining food outlet constructs, (iv) geocoding methods, and (v) access metrics. Information for GIS
259 search-engines is centrally managed by each company, yet they are often updated by users (food
260 outlet data). As a result of this spatial query, we retrieved all types of facilities present in a pre-defined
261 buffer zone. Since a spatial query is based on a pre-defined location, including particular search terms
262 (extracting food outlets) is not necessary. Once the complete list of facilities is retrieved, they are
263 classified using an exhaustive list of key words following Lake et al. (2010). Likewise, since other
264 metadata is also collected, information can be easily verified (defining food outlet constructs).
265 Because the information is already geocoded, no further geocoding methods are needed (geocoding
266 methods). Finally, taking advantage of the pre-defined GIS search-engine algorithms, the FLC
267 provides different measurements of distances, such as network distance, walking distance, among
268 others (access metrics).

269 One of the main concerns related to measuring food environments using secondary data sources
270 is the lack of adequate evidence of their validity. Many researchers have highlighted this fact as being
271 one of the main limitations of their studies (7,20,21). Very often, researchers use a facility census or
272 facility lists as the main source of information for assessing food environments. This data is mainly
273 collected for official or commercial purposes and often presents several limitations related to

274 geographical location and update, which leads to high heterogeneity in the data quality among
275 different sources. Mendez et al. (2016) compared two different data sources for food outlets in the
276 United States and found that, depending on the data source selected, the level of statistical
277 significance of the association between neighborhood racial and socioeconomic characteristics and
278 food/alcohol facility density varies. This empirical problem is mainly due to the large difference
279 between the two data sources and it points out the importance of data validation in avoiding bias. In
280 order to overcome these challenges, researchers should compare to a 'gold standard' like physical
281 verification (street audits) (20,23). Using this approach, Wilkins et al. (2017b) validated the two main
282 data sources for the United Kingdom through street audit verification, concluding that these two
283 secondary data sets provide a good view of the actual state of food environments. Nonetheless,
284 utilizing a 'gold standard' is not always possible as it is often demanding financially as well as time-
285 wise. In these cases, the FLC contributes good to excellent reliability and might offer a complementary
286 data source for researchers so they can have a benchmark with which to validate or complement their
287 initial results using the additional information for food environments.

288 Sociodemographic dimensions could trigger effects of any food environment on health
289 outcomes (5). Former studies have shown that low-income families are more likely to be affected by
290 their surrounding food environment (7,24). Hence, assessing validated and standardized measures
291 of food environments can be difficult—for example, low-income areas pose an empirical challenge as
292 administrative data is often low quality or simply non-existent. In these cases, the FLC can be used
293 as the main source of information to identify community food environments in cases where
294 researchers or practitioners have a limited budget, or the area of study makes it impossible to utilize
295 other intensive techniques such as a facility census. Furthermore, even considering that the quality
296 of data provided by this GIS systems is not homogenous for all countries, this GIS information has
297 worldwide coverage, so the FLC might provide a proxy for the food environment in places where the
298 coverage and the data quality is good but an official facility census or directory doesn't exists or is
299 not available, as in our case.

300 As Wilkins et al. (2017a) have mentioned, the GIS-based tool has limitations that users need to
301 be aware of. First, as the FLC uses the most popular GIS search-engines to assess food environments,
302 it can be a source of measurement error as information could be either centrally generated by the
303 search-engines or self-reported by users. Despite this, all the information available is verified and
304 standardized to guarantee good quality control (25,26). The fact that part of the information is self-
305 reported by users might lead to the following potential limitations: (i) the FLC might underestimate
306 the food environment in places with a small amount of GIS information and (ii) the FLC might
307 misallocate facilities in locations where no further information is available. Although it is impossible
308 to rule these biases out completely, other researchers (27) have evidenced the validity and good
309 quality of this information. We confirm this in our research.

310 Another concern is the automatic facility classification into pre-defined categories. Lake et al.
311 (2010) present a literature review that delineates how to create a detailed guide for developing
312 classifications of food environments. They conclude that it is not possible to provide only one
313 classification that can be applied in any context. Therefore, we opted for a simplistic and conservative
314 classification adapted to the Spanish context for four categories: (i) fast-food restaurants, (ii)
315 bars/restaurants, (iii) supermarkets, and (iv) convenience stores and others. As Wilkins et al. (2017b)
316 claim, although this general classification does not take into account food provision within individual
317 outlets nor other factors that may influence purchasing decisions, such as pricing and preferences, it
318 provides an opportunity for a baseline analysis and it presents a possibility for future large-scale
319 research projects (23).

320 The FLC is not the only tool that can be used to assess food environments by using common on-
321 line search-engines like Google Maps. The SPOTLIGHT-Virtual Audit Tool (S-VAT) uses the street
322 views provided by Google Earth to develop a desk-based assessment of community food
323 environments (25,28). This tool was derived from a large European Union-funded project and was
324 developed in order to identify and compare environmental characteristics in European
325 neighborhoods. Along with the street images, researchers are provided with a pre-defined form

326 through which they can virtually 'audit' segment by segment of each street. As a result, based on
327 their storefronts, a list is compiled of all the facilities, as well as other characteristics such as
328 walkability, cycling-related infrastructure, public transport, among others. Bethlehem et al. (2014)
329 found that S-VAT was a highly reliable tool for classifying food environments using street view
330 images.

331 The FLC differs from the S-VAT in many ways. First, the FLC focuses only on determining the
332 characteristics of each food environment through building a classification system of facilities in pre-
333 defined categories while the S-VAT only relies on the storefront image, which can lead to important
334 misclassifications. Second, unlike the S-VAT, the results from the FLC provide a list of all the
335 classified facilities, which allows for properly classifying every food environment. Third, as the S-
336 VAT is based on the visual audit of each street, it is more difficult to collect metadata or characteristics
337 of each facility. The FLC gathers all the information available for each store (e.g. type, images,
338 opening hours, among others), which provides a better understanding of the food environment.
339 Therefore, the FLC and S-VAT, rather than being equivalent tools, complement one another.

340 5. Conclusions

341 To conclude, the FLC is a valid and reliable tool for evaluating community food environments
342 and can be used either as a validation of other secondary data or as a main source of information. The
343 FLC uses the most popular data sources (i.e. Google Maps and Open Street Maps) to identify the
344 facilities present around a given location (e.g. school, hospital, university). As a result, researchers
345 can have access to a comprehensive list of facilities around any location of interest, allowing for more
346 detailed investigation that informs key research questions about the influence of food environments
347 on multiple public health outcomes, such as obesity, sedentarism, dietary patterns, among others. In
348 sum, FLC offers a new, low-cost, scalable, efficient, and user-friendly tool to assess food
349 environments, and it can be implemented in different types of research projects that want to include
350 food environments as a dimension of analysis.

351 **Supplementary Materials:** The original codes are available at
352 <https://github.com/jcmunozmora/facilitylistcoder.git>

353 **Author Contributions:** Conceptualization, A.M.A.A. and A.F.C.; Methodology, A.M.A.A. and A.F.C.; Software,
354 A.M.A.A. and J.C.M.; Validation, A.M.A.A. and J.C.M.; Formal Analysis, A.M.A.A., A.F.C. and J.C.M.;
355 Investigation, A.M.A.A. and A.F.C.; Resources, A.M.A.A. and A.F.C.; Data Curation, A.M.A.A. and J.C.M.;
356 Writing – Original Draft Preparation, A.M.A.A., A.F.C. and J.C.M.; Writing – Review & Editing, A.F.C.;
357 Visualization, A.M.A.A. and J.C.M.; Supervision, A.F.C.; Project Administration, A.M.A.A.; Funding Acquisition,
358 A.M.A.A. and A.F.C.

359 **Funding:** This research received no external funding. A.M.A.A. has received a grant from the Colombian
360 Government to study her PhD in Food and Nutrition at the Universitat de Barcelona (Spain).

361 **Conflicts of Interest:** The authors declare no conflict of interest.

362 References

- 365 1. Lytle LA. Measuring the Food Environment: State of the Science. *Am J Prev Med* [Internet]. 2009 Apr 1
366 [cited 2019 Jan 4];36(4):S134–44. Available from:
367 <https://www.sciencedirect.com/science/article/pii/S074937970900052X>
- 368 2. Pitt E, Gallegos D, Comans T, Cameron C, Thornton L. Exploring the influence of local food
369 environments on food behaviours: a systematic review of qualitative literature. *Public Health Nutr*
370 [Internet]. 2017 Sep 7 [cited 2019 Jan 4];20(13):2393–405. Available from:
371 https://www.cambridge.org/core/product/identifier/S1368980017001069/type/journal_article
- 372 3. Cobb LK, Appel LJ, Franco M, Jones-Smith JC, Nur A, Anderson CAM. The relationship of the local food

373 environment with obesity: A systematic review of methods, study quality, and results. *Obesity*. 2015
374 Jul;23(7):1331–44.

375 4. Williams J, Scarborough P, Matthews A, Cowburn G, Foster C, Roberts N, et al. A systematic review of
376 the influence of the retail food environment around schools on obesity-related outcomes. *Obes Rev*
377 [Internet]. 2014 May 1 [cited 2017 Oct 16];15(5):359–74. Available from:
378 <http://doi.wiley.com/10.1111/obr.12142>

379 5. Pitt E, Gallegos D, Comans T, Cameron C, Thornton L. Exploring the influence of local food
380 environments on food behaviours: a systematic review of qualitative literature. *Public Health Nutr*. 2017
381 Sep;20(13):2393–405.

382 6. Glanz K, Sallis JF, Saelens BE, Frank LD. Healthy Nutrition Environments: Concepts and Measures. *Am*
383 *J Heal Promot* [Internet]. 2005 May 25 [cited 2019 Jan 4];19(5):330–3. Available from:
384 <http://journals.sagepub.com/doi/10.4278/0890-1171-19.5.330>

385 7. Williams J, Scarborough P, Matthews A, Cowburn G, Foster C, Roberts N, et al. A systematic review of
386 the influence of the retail food environment around schools on obesity-related outcomes. *Obes Rev*. 2014
387 May;15(5):359–74.

388 8. Glanz K, Sallis JF, Saelens BE, Frank LD. Nutrition Environment Measures Survey in Stores (NEMS-S).
389 Development and Evaluation. *Am J Prev Med* [Internet]. 2007 Apr 1 [cited 2017 Oct 16];32(4):282–9.
390 Available from: <http://www.sciencedirect.com/science/article/pii/S0749379706005691>

391 9. McKinnon RA, Reedy J, Morrisette MA, Lytle LA, Yaroch AL. Measures of the Food Environment. A
392 Compilation of the Literature, 1990–2007. *Am J Prev Med* [Internet]. 2009 Apr 1 [cited 2019 Jan 5];36(4
393 SUPPL.):S124–33. Available from:
394 <https://www.sciencedirect.com/science/article/pii/S074937970900021X?via%3Dihub>

395 10. Lytle LA, Sokol RL. Measures of the food environment: A systematic review of the field, 2007–2015. *Heal*
396 *Place* [Internet]. 2017 Mar 1 [cited 2017 Oct 16];44(44):18–34. Available from:
397 <http://www.sciencedirect.com/science/article/pii/S1353829216300843?via%3Dihub>

398 11. Caspi CE, Sorensen G, Subramanian SV, Kawachi I. The local food environment and diet: A systematic
399 review. *Health Place* [Internet]. 2012 Sep 1 [cited 2017 Oct 16];18(5):1172–87. Available from:
400 <http://www.sciencedirect.com/science/article/pii/S1353829212001037?via%3Dihub>

401 12. Wilkins EL, Morris MA, Radley D, Griffiths C. Using Geographic Information Systems to measure retail
402 food environments: Discussion of methodological considerations and a proposed reporting checklist
403 (Geo-FERN). *Heal Place* [Internet]. 2017 Mar 1 [cited 2017 Oct 16];44:110–7. Available from:
404 <http://www.sciencedirect.com/science/article/pii/S1353829216302799>

405 13. Arcila-Agudelo AM, Ferrer-Svoboda C, Torres-Fernández T, Farran-Codina A, Arcila-Agudelo AM,
406 Ferrer-Svoboda C, et al. Determinants of Adherence to Healthy Eating Patterns in a Population of
407 Children and Adolescents: Evidence on the Mediterranean Diet in the City of Mataró (Catalonia, Spain).
408 *Nutrients* [Internet]. 2019 Apr 15 [cited 2019 May 31];11(4):854. Available from:
409 <https://www.mdpi.com/2072-6643/11/4/854>

410 14. Departament de Geografía. Mataró 2050 [Internet]. Barcelona; 2008. Available from:
411 http://mataro.cat/web/portal/contingut/document/originals/2018/Mataro_2050_Estudi_final.pdf

412 15. Lake AA, Burgoine T, Greenhalgh F, Stamp E, Tyrrell R. The foodscape: Classification and field
413 validation of secondary data sources. *Health Place* [Internet]. 2010 Jul 1 [cited 2019 Jan 6];16(4):666–73.
414 Available from: <https://www.sciencedirect.com/science/article/pii/S1353829210000146?via%3Dihub>

415 16. Lake AA, Burgoine T, Greenhalgh F, Stamp E, Tyrrell R. The foodscape: Classification and field

416 validation of secondary data sources. *Health Place*. 2010 Jul;16(4):666–73.

417 17. Watson PF, Petrie A. Method agreement analysis: A review of correct methodology. *Theriogenology*
418 [Internet]. 2010 Jun 1 [cited 2018 May 15];73(9):1167–79. Available from:
419 <https://www.sciencedirect.com/science/article/pii/S0093691X10000233>

420 18. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. *Psychol*
421 *Methods* [Internet]. 1996 [cited 2018 May 15];1(1):30–46. Available from:
422 <http://doi.apa.org/getdoi.cfm?doi=10.1037/1082-989X.1.1.30>

423 19. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability
424 Research. 2015;

425 20. Wilkins EL, Morris MA, Radley D, Griffiths C. Using Geographic Information Systems to measure retail
426 food environments: Discussion of methodological considerations and a proposed reporting checklist
427 (Geo-FERN). *Heal Place*. 2017 Mar;44:110–7.

428 21. Fleischhacker SE, Evenson KR, Sharkey J, Pitts SBJ, Rodriguez DA. Validity of Secondary Retail Food
429 Outlet Data. *Am J Prev Med* [Internet]. 2013 Oct [cited 2019 Jan 6];45(4):462–73. Available from:
430 <http://www.ncbi.nlm.nih.gov/pubmed/24050423>

431 22. Mendez DD, Kim KH, Hardaway CR, Fabio A. Neighborhood Racial and Socioeconomic Disparities in
432 the Food and Alcohol Environment: Are There Differences by Commercial Data Sources? *J Racial Ethn*
433 *Heal Disparities* [Internet]. 2016 Mar 16 [cited 2019 Jan 6];3(1):108–16. Available from:
434 <http://link.springer.com/10.1007/s40615-015-0120-0>

435 23. Wilkins EL, Radley D, Morris MA, Griffiths C. Examining the validity and utility of two secondary
436 sources of food environment data against street audits in England. *Nutr J*. 2017 Dec;16(1):82.

437 24. Casey R, Oppert JM, Weber C, Charreire H, Salze P, Badariotti D, et al. Determinants of childhood
438 obesity: What can we learn from built environment studies? *Food Qual Prefer*. 2014 Jan 1;31(1):164–72.

439 25. Bethlehem JR, Mackenbach JD, Ben-Rebah M, Compernolle S, Glonti K, Bárdos H, et al. The SPOTLIGHT
440 virtual audit tool: a valid and reliable tool to assess obesogenic characteristics of the built environment.
441 *Int J Health Geogr*. 2014;13(1):52.

442 26. Cetateanu A, Jones A. How can GPS technology help us better understand exposure to the food
443 environment? A systematic review. *SSM - Popul Heal*. 2016;2:196–205.

444 27. Svastisalee CM, Holstein BE, Due P. Validation of presence of supermarkets and fast-food outlets in
445 Copenhagen: case study comparison of multiple sources of secondary data. *Public Health Nutr* [Internet].
446 2012 Jul 22 [cited 2019 Jan 8];15(07):1228–31. Available from:
447 http://www.journals.cambridge.org/abstract_S1368980012000845

448 28. Rutter H, Glonti K, Lakerveld J. The way ahead: Where next for research into obesogenic environments?
449 *Obes Rev*. 2016;17:108–9.

450