Overview of Meta-Analyses: The Impact of Lifestyle on Stroke Risk

Emma Altobelli^{1*}, Paolo Matteo Angeletti¹, Leonardo Rapacchietta¹, Maria Mattucci²

¹Department of Life, Health and Environmental Sciences, Epidemiology and Biostatistics Unit,

University of L'Aquila, 67100 L'Aquila, Italy; paolomatteoangeletti@gmail.com

¹Department of Life, Health and Environmental Sciences, Epidemiology and Biostatistics Unit,

University of L'Aquila, 67100 L'Aquila, Italy; leonardo.rapacchietta@gmail.com

² Director Local Health Unit, 64100 Teramo, Italy; maria.mattucci@aslteramo.it

* Correspondence: emma.altobelli@cc.univaq.it; Tel.: +39-0862-434666; Fax: +39-0862-433425

ABSTRACT

Stroke is one of the most prevalent cardiovascular diseases worldwide, both in high-income

countries and in medium and low-medium income countries. The WHO report on non-

communicable diseases (NCDs) indicates that the highest behavioral risk in NCDs is attributable to

incorrect nutrition. The objective of our work is to present an overview of meta-analyses that have

investigated the impact of different foods and / or drinks in relationship with the risk of stroke

events (ischemic/ hemorrhagic). The papers to be included in the overview were sought in the

MEDLINE, EMBASE, Scopus, Clinicaltrials.gov, Web of Science, and Cochrane Library and were

selected according to PRIMA flow chart. Quality assessment were made according to AMSTAR

scale. This overview shows that all primary studies came from countries with high income level.

This evidence shows that many countries are not represented. Therefore, different lifestyles, ethnic

groups, potentially harmful or virtuous eating habits are not reported. It is important to underline

how the choose of foods may help reduce the risk of cardiovascular diseases and stroke in particular.

Key-words: overview, meta-analyses, stroke, nutrition, geographical areas

INTRODUCTION

Stroke is one of the most prevalent cardiovascular diseases worldwide. It is estimated that in 2010 there were 11.569.538 ischemic stroke events, 63% of which were in countries medium and low-medium income countries [1]. In the same year, 5.324.997 of hemorrhagic stroke occurred, 80% of which were in medium and low-medium income areas [1]. This difference is similar for mortality, which is significantly lower in high-income countries compared to those of middle/medium-low [1]. It is estimated that in Europe the costs of the disease are around €7775 per patient, with a total cost, in billions, of 64.053 euros [2]. In the United States in 2008 the global costs were estimated to be 62.5 billion dollars, the expenditure forecast to 2050 is about 2.2 trillion dollars until 2050 [3].

The WHO report on non-communicable diseases (NCDs) indicates that the highest behavioral risk is attributable to incorrect nutrition, particularly in the WHO European region [4].

Numerous meta-analysis studies have been conducted to evaluate the relationship between diet and stroke risk. A meta-analysis of Alexander et al. [5], seems to indicate a protective action resulting from the consumption of cheese. This data is in line with Briggs et al. [6]. Dairy products should probably be consumed as part of a balanced diet in which there is adequate intake of all nutrients within an appropriate calorie count [7-10].

Regarding alcohol use and/or abuse [8,11], red wine contains polyphenols, including resveratrol, a molecule with not only cardio protective pleiotropic effects, but also neuroprotective, anti-microbial and anti-angiogenetic. All this has a positive influence on the prevention of ischemic stroke since it acts on one of the main causes, atrial fibrillation [12]. The same may be extended to moderate consumption of beer [13].

Mono-unsaturated [14] and poly-unsaturated [15] have been considered a valid nutritional support able to positively modify lipid structure in patients [16].

In addition, it is important to underline consumption of fruit and vegetables [17]. The Centre for Disease Control and Prevention guidelines recommend the daily consumption of 1.5-2.0 cups of fruit and 2.0-3.0 cups of vegetables [18].

accumulation of intramuscular and visceral fat [23].

Consumption of nuts could have a protective role on the decrease cardiovascular disease [19, 20]. The benefit of the intake of nuts seems to be linked to the composition of PUFA fatty acids that

improve the performance of the cardiovascular system as reported by Del Gobbo et al. [21].

Finally, the increased risk of ischemic stroke in women who consume high quantities of sugary drinks is due to the insulin peak resulting in the ingestion of large amounts of glucose [22]. Furthermore, it is important to take into consideration how many of these drinks contain added fructose. Fructose enters the glycolytic pathway down-regulating it with the intermediate products of its metabolism [glycerol 3-phosphate and acetyl CoA], thus favoring lipogenesis and

Tea [24] seems to have a role in stroke prevention, as reported by Arab and colleagues as well as folic acid [25-27]. The consumption of whole grains does not present significant results [28].

The objective of our work is to present an overview of meta-analyses that have investigated the impact of different foods and / or drinks in relationship with the risk of stroke events (ischemic/hemorrhagic). We considered the meta-analyses based on: cohort studies and randomized clinical trials.

MATERIALS AND METHODS

Meta-analyses regarding the onset of hemorrhagic and/or ischemic strokes in subjects following dietary regimes with a given food or specific nutritional or nutraceutical support have been considered. In addition, studies investigating secondary prevention of strokes were considered, also in relation to a specific food or nutritional or nutraceutical support.

The papers included in the overview were sought in the last 10 years in the MEDLINE, EMBASE, Scopus, Clinicaltrials.gov, Web of Science, and Cochrane Library databases up to 31 December 2018. The search strategy was conducted using the following terms: Stroke OR Strokes OR CVA Cerebrovascular Accident OR CVAs [Cerebrovascular Accident] OR Cerebrovascular Apoplexy, Cerebrovascular OR Vascular Accident, Brain OR Brain Vascular Accident OR Brain Vascular

Accidents OR Vascular Accidents OR Brain OR Cerebrovascular Stroke OR Cerebrovascular Strokes OR Stroke, Cerebrovascular OR Strokes, Cerebrovascular OR Apoplexy OR Cerebral Stroke OR Cerebral Strokes OR Stroke, Cerebral OR Strokes, Cerebral OR Stroke, Acute OR Acute Stroke OR Acute Strokes OR Strokes, Acute OR Cerebrovascular Accident Acute OR Acute Cerebrovascular Accident OR Acute Cerebrovascular Accidents OR Cerebrovascular Accidents, Acute)) AND "Food" [Mesh]) AND "Meta-Analysis" [Publication Type]. The selection of the works was conducted using the PRISMA method [29] by two-blinded authors (P.M.A. and L.R.). A methodologist (E.A.) resolved any disagreements.

Table 1 shows the studies by author and by food considered with the respective dose effects found.

Table 1. Characteristics of included meta-analyses in the overview according to food or beverage, study design and type of stroke

				Number		Number	Popula	tion	
Author	Food or beveraage	Control group	Literature search- update	of primary studies	Type of strokes	of Studies for evaluated strokes	N. tot	N. events	Effect size 95% C.I.
Cohort stud	lies								
	High milk intake	Low milk intake			Ischemic or Hemorrhagic	7	-	-	0.91 (0.83; 0.99)
	High milk intake	Low milk intake			Ischemic or Hemorrhagic (in men)	4	-	-	1.04 (0.96; 1.14)
Alexander [5]	High milk intake	Low milk intake	2016	K=31	Ischemic or Hemorrhagic	4	-	-	0.93 (0.81; 1.06)
	High milk intake	Low milk intake			Hemorrhagic	3	-	-	0.93 (0.69; 1.25)
	High cheese intake	Low cheese intake			Ischemic or Hemorrhagic	4	-	-	0.87 (0.77; 0.99)
	Western dietary pattern - High categories #	Western dietary pattern - low categories #	2015	K=21	Ischemic or Hemorrhagic	8	143798	2049	1.05 (0.82; 1,35)
Zhang [8]	Healthy dietary pattern - High categories #	Healthy dietary pattern - low categories #	2013			14	318813	3971	0.77 (0.64; 0.93)
	200 ml/d	No milk			Ischemic or Hemorrhagic	10	567717	39352	0.91 (0.82; 1.02)
Mullie [9]	Daily milk consumption	consumption	2016	K=19	Ischemic or Hemorrhagic (in men)	5	-	-	0.96 (0.86; 1.09)
Pimpin [10]	Butter intake <14g/d	Butter intake >14g/d	2016	K=4	Ischemic or Hemorrhagic	3	173853	5229	1.01 (0.98; 1.03)
	Light-moderate drinking s	No drinkers				8	-	-	0.87 (0.81; 0.92)
Larsson [11]	Heavy drinking	No drinkers	2016	K=27	Ischemic stroke	8	-	-	1.13 (0.95; 1.19)
	Light-moderate drinking	Never drinkers				8	-	-	0.87 (0.82; 0.91)

	Heavy drinking	Never drinkers				8	-	-	1.06 (0.95; 1.19)
	Occasional drinkers drinking	Light-moderate				8	-	-	0.98 (0.94;1.04)
	Heavy drinking	Occasional drinkers				8	-	-	1.13 (1.03; 1.24)
	Light-moderate drinking	No drinkers			Intracerebral	5	-	-	0.91 (0.64; 1.29)
	Heavy drinking	No drinkers				4	-	-	1.21 (0.87; 1.67)
	Light-moderate drinking	Occasional drinkers			hemorrhage	4	-	-	1.04 (0.89; 1.21)
	Heavy drinking	Occasional drinkers				4	-	-	1.74 (1.45;2.09)
	Light-moderate drinking	No drinkers				5	-	-	1.39 (1.00;1.92)
	Heavy drinking	No drinkers			Subarachnoid Hemorrhage events	3	-	-	1.43 (1.00; 2.05)
	Light-moderate drinking	Occasional drinkers				4	-	-	1.10 (0.84; 1.44)
	Heavy drinking	Occasional drinkers				4	-	-	1.62 (0.89;2.29)
	High monounsaturated				Ischemic or Hemorrhagic	10	314511	5827	0.86 (0.74; 1.00)
Cheng [14]	fatty acid intake (MUFAs)	Low usage of MUFA	2016	K=10	Ischemic stroke	8		-	0.92 (0.79; 1.08)
	(MOPAs)				Hemorrhagic stroke	5	-	-	0.68 (0.49; 0.96)
	High land shair amage				Ischemic or Hemorrhagic	10	242076	5238	0.90 (0.81; 1.10)
Larsson [15]	High long-chain omega- 3 polyunsaturated fatty acids (PUFAs) intake	Low intake of PUFA	2012	K=10	Ischemic stroke	5	-	-	0.82 (0.71; 0.94)
	acius (POPAs) intake				Hemorrhagic stroke	5	-	-	0.80 (0.55; 1.15)
Aune	High intake of fruit and vegetables	Low intake of fruit and vegetables	2017	V 05	Ischemic or Hemorrhagic	8	226910	10560	0.79 (0.71; 0.88)
[17]	High intake of fruit	Low intake of fruit	2017	K=95	Ischemic or Hemorrhagic	17	960337	46951	0.82 (0.77; 0.87)

High intake vegetables	Low intake vegetables	Ischemic or Hemorrhagic	13	427124	14519	0.87 (0.81; 0.95)
High intake Apples, pears	Low intake Apples, pears	Ischemic or Hemorrhagic	6	-	-	0.88 (0.81; 0.96)
High intake berries	Low intake berries	Ischemic or Hemorrhagic	5	-	-	0.98 (0.86; 1.12)
High intake Citrus Fruits	Low intake Citrus Fruits	Ischemic or Hemorrhagic	8	-	-	0.74 (0.65; 0.84)
High intake Citrus Fruits juice	Low intake Citrus Fruits juice	Ischemic or Hemorrhagic	2	-	-	0.90 (0.74; 1.10)
High intake Dried fruits	Low intake Dried fruits	Ischemic or Hemorrhagic	2	-	-	0.92 (0.74; 1.15)
High intake Fruits juice	Low intake Fruits juice	Ischemic or Hemorrhagic	2	-	-	0.67 (0.60; 0.76)
High intake Grapes	Low intake Grapes	Ischemic or Hemorrhagic	2	-	-	0.72 (0.47; 1.10)
High intake Allium vegetables	Low intake Allium vegetables	Ischemic or Hemorrhagic	2	-	-	0.89 (0.80; 1.00)
High intake Cruciferous vegetables	Low intake Cruciferous vegetables	Ischemic or Hemorrhagic	4	-	-	0.97 (0.78; 1.20)
High intake Green leafy vegetables	Low intake Green leafy vegetables	Ischemic or Hemorrhagic	4	-	-	0.88 (0.81; 0.95)
High intake Pickled vegetables	Low intake Pickled vegetables	Ischemic or Hemorrhagic	2	-	-	0.80 (0.73; 0.88)
High intake Potatoes	Low intake Potatoes	Ischemic or Hemorrhagic	4	-	-	0.94 (0.87; 1.01)
High intake Root vegetables	Low intake Root vegetables	Ischemic or Hemorrhagic	2	-	-	1.01 (0.89; 1.14)
High intake Tomatoes	Low intake Tomatoes	Ischemic or Hemorrhagic	3	-	-	0.95 (0.68; 1.31)
High intake Berries	Low intake Berries	Ischemic	3	-	-	0.95 (0.75; 1.21)
High intake Citrus fruits	Low intake Citrus fruits	Ischemic	7	-	-	0.78 (0.66; 0.92)
High intake Citrus Fruits juice	Low intake Citrus Fruits juice	Ischemic	2	-	-	0.65 (0.51; 0.84)
High intake Allium vegetables	Low intake Allium vegetables	Ischemic	2	-	-	0.90 (0.78; 1.03)

	High intake Cruciferous vegetables	Low intake Cruciferous vegetables			Ischemic	5	-	-	0.82 (0.66; 1.01)
	High intake Green leafy vegetables	Low intake Green leafy vegetables			Ischemic	4	-	-	0.88 (0.78; 0.99)
	High intake Potatoes	Low intake Potatoes			Ischemic	5	-	-	0.97 (0.87; 1.08)
	High intake Root vegetables	Low intake Root vegetables			Ischemic	3	-	-	0.93 (0.73; 1.18)
	High intake Tomatoes	Low intake Tomatoes			Ischemic	2	-	-	0.80 (0.69; 0.92)
	High intake Berries	Low intake Berries			Hemorrhagic	3	-	-	1.15 (0.89; 1.49)
	High intake Citrus fruits	Low intake Citrus fruits			Hemorrhagic	3	-	-	0.74 (0.55; 1.01)
	High intake Cruciferous vegetables	Low intake Cruciferous vegetables			Hemorrhagic	2	-	-	0.83 (0.33; 2.12)
	High intake Potatoes	Low intake Potatoes			Hemorrhagic stroke	3	-	-	1.06 (0.83; 1.36)
	High intake Root vegetables	Low intake Root vegetables			Hemorrhagic stroke	2	-	-	1.05 (0.76; 1.44)
	All nuts high consumption	All nuts low consumption				12	449293	4398	0.82 (0.73; 0.91)
Chen [19]	Nut plus peanut butter high consumption	Nut plus peanut butter low consumption	2017	K=16	Ischemic or Hemorrhagic	3	104531	924	0.84 (0.70; 1.01)
[19]	Peanuts high consumption	Peanuts low consumption			Hemormagic	5	265252	7025	0.76 (0.69; 0.82)
	Tree nuts high consumption	Tree nuts low consumption				3	130987	6394	0.79 (0.68; 0.92)
	High Intake of whole grains or specific types of grains	low Intake of whole grains or specific types of grains				5	-		0.87 (0.72; 1.05)
Aune [28]	High intake Whole grain bread	Low intake Whole grain bread	2016	K=15	Ischemic or Hemorrhagic	2	-	-	0.88 (0.75; 1.03)
	High intake of whole grain breakfast cereals	Low intake of whole grain breakfast cereals			_	2	-	-	0.99 (0.53; 1.86)

	High intake of refined grain	Low intake of refined grain				4	-	-	0.95 (0.78; 1.14)
	High intake total rice	Low intake total rice				4	-	-	1.02 (0.94; 1.11)
Wu [31]	High yogurt intake	Low yogurt intake	2017	K=7	Ischemic or Hemorrhagic	7	-	-	1.02 (0.92; 1.13)
Muto [36]	High saturated fatty acid intake	Low saturated fatty acid intake	2018	K=16	Ischemic	11	-	-	0.88 (0.81; 0.96)
							_		
			_				_		
	High intake sugar- sweetened beverage	Low intake sugar- sweetened beverage			Ischemic or Hemorrhagic	3	236061	-	1.10 (0.97; 1.25)
	High intake sugar- sweetened beverage	Low intake sugar- sweetened beverage			Ischemic stroke (in men)	3	-	-	1.01 (0.74; 1.37)
Narain [38]	High intake sugar- sweetened beverage	Low intake sugar- sweetened beverage	2016	K=7	Ischemic stroke (in women)	3	-	-	1.33 (1.07; 1.66)
[30]	High intake sugar- sweetened beverage	Low intake sugar- sweetened beverage			Hemorrhagic stroke (in men)	3	-	-	0.87 (0.68; 1.12)
	High intake sugar- sweetened beverage	Low intake sugar- sweetened beverage			Hemorrhagic stroke (in women)	3	-	-	0.83 (0.62; 1.10)
Cai [39]	Glycemic index		2014	K=7	Ischemic or Hemorrhagic				1.10 (0.99; 1.21)
	Glycemic load	_				7	-	-	1.19 (1.05; 1.36)
	Carbohydrate intake								1.12 (0.93; 1.35)
Yan [40]	High soy consumption	Low soy consumption	2016	K=11	Ischemic or Hemorrhagic	11	-	-	0.82 (0.68; 0.99)
Zhang [41]	High fiber intake	Low fiber intake	2013	K=11	Ischemic or Hemorrhagic	11	325627	-	0.83 (0.74; 0.93)

			ı		1				
					Ischemic	8	-	-	0.83 (0.74; 0.93)
					Hemorrhagic	5	-	-	0.87 (0.74; 1.05)
Tang [42]	High flavonoids intake	Low flavonoids intake	2016	K=11	Ischemic or Hemorrhagic	11	-		0.89 (0.82; 0.97)
					Ischemic or hemorrhagic	12			0.98 (0.89; 1.07)
	Protein intake	-			Ischemic	8			0.94 (0.80; 1.10)
Zhang [43]			2016	K=12	Hemorrhagic	4	-	-	1.05 (0.97; 1.14)
	Animal protein	-			Ischemic or Hemorrhagic	8			0.94 (0.75; 1.17)
	Vegetable protein	-			Ischemic or Hemorrhagic	8			0.90 (0.82; 0.99)
Qin [44]	Lean fish	Fatty fish	2018	K=5	Ischemic or Hemorrhagic	5	-	-	0.88 (0.74; 1.04)
Qm [44]	High lean fish intake	Low lean fish intake	2018	K=5	Ischemic or Hemorrhagic	5	-	-	0.81 (0.67; 0.99)
Xun [45]	High fish intake	Low fish intake	2012	K=16	Ischemic or Hemorrhagic	16	-	-	0.91 (0.85; 0.98)*
	High total meat intake	Low total meat intake				6	-	-	1.18 (1.09; 1.28)
Kim [46]	High red meat intake	Low red meat intake	2016	K= 7	Ischemic or	7	-	-	1.11 (1.03; 1.20)
Kiii [40]	High processed meat intake	Low processed meat intake	2016	K = /	Hemorrhagic	8	-	-	1.17 (1.08; 1.25)
	High white meat intake	Low white meat intake				4	-	-	0.87 (0.78; 0.96)
Yuan [47]	High chocolate intake	low chocolate intake	2017	K=8	Ischemic or Hemorrhagic	8	-	-	0.84 (0.78; 0.90)
Chen [48]	High C-vitamin intake	Low C-vitamin	2011	K=11	Ischemic or Hemorrhagic	11	-	-	0.81 (0.74; 0.90)
Chen [40]	ingh C-vitallilli liltake	intake	2011	13-11	Ischemic	4			0.77 (0.64; 0.92)
					Hemorrhagic	2	-	-	1.07 (0.38; 3.00)
Afshin [49]	Legumen 100 gr/week	No consumption	2014	K=6	Ischemic	3	-	-	1.07 (0.77; 1.50),
Aisiiii [47]		1			Hemorrhagic	4	-	-	1.23 (0.91; 1.66)

Alexander [50]	1 egg/day	< 2 eggs/week	2016	K=7	Ischemic or Hemorrhagic	7	-	-	0.88 (0.81; 0.97)
Martin- Gonzales [51]	Olive oil (>25 g)	Olive oil (<25 g)	2014	K=2	Ischemic or Hemorrhagic	2	-	-	0.74 (0.60; 0.92)
Cheng [53]	Vitamin E	-	2018	K=9	Ischemic or Hemorrhagic	9	-	-	0.83 (0.73; 0.94)
RTC									
Bolland	High Ca from dairy products	Low Ca from dairy products	2011	K=8	Ischemic or Hemorrhagic	5	-	-	0.69 (0.60; 0.81)
[22]	Calcium supplement 500 mg and D vitamin	Placebo	2011	K-0	Ischemic or Hemorrhagic	3	20090	477	1.20 (1.00; 1.43)
Tian	Intervention regimen FA ** only	No supplementation	2017	K=11	Ischemic or	11	21295	657	0.79 (0.68; 0.92)
[25]	Intervention regimen FA+B vitamins	No supplementation	2017	K-11	Hemorrhagic	11	27486	1,589	0.91 (0.82; 1.00)
Arab [24]	Tea 3 cups	Tea 1 cups	2009	K=9	Ischemic or Hemorrhagic	9	-	-	0.77 0.71; 0.85
Abdelhamid	Long-chain omega-3 polyunsaturated fatty acids (PUFAs): high intake	Low PUFAs intake	2018	K=32	Ischemic or Hemorrhagic	28	89358	1818	1.06 (0.96-1.16)
	Alpha linoneic acid: high intake	Low alpha linoneic acid intake			Ischemic or Hemorrhagic	4	19327	51	1.15 (0.66; 2.01)
Hooper [34]	Low omega 6	High omega 6 intake	2018	K=4	Ischemic or Hemorrhagic	4	3730	54	1.36 (0.45; 4.11)
Abdelhamid [35]	Polyunsaturated fatty acid high intake	Polyunsaturated fatty acid low intake	2018	K=11	Ischemic or Hemorrhagic	11	14724	165	1.06 (0.96; 1.96)
Hooper [37]	Low saturated fatty acid diet	Low saturated fatty acid diet	2015	K=8	Ischemic or Hemorrhagic	8	50952	1125	1.00 (0.89; 1.12)
					Ischemic or Hemorrhagic	13	166282	-	1.01 (0.96; 1.07)
Bin [52]	Vitamin E	-	2011	K=13	Ischemic	-	-	-	1.01 (0.94;1.09)
					Hemorrhagic	-	-	-	1.12 (0.94; 1.33)

^{*}Where not specified, stroke events is in both sexes . # Dietary pattern: high intake of all kinds of red and or processed meats, refined grains, sweets, desserts, high-fat dairy products, and high-fat gravy. *OR. ** Folic Acid.

Table 2 shows the studies by author with the dose response analysis. The methodology used is described in Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Flow-Chart (figure 1).

Table 2. Summary of dose response analysis in studies considered

Author	Food or beverage intake	Control intake	Type of strokes	Evaluated dose for each food or beverage	Number of primary studies	Effects size (95% C.I.)
COHORT S	TUDIES	1			1	
	Doing	No	<1.5 serving/day		-	0.92 (0.89; 0.96)
	Dairy	NO		≥1.5 serving/day	-	0.91 (0.88; 0.95)
				0-1 serving/day	-	0.95 (0.86; 1.04)
	Milk	No		>1 to <2 serving/day	-	0.98 (0.90; 1.06)
				≥2 serving/day	-	1.01 (0.92; 1.11)
Alexander 2015 [5]			Ischemic or	0-0.5 serving/day	-	1.00 (0.92; 1.07)
2015 [5]	Cheese	No	Hemorrhagic	>0.5-1.5 serving/day	-	0.86 (0.75; 0.97)
		>1.5 serving/day -				0.92 (0.87; 0.97)
				0-100 mg/d Ca from dairy product	-	0.91 (0.84; 1.00)
	Dairy and Ca	No		>100-300 mg/d Ca from dairy product	-	0.67 (0.58; 0.77)
				>300 mg/d Ca from dairy product	-	0.82 (0.69; 0.97)
			Ischemic	<1 drink/day	20	0.90 (0.85; 0.95)
				1-2 drink/day	20	0.92 (0.87; 0.97)
				2-4 drink/day	21	1.08 (1.01; 1.15)
				>4 drink/day	12	1.14 (1.02;1.28)
			Hemorrhagic	<1 drink/day	9	0.92 (0.77; 1.10)
Larsson	Alcohol consumption	Non-drinkers; never drinkers;		1-2 drink/day	8	0.99 (0.82; 1.18)
2016 [11]	Alcohol consumption	occasional drinkers.		2-4 drink/day	8	1.25 (0.93; 1.67)
				>4 drink/day	8	1.67 (1.25; 2.23)
				<1 drink/day	9	1.21 (0.96; 1.52)
			Subarachnoi d	1-2 drink/day	6	1.11 (0.80; 1.53)
			Hemorrhage	2-4 drink/day	9	1.39 (0.94;.2.07)
				>4 drink/day	8	1.82 (1.18; 2.82)
			Ischemic or			
Aune	Fruit and vegetables	No	Hemorrhagic	200 g/day	15	
2017 [17]						0.92 (0.90; 0.94)

	Fruit	No		200 g/day	24	0.90 (0.86; 0.94)
	Vegetables	No		200 g/day	20	0.84 (0.79; 0.90)
	Apples, pears	No		100 g/day	5	0.94 (0.84; 1.05)
	Berries	No		100 g/day	5	1.07 (0.79; 1.45)
	Citrus Fruits	No		100 g/day	9	0.78 (0.69; 0.90)
	Citrus Fruits juice	No		100 g/day	2	0.89 (0.72; 1.10)
	Dried fruits	No		100 g/day	1	0.75 (0.32; 1.81)
	Fruits juice	No		100 g/day	2	0.72 (0.63; 0.83)
	Grapes	No		100 g/day	2	0.57 (0.34; 0.97)
	Allium vegetables	No		100 g/day	1	0.89 (0.76; 1.04)
	Cruciferous vegetables	No		100 g/day	5	1.04 (0.80; 1.36)
	Green leafy vegetables	No		100 g/day	5	0.73 (0.57; 0.94)
	Pickled vegetables	No		100 g/day	2	0.57 (0.43; 0.74)
	Potatoes	No		100 g/day	4	0.98 (0.94; 1.02)
	Root vegetables	No		100 g/day	2	0.96 (0.78; 1.18)
	Tomatoes	No		100 g/day	4	1.01 (0.96; 1.06)
	Berries	No		100 g/day	3	1.02 (0.61; 1.72)
	Citrus fruits	No		100 g/day	7	0.87 (0.79; 0.95)
	Citrus Fruits juice	No		100 g/day	2	0.87 (0.80; 0.96)
	Allium vegetables	No		100 g/day	2	0.93 (0.77; 1.11)
	Cruciferous vegetables	No	Ischemic	100 g/day	5	0.66 (0.41; 1.07)
	Green leafy vegetables	No		100 g/day	4	0.74 (0.62; 0.89)
	Potatoes	No		100 g/day	5	1.00 (0.95; 1.05)
	Root vegetables	No		100 g/day	3	0.91 (0.64; 1.30)
	Tomatoes	No		100 g/day	2	0.92 (0.86; 0.98)
	Berries	No		100 g/day	3	1.66 (0.91; 3.03)
	Citrus fruits	No		100 g/day	3	0.79 (0.59; 1.06)
	Cruciferous vegetables	No	Hemorrhagic	100 g/day	2	0,27 (0.01; 12.54)
	Potatoes	No		100 g/day	3	1.03 (0.91; 1.16)
	Root vegetables	No		100 g/day	2	1.16 (0.66; 2.02)
	High Whole grain bread	Low intake Whole grain bread	Ischemic or Hemorrhagic	90 g/day	1	0.88 (0.72; 1.07)
Aune 2016 [28]	High intake Whole grain breakfast cereals	Low intake Whole grain breakfast cereals		30 g/day	2	1.07 (0.69; 1.64)
	High intake refined grain	Low intake refined grain		90 g/day	5	0.91 (0.81; 1.02)

	High intake total rice	Low intake total rice		100 g/day	4	1.00 (0.97; 1.03)
	High intake total grains	Low intake total grains		90 g/day	5	0.93 (0.85; 1.02)
Chen [49]	C vitamin		Ischemic or Hemorrhagic	Incremental 100 mg/day	10	0.83 (0.75; 0.93)
Tang [44]	Flavoids		Ischemic or Hemorrhagic	Incremental 100 mg/day	3	0.91 (0.77; 1.08)
RCT						
	FA*** supplementation	No supplementation		<2 mg	-	0.78 (0.68; 0.89)
Tian	FA supplementation	No supplementation	7 [≥2 mg	-	0.96 (0.88; 1.04)
2017 [25]	Daily Vit B12	No supplementation	hemorrhagic	<0.5 mg	-	0.93 (0.78; 1.10)
	Daily Vit B12	No supplementation		≥0.5 mg	-	0.94 (0.86; 1.03)

^{***} Folic Acid

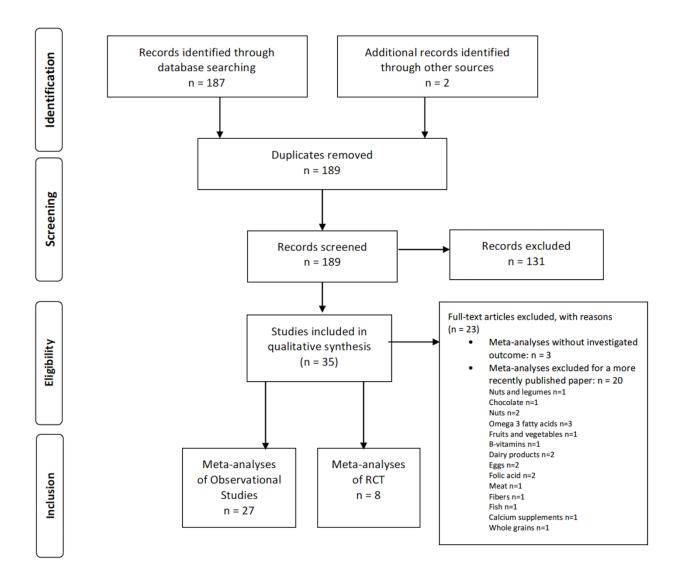


Figure 1. PRISMA Flow-Chart

The quality of the meta-analyses was assessed using the AMSTAR 2 scale by Shea et al. [30] that allows to evaluate the methodological quality of the meta-analyses (Supplementary Table 1). In addition, we evaluated the distribution of primary studies included in each meta-analyses, according to six different geographical areas (Australia, Canada, China Singapore and South Korea, Europe, Japan and USA) and according to four nutritional patterns and/or product type (Eating habits, food, beverage, integration) (figure 2 and table 3).

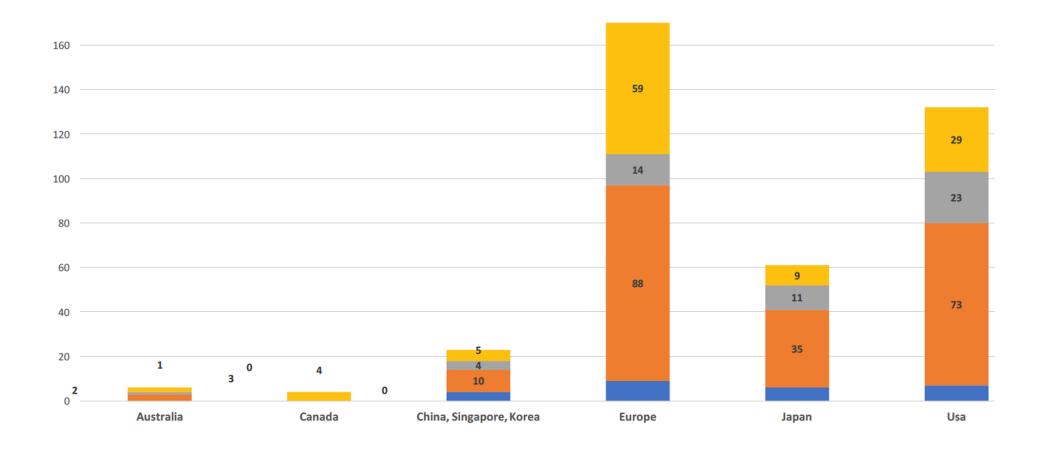


Figure 2. Distribution of primary studies included in meta-analyses considered, according to geographic area and type of nutritional support

AUSTRALIA		CANADA	CHINA-SINGAPORE-KOREA		EUROPE		JAPAN		USA		LATIN AMERIC	١
Food		Integration	Eating habits		Eating habits		Eating habits		Eating habits		Integration	
Omega 3 Dried fruits Beverage	1 2		Food	4 1	Carbohydrates Healthy diet Food	<i>4</i> 5	Healthy diet Food saturated fatty acids	6 5	Carbohydrates Healthy diet Food	6 4	Omega 3	1
Tea Integration	1			1 3	Saturated fatty acids Butter	2 3	Cereals Chocolate	3 1	Saturated fatty acids Meat	2 5		
Polynsatured fatty acid Omega 3	1		Fish Protein Soy Beverage Alcohol	1 1 2 2	Meat Cereals Chocolate Fibers Fruits and vegetables Dried fruits Milk	4 8 5 3 22 3 6	Fibers Fruits and vegetables Milk Milk and derivatives Legumes Fish Protein	2 7 2 3 2 3 3	Dried fruits Milk	1 4 14 11 2 5 2		
			Tea Integration	1	Milk and derivatives Legumes	5 2	/	2 2	Legumes Fish	8 6		
			Folic Acid	1	Olive oil	2	Beverage		Protein	2		
			Flavonoid	1	Fish	12	Alcohol	7	Soy	5		
				1	Protein Soy	2 2	Tea Soft drink	3 1	Eggs Yogurt	2		
			E vitamin	1	Yogurt Beverage Alcohol	7 10	Integration Monounsaturated fatty acids C vitamin	3 1		13 7 3		
					Tea Soft drink Integration	3 1	Polynsatured fatty acid	2	Soft drink	4		
					Monounsaturated fatty acids Folic Acid	3 9			Folic Acid Calcium - D vitamin	1 1		
					Calcium - D vitamin	2			Flavonoids	4		
					Flavonoids Omega 3	6 4			Omega 3 E vitamin	4 6		
					E vitamin C vitamin	11 6			C vitamin Polynsatured fatty acid	3 2		
					Omega 6 Polynsatured fatty acid	2 3			Omega 6	1		

Table 3. Distribution of primary studies included in meta-analyses considered, according to geographic area and type of nutritional support

RESULTS

The literature search highlighted 189 references (figure 1). After the exclusion of 131 references, the remaining 58 were analyzed with the reading of full texts. 23 were excluded: 3 did not present the outcome of interest, the other 20 were excluded because they were less recent respect to those included in the review that presented the same outcomes. The selected articles were 35, of which 27 meta-analyses based on observational studies and 8 randomized controlled trials (RTC). A graphical summary results of meta-analyses were reported in figures 3-5.

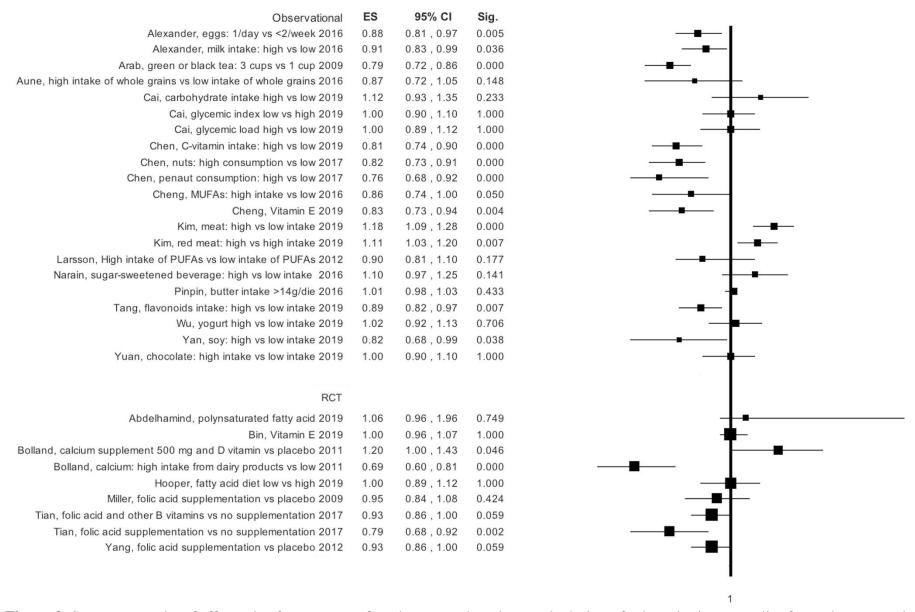


Figure 3. Summary results of effects size for any type of stroke events, based on study design of selected primary studies for each meta-analysis

Observational	ES	95% CI	Sig.	
Alexander, milk intake: high vs low 2016	0.93	0.81, 1.06	0.290	 +
Aune, high tree nuts consumption vs low tree nuts consumption 2016	0.93	0.77 , 1.13	0.458	
Chen, C-vitamin intake: high vs low 2019	0.77	0.64, 0.92	0.005	
Cheng, MUFAs: high intake vs low 2016	0.92	0.79 , 1.08	0.296	 +
Larrson, Heavy drinkers vs no drinkers 2016	1.13	0.95 , 1.19	0.033	+-
Larrson, light-moderate drinkers vs never drinkers 2016	0.87	0.82, 0.91	0.000	
Larsson, High intake of PUFAs vs low intake of PUFAs 2012	0.82	0.71, 0.94	0.006	
Larsson, occasional drinkers vs light-moderate drinking 2016	0.98	0.94, 1.04	0.433	+
Narain, sugar-sweetened beverage: high vs low intake 2016	1.01	0.74 , 1.37	0.950	
RCT ³				
Abdelhamid, alpha linoleic acid 2019	1.20	0.85 , 1.69	0.298	
Abdelhamid, long chain omega-3 2019	1.15	0.66, 2.01	0.623	
Bin, Vitamin E 2019	1.01	0.94, 1.09	0.792	•
				<u>.</u>
				1

Figure 4. Summary results of effects size for ischemic of stroke events, based on study design of selected primary studies for each meta-analysis

Observational	ES	95% CI	Sig.	
Alexander, cheese: high vs low intake 2016	0.87	0.77, 0.99	0.030	=
Alexander, milk intake: high vs low 2016	0.93	0.69 , 1.25	0.632	
Chen, C-vitamin intake: high vs low 2019	1.07	0.38, 3.00	0.898	
Cheng, MUFAs: high intake vs low 2016	0.68	0.49, 0.96	0.025	
Larsson, High intake of PUFAs vs low intake of PUFAs 2012	0.80	0.55 , 1.15	0.236	- •+
Narain, sugar-sweetened beverage: high vs low intake 2016	0.87	0.68 , 1.12	0.274	- ■-
RCT				
Abdelhamid, alpha linoleic acid 2019	1.09	0.89 , 1.33	0.400	+
Abdelhamid, long chain omega-3 2019	1.06	0.96 , 1.96	0.749	-
Bin, Vitamin E 2019	1.12	0.94 , 1.33	0.201	+
				•
				1

Figure 5. Summary results of effects size for hemorrhagic of stroke events, based on study design of selected primary studies for each meta-analysis

Dairy products

Four meta-analyses specifically investigated the use of milk and dairy products. In the work of Mullie et al. [9] it is evident that the consumption of 200 ml of milk does not lead to an increased risk of stroke, while Alexander et al. [5] show that risk reduction appears to border statistical significance. Surprisingly, however, the consumption of cheese seems to reduce stroke risk (Table 1). The latter author has also performed a dose-response analysis which suggests that in total the intake of dairy products is protective against stroke; specifically, the daily consumption of cheese with a range from 0.5 to 1.5 servings; in particular, an intake of calcium from dairy products of 100-300 mg/dl or above 300 mg/dl also helps to protect (Table 2). On the other hand, a single meta-analysis investigated the correlation between risk of developing stroke and consumption of butter [10] and did not show a statistically significant increase in risk (Table 1). The paper by Wu et al concerned specifically yogurt consumption, but its outcome was not statistically significant, RR= 1.02 (0.92-1.13). This evidence was similar also in the dose-response analysis: for quantities below 200 gr / day, RR= 1.06 (0.98-1.15), for quantities above 200 gr / day, RR= 0.92 (0.85-1.00) [31]. Instead, the more controversial use of calcium along with vitamin D versus placebo shows a RR= 1.20 (1.00-1.43) [32].

Alcohol consumption

Two meta-analyses have been identified that affect alcohol as a risk factor for stroke [8,11]. It is possible to summarize the effect of alcohol on stroke substantially as a biphasic effect: protective, if consumed within the limits of 1-2 alcoholic units but very detrimental in the case of more than 4 alcoholic units (conventionally, a drink containing 8 mg of ethanol is identified as an alcoholic unit). Specifically, the consumption of alcohol seems to be protective in ischemic stroke comparing to mild and moderate consumption versus non-drinkers, with a RR= 0.87 (0.81-0.92). As for the impact of alcohol on hemorrhagic stroke, the heavy drinker shows a markedly higher risk for the onset of intracerebral hemorrhage when compared to the occasional drinker: RR = 1.74 (1.45-2.09) [11]. Larsson et al [11] performed a dose-effect analysis was to confirm the above data. The

consumption of 1-2 alcoholic units a day have a protective effect against ischemic stroke. On the other hand, consumption of 4 alcoholic units is associated with an increased risk of ischemic or hemorrhagic stroke [11].

Zhang's meta-analysis also shows how a moderate consumption of alcohol has a protective effect compared to heavy consumption [8].

Mono-unsaturated [MUFAs] and polyunsaturated [PUFAs] fatty acids

A meta-analysis with 10 cohort studies included [14], investigated the consumption of MUFAs; its results show that RR is at the limits of statistical significance [Table 1].

Meta-analyses of Abdelhamid [33] and Hooper [34] on RTC showed that omega 3 and omega 6 do not influence stroke risk, respectively: RR= 1.06 (0.96-1.16) and RR= 1.36 (0.45-4.11). Larsson et al. [15] investigated the consumption of PUFAs, also on cohort studies, finding these molecules to be protective of ischemic stroke [Table 1]. On the contrary, Abdelhaimid's meta-analysis [35] on RTC showed a not significant PUFA effect on stroke risk: RR= 0.91 (0.58-1.44).

Saturated fatty acids

Muto et al [36] investigated the effect of a diet rich in saturated fatty acids. They showed that with regard to ischemic stroke, the overall HR was 0.89 (0.82-0.96), while it was 0.68 (0.47-0.96) for hemorrhagic stroke.

Hazelnuts

Chen [19] investigated the consumption of nuts and the incidence of stroke. The consumption of hazelnuts appears to be protective against stroke (Table 1). There are, however, some differences regarding the consumption of different type of hazelnuts (Table 1).

In the dose-effect study, Chen shows how a weekly consumption of up to 5 portions could to reduce mortality [17] (table 2).

Black and green tea

A meta-analysis by Arab et al. [24] investigated the consumption of green and black tea as a protective factor in the onset of stroke. The results, shown in table 1, appear to be rather encouraging, favoring a reduction in the risk of stroke.

Sugary drinks

Narain et al. [38] have studied the consumption of sugary drinks, determining how a high intake of such drinks, especially in women, seems to favor ischemic stroke [Table 1].

Whole Grains

One meta-analysis investigated the protective use of whole grains in the development of cardiovascular diseases and also in strokes [28]. This evidence was confirmed even after the dose-response analysis (Table 2).

Fruit and vegetables

Aune's research illustrated the benefit of consumption of fruits and vegetables against the onset of stroke (Table1). The benefit appears evident in the dose-response study, particularly for certain categories of plant-based foods, such as citrus fruits and citrus juices, for ischemic and hemorrhagic stroke, and the consumption of leafy vegetables for the onset of only ischemic stroke [17] (Table 2).

Vitamin B complex

A recent meta-analysis shows that folic acid can reduce stroke risk with a RR= 0.79 (0.68-0.92); while, the combined intake of folic acid + other B-complex vitamins does not appear to be significant, with a RR= 0.91 (0.82-1.00) [25].

Carbohydrate intake

A meta-analysis analyzed the incidence of stroke with respect to the total consumption of carbohydrates and respect to their glycemic index and glycemic load [39]. The risk of stroke incidence was significant in foods with a higher glycemic load: RR= 1.19 (1.05-1.36). No statistical significance was found for the consumption of the glycemic carbohydrate index (RR= 1.1, 0.99-1.21) and for global carbohydrate consumption (RR= 1.12, 0.93-1.25) [35].

Soy

A meta-analysis investigated soy consumption and analyzed 11 observational studies, including 4 case-controls and 7 cohort studies [40]. The categories with high soy consumption were compared to those with low soy consumption. In the cumulative analysis soy consumption reduced the risk of stroke significantly (RR= 0.82, 0.68-0.99) [40].

Fibers

The meta-analysis by Zhang et al. on fiber consumption highlighted how high fiber intakes are associated with a reduction in RR stroke. In particular, high fiber consumption proved to be protective in ischemic stroke (RR= 0.83, 0.74-0.93), but not in hemorrhagic stroke (RR= 0.87, 0.72-1.05). The dose-response analysis showed that the daily intake of 5 grams of fiber leads to a risk reduction (RR= 0.90, 0.82-0.99). A further increase of 10 grams shows a higher decrease of RR= 0.84 (0.75-0.94) [41].

Flavonoids

High consumption of flavonoids investigated in the meta-analysis by Tang et al, is stroke protective (RR= 0.89; 0.82-0.97). The daily increase of 100 g showed no statistically significant results (RR= 0.91; 0.77-1.08) [42].

Protein

Zhang et al [43] showed that the total protein consumption does not affect stroke risk. However, the consumption of vegetable proteins could be protective (RR= 0.90; 0.82; 0.99).

Fish

Qin's meta-analysis investigated fish consumption [44]. There is no significant relative risk in the comparison between the consumption of lean fish and fatty fish (RR=0.88; 0.74-1.04), while there is a protective effect in the consumption of large quantities of lean fish compared to the consumption of few quantities of lean fish (RR=0.81; 0.67-0.99). Xun's meta-analysis [45] shows how a large consumption of fish has a protective effect against stroke: OR= 0.91 (0.85-0.98).

Meat

Kim et al investigated the incidence of stroke with respect to meat consumption. Red meat consumption is associated with an increase of risk (RR=1.11; 1.03-1.20). On the other hand, there is a protective effect in the consumption of white meat (RR=0.87; 0.78-0.96) [46].

Chocolate

Chocolate consumption shows a protective effect against stroke: RR= 0.84 (0.78-0.90) [47].

Vitamin C

The meta-analysis of Chen et al. concerned vitamin C intake [48]. Consumption of high doses is preventive in the development of ischemic or hemorrhagic stroke (RR= 0.81; 0.74-0.90). Similarly, the dose-response analysis verified that the incremental intake of 100 mg / day of vitamin C has a protective role in the incidence of stroke, RR= 0.82 (0.75-0.93). In particular, the intake of vitamin C would seem to be protective against ischemic stroke, RR= 0.77 (0.64-0.92), but not hemorrhagic (RR= 1.07; 0.38-3.00).

Legumes

The consumption of 100 grams per week of pulses showed RR= 1.07 (0.77-1.50), with regard to ischemic stroke and RR=1.23 (0.91; 1.66) as regards to hemorrhagic stroke [49].

Eggs

A moderate consume of eggs is associated with a potential decrease of stroke, RR= 0.88 (0.81-0.97) [50].

Olive oil

Martin-Gonzales's meta-analysis has highlighted that olive oil consumption has a protective effect against stroke: RR= 0.74 (0.60-0.92) [51].

Vitamin E

The results of a meta-analysis on RTC by Bin et al [52] show that the supplement of vitamin E is irrelevant on stroke onset, RR= 1.01 (0.94-1.07) [52]; on the other hand, the meta-analysis by

Cheng et al. regarding observational studies, highlights that a supplement of vitamin E decreases stroke risk: RR= 0.83 (0.73-0.94) [53].

Geographical distribution of primary studies

As regards to geographical distribution of primary studies, respect to beverage, food, eating habits or integration, there is a strong difference among the areas considered (figure 2, table 3). It is important to underline that no studies about diet style were conducted in Canada and Australia.

Europe and USA are areas where the majority of studies were conducted: 8 studies on cereals in Europe, 5 in USA and 3 in Japan. Similar trend for fruits and vegetables: 22 studies in Europe, 14 in USA, 7 Japan and 1 in China-Korea-Singapore area.

It is important to underline that Europe and USA have also a particular interest to investigate alcohol use (figure 2, table 3); in fact, they have conducted 10 and 13 works respectively, while only 2 studies in China-Korea-Singapore region. All areas considered have studied with particular attention integrations (omega 3) (figure 2, table 3).

DISCUSSION

Our review aims to carry out an overview of meta-analyses about the impact of nutrition in the prevention of ischemic/hemorrhagic stroke. Compared to a recent review [54] we wanted to underline some aspects: first, the geographical setting of conducting individual primary studies; second, study design of primary studies (cohort o RTC) and third, methodology quality of meta-analyses. Respect to the first point, it is important to underline that all primary studies came from countries with high income levels. This evidence shows that as many countries are not represented, therefore consequent different lifestyles, ethnic groups, potentially harmful or virtuous eating habits are not reported. Moreover, different production standards, regulated by different national or international legislation, could influence the final summary of the data in evidence.

Omega 3 and 6 integrators are the most studied, both in meta-analyses of observational studies and RTC. Discrepancies emerge on the long-chain omega 3 between the meta-analysis of Larsson [15]

and that of Abdelhamid [35]: probably this difference is attributable to a greater sample size in Larsson's meta-analysis and to more recent publications.

Another highly studied integrator is vitamin C (in China-Singapore-Korea, Europe and USA). Vitamin C could have a neuroprotective action due to its antioxidant activity. Murine model studies have shown that high circulating levels of vitamin C may be able to reduce the ischemic area [55]. However, a Japanese population-based study noted that vitamin C neuroprotection activity would be more effective in non-smokers than smokers, demonstrating that the overall lifestyle is responsible for cardiovascular events [56].

Flavonoids act like to vitamin C. Studies have been conducted in Europe, USA and China-Singapore-Korea area (figure 2). Flavonoids perform a neuroprotective action through a triple mechanism: reducing reactive oxygen species (ROS), reducing intracellular concentration of glutamate and inducing the production of nitric oxide (NO) by activating the enzyme NO-synthase, a powerful vasodilator [57]. However, a Japanese population-based study noted that vitamin C neuroprotection would be more effective in non-smokers than smokers [56].

The role of some vitamins in relation to cardiovascular risk has also been studied. B vitamins, in particular folic acid, cardiovascular diseases, may be linked to the improvement of endothelial function, associated with the increase of 5-methyltetrahydrofolate reductase with the reduction of the circulating homocysteine [58]. Vitamin E, instead could play a role in endothelial homeostasis in respect to local inflammation, lipid metabolism and the stability of atherosclerotic plaques [59]. Comparing the geographical areas examined, USA and Europe show particular attention to lifestyles. In fact, numerous studies have been conducted in these continents also in relation to alcohol consumption (figures 2, table 3). This data could be considered as an indicator of awareness with respect to food education policies and social habits which, however, appear to be very different between different nations, as in the case of Europe [60]. It is well known how the adoption of a healthy diet, with an adequate intake of carbohydrates, greatly reduces cardiovascular risk and obesity [61].

Regarding tea consumption there are primary studies (figures 2, table 3). Tea as a drink originated in Asia and consumption is widespread worldwide. Among the other substances contained in tea leaves, the beneficial effects are attributed mostly to Camelia Sinenis, a plant rich in catechins – molecules with a positive effect on endothelial function [62]. The benefit of this product in the meta-analysis of Arab et al has been shown for both Asians and Non-Asians [24].

There are many studies on cereals in a great part of the areas considered (figure 2). It is important to underline that cereals have not shown a potential benefit on stroke onset [28]; on the contrary, the consumption of fresh fruit, nuts and legumes entails a potential risk reduction [19,28,40,49].

Their consumption is encouraged by all the most recent guidelines on cardiovascular prevention [54,63,64] even though there are notable differences between geographical areas and social context [18,63]. As pointed out by Lake et al. climate change could also affect the accentuation of inequalities in access to food and healthy food particularly in developing countries [65,66].

The results of the studies regarding red meat are controversial. Excessive consumption of red meat and specially processed meat, studied in only two geographical areas (Europe and USA), show an increase in risk; while moderate consumption of red meat does not lead to an alteration of the lipidic structure or a significant pressure rise [67]; moreover, cardiovascular risk could be mitigated by the adequate consumption of fruit and vegetables [68].

Finally, it is important to underline that same widespread types of cancer, such as i.e. colorectal and breast cancer [69-71], and cardiovascular diseases have in common many risk factors.

CONCLUSIONS

Most physicians and health professionals underestimate the importance of food and lifestyles, smoking, consumption of alcohol, daily exercise as stroke risk factor. It is very important to underline nutrition in stroke prevention.

This review reveals that choosing foods with a more favorable nutritional profile may help reduce the risk of cardiovascular diseases and stroke in particular. These indications can be specifically addressed to those classes of the population with an increased risk of stroke, using a "tailored" preventive medicine for individuals based on genetic predisposition, presence of other risk factors or predisposing lifestyles.

Although far from identifying a "superfood" with nutraceutical properties that can guarantee absolute well-being or zero risk, it is clear that the choice of a balanced can reduce the risk of stroke, a disease with high social costs.

Ludwig Feuerbach in 1850 wrote "You are what you eat". The research carried out so far on nutrition confirms this brilliant statement. Governments should back public health policies and promote healthy lifestyles.

Supplementary Materials

Table S1: Evaluation of selected meta-analysis according with AMSTAR-2 Scale.

Acknowledgments

We have not received funds in support of research work or for covering the costs to public in open access.

Author Contributions

E.A.: Guarantor of the article, study concept and design, literature search, data analysis, and manuscript writing. P.M.A.: literature search, data abstraction, participant manuscript writing. L.R.: literature search and graphic processing. M.M.: literature search. All authors have approved the final version of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

- 1. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensha GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson LM, Truelsen T et al. Global Burden of Diseases, Injuries, Risk Factors Study 2010 [GBD 2010]; GBD Stroke Experts Group.] Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. *Lancet Glob Health.* **2013**, *1*(5), e259-281.
- 2. Olesen, J, Gustavsson A, Svensson, M, Wittchen, HU, Jönsso B, CDBE 2010 study group European Brain Council. The economic cost of brain disorders in Europe. *Eur J Neurol.* **2012**, *19*(*1*), 155-162.
- 3. Demaerschalk BM, Hwang HM, Leung G. US cost burden of ischemic stroke: a systematic literature review. *Am J Manag Care.* **2010**, *16*(7), 525-533.
- 4. Alwan A. Global status report on Noncommunicable diseases 2010; World Health Organization. 2011.
- 5. Alexander DD, Bylsma LC, Vargas AJ, Cohen SS, Doucette A, Mohamed M, Irvin SR, Miller PE, Watson H, Fryzek JP. Dairy consumption and CVD: a systematic review and meta-analysis. *Br J Nutr.* **2016**, *11*(4), 737-750.
- 6. Briggs MA, Petersen KS, Kris-Etherton PM, Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. *Healthcare*. **2017**, *5*(2), e29.
- 7. Zhang Y, Parikh A, Qian S. Migraine and stroke. Stroke Vasc Neurol. 2017, 2(3), 160-167.

- 8. Zhang X, Shu L, Si C, Yu X, Gao W, Liao D, Zhang L, Liu X, Zheng, P. Dietary Patterns and Risk of Stroke in Adults: A Systematic Review and Meta-analysis of Prospective Cohort Studies. *J Stroke Cerebrovasc Dis.* **2015**, *24*(*10*), 2173-2182.
- 9. Mullie P, Pizot C, Autier P. Daily milk consumption and all-cause mortality, coronary heart disease and stroke: a systematic review and meta-analysis of observational cohort studies. *BMC Public Health.* **2016**, *16*(1), 1236.
- 10. Pimpin L, Wu JH, Haskelberg H, Del Gobbo L, Mozaffarian D. Is Butter Back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. *PLoS One.* **2016**, *11*(6), e0158118.
- 11. Larsson SC, Wallin A, Wolk A, Markus HS. Differing association of alcohol consumption with different stroke types: a systematic review and meta-analysis. *BMC Med.* **2016**, *14*(1), 178.
- 12. Michaëlsson K, Wolk A, Langenskiold S, Basu S, Warensjo Lemming E, Melhus, H.; Byberg L. Milk intake and risk of mortality and fractures in women and men: Cohort studies. *BMJ*. **2014**, *349*, g6015.
- 13. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, Willett WC, Geleijnse JM. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. *Am J Clin Nutr.* **2011**, *93*(*1*), 158-171.
- 14. Cheng P, Wang J, Shao W. Monounsaturated fatty acid intake and stroke risk: a meta-analysis of prospective cohort studies. *J Stroke Cerebrovasc Dis.* **2016**, 25(6), 1326-1334.
- 15. Larsson, S.C.; Orsini N, Wolk A. Long-chain omega-3 polyunsaturated fatty acids and risk of stroke: a meta-analysis. *Eur J Epidemiol.* **2012**, *27*(*12*), 895-901.
- 16. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. *Am J Clin Nutr.* **1999**, *70*(*6*), 1009-1015.
- 17. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. *Int J Epidemiol.* **2017**, *46*(*3*), 1029-1056.
- 18. Lee-Kwan SE, Moore LV, Blanck HM, Harris DM, Galuska D. Disparities in State-Specific Adult Fruit and Vegetable Consumption United States 2015. *MMWR Morb Mortal Wkly Rep.* **2017**, *66*(*45*), 1241–1247.
- 19. Chen GC, Zhang R, Martínez-González MA, Zhang ZL, Bonaccio M, van Dam RM, Qin LQ. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. *Food Funct.* **2017**, *8*(11), 3893-3905.
- 20. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. *BMC Med.* **2016**, *14*(1), 207.
- 21. Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. *Am. J. Clin. Nutr.* **2015**, *102*, 1347–1356.
- 22. Carrasquilla GD, Frumento P, Berglund A, Borgfeldt C, Bottai M, Chiavenna C, Eliasson M, Engström G, Hallmans G, Jansson JH, et al. Postmenopausal hormone therapy and risk of stroke: A pooled analysis of data from population-based cohort studies. PLoS Med. 2017, 14(11), e1002445.
- 23. Pereira MA, Kartashov AI, Ebbeling CB, Van Horn L, Slattery ML, Jacobs DR Jr, Ludwig DS. Fast-food habits, weight gain, and insulin resistance [the CARDIA study]: 15-year prospective analysis. *Lancet.* **2005**, *365*(*9453*), 36-42.
- 24. Arab L, LiU W, Elashoff D. Green and black tea consumption and risk of stroke: a meta-analysis. *Stroke*. **2009**, *40*(*59*), 1786-1792.

- 25. Tian T, Yang KQ, Cui JG, Zhou LL, Zhou XL. Folic Acid Supplementation for Stroke Prevention in Patients with Cardiovascular Disease. *Am J Med Sci.* **2017**, *354*(4), 379-387.
- 26. Yang HT, Lee M, Hong KS, Ovbiagele B, Saver JL. Efficacy of folic acid supplementation in cardiovascular disease prevention: an updated meta-analysis of randomized controlled trials. *Eur J Intern Med.* **2012**, *23*(8), 745-754.
- 27. Miller ER 3rd, Juraschek S, Pastor-Barriuso R, Bazzano LA, Appel LJ, Guallar E. Metaanalysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. *Am J Cardiol.* **2010**, *106*(4), 517-527.
- 28. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response analysis of prospective studies. *BMJ.* **2016**, *353*, i2716.
- 29. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J Clin Epidemiol.* **2009**, 62(10), 1006-1012.
- 30. Shea BJ, Reeves BC, Wells Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, Henry DA. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ*. **2017**, *358*: j4008.
- 31. Wu L, Sun D. Consumption of Yogurt and the Incident Risk of Cardiovascular Disease: A Meta-Analysis of Nine Cohort Studies. *Nutrients*. **2017**, *9*(*3*), pii: E315.
- 32. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. *BMJ*. **2011**, *342*, d2040.
- 33. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KH, AlAbdulghafoor FK, Summerbell CD, Worthington HV, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev.* **2018**, *11*, CD003177.
- 34. Hooper L, Al-Khudairy L, Abdelhamid AS, Rees K, Brainard JS, Brown TJ, Ajabnoor SM, O'Brien AT, Winstanley LE, Donaldson DH, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev.* **2018**, *11*, CD011094.
- 35. Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KH, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev.* **2018**, *11* CD012345
- 36. Muto M, Ezaki O. High Dietary Saturated Fat is Associated with a Low Risk of Intracerebral Hemorrhage and Ischemic Stroke in Japanese but not in Non-Japanese: A Review and Meta-Analysis of Prospective Cohort Studies. *J Atheroscler Thromb*. **2018**, 25(5), 375-392.
- 37. Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. *Cochrane Database Syst Rev.* **2015**, *6*, CD01173.
- 38. Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. *Int J Clin Pract.* **2016**, *70*(*10*), 791-805.
- 39. Cai X, Wang C, Wang S, Cao G, Jin C, Yu J, Li X, Yan J, Wang F, Yu W, et al. Carbohydrate Intake, Glycemic Index, Glycemic Load, and Stroke: A Meta-analysis of Prospective Cohort Studies. *Asia Pac J Public Health*. **2015**, *27*(*5*), 486-496.
- 40. Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. *Eur J Prev Cardiol*. **2017**, 24(7), 735-747.

- 41. Zhang Z, Xu G, Liu D, Zhu W, Fan X, Liu X. Dietary fiber consumption and risk of stroke. *Eur J Epidemiol.* **2013**, 28(2),119-130.
- 42. Tang Z, Li M, Zhang X, Hou W. Dietary flavonoid intake and the risk of stroke: a dose-response meta-analysis of prospective cohort studies. *BMJ Open.* **2016**, *6*(*6*), e008680.
- 43. Zhang XW, Yang Z, Li M, Li K, Deng YQ, Tang ZY. Association between dietary protein intake and risk of stroke: a meta-analysis of prospective studies. *Int J Cardiol.* **2016**, 223, 548-551.
- 44. Qin ZZ, Xu JY, Chen GC, Ma YX, Qin LQ. Effects of fatty and lean fish intake on stroke risk: a meta-analysis of prospective cohort studies. *Lipids Health Dis.* **2018**, 17(1), 264.
- 45. Xun P, Qin B, Song Y, Nakamura Y, Kurth T, Yaemsiri S, Djousse L, He K. Fish consumption and risk of stroke and its subtypes: accumulative evidence from a meta-analysis of prospective cohort studies. *Eur J Clin Nutr.* **2012**, *66*(*11*), 1199-1207.
- 46. Kim K, Hyeon J, Lee SA, Kwon SO, Lee H, Keum N, Lee JK, Park SM. Role of Total, Red, Processed, and White Meat Consumption in Stroke Incidence and Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. *J Am Heart Assoc.* **2017**, *6*(9), e005983.
- 47. Yuan S, Li X, Jin Y, Lu J. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. *Nutrients*. **2017**, *9*(7), e688.
- 48. Chen GC, Lu DB, Pang Z, Liu QF. Vitamin C intake, circulating vitamin C and risk of stroke: a meta-analysis of prospective studies. *J Am Heart Assoc.* **2013**, *2*(*6*), e000329.
- 49. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. *Am J Clin Nutr.* **2014**, *100*(*1*), 278-288.
- 50. Alexander DD, Miller PE, Vargas AJ, Weed DL, Cohen SS. Meta-analysis of Egg Consumption and Risk of Coronary Heart Disease and Stroke. *J Am Coll Nutr.* **2016**, *35*(8), 704-716.
- 51. Martínez-González MA, Dominguez LJ, Delgado-Rodríguez M. Olive oil consumption and risk of CHD and/or stroke: a meta-analysis of case-control, cohort and intervention studies. *Br J Nutr.* **2014**, *112*(2), 248-259.
- 52. Bin Q, Hu X, Cao Y, Gao F. The role of vitamin E (tocopherol) supplementation in the prevention of stroke. A meta-analysis of 13 randomised controlled trials. *Thromb Haemost*. **2011**, *105*(4), 579-585.
- 53. Cheng P, Wang L, Ning S, Liu Z, Lin H, Chen S, Zhu J. Vitamin E intake and risk of stroke: a meta-analysis. *Br J Nutr.* **2018**, *120*(*10*), 1181-1188.
- 54. Iacoviello L, Bonaccio M, Cairella G, Catani MV, Costanzo S, D'Elia L, Giacco R, Rendina D, Sabino P, Savini I, et al. Diet and primary prevention of stroke: Systematic review and dietary recommendations by the ad hoc Working Group of the Italian Society of Human Nutrition. *Nutr Metab Cardiovasc Dis.* **2018**, *28*(4), 309-334.
- 55. Kusaki M, Ohta Y, Inufusa H, Yamashita T, Morihara R, Nakano Y, Liu X, Shang J, Tian F, Fukui Y, et al. Neuroprotective Effects of a Novel Antioxidant Mixture Twendee X in Mouse Stroke Model. *J Stroke Cerebrovasc Dis.* **2017**, *26*(6), 1191-1196.
- 56. Uesugi S, Ishihara J, Iso H, Sawada N, Takachi R, Inoue M, Tsugane S. Dietary intake of antioxidant vitamins and risk of stroke: the Japan Public Health Center-based Prospective Study. *Eur J Clin Nutr.* **2017**, *71*(*10*), 1179-1185.
- 57. Tressera-Rimbau A, Arranz S, Eder M, Vallverdú-Queralt A. Dietary Polyphenols in the Prevention of Stroke. *Oxid Med Cell Longev.* **2017**, 7467962.
- 58. Shirodaria C, Antoniades C, Lee J, Jackson CE, Robson MD, Francis JM, Moat SJ, Ratnatunga C, Pillai R, Refsum H, et al. Global improvement of vascular function and redox state with low-dose folic acid: implications for folate therapy in patients with coronary artery disease. *Circulation*. **2007**, *115*(*17*), 2262-2270.
- 59. Sozen E, Demirel T, Ozer NK; Vitamin E: Regulatory Role in the cardiovascular system *IUBMB Life*. **2019**, *71*(4), 507-515.

- 60. Altobelli E, Rapacchietta L, Angeletti PM, Barbante L, Profeta FV, Fagnano R. Breast cancer screening programmes across the who european region: differences among countries based on national income level. *Int J Environ Res Public Health.* **2017**, *4*(4), e452.
- 61. Hu T, Bazzano LA. The low-carbohydrate diet and cardiovascular risk factors: evidence from epidemiologic studies. *Nutr Metab Cardiovasc Dis.* **2014**, *24*(4), 337-343.
- 62. Jochmann N, Lorenz M, Krosigk AV, Martus P, Böhm V, Baumann G, Stangl K, Stangl V. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. *Br J Nutr.* **2008.** *99*(*4*), 863-868.
- 63. Pandian JD, Gall SL, Kate MP, Silva GS, Akinyemi RO, Ovbiagele BI, Lavados PM, Gandhi DBC, Thrift AG. Prevention of stroke: a global perspective. *Lancet.* **2018**, *392*(*10154*), 1269-1278.
- 64. Lake IR, Hooper L, Abdelhamid A, Bentham G, Boxall AB, Draper A, Fairweather-Tait S, Hulme M, Hunter PR, Nichols G, Waldron KW. Climate change and food security: health impacts in developed countries. *Environ Health Perspect* **2012**, 120(11), 1520-1526.
- 65. Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. Climate change has likely already affected global food production. *PLoS ONE.* **2019** *14*(5), e0217148.
- 66. Willett WC, Stampfer MJ. Current evidence on healthy eating. *Annu Rev Public Health*. **2013**, *34*, 77-95.
- 67. O'Connor LE, Kim JE, Campbell WW. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials. *Am J Clin Nutr.* **2017**, *105*(1), 57-69.
- 68. Bellavia A, Stilling F, Wolk A. High red meat intake and all-cause cardiovascular and cancer mortality: is the risk modified by fruit and vegetable intake? *Am J Clin Nutr.* **2016**, *104*(4), 1137-1143.
- 69. Altobelli E, Rapacchietta L, Marziliano C, Campagna G, Profeta VF, Fagnano R. Differences in colorectal cancer surveillance epidemiology and screening in the WHO European Region. *Oncol Lett.* **2019** Feb;*17*(2):2531-2542.
- 70. Altobelli E, Lattanzi A. Breast cancer in European Union: an update of screening programmes as of March 2014 (review). *Int J Oncol.* **2014** Nov;45(5):1785-1792.
- 71. Altobelli E, D'Aloisio F, Angeletti PM. Colorectal cancer screening in countries of European Council outside of the EU-28. *World J Gastroenterol*. **2016** May 28;22(20):4946-4957.