

1 Article

2

Effect of Land Use and Land Cover Change on Soil 3 Erosion in Erer Sub-Basin, Northeast Wabi Shebelle 4 Basin, Ethiopia

5 **Gezahegn Weldemariam ^{1,*} and Arus Edo Harka ²**6 ¹ Geoinformation Science Program, School of Geography and Environmental Studies, Haramaya University,
7 P.O. Box 138, Dire Dawa, Ethiopia8 ² Hydraulic and Water Resources Engineering Department, Haramaya Institute of Technology (HiT),
9 Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia, harqaa@gmail.com

10 * Correspondence: gezahegnw3@gmail.com; Tel.: +251-09-10-96 14 91

11

12 **Abstract:** Land use and land cover change (LULCC) is a critical factor for enhancing the soil erosion
13 risk and land degradation process in the Wabi Shebelle Basin. Up-to-date spatial and statistical data
14 on basin-wide erosion rates can provide an important basis for planning and conservation of soil
15 and water ecosystems. The objectives of this study were to examine the magnitude of LULCC and
16 consequent changes in the spatial extent of soil erosion risk and identify priority areas for Soil and
17 Water Conservation (SWC) in the Erer Sub-Basin, Wabi Shebelle Basin, Ethiopia. The soil loss rates
18 were estimated using an empirical prediction model of the Revised Universal Soil Loss Equation
19 (RUSLE) outlined in the ArcGIS environment. The estimated total annual actual soil loss at the sub-
20 basin level was 1.01 million tons in 2000 and 1.52 million tons in 2018 with a mean erosion rate of
21 75.85 t ha⁻¹ y⁻¹ and 107.07 t ha⁻¹ y⁻¹, respectively. The most extensive soil loss rates were estimated in
22 croplands and bare land cover, with a mean soil loss rate of 37.60 t ha⁻¹ y⁻¹ and 15.78 t ha⁻¹ y⁻¹,
23 respectively. The soil erosion risk has increased by 18.28% of the total area, and decreased by 15.93%,
24 showing that the overall soil erosion situation is worsening in the study area. We determined SWC
25 priority areas using the Multi-Criteria Decision Rule (MCDR) approach, indicates that the top three
26 levels identified for intense SWC account for about 2.50%, 2.38%, and 2.14%, respectively. These
27 priority levels are typically situated along the steep slopes in Babile, Fedis, Fik, Gursum, Gola Oda,
28 Haramaya, Jarso, and Kombolcha districts that need emergency SWC measures.29 **Keywords:** LULCC; SWC; soil erosion risk; Erer Sub-Basin; RUSLE; ArcGIS; SWC; MCDR

30

31

1. Introduction

32 Soil erosion is a complex three-phase dynamic process involving detachment and transport of
33 the particles or aggregate topsoil by the physical forces of wind, water, and gravity (mass movement)
34 and immediate sediment deposition in downstream areas [1–8]. Water-induced soil erosion is indeed
35 the most important land degradation problem worldwide [3–5]. Soil erosion has been documented
36 as one of the greatest global problems that result in serious threats to natural resources, agriculture,
37 and the environment [1–7]. Erosion displaces soil organic carbon and most important nutrients and
38 consequently affects vegetation growth, biodiversity, and overall sustainability of ecosystem services
39 and functions [2–9]. Soil erosion can also cause severe environmental problems, including soil and
40 water degradation, a decrease in land productivity, and eutrophication and sedimentation of water
41 bodies [3–10]. Numerous studies have reported that the magnitude of soil erosion rates has been
42 accelerating worldwide due to LULCC and inappropriate land use and management practices
43 resulting in widespread land degradation process [2–5, 12–18]. The global annual average potential
44 soil loss due to water-caused erosion was estimated at 35 billion tons in 2001 [4]. LULC changes have
45 been accounted for an overall increase of 2.5% in the global average soil erosion between 2001 and

46 2012 [4]. According to the study by the Global Soil Partnership (GSP) [13], around 75 billion tons of
47 topsoil is lost annually due to erosion from the arable land worldwide that is equivalent to about \$400
48 billion losses in agricultural production. In connection to this, the Food and Agriculture Organization
49 (FAO) of the United Nations and Intergovernmental Technical Panel on Soils [14] stated that "if
50 action is not taken to reduce erosion, total crop yield losses projected by the year 2050 would be
51 equivalent to removing 1.5 million km² of land from crop production—or roughly all the arable land
52 in India". In the developing countries where the overall economy and the livelihood of a majority of
53 the population depend on the productivity of their land, the displacement of the most productive
54 topsoil layer by erosion and a poor conservation practices have resulted in the reductions in
55 agricultural production and land productivity potential and contributing to food insecurity [18,19].

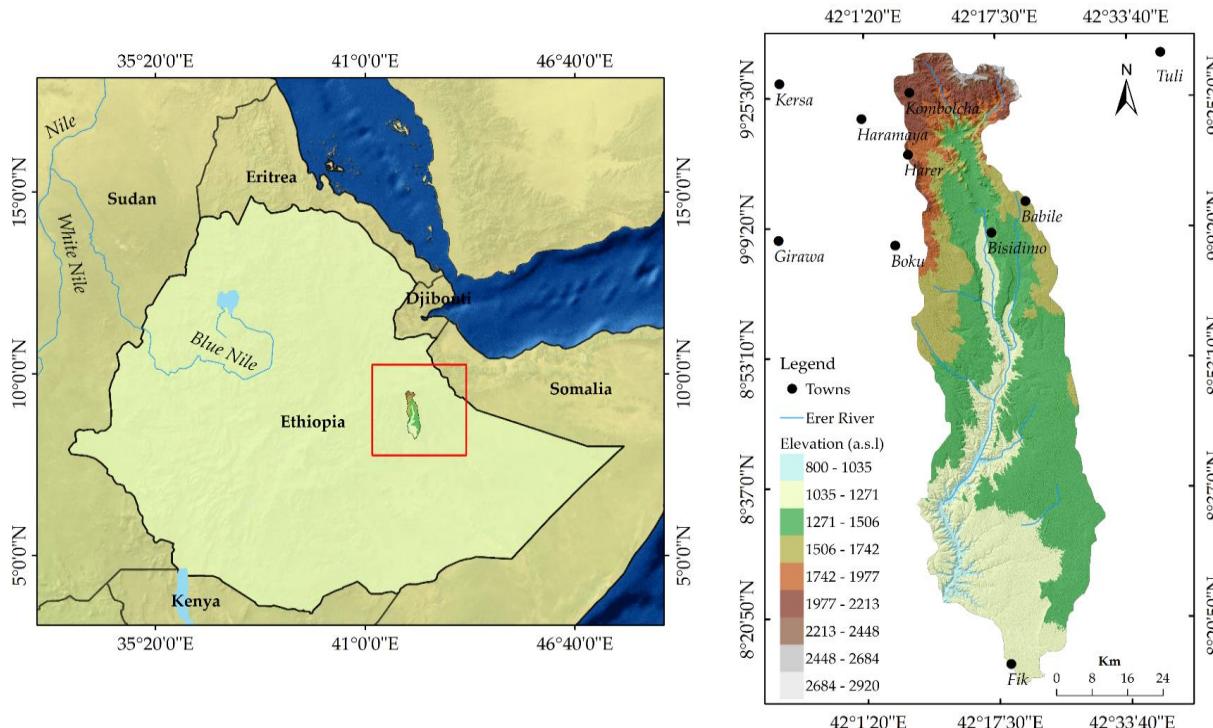
56 With a population of about 107.53 million (estimated as of December 2018) growing at an annual
57 rate of 2.46%, Ethiopia is the most populous landlocked country in the continent of Africa, and the
58 second-most populous nation in Africa [20]. Agriculture sector, which accounts for about 50% of the
59 Gross Domestic Product (GDP), 85% of the total export revenue, and over 80% of the total
60 employment, is the main source of the country's economy [21–25]. The great majority of the
61 population is dependent on subsistence agriculture that is an overwhelming vulnerable to the
62 recurrent droughts and land degradation [21–28]. Rapid population increase and growing demand
63 posed a greater pressure on land resources, leading to severe soil erosion and land degradation in
64 various parts of the country. To cope with the worsening environmental problems, a series of SWC
65 programs have been launched in Ethiopia since the 1970s and 1980s [29]. Regardless of conservation
66 measures taken over the past decades, land degradation has continued to threaten crop production
67 and land productivity potential, and negatively affecting food security and the country's economy
68 [29–32]. It was estimated that land degradation cost to an annual agricultural GDP range from 2% to
69 6.75% [21]. The loss of topsoil by water erosion in Ethiopia was estimated at 1.5 billion tons per annum
70 with a mean erosion rate of 42 t ha⁻¹ y⁻¹ [27, 28]. However, the magnitude of soil erosion rates varies
71 across the physiographical regions in the country.

72 The Ethiopian highland, which covers about 44% of the country's total geographical area and
73 sustains the livelihood of about 87% of the population, is the most eroded physiographical regions in
74 the country [34, 35]. The estimated soil loss from the highland areas vary widely from 200 t ha⁻¹ y⁻¹ to
75 as high as 300 t ha⁻¹ y⁻¹ [36–40]. Intense rainfall, low vegetation cover, rugged topography, and
76 anthropogenic factors are thought to be the most important factors contributing to a higher rate of
77 soil erosion. Deforestation, agriculture land and urban expansion, cultivation in upslope areas,
78 uncontrolled and overgrazing were the main anthropogenic drivers of soil erosion in the highland
79 areas of the country [27, 38, 40]. A report from the Soil Conservation Research Program (SCRP)
80 indicates that almost 50% of the Ethiopian highlands were seriously eroded, while 4% of the highland
81 areas have reached a level of irreversibility that they will no longer economically produce again in
82 the foreseen future [38, 39].

83 Assessing and mediating the untoward effects of soil erosion risk while increasing productivity
84 of land resources have drawn the attention of policymakers and conservation planners around the
85 world [5, 11, 15–18, 41–43]. In order to control erosion risk at river basin and watershed scales, there
86 is a need to predict spatially distributed rates of soil erosion and sediment yield [18, 44, 45]. Given
87 the complexity of interplays among and within the physical and hydrological factors that involved
88 soil erosion (e.g., topography, rainfall, vegetation cover, soil, and land use) and soil conservation
89 practices, consistent estimation of soil loss rates in the river basins and watersheds remains a key
90 challenge in erosion study [17, 46–48]. The integration of the hydrological models with a
91 comprehensive geospatial data on physical and hydrological driven processes that causes soil erosion
92 has been recognized as a promising approach for estimation of soil loss and sediment yield.

93 Over the past decades, numerous hydrological models ranging from relatively simple empirical
94 models to more complex physically based prediction models have been developed for the derivation
95 of spatially variable factors and estimating their combined effect on soil erosion and sediment yield
96 [49–63]. As compared with the physical-based models, the empirical models are the widely used
97 prediction tools due to their minimal data required and ease of application to estimate soil loss rates

98 at a regional and global scale [4, 44]. Among these models, the RUSLE [54], which is a derivative of
99 the Universal Soil Loss Equation (USLE) [50], is the most frequently applied model predicting the
100 long-term average annual soil loss caused by raindrop splash and runoff [63, 64]. With the
101 advancement of remote sensing technologies and Geographic Information Systems (GIS), the
102 adoptability of an empirical prediction model of RUSLE is considerably enhanced and soil erosion
103 assessment at different spatial and temporal scales has become possible [4, 45]. There have been a
104 number of RUSLE model-based studies conducted in the various parts of the world for soil loss
105 estimation and conservation planning [2–5, 11, 64, 65].


106 In the Upper Wabi Shebelle Basin, which is located in Ethiopia, soil erosion and land
107 degradation have become serious environmental problems over recent decades. The combination of
108 LULCC, steep slopes, climate, and unsustainable land management practices were found to be the
109 influential factors aggravating the erosion problem at different scales [18, 66–74]. Up-to-date spatial
110 and statistical data on basin-wide erosion rates can provide an important basis for planning and
111 conservation of soil and water resources ecosystems. Studies previously conducted in the Upper
112 Wabi Shebelle Basin typically covered small catchment or watershed, and focused the assessment of
113 soil loss, runoff, sediment yield, and groundwater recharge [18, 67–76]. Such studies have been
114 mainly supported by remote sensing data and GIS-based hydrological models. For instance, Senti et
115 al. [71] examined soil erosion and sediment yield in the Lake Haramaya Catchment of eastern
116 Ethiopia by using the Soil and Water Assessment Tool (SWAT) and Modified Universal Soil Loss
117 Equation (MUSLE) models. They found that the anthropogenic drivers were major causes attributed
118 to severe soil erosion occurring in the catchment [71]. Moreover, Woldemariam et al. [18] applied the
119 RUSEL, GIS, and a MCDR approach to identify priority areas for SWC measures based on the severity
120 levels of soil erosion risk in the Gobele Watershed, East Hararghe Zone, Ethiopia. Selecting the Lafto
121 watershed in the Upper Wabi Shebelle Basin as their study area, Ayala et al. [68] applied the SWAT
122 model to investigate the sensitivity of rainfall-runoff and sediment yield to SWC measures. Likewise,
123 Megersa [67] conducted a similar study with an emphasis on Erer-Guda catchment and reported that
124 the magnitude of rainfall-runoff and sediment yield was considerably higher on cultivated land than
125 in other land covers. Furthermore, Gebere et al. [76] examined the impact of LULCC on the
126 groundwater recharges of the Lake Haramaya Watershed in the East Hararghe Ethiopian highland
127 [76]. However, none of the past studies addressed how the patterns and the process of LULCC have
128 changed the spatial extent of soil erosion risk over the past decades. Therefore, this study was
129 intended to (i) assess the magnitudes of LULCC between 2000 and 2018; (ii) examine consequent
130 spatial changes among soil erosion risk categories; and (iii) identify priority areas for SWC based on
131 the severity levels of soil loss in the Erer Sub-Basin, Wabi Shebelle Basin, Ethiopia. The findings of
132 the present study can provide an important foundation in planning a future intervention to minimize
133 the untoward impacts of soil and water resource degradation in the study area. This study is also
134 important to land degradation neutrality voluntary national target and strategy of Ethiopia [75],
135 which is aimed to attain the land degradation neutral environment throughout the country by the
136 year 2040.

137 2. Materials and Methods

138 2.1. Description of the Study Area

139 The Wabi Shebelle Basin is one of the transboundary river basins in East Africa and a highly
140 important basin in Ethiopia. This study was carried out in the Erer Sub-Basin within the Upper Wabi
141 Shebelle Basin, which is located, geographically, between 08°12'35" N to 09°31'07" N latitude and
142 42°04'27" E to 42°31'07" E longitude with an elevation range of 800–2,920 meters above mean sea
143 level (Figure 1). The drainage area of the Erer Sub-Basin is 3,860-km² of which, about 73.5% is
144 classified as Kolla (warm semiarid), which ranges from 500 to 1500 meters, while Woinadega (cool
145 sub-humid; 1500–2300 meters) and Dega (cool humid; 2300–3200-meters) account for about 25.12%
146 and 1.36%, respectively, of the total drainage area [76]. The mean annual rainfall ranges between 744
147 and 1017 mm (based on data from three meteorological stations: Kombolcha, Babile, and Bisidimo)

148 and mostly occurs during summer [77]. The mean monthly maximum temperature reaches up to
 149 29.95 °C and a mean monthly minimum air temperature reaches up to 16.72 °C. The dominant soil
 150 types include Calcaric regosols, Eutric nitosols, Eutric regosols, Dystric cambisols, Haplic xerosols,
 151 and Humic cambisols, with a proportion of each class contributing 4%, 8%, 20%, 19%, 49%, and 16%,
 152 respectively, of the total study area [78].

153 **Figure 1.** Location of the Erer Sub-Basin, North East Wabi Shebelle Basin, Ethiopia

154 **2.2. Data Collection**

155 This study used numerous geospatial datasets collected from different sources. The average
 156 annual rainfall data for the period twenty years (1998–2018) with fifteen meteorological stations
 157 (Babile, Bedeno, Boku, Bisidimo, Fik, Girawa, Haramaya, Harer, Jijiga, Kersa, Kombolcha, Kulubi,
 158 Legehida, Majo Weldya, and Tuli) was obtained from the National Meteorological Agency (NMA) of
 159 Ethiopia [79]. We used multispectral satellite data from Landsat 5 Thematic Mapper (TM) image (Path
 160 166/Row 54) acquired on 14 January 2000 and Landsat 8 Operational Land Imager (OLI) image (Path
 161 166/Row 54) acquired on 20 March 2018. The Landsat images were retrieved from the United States
 162 Geological Survey (USGS) website via Landsat Look Viewer [79]. Moreover, the field survey and
 163 observations were conducted during January–March 2018 to collect ground truth data correspond to
 164 LULC classes of interest throughout the study area. We used a handheld Global Positioning System
 165 to mark the spatial locations of the reference data. Due to a constraint of field data, Google Earth
 166 Image was employed to collect reference samples for the 2000 Landsat satellite images classification
 167 and accuracy assessment. LULC classes of the samples include bare land, cropland, forestland,
 168 settlement, shrubland, and water bodies. A total of 450-ground truth was collected for the two-study
 169 period from the field stratified randomly to LULC classes and the high-resolution Google Earth
 170 image.

171 The digital elevation model (DEM) of a 30-meter pixel size was provided by the Ministry of
 172 Economy, Trade, and Industry of Japan and the National Aeronautics and Space Administration
 173 (NASA) [82]. In addition, the soil classification map and the attribute value of the soil classes were
 174 downloaded from the FAO Harmonized World Soil Database (HWSD) in the Environmental System
 175 Research Institute (ESRI) shapefile format [83]. A description of the soil classes is given in Table S2.
 176

2.3. Methods

177 2.3.1. Delineation of the sub-basin area

178 We performed the raster analysis based on the terrain data of the DEM [82] with a grid resolution
179 of 30m×30m and delineated the Erer Sub-Basin boundary using the Arc-Hydro extension tools in the
180 ArcGIS software version 10.5 (Environment Systems Research Institute (Esri), Inc. Redlands, CA,
181 USA).

182 2.3.2. LULC Classification

183 The LULC data of the Erer Sub-Basin was interpreted using satellite imagery from the Landsat
184 5 TM image and Landsat OLI image sensors. The two Landsat satellite images were preprocessed to
185 correct the inherent geometric, radiometric, and atmospheric distortion to produce more accurate
186 interpretation results with actual ground scenes representation [83, 84]. Of the spectral bands, each
187 single-band image in the visible (blue, green, and red) and near infrared (NIR), and shortwave
188 infrared (SWIR) spectral bands of TM (1–5, 7) and OLI (2–7) sensors, with a 30 m pixel size, were
189 combined to develop a multi-band composite images [85]. A portion of Landsat images covering an
190 area of interest (AOI) was extracted using the vector shapefile of the study area and the subset tool
191 in ERDAS IMAGINE® software version 2015 (Intergraph Corporation, Huntsville, AL, USA). A
192 preprocessed Landsat satellite images were classified into separate maps of LULC classes using a
193 pixel-based supervised maximum likelihood classifier (MLC) approach. Based on Level 1 of the
194 Anderson classification system [86], the six LULC classes identified in the study area—bare land,
195 cropland, forestland, settlement, shrubland, and water body—have been classified for the 2000 and
196 2018 images separately.

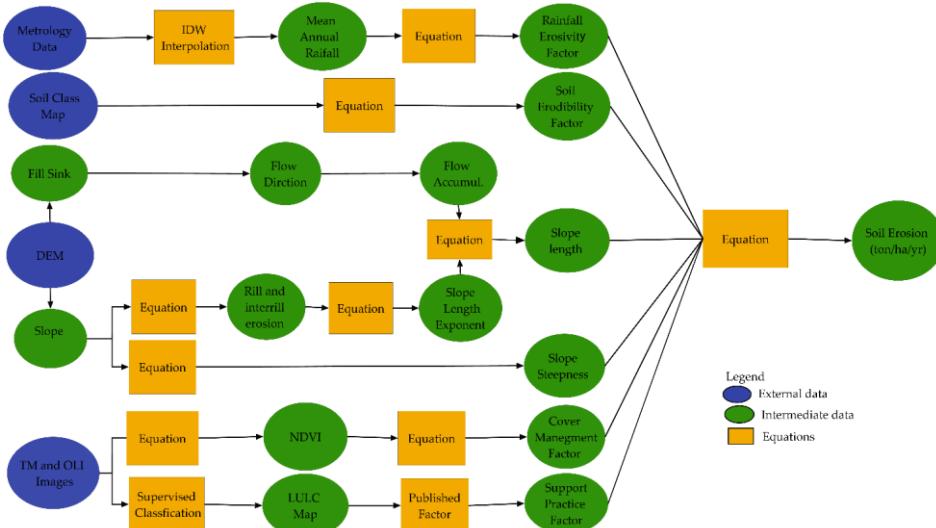
197 Prior to change detection analysis, one should assess the classification accuracy of LULC data
198 generated from remotely sensed data to check the level of agreements between the reference samples
199 and the classified images. In this study, the accuracies the classified of the classified LULC image for
200 2000 and 2018 were validated using ground truth data. Out of 450-ground truth, data generated based
201 on the stratified random sampling method for the LULC classes, 150 reference points were used as
202 training data for image classification. The remaining 300 references were used to validate the
203 accuracy of the classified satellite images of the respective years. Overall accuracy, user and producer
204 accuracies, and the Kappa (K^{\wedge}) coefficient were generated from the error matrices.

205 2.3.3. LULCC Analysis

206 The classified LULC imagery for 2000 and 2018 were overlaid in order to drive a cross-tabulation
207 matrix showing the spatial conversions among LULC categories between 2000 and 2018. The diagonal
208 entries indicate the amount of LULC categories that remained unchanged between Time 1 and Time
209 2, whereas the off-diagonal elements account for a conversion from one class to another LULC classes
[87, 88]. The change detection matrix was further analyzed in order to calculate gain, loss, persistence,
211 net change, total change, swap, and gain to persistence, loss to persistence, the net change to
212 persistence for each LULC category between Time 1 and Time 2 [87–89]. The loss column represents
213 the amount of loss for a LULC category i between Time 1 and Times 2, while the gain row indicates
214 the amount of gain for a LULC category j between the same periods [87]. The swap change
215 incorporates the amount of both loss and gains to account for a LULC category lost in a given site to
216 the corresponding gained in another site [87]. The computation of the swap change for a LULC
217 category j requires pairing a grid cell of both gains (i.e., the differences between the column totals and
218 persistence) and loss (i.e., the differences between the row totals and persistence) of a land category j
219 (Equation (1)) [87].

$$S_j = 2 \min(P_{j+} - P_{jj}; P_{+j} - P_{jj}) \quad (1)$$

220 where S_j is the amount of swap; P_{j+} is a column sum of a land cover category; P_{jj} is the amount of
221 persistence in a land cover category; and P_{+j} is the sum row amount of a land cover category.


222 2.3.4. Determination of the RUSLE Factors

223 The empirical prediction model of RUSLE is a widely applied tool to estimate the long-term
 224 average annual soil loss from hillslopes due to rainstorm power and runoff [63]. Over the recent
 225 decade, the RUSLE and its adapted versions have been successfully tested at various hydrological
 226 basins and watersheds under different topography, climate, soil, and land-cover conditions [4, 5, 16–
 227 18, 64, 65]. In this study, the RUSLE model is chosen due to its adaptability adaptive at different
 228 spatial scales with a relatively minimal data required and easy to integrate with the ArcGIS
 229 environment for predicting soil loss [4, 44]. Six input factors required for model application such as
 230 rainfall erosivity, soil erodibility, slope length and slope steepness, cover management, and
 231 conservation support practices (Figure 2) [52] were integrated using the model builder interface
 232 embedded in the ArcGIS software version 10.5 (Environmental Systems Research Institute (Esri), Inc.,
 233 Redlands, CA, USA). Applying the nearest-neighbor method, all of the model factors derived from a
 234 multisource dataset with different spatial resolution were resampled to a 30m × 30m cell size and
 235 reprojected to a standard spatial reference system of World Geodetic System 1984 spheroid, Universal
 236 Transverse Mercator, and Adindan Zone 37 N. The RUSLE model equation is expressed as [54]:

$$A = R \times K \times L \times S \times C \times P \quad (2)$$

237 Where A is average annual soil loss per unit area; R is the rainfall-runoff erosivity factor; K is a
 238 soil erodibility factor; LS is a slope length-steepness factor; C is a cover management factor; P is a
 239 support practice factor.

240 Figure 2 shows an overall framework established in the ArcGIS environment for the integration
 241 of six input factors, derived from multisource spatial datasets, into the RUSLE model to estimate the
 242 soil loss rates in the Erer Sub-Basin. The model was run to estimate the actual annual rates of soil loss
 243 in the study landscape for the years 2000 and 2018. The soil erosion risk within the study area was
 244 classified into eight categories, based on previous work by Uddin et al. [5], and the estimated mean
 245 soil loss rates ($t \text{ ha}^{-1} \text{ yr}^{-1}$): very low (< 5), low (5–10), low medium (10–15), medium (15–20), high
 246 medium (20–25), high (25–35), very high (35–50), and extremely high (>50). Areas with a mean annual
 247 soil loss rates lower than low were rated as tolerable soil loss limit [52]. We created a cross-tabulated
 248 change detection matrix by overlaying the erosion risk maps pixel-by-pixel and calculated the
 249 percentage change, persistence, gain, loss, net-change, and a net-change-to-persistence ratio of
 250 erosion risk classes between 2000 and 2018. Moreover, SWC priority areas were identified and
 251 mapped based on the severity levels of soil erosion risk and a cross-tabulated matrix showing changes
 252 among erosion risk classes between the observed periods. Prioritization was done based on the
 253 MCDR method. We followed the methodological framework of Zhang et al. [90], who tested the
 254 capability of the MCDR approach in identifying priority areas to control soil erosion.

255 **Figure 2.** Flowchart for the soil loss estimation using the RUSLE model framed in the ArcGIS model-
 256 builder interface.

257 Rainfall and Runoff Erosivity Factor (R)

258 Rainfall-runoff erosivity is the primary factor causing soil erosion and accounts for about 80%
 259 of the soil loss [52, 91]. The R factor is an index that reflects the capability of rainfall-runoff to detach
 260 and transport the soil particles that are experimentally determined by taking into consideration the
 261 intensity and a maximum duration of rainfall in a particular area of interest (Figure 3a) [52, 89–94].
 262 The R factor value was calculated based on mean yearly precipitation for the period 1998–2018,
 263 computed as the mean of total rainfall at fifteen local metrological stations distributed across the sub-
 264 basin, using the erosivity computation formula of Lo et al. [94]:

$$R = [38.46 + (3.48 \times P)] \quad (3)$$

265 Where P is an annual average rainfall (mm).

266 Soil Erodibility Factor (K)

267 The soil erodibility factor, K, represents prolonged influences of soil profile characteristics and
 268 inherent soil properties on average soil loss measured on a standard plot condition [51, 90, 84, 95].
 269 The most important soil properties that affect soil erosion are soil organic matter content, soil texture,
 270 drainage ratio, and soil structure [5]. In this study, the K factor value was calculated based on the
 271 formula given by Wischmeier and Smith [52] using the FAO harmonized digital soil map [83], as
 272 follows (Equation (4)).

$$K = 2.1 \times 10^{-6} \times M^{1.14} \times (12 - OM) + 0.325 \times (P - 2) + 0.025 \times (S - 3) \quad (4)$$

273 Where M = (percentage silt + percentage very fine sand) (100 percent clay); OM = the percentage
 274 of organic matter content; P = profile permeability; and S = structure classes.

275 The spatial distribution of the soil erodibility in the Erer Sub-Basin is shown in Figure 3b, with
 276 mean values ranging from $0.36 \text{ t h MJ}^{-1} \text{ mm}^{-1}$ to $0.42 \text{ t h MJ}^{-1} \text{ mm}^{-1}$ (Table S2). The lowest value for
 277 soil erodibility was obtained from the dystric cambisols ($0.36 \text{ t h MJ}^{-1} \text{ mm}^{-1}$) which are typically found
 278 in the northwest of the study landscape. The most erodible soil classes included the eutric regosols
 279 ($0.37 \text{ t h MJ}^{-1} \text{ mm}^{-1}$) and the eutric nitosols ($0.42 \text{ t h MJ}^{-1} \text{ mm}^{-1}$) with a relatively higher sand content
 280 (> 68 percent) are situated in the north, northeast, and southwest of the study landscape.

281
282 Slope Length and Steepness (LS) Factor

283 The dimensionless slope length and steepness factor, LS, represent the effect of slope gradient
 284 on soil loss, can be determined as a product of the slope length (L) and slope steepness (S) [92, 93].
 285 The increase in slope length and slope steepness can cause a higher overland flow speed and runoff
 286 volume, which result in a high amount of soil loss [94]. The LS factor of the RUSLE model represents
 287 the proportion of soil loss on a given slope length and steepness to soil loss from a 22.13 m slope
 288 length and steepness of 9% with all other conditions remains the same [52, 95, 96]. The L and S factors
 289 were calculated from a 30-meters resolution DEM image covering the sub-basin area using the
 290 following equations (Figure 3c, d).

$$L = \left(\frac{\lambda}{22.1} \right) m \quad (5)$$

291 where λ is the horizontal field slope length in meters, and m is the variable slope length exponent
 292 calculated from the ratio of rill-to-interrill erosion slope steepness: 0.5 for slopes steeper than 4.5%;
 293 0.4 for slopes between 3%–4.5%; 0.3 for slopes between 1%–3%, and 0.2 on slopes lower than 1%.

294
295
296
297
298

299 To represent the heterogeneity of slope steepness in the sub-basin area, the slope gradients were
 300 sub-divided into a number of segments by taking into consideration the unit upslope contributing
 301 areas [96–101].

$$L_{i,j} = \frac{(A_{i,j-in} + D^2)^{m+1} - A_{i,j-in}^{m+1}}{D^{m+1} \times x_{i,j}^m \times 22.13^m} \quad (6)$$

302 Where $A_{i,j-in}$ is the contributing area at the inlet of the grid cell (i, j) is measured in m^2 ; D is the
 303 grid cell size (meters); $x_{i,j}$ is $\sin a_{i,j} + \cos a_{i,j}$; $A_{i,j}$ is the aspect direction of the grid cell (i, j); and m is
 304 the slope length exponent associated to the share of β of rill-to-interrill erosion (Equation (7, 8)) [97,
 305 100]:

$$m = \left(\frac{\beta}{1 + \beta} \right) \quad (7)$$

where,

$$\beta = \frac{\sin \theta}{\frac{0.0896}{[0.56 + 3 \times (\sin \theta)^{0.8}]}} \quad (8)$$

306 θ is the slope steepness angle in degrees (Equation (8 a, b)) [97, 102].

$$S = 10.8 \sin \theta + 0.03, \text{ where slope gradient} < 9\% \quad (9a)$$

$$S = 16.8 \sin \theta - 0.50, \text{ where slope gradient} \geq 9\% \quad (9b)$$

307 Cover Management (C) Factor

308 The cover management factor, C , represents the proportion of soil loss from the field under a
 309 given crop management practices to that from clean-tilled continuous plowed land [103]. Following
 310 De Jong [104], the cover management factor was interpreted based on the Normalized Difference
 311 Vegetation Index (NDVI) generated using satellite images from Landsat 5 TM and Landsat 8 OLI
 312 sensors. The estimated C factor for 2000 and in 2018 is given in Figure 3e, f.
 313

$$C = 0.431 - 0.805 \times \text{NDVI} \quad (10)$$

314 Support Practice (P) Factor

315 The P factor indicates the effects of various conservation practices in minimizing the amount
 316 and rate of soil loss owing to rainfall-runoff [98, 105–109]. The value of the P factor is conventionally
 317 determined based on the types of soil conservation measures applied in a given area. Due to the
 318 constraints of field-based measurements concerning conservation practices put in place within the
 319 study area, we determined the values of the P factor based on an alternative method recommended
 320 by Wischmeier and Smith (Figure 3g, h) [52]. For this purpose, the LULC maps interpreted from the
 321 Landsat satellite images and the slope map determined from the DEM were used to drive the spatial
 322 distribution maps of the P factor in 2000 and 2018.
 323

324 **Table 1.** Conservation support practice (P) factor values [52]

Land use type	Slope (%)	P Values
Agricultural land use	0–5	0.1
	5–10	0.12
	10–20	0.14
	20–30	0.19
	30–50	0.25
	50–100	0.33
Nonagricultural land use	0–100	1.00

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

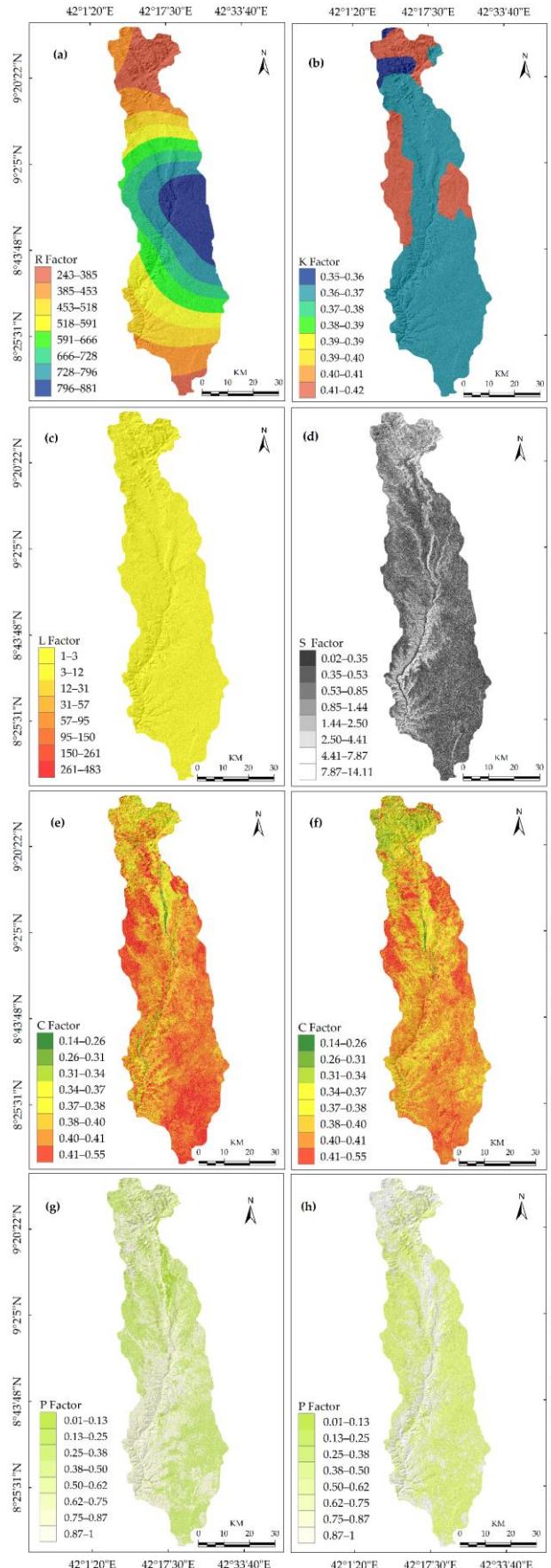
347

348

349

350

351


352

353

354

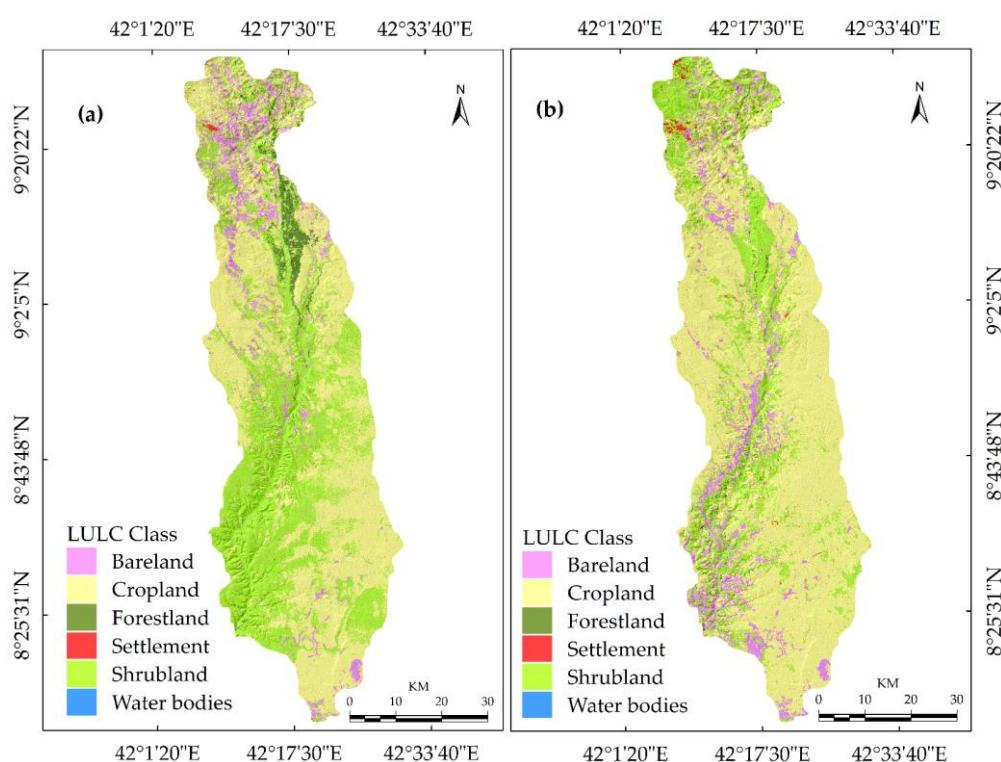

355

Figure 3. Rainfall-erosivity (R) factor (a); Soil erodibility (K) factor (b); Slope length (L) factor (c), Slope steepness (S) factor (d); Cover management (C) factor in 2000 (e) and 2018 (f); Support practice (P) factor in 2000 (g) and 2018 (h) in the Erer Sub-Basin, North East Shebelle Basin, Ethiopia.

359 **3. Results and Discussion**360 **3.1. LULC Classification**

361 Six LULC classes identified in the Erer Sub-Basin were classified for the year 2000 and 2018, as
 362 shown in Figure 4. This includes bare land, cropland, forestland, settlement, shrubland, and water
 363 body, with a proportion of each LULC class in 2000 contributes 8.03%, 47.92%, 2.99%, 0.2%, 40.67%,
 364 and 0.18% of the total study area, respectively. As shown in Table 2, each LULC classes in 2018
 365 accounts 9.71%, 64.36%, 1.42%, 0.61%, 23.87%, and 0.03% of the total study area, respectively (Table
 366 S3). The classified LULC images illustrate that cropland was the most dominant LULC class in the
 367 study landscape in both 2000 and 2018, followed by shrubland and bare lands (Figure 4a, b).
 368

369 Figure 4. LULC map of the Erer Sub-Basin, North East Shebelle Basin, Ethiopia; (a) 2000 and (b) 2018.

370 **Table 2.** Areal statistics of classified LULC classes of the study area for 2000 and 2018.

LULC Class	2000		2018	
	Area (km ²)	%	Area (km ²)	%
Bare land	310.00	8.03	374.81	9.71
Cropland	1,849.70	47.92	2,484.33	64.36
Forestland	115.42	2.99	54.81	1.42
Settlement	7.72	0.20	23.55	0.61
Shrubland	1,569.88	40.67	921.39	23.87
Water body	7.33	0.18	1.16	0.03
Total	3860.05	100	3860.05	100

371

372 Presented in Table 3 is a statistical summary of classification accuracy assessment for the years
 373 2000 and 2018. The user's accuracy, producer's accuracy, Kappa (K^{\wedge}) coefficient, overall accuracy,
 374 overall K^{\wedge} coefficient, commission and omission errors were utilized to validate the classification
 375 accuracies based on randomly generated reference points for LULC classes (Table 3). The diagonal
 376 values down an error matrix indicate reference samples that are accurately classified and off-diagonal
 377 entries are the misclassified references correspond to individual LULC classes. The overall

378 classification accuracies attained based on the stratified random sampling method were 94.00% in
 379 2000 and 96.33% in 2018, with a kappa coefficient of 0.93 and 0.95, respectively. The user's and
 380 producer's accuracies obtained per LULC classes ranged from 86.27% (bare land in 2000) to 100%
 381 (forestland, settlement, and water body in 2018) and, 80.00% (settlement in 2000) to 100% (shrubland
 382 in 2018), respectively. The bare land LULC class had a relatively high commission error, while the
 383 settlement had a relatively high omission error both in the 2000 and 2018 classified images. Thus, the
 384 classified satellite images have overestimated the bare land and underestimated settlement area. This
 385 is primarily due to the spectral similarity of the bare land and the settlement LULC classes. From the
 386 statistical results of the classification accuracy assessment presented in Table 3, it was confirmed that
 387 the classified images agree with the training samples, and is, therefore, satisfactory to conduct a
 388 change detection analysis [83, 84].

389 **Table 3.** Accuracy statistics for the classified LULC maps in percent.

Class Name	Classification Accuracy								
	Bare land	Crop land	Forest land	Settlement	Shrub land	Water body	Raw Total	User's Accuracy	Commission Error
2000									
Bare land	44	0	0	7	0	0	51	86.27	13.73
Cropland	0	80	0	0	0	0	80	100	0
Forestland	0	0	45	0	5	0	50	90.00	10.00
Settlement	0	0	0	28	0	0	28	100	0
Shrubland	6	0	0	0	65	0	71	91.55	8.45
Water body	0	0	0	0	0	20	20	100	0
Colum Total	50	80	45	35	70	20	300		
K [^] statistics	0.84	1.00	0.88	1.00	0.89	1			
Producer's Accuracy	88	100	100	80	92.86	100		Overall Accuracy = 94	
Omission Error	12.00	0	0	20	7.14	0		Overall K [^] = 0.93	
2018									
Bare land	48	2	0	2	0	0	52	92.31	7.69
Cropland	3	74	0	1	0	0	81	96.30	3.70
Forestland	0	0	43	0	0	0	43	100	0
Settlement	0	0	0	32	0	0	32	100	0
Shrubland	0	0	2	0	70	2	74	94.59	5.41
Water body	0	0	0	0	0	18	18	100	0
Colum Total	51	76	45	35	70	1	300		
K [^] statistics	0.91	0.95	1.00	1.00	0.93	1			
Producer's Accuracy	96	97.5	95.56	91.43	100	90		Overall Accuracy = 96.33	
Omission Error	4	2.50	4.44	8.57	0	10		Overall K [^] = 0.95	

390 *3.2. Assessment of LULCC in the Erer Sub-Basin*

391 LULCC is closely related to human decisions and complex interactions among multiple
 392 activities, working at a location [110, 111]. Up-to-date information about the dynamics of LULCC and
 393 its drivers is an increasingly important issue in the examination of environmental change for
 394 identifying the current resource situation and designing sustainable resource management measures
 395 [110–112]. The present study found a considerable LULCC in the Erer Sub-Basin, which is located in
 396 the Upper Wabi Shebelle Basin. The extent of changes varied among the LULC classes during the
 397 period between 2000 and 2018. During the study period, areas covered by forestland, shrubland,
 398 water body showed a considerable reduction (Table 4). The forestland converted during the period
 399 of the assessment totaled 60.60 km², which is about 2.99% of the entire area that covered in 2000.
 400 Likewise, shrubland cover has decreased in the study landscape by 41.31% of the total area.
 401 Waterbody also showed a reduction of 84.21% of the total area. The decline in a water body is

402 probably due to the expansion of settlement and cropland in shrubland and forestland in the study
 403 landscape. On the contrary, bare land, cropland, and settlement LULC classes have increased by
 404 20.9%, 34.31%, and 205%, respectively.

405 **Table 4.** Temporal change in the spatial extent of LULC classes in percentage (%).

LULC Class	Rate of Changes (2000–2018)	
	Area (km ²)	%
Bare land	64.81	20.91
Cropland	634.63	34.31
Forestland	−60.60	−52.51
Settlement	15.83	205.00
Shrubland	−648.49	−41.31
Waterbody	−6.18	−84.21

406
 407 Changes between LULC classes in the period 2000–2018 are provided in Table 5. The loss column
 408 represents the amount of LULC that experienced a gross loss of category *i* between 2000 and 2018,
 409 while the gain row indicates the LULC that experienced a gross gain of class *j* between the same
 410 periods. The change detection matrix shows that overall, nearly 43.48% of the land within the study
 411 landscape experienced LULCC during the period between 2000 and 2018. As shown in Table 5, the
 412 major LULCCs identified during the study period were from shrubland to cropland (21.26% of the
 413 original shrubland has been converted to cropland), cropland to shrubland (6.99% of the original
 414 cropland has been converted to shrubland), shrubland to bare land (4.74% of the original shrubland
 415 has been converted to bare land), and forestland to shrubland (2.07% of the original forest has been
 416 converted to shrubland).

417 **Table 5.** Change matrix showing the LULC classes changes between 2000 and 2018 in percentage (%).

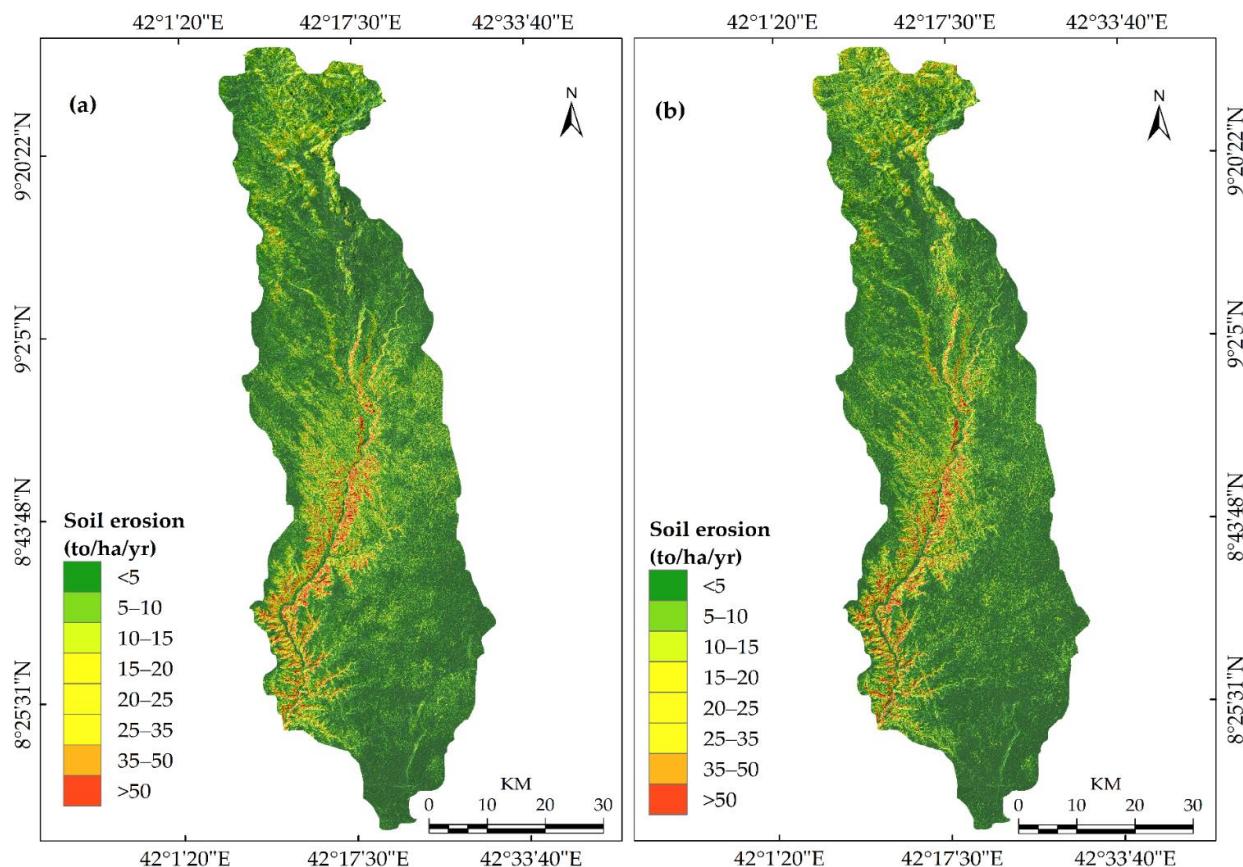
LULC class	Bare land	Cropland	Forestland	Settlement	Shrubland	Waterbody	2000
Bare land	3.33	3.48	0.01	0.14	1.07	0.00	8.03
Cropland	1.55	39.04	0.18	0.16	6.99	0.01	47.92
Forestland	0.05	0.53	0.33	0.01	2.07	0.00	2.99
Settlement	0.03	0.04	0.00	0.07	0.06	0.00	0.20
Shrubland	4.74	21.26	0.80	0.22	13.65	0.00	40.67
Water body	0.01	0.01	0.10	0.01	0.03	0.02	0.19
Summary							56.52
2018	9.71	64.36	1.42	0.61	23.87	0.03	

418
 419 During 2000 and 2018, about 6.49% of the LULCC was occurring due to swap change, wherein
 420 a comparable area was gained and lost among the LULC classes (Table 6). During the study period,
 421 the persistence of the LULC classes accounts for 56.52% of the total area. The change analysis results
 422 generally indicate that the cropland and the shrubland were relatively the highest persistence LULC
 423 classes, whereas the water body was the lowest-persistence class. Out of the 47.92% and 40.67%, the
 424 cropland and the shrubland LULC classes covered in 2000 around 39.04% and 13.65% of the total area
 425 remained unchanged in 2018, and the remaining 8.88% and 27.02% were converted to other LULC
 426 classes, respectively. Similarly, the cropland showed the highest gross gain (25.32%) due to the area
 427 mainly converted from shrubland, bare land, and forestland. Although the cropland gained areas
 428 converted from shrubland, bare land, and forestland, it experienced a net loss of about 8.90 % of the
 429 total area. The shrubland experienced the highest net loss among the LULC classes. It accounts for
 430 about 27.02% of the total area (with about 21.26%, 4.74%, 0.80%, and 0.22% of shrubland swapped
 431 into cropland, bare land, forestland, and settlement, respectively), whereas about 160.44 km² of new
 432 shrubland was established at the expense of cropland (6.99%), forestland (2.07%), bare land (1.07%),
 433 and water body (0.03%). The net change-to-persistence ratio was relatively higher for settlement,

434 cropland, and bare land, showing their persistence in comparison to their net loss. On the contrary,
 435 the net change-to-persistence ratio was negative for a water body, forestland, and shrubland,
 436 suggesting their net loss rather than their persistence in the study landscape. The findings of this
 437 study were consistent with numerous studies' findings in other parts in Ethiopia [113-121], and
 438 elsewhere in the world [5, 16, 17]. These studies have revealed heterogeneity in the spatial and
 439 temporal extent of LULCCs.

440 **Table 6.** LULCCs in the period 2000–2018 in percent.

LULC Class	Persistence	Gain	Loss	Total Change	SWAP	Absolute value of Net change	Gain to Persistence	Loss to Persistence	Net Change to Persistence
Bare land	3.34	6.38	4.7	11.08	9.4	1.68	1.92	1.41	0.50
Cropland	39.04	25.32	8.88	34.2	17.76	16.44	0.65	0.23	0.42
Forestland	0.33	1.09	2.66	3.75	2.18	1.57	3.30	8.06	-4.76
Settlement	0.07	0.54	0.13	0.67	0.26	0.41	7.71	1.86	5.86
Shrubland	13.65	10.22	27.02	37.24	20.44	16.8	0.75	1.98	-1.23
Water body	0.02	0.01	0.16	0.16	0.00	0.15	0.50	8.00	-7.50
Total	56.45	43.55	43.55	43.55	6.49	37.06			


441
 442 For example, Kindu et al. [113] found cropland expansion at the expense of woodlands, forest,
 443 and grassland in Munessa-Shashemene landscape of the Ethiopian highlands. Similar results were
 444 also found in the south-central Ethiopia, where agriculture land expansion has reached its peak on
 445 the suitable land over the period 1972–2013 and continued to occupy marginal lands affecting the
 446 forest biodiversity [114]. In accordance with the findings of the current study, Mengistu et al. [115]
 447 reported an increase in cropland while a downward trend in riverine trees and shrub-grassland in
 448 the Upper Dijo River Catchment of south-central Ethiopia. Supporting our findings, another study
 449 investigated the dynamics of LULCC and the woody vegetation diversity in the human-driven
 450 landscape of the Gilgel Tekeze Catchment reported an increase in cropland and settlement area while
 451 a decrease in the forest and the bushland [116].

452 On their part, Fetene et al. [117] and Belay et al. [118] analyzed the LULCCs in the Awash
 453 National Park (ANP) and the Nech-Sar National Park (NSNP) in Ethiopia. Their studies' findings
 454 showed that the main drivers of LULCCs occurred within the two national parks—causing
 455 enormous destructions in wildlife habitat—has been attributed to changes in the land tenure system
 456 and regime changes, immigration, drought, poaching, and deforestation in combination with ever-
 457 increased pressures from the local community and livestock [108, 109]. A recent report by
 458 Hailemariam et al. [110] also concluded that population growth resulted in high demand for cropland
 459 expansion, which in turn, has triggered a decrease in the areas of forest cover, shrubland, and
 460 grassland in the Bale mountain eco-region of Ethiopia. In a related study conducted in the Gilgel
 461 Tekeze Catchment of the northern Ethiopia highlands, Haregeweyn et al. [111] suggested integrated
 462 catchment management minimize the adverse impacts of LULCC on sustainable hydrological
 463 system. Tadesse et al. [112], in contrast, reported a regeneration of vegetation cover in the Yezat
 464 Watershed of northwestern Ethiopia, which was attributed to integrated watershed management
 465 practices taken over the period between 2010 and 2015.

466 3.3. Overview of Soil Erosion in the Erer Sub-Basin

467 The spatial distribution of soil erosion risk in the Erer Sub-Basin is shown Figure 5a in 2000 and
 468 Figure 5b in 2018, while the estimated soil loss rates and the erosion risk classes are provided in Table
 469 7. The estimated total annual actual soil loss in the study landscape was 1.01 million tons in 2000 and
 470 1.52 million tons in 2018. Our estimate of soil loss falls within the range of the previous findings that
 471 estimated the soil loss rate in the highland areas of Ethiopia from 1248 to 23,400 million tons [30]. The
 472 soil erosion risk had shown a high spatial variation across the study landscape (Figure 5). As it can
 473 be observed from Figure 5, high soil erosion risk areas were located in the northeast, southwest, and
 474 the central parts of the Erer Sub-Basin, which are also, found in the rugged topography and steep

475 slopes. Relatively less eroded areas were situated in the lower elevations in the eastern and western
 476 parts of the sub-basin, where the slope inclination is ranging from nearly zero to ten percent. Similar
 477 results have been reported by the earlier studies that attributed lower soil loss rate to gentle slopes
 478 while a higher soil loss in steep slope areas [18, 122–125].

479 **Figure 5.** Soil erosion risk in the Erer Sub-Basin, North East Shebelle Basin, Ethiopia; (a) in 2000, (b)
 480 2018.

481 The mean annual soil loss rate was estimated at $75.85 \text{ t ha}^{-1} \text{ y}^{-1}$, $107.07 \text{ t ha}^{-1} \text{ y}^{-1}$, in 2000 and 2018,
 482 respectively, for the entire sub-basin. It was also found in this study that the mean soil loss of 2018
 483 increased by an average of $41.16 \text{ t ha}^{-1} \text{ y}^{-1}$ when compared to the mean soil loss of 2000. The estimated
 484 mean annual soil loss rate in the present study area is considerably higher than that of the maximum
 485 tolerable soil loss limits estimated for the agro-ecological regions ($18 \text{ t ha}^{-1} \text{ y}^{-1}$) [126] and soil formation
 486 rates for the various land units in Ethiopia [127], and to the normal soil loss tolerances indicated by
 487 the Wischmeier and Smith ($5–11 \text{ t ha}^{-1} \text{ y}^{-1}$) [52]. The estimated mean rate of soil loss is also higher
 488 than the findings of previous investigators in the Upper Wabi Shebelle Basin [18, 67, 68, 71], and other
 489 river basins in Ethiopia [128, 129]. On the contrary, the estimated soil erosion rates are much lower
 490 than the local scale studies that estimated the soil loss rate of $935 \text{ t ha}^{-1} \text{ y}^{-1}$ in the Beshillo Catchment
 491 of the Blue Nile Basin [130]; $243 \text{ t ha}^{-1} \text{ y}^{-1}$ in northwestern highlands Ethiopia [131], and $321 \text{ t ha}^{-1} \text{ y}^{-1}$
 492 in the eastern escarpment of Wollo [132].

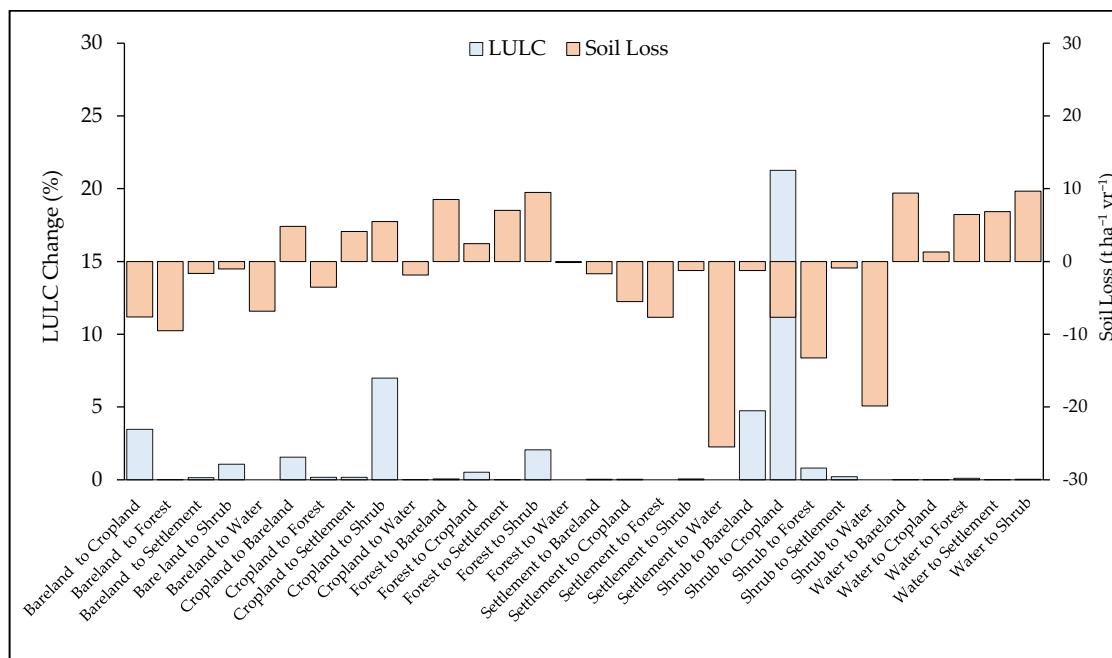
493 According to the estimated rates of mean annual soil loss, the erosion risk was classified into
 494 eight classes extending from the very low to extremely high. The proportion of the area at very low
 495 risk covered a larger part of the sub-basin area (Table 7) accounts for about 48.87% and 46.22% of the
 496 total study area in 2000 and 2018, respectively. The area at very low and extremely high risk of soil
 497 erosion went down from 48.87% and 2.36% in 2000 to 46.22% and 2.14% respectively, in 2018. On the
 498 contrary, the low, low medium, medium, high medium, high, and very high have increased by 6.54%,
 499 1.62%, 2.87%, 10.76%, 16.55%, and 16.55% of the total study area, respectively. Areas with a mean

500 annual soil loss greater than low have increased low by 3.80 % of the total study area. The results
 501 indicate that the estimated erosion rate for about 23.98% of the sub-basin area exceeds the maximum
 502 tolerable soil erosion threshold [52].

503 **Table 7.** Areas (km^2), percentages, and changes in soil erosion risk classes between 2000 and 2018.

Erosion Risk	Soil loss ($\text{t ha}^{-1} \text{yr}^{-1}$)	2000		2018		Rate of changes (2000–2018)	
		Area (km^2)	%	Area (km^2)	%	Area (km^2)	%
Very low	<5	1,883.49	48.87	1,783.50	46.22	-99.99	-5.31
Low	5–10	1,078.90	27.99	1,149.43	29.79	70.53	6.54
Low medium	10–15	399.01	10.35	405.46	10.51	6.45	1.62
Medium	15–20	190.96	4.95	196.45	5.09	5.49	2.87
High medium	20–25	104.22	2.70	115.43	2.99	11.21	10.76
High	25–35	63.98	1.66	74.57	1.93	10.59	16.55
Very high	35–50	42.51	1.10	50.98	1.32	8.47	19.92
Extremely high	>50	90.97	2.36	82.60	2.14	-8.37	-9.20

504 Table 8 presents the estimated soil loss from each LULC class in 2000 and 2018. The estimated
 505 mean soil loss increased for LULC classes during the period between 2000 and 2018, showing that
 506 the LULCC have detrimental impacts on soil loss by water erosion [4, 16, 17]. Understanding the
 507 dynamics in LULCCs and consequent changes in the distribution of soil erosion risk can provide a
 508 spatial decision support tool for conservation planners to develop an appropriate SWC measure.
 509 Settlement area that occupied about 0.20%, 0.61% of the sub-basin area, in 2000 and 2018, accounted
 510 for 2.64% and 1.99% of the total soil loss, respectively. During 2000 and 2018, the minimum amount
 511 of soil loss was estimated in water bodies, with a mean erosion rate of 0.02 and 0.26 $\text{t ha}^{-1} \text{yr}^{-1}$,
 512 respectively. The soil loss from the water body, forestland, and settlement was relatively low, and
 513 the annual soil loss from cropland was accounted for 42.06% and 48.34% of the soil erosion in 2000
 514 and 2018, respectively.


515 The cropland, bare land, and settlement had become the main causes of soil erosion in the study
 516 landscape, as the estimated mean soil loss rate for the three LULC classes have increased 11.88, 6.80,
 517 and 2.44 $\text{t ha}^{-1} \text{yr}^{-1}$; however, their rates of changes varied 34.31%, 20.91%, and 205%, respectively.
 518

519 **Table 8.** Mean soil loss rate with respect LULC classes in the Erer Sub-Basin.

LULC Class	2000		2018	
	Mean Soil Loss ($\text{t ha}^{-1} \text{yr}^{-1}$)			
Bare land	8.98		15.78	
Cropland	25.73		37.60	
Forestland	0.02		2.47	
Settlement	0.18		0.55	
Shrubland	10.19		11.62	
Water body	0.02		0.26	

520 Our findings coincide with those of the recent study by Yesuph and Dagnew [130] who showed
 521 that the cropland under a mono-cropping and intensive cultivation in the upslope areas were
 522 responsible for severe soil erosion in the Beshillo Catchment of the Blue Nile Basin. Validating the
 523 present study's findings, Belayneh et al. [122] also pointed out that cultivated land with a mean
 524 erosion rate of $45.68 \text{ t ha}^{-1} \text{yr}^{-1}$ accounted for 62.06% of the total soil loss from the Gumara Watershed
 525 of the northwestern Ethiopia highland. The landscape that had experienced the LULCC during the
 526 period of the assessment accounted for about 43.48% of the total study area, of which about 11.44%

527 revealed an increase in the estimates of soil loss of $75.66 \text{ t ha}^{-1} \text{ yr}^{-1}$. The remaining landscape under
 528 LULCC that undergone a decrease in actual soil loss of $116.63 \text{ t ha}^{-1} \text{ yr}^{-1}$. Of the landscape under
 529 LULCC experienced, a high increase in an estimated soil erosion rate corresponds to the area where
 530 the water bodies were changed to shrubland (increase in actual soil loss was $9.69 \text{ t ha}^{-1} \text{ yr}^{-1}$). Figure 6
 531 shows that the second and the third detrimental LULCCs accounted for an increase in the actual soil
 532 erosion in the study area were conversions from forestland to shrubland ($+9.51 \text{ t ha}^{-1} \text{ yr}^{-1}$) and from
 533 water bodies to bare land ($+9.39 \text{ t ha}^{-1} \text{ yr}^{-1}$). At the same period, changes from forestland to bare land
 534 and settlement accounted for an increase in soil loss of $8.54 \text{ t ha}^{-1} \text{ yr}^{-1}$ and $7.02 \text{ t ha}^{-1} \text{ yr}^{-1}$, respectively.
 535 At the sub-basin level, the positive LULCCs that contributed to a significant reduction in the
 536 estimates of actual soil erosion were a change from shrubland to forestland and water body (Figure
 537 6).

538 **Figure 6.** Land Cover Changes and their effects on soil erosion risk in the Erer Sub-Basin, North East
 539 Shebelle Basin, Ethiopia.

540 Table 9 shows the proportion of soil erosion risk classes change between 2000 and 2018. The
 541 diagonal of the transition matrix indicates the proportion of erosion risk classes that remained
 542 unchanged during the study period, while the off-diagonal elements account of conversion from one
 543 class to other classes of soil erosion risk. The loss and gain row represent the percentage loss and gain
 544 in each erosion risk class, respectively. The change analysis results show that about 65.80% of the
 545 total erosion risk areas occupied in 2000 remained unchanged in 2018. The overall gain and loss of
 546 the soil erosion risk classes account for 34.21% and 34.18%, respectively. The highest net gain (12.64%)
 547 and gross loss (10.84%) was estimated in an erosion risk class of low. It accounts for about 0.83% of
 548 the total study area. The highest net-change (1.8% of the total area) and net-change-to-persistence
 549 ratio (2% of the total area) was estimated in the area at low and very high risk of erosion. The change
 550 analysis results indicate that the erosion risk areas increased by 8.28% of the total study area, and
 551 decreased by 5.93%, which reveals that the overall erosion risk condition is deteriorating in the study
 552 landscape. The present study's findings agree with those of the recent study by Weldemariam et al.
 553 [18] who indicated that the situation of soil loss risk in the Gobele Watershed has been worsening
 554 due to increases in the proportion of erosion risk areas by 19.67% of the total watershed area between
 555 2000 and 2016. Uddin et al. [5], in contrast, found improvement in the situation of soil erosion in
 556 Nepal, where the mean soil loss rates have decreased from $8.76 \text{ t ha}^{-1} \text{ yr}^{-1}$ in 1990-to $7.49 \text{ t ha}^{-1} \text{ yr}^{-1}$ in
 557 2010. Validating these findings, Jiu et al. [133] stated that an increase of water level and river surface
 558 and afforestation measures taken in the period 2000–2015 significantly reduced the soil erosion risk

559 in the Three Gorges Reservoir Region (TGRR), China. According to Jiu et al. [133], the interactions
 560 between NDVI, urbanization, and vegetation diversity and urbanization rate are key factors
 561 influencing soil loss in the TGRR.

562 **Table 9.** Change of erosion risk classes between 2000 and 2018.

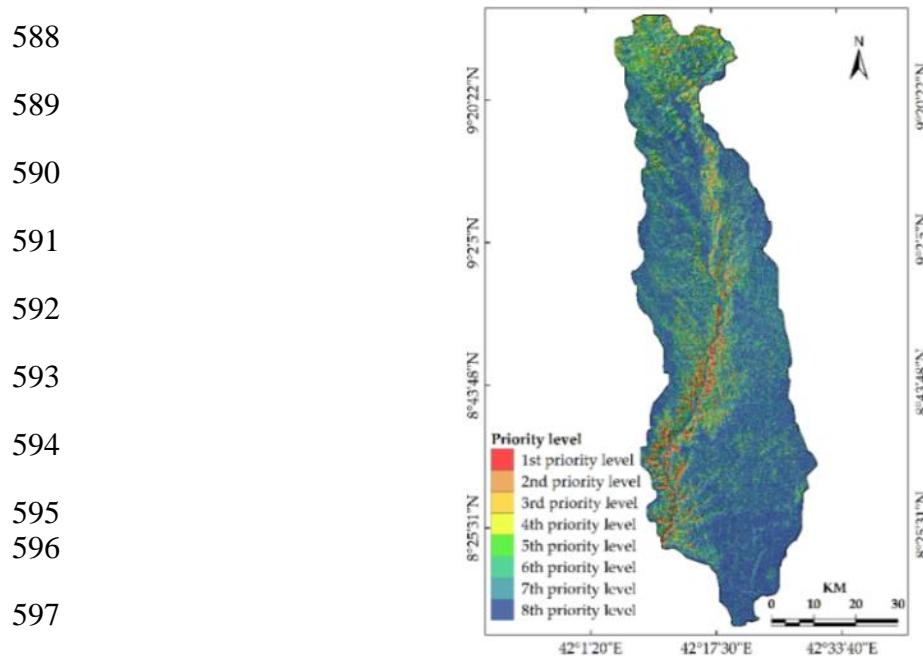
Soil Erosion Risk Class	Very low	Low	Low medium	Medium	High medium	High	Very high	Extremely high	Total 2000	Loss
Very low	40.55	7.99	0.16	0.07	0.06	0.04	0.00	0.00	48.87	8.32
Low	4.50	17.15	4.05	2.08	0.12	0.01	0.03	0.05	27.99	10.84
Low-medium	0.61	3.14	4.31	0.18	1.21	0.79	0.11	0.00	10.35	6.04
Medium	0.22	0.93	1.38	1.52	0.02	0.04	0.43	0.42	4.95	3.43
High-medium	0.14	0.48	0.09	1.06	0.62	0.01	0.00	0.30	2.70	2.08
High	0.09	0.05	0.26	0.05	0.85	0.27	0.00	0.08	1.66	1.39
Very high	0.05	0.00	0.17	0.01	0.07	0.65	0.11	0.02	1.10	0.99
Extremely high	0.03	0.06	0.09	0.12	0.04	0.13	0.63	1.27	2.36	1.09
Summary									65.80	
Total 2018	46.20	29.79	10.52	5.10	2.99	1.93	1.32	2.15		
Gain	5.65	12.64	6.20	3.58	2.38	1.67	1.21	0.88		
Net change	-2.67	1.80	0.17	0.14	0.28	0.28	0.22	-0.21		
NP	-0.07	0.10	0.04	0.09	0.45	1.04	2.00	-0.17		

563 Overall persistence (i.e., the sum of the diagonals denotes the proportion of unchanged classes account for the total area)

564 Net change = gain – loss in percent

565 Np denotes a net change-to-persistence ratio (i.e., net change/diagonals of each class)

566 3.3. Determination Conservation Priority Levels


567 Several previous studies highlighted the positive outcome of SWC measures for mitigating erosion
 568 risk, restoration of the degraded land while improving the soil fertility and land productivity [5, 35-
 569 43]. The design and implementation of SWC measures need spatially intrinsic information on soil
 570 loss and severity levels erosion risk [18, 47, 101]. In view of the fact that the distributions of soil
 571 erosion risk have shown a spatial variation within the sub-basin, we identified and mapped areas
 572 with a higher soil erosion rate as priority areas for SWC measures using the MCDR method (Figure
 573 7) [90]. Determination of conservation priorities was done based on the estimated soil erosion rates
 574 and the cross-tabulated change detection matrix of erosion risk classes changes between 2000 and
 575 2018. The portion of the sub-basin area with high soil loss and increases in erosion risk grades were
 576 delineated in uppermost conservation priority levels (Table 10).

577 **Table 10.** Area of the conservation priority level of the study area.

Priority Level	Area (km ²)	Percentage (%)
1st priority level	96.55	2.50
2nd priority level	92.00	2.38
3rd priority level	82.73	2.14
4th priority level	139.87	3.62
5th priority level	209.84	5.44
6th priority level	444.13	11.51
7th priority level	903.31	23.40
8th priority level	1,891.63	49.01

578 Eight SWC priority areas were identified at the sub-basin scale revealed that the top three priority
 579 levels delineated for urgent SWC measures represent those areas within a higher soil loss rate and
 580 the large increase in erosion risk levels, with an area of 271.28 km² and accounts for 7.03 % of the sub-
 581 basin area. About 80.46% of the top three priority areas are situated in the Gursum, Babile, Fedis, Fik,
 582 and Gola Oda districts (Table S2), which are, located in the north, northeast, southwest, south, and

583 south-west of the sub-basin. The remaining patches within these priority levels account for 19.54% of
 584 the total area, which is found in the upland within the Haramaya, Jarso, and Kombolcha districts,
 585 and the Harari Region that is located in the northern part of the sub-basin. fourth-, fifth-, sixth-, and
 586 seventh-priority priority levels accounting for about 20.57% of the total study area need of negligible
 587 conservation measure to control soil loss and erosion risk.

Figure 7. Conservation Priority levels of the Erer Sub-Basin

5. Conclusions

Understanding the magnitude of LULCC and consequent changes in the spatial extent of soil erosion risk for the Erer Sub-Basin is the main aim of this study. The LULCC was examined based on multispectral Landsat satellite images acquired in 2000 and 2018. The soil erosion rate was estimated using the RUSLE model developed in the ArcGIS environment. According to our analysis, overall, nearly 43.48% of the land in the study area experienced LULCCs in the 18 years (2000–2018) study period. During the study period, cropland, bare land, and settlement increased from 47.92%, 8.03% and 0.20% in 2000 to 64.36%, 9.71%, and 0.61%, respectively, in 2018. On the contrary, areas covered by forestland, shrubland, and water body have decreased from 2.99%, 40.67% and 0.18% to 1.42%, 23.87%, 0.03%, respectively, in 2018. The change analysis matrix showed that cropland gained 25.33%, while shrubland lost 27.02% of the total area. The bare land and cropland expansion were found to be the major drivers of LULCC contributing to high soil loss rates, wherein the entire study area, an estimated total of 1.5 million tons of soil was displaced in 2018, of which 48.34% and 36.01 is lost from cropland and bare land, respectively. The findings of the study generally elucidate that the LULCC have a detrimental impact on soil erosion. The results showed an increase in a mean soil loss rate increased from $75.85 \text{ t ha}^{-1} \text{ y}^{-1}$ in 2000 to $107.07 \text{ t ha}^{-1} \text{ y}^{-1}$ in 2018, with high erosion risk areas being in the central, northeastern, and southwestern Erer Sub-Basin. Based on the estimated rate of mean annual soil loss, erosion risk was classified into eight classes, showing that over one-third of the study landscape (76.01%) was estimated to have erosion risk below low medium with a mean soil loss lower than $10 \text{ t ha}^{-1} \text{ y}^{-1}$. The erosion risk that experienced changes during the study period accounts for about 34.2% of the total study area, of which about 15.93% decreased and 18.28% showed an increase in the study landscape. This shows that the erosion risk condition is deteriorating in the study landscape. The study area was classified into eight SWC priority levels based on the severity levels of erosion risk. About 7.02% of the sub-basin area was found to be under the first-, second-, and third-priority levels that need intense SWC measures. Further detailed investigations based on data from primary and secondary sources would be important in identifying driving socioeconomic forces and

625 consequences of LULCCs and suggest possible alternative options to establish sustainable resource
626 management practices in the study area.

627 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1, Table S1: Attributes of
628 soil units and calculated soil erodibility (K) factor. Table S2: List of priority districts identified for SWC planning
629 in the Erer Sub-Basin.

630 **Author Contributions:** Gezahegn Weldu Woldemariam conceived and designed the method, performed the
631 experiment, and drafted the manuscript. Arus Edo Harka performed the experiment, reviewed, and commented
632 on the manuscript.

633 **Funding:** This research received no external funding.

634 **Conflicts of Interest:** The authors declare no conflict of interest.

635 **References**

1. Sujatha, E.R.; Sridhar, V. Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A case-study of the Palar Sub Watershed in Kodaikanal, South India. *Water* **2018**, *10*, 1608; doi: 10.3390/w10111608
2. Rahman, M.R.; Shi, Z.H.; Chongf, C. Soil erosion hazard evaluation: An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. *Ecol. Model.* **2009**, *220*, 1724–1734.
3. United Nations Environment Programme (UNEP). *The Economics of Land Degradation in Africa, ELD Initiative*, Bonn, Germany, **2015**.
4. Borrelli, P.; David, A.; Robinson, D.A.; Fleischer L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schutt, B.; Ferro, VBagarello, V.; Van, ; Montanarella, L.; Panagos, P. An assessment of 21st century land use change on soil erosion. *Nature Communication* **2017**, *8* (1).
5. Uddin, K.; Abdul Matin, M.; Maharjan, S. Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal. *Sustainability* **2018**, *10*, 4715; doi: 10.3390/su10124715
6. Bergsma, E. *Terminology for Soil Erosion and Conservation. Presented at International Society for Soil Science*, Wageningen, The Netherlands, **1996**.
7. Oldeman, L.R. The global extent of soil degradation. *Soil Resil. Sustain. Land Use*; CAB International: Wallingford, CT, USA, **1994**; pp. 99–118.
8. Boardman, J. Soil Erosion in Britain: Updating the Record. *Agriculture* **2013**, *3*, 418–442; doi: 10.3390/agriculture3030418
9. Stavi, I.; Lal, R. Variability of soil physical quality in uneroded, eroded, and depositional cropland sites. *Geomorphology* **2011**, *125* (1), 85–91.
10. Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R) USLE): with a view to increasing its global applicability and improving soil loss estimates. *Hydrol. Earth Syst. Sci.* **2018**, *22*, 6059–6086.
11. Haregeweyn, N.; Tsunekawa, A.; Poesen J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: case study of the Upper Blue Nile River. *Sci Total Environ* **2017**, *574*:95–108.
12. Bouma, J.; Batjes, N.H. *Trends of World-Wide Soil Degradation*. Hohenheimer Umwelttagung, 32, 2000.
13. Global Soil Partnership (GSP). GSP Endorses Guidelines on Sustainable Soil Management. Available online: <http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/> (accessed on 20 February 2018).
14. Food and Agriculture Organization (FAO); Intergovernmental Technical Panel on Soils (ITPS). Status of the World's Soil Resources (SWSR) – Main Report, FAO and ITPS, Rome, Italy, **2015**.
15. Wang L.; Huang, J.; Du Y.; Hu Y.; Han, P. Dynamic Assessment of Soil Erosion Risk Using Landsat TM and HJ Satellite Data in Danjiangkou Reservoir Area, China. *Remote Sens.* **2013**, *5*, 3826–3848; doi:10.3390/rs5083826
16. Karamage, F.; Zhang, C.; Ndayisaba, F.; Shao, H.; Kayiranga, A.; Fang, X.; Nahayo, L.; Nyesheja, E.M.; Tian, G. Extent of Cropland and Related Soil Erosion Risk in Rwanda. *Sustainability* **2016**, *8*, 609.
17. Sharma, A.; Tiwari, K.N.; Bhadoria, P. B. S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. *Environ Monit Assess* **2011**, *173*, 789–801.

676 18. Woldemariam, G.W.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial Modeling of Soil Erosion Risk and Its
677 Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia.
678 *Land* 2018, 7, 25; doi:10.3390/land7010025

679 19. Sutcliffe, J.P. Economic assessment of land degradation in the Ethiopian highlands: a case study. National
680 Conservation Strategy Secretariat, Ministry of Planning and Economic Development, Transitional
681 Government of Ethiopia, Addis Ababa. 1993

682 20. Ethiopia Population 2018 (Demographics, Maps, Graphs)-World Population Review). 2018. Available
683 online: <http://worldpopulationreview.com/countries/ethiopia-population/> (accessed on 24 December
684 2018).

685 21. Yesuf, M.; Mekonnen, M.; Kassie, M.; Pender, J. *Cost of Land Degradation in Ethiopia: A Critical Review of Past
686 Studies*; Environment for Development, World Bank: Washington, DC, USA, 2007.10

687 22. Berry, L. *Land Degradation in Ethiopia: Its Extent and Impact*. 2003, 13.

688 23. United Nations Development program (UNDP). *Country Economic Brief*. Analysis Issue No. 1/Feb.2014.

689 24. Central Statistical Agency (CSA). *Agricultural Sample Survey 2007/08. Utilization*. Volume IV. Statistical
690 Bulletin No. 417. Addis Ababa, Ethiopia. 2008.

691 25. Ethiopian Economics Association (EEA). *Report on the Ethiopian Economy*, Addis Ababa, Ethiopia. 2008.

692 26. The Federal Democratic Republic of Ethiopia (FDRE). Ethiopia's Climate-Resilient Green Economy, Green
693 Economy Strategy; Environmental Protection Authority: Addis Ababa, Ethiopia, 2011.

694 27. Muluneh, A.; Stroosnijder, L.; Keesstra, S.; Biazin, B. Adapting to climate change for food security in the
695 Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. *J. Agric. Sci.* 2017,
696 155, 703–724.

697 28. Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. The Effect of Climate Change on Loss of Lake Volume:
698 Case of Sedimentation in Central Rift Valley Basin, Ethiopia. *Hydrology* 2018, 5, 67;
699 doi:10.3390/hydrology5040067

700 29. Ministry of Agriculture and Rural Development. Guide line for integrated watershed management. Addis
701 Ababa, Ethiopia. 2005.

702 30. Food and Agriculture Organization (FAO). *Ethiopian Highland Reclamation Study; Final Report*; FAO: Rome,
703 Italy, 1986; pp. 37–46.

704 31. Ethiopia-Land Degradation Neutrality National Report (ELDNR). The Federal Democratic Republic of
705 Ethiopia, Addis Ababa, Ethiopia. 2015.

706 32. International Food Policy Research Institute (IFPRI). Poverty and land degradation in Ethiopia: How to
707 reverse the spiral? IFPRI. 2005.

708 33. Ministry of Agriculture and Rural Development (MoARD). Ethiopia's Agricultural Sector Policy and
709 Investment Framework (PIF) 2010-2020. 2010.

710 34. Gashaw, T.; Bantider, A.; G/Silassie, H. Land Degradation in Ethiopia: Causes, Impacts and Rehabilitation
711 Techniques. *Journal of Environment and Earth Science*, 2014, 4(9), 98-104.

712 35. Hurni, K.; Zeleke, G.; Kassie, M.; Tegegne, B.; Kassawmar, T.; Teferi, E.; Moges, A.; Tadesse, D.; Ahmed,
713 M.; Degu, Y.; Kebebew, Z.; Hodel, E.; Amdihun, A.; Mekuriaw, A.; Debele, B.; Deichert, G.; Hurni, H.
714 *Economics of Land Degradation (ELD) Ethiopia Case Study. Soil Degradation and Sustainable Land Management
715 in the Rainfed Agricultural Areas of Ethiopia: An Assessment of the Economic Implications*. Report for the
716 Economics of Land Degradation Initiative. 2015, pp 94.

717 36. Hurni, H. Degradation and Conservation of the Resources in the Ethiopian highlands. *Mt. Res. Dev.* 1988,
718 8, 123–130.

719 37. Kidane, D.; Alemu, B. The Effect of Upstream Land Use Practices on Soil Erosion and Sedimentation in the
720 Upper Blue Nile Basin, Ethiopia. *Res. J. Agric. Environ. Manage.* 2015, 4 (2), 055-068

721 38. Akale, T.A.; Dagnew, D.C.; Belete, M.A.; Tilahun, S.A. Mekuria, W.; Steenhuis, T.S. Impact of Soil Depth
722 and Topography on the Effectiveness of Conservation Practices on Discharge and Soil Loss in the Ethiopian
723 Highlands. *Land* 2017, 6, 78.

724 39. Soil Conservation Research Programme (SCRP). *Soil Conservation Research Project Database Report 1982–
725 1993*; Ministry of Agriculture and University of Berne, Series Report III; Hundelafot Research Unit, Institute
726 of Geography, University of Berne: Bern, Switzerland, 1996.

727 40. FAO. *Ethiopian Highland Reclamation Study (EHRS)*; Final Report; FAO: Rome, Italy, 1984; Volume 1, pp. 37–
728 46.

729 41. Bhattacharyya, R.; Ghosh, B.N.; Dogra, P.; Mishra, P.K.; Santra, P.; Kumar, S.; Fullen, M.A.; Mandal, U.K.;
730 Anil, K.S.; Lalitha, M.; et al. Soil Conservation Issues in India. *Sustainability* 2016, 8, 565.

731 42. Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An economic, perception and
732 biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. *Ecol. Eng.*
733 2017, 108, 162–171.

734 43. Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of
735 nature based solutions in land management for enhancing ecosystem services. *Sci. Total Environ.* 2018, 610,
736 997–1009.

737 44. Bewket, W. Land Degradation and Farmers' Acceptance and Adoption of Soil Conservation Technologies
738 in the Dingil Watershed, Northwestern Highlands, Ethiopia. Addis Ababa. 2003, 29 Available online:
739 <http://library.wur.nl/WebQuery/wurpubs/326000> (accessed on 26 December 2018).

740 45. Van der Knijff, J.M.; Jones, R.J.A.; Montanarella L. Soil Erosion Risk Assessment in Europe. *European Soil
741 Bureau*. 2000.

742 46. Bagherzadeh, A. Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran.
743 *Arab. J. Geosci.* 2014, 7, 211–220.

744 47. Efe, R.; Ekinci, D.; Cürebal, I. Erosion Analysis of Fındıklı Creek catchment (Northwest of Turkey) using
745 GIS based on RUSLE (3D) Method. *Fresenius Environ. Bull.* 2008, 17, 576–586.

746 48. López-Vicente, M.; Quijano, L.; Palazon, L.; Gaspar, L.; Navas, A. Assessment of soil redistribution at
747 catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pe-
748 Pyrenees). *CIG* 2015, 41(4), 127–47.

749 49. Molla, T.; Sisheber, B. Estimating soil erosion risk and evaluating erosion control measures for soil
750 conservation planning at Koga watershed in the highlands of Ethiopia. *Solid Earth* 2017, 8, 13–25, doi:
751 10.5194/se-8-13-2017

752 50. Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models, *Environ.
753 Model Softw.* 2003, 18, 761–799

754 51. Rabia, A.H. Mapping Soil Erosion Risk Using RUSLE, GIS and Remote Sensing. In Proceedings of the 4th
755 International Congress of ECSSS, EUROSOL, Soil Science for the Benefit of Mankind and Environment,
756 Bari, Italy, 2–6 June 2012; p. 1082.

757 52. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning;
758 Agriculture Handbook No. 537; US Department of Agriculture Science and Education Administration:
759 Washington, DC, USA, 1978; p. 168.

760 53. Williams JR. Sediment routing for Agricultural Watersheds. *Water Resour. Bull.* 1975, 11, 965–974.

761 54. Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A
762 Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture
763 Handbook; USDA: Washington, DC, USA, 1997; Volume 703, pp. 1–251.

764 55. Elwell, H.A.; Stocking, M.A. Developing a simple yet practical method of soil loss estimation. *Tropical
765 Agriculture*, 1982, 59, 43–48.

766 56. Knisel WG. CREAMS: A field-scale model for chemicals, runoff and erosion from agricultural management
767 systems: U.S. Department of Agriculture; 1980. 327.

768 57. Young, R.A.; Onstad, C.; Bosch, D.; Anderson, W. AGNPS: A nonpoint-source pollution model for
769 evaluating agricultural watersheds. *J. Soil Water Conserv.* 1989, 44, 168–173.

770 58. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling, and assessment
771 part I: Model Development. *J. Am. Water Resour. Assoc.* 1998, 34, 73–89.

772 59. Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANSWERS: A model for watershed planning. *Trans. Am. Soc. Agric.
773 Eng.* 1980, 23, 938–944.

774 60. Laen, J.M.; Lane, L.J.; Foster, G.R. WEPP: A new generation of erosion prediction technology. *J. Soil Water
775 Conserv.* 1991, 46, 8.

776 61. Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.;
777 Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment
778 transport from fields and small catchments. *Earth Surf. Process. Landf.* 1998, 23, 527–544.

779 62. Sharpley, A.N.; Williams, J.R. EPIC Erosion/Productivity Impact Calculator: 1. Model Documentation; USA
780 Department of Agriculture Technical Bulletin No. 1768; USA Government Printing Office: Washington,
781 DC, USA, 1990.

782 63. Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. *J. Agric. Eng. Res.* **1984**, *30*, 245–253.

783 64. Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal Using a RUSLE Modeling

784 and Geospatial Tool. *Geosciences* **2019**, *9*, 147; doi: 10.3390/geosciences9040147

785 65. Milward, A.A.; Mersy, J.E. Adapting RULSE to model soil erosion potential in a mountainous tropica

786 watershed. *Catena* **1999**, *38*, 109–129.

787 66. Alemayehu, T.; Furi, W.; Legesse, D. Impact of water overexploitation on highland lakes of eastern

788 Ethiopia. *Environ. Geol.* **2007**, *52*, 147–154.

789 67. Assen, M. Land use/cover dynamics and its implications in the dried Lake Alemaya watershed, Eastern

790 Ethiopia. *J. Sustain. Dev. Afr.* **2011**, *13*, 267–284.

791 68. Ayala, G.; Berhanu, S.; Tolesa, O. Assessing the Effect of Soil and Water Conservation Practices on Runoff

792 and Sediment Yield on Hunde Lafto watershed of Upper Wabi Shebelle Basin. *Civil and Environmental*

793 *Research*. **2017**, *9* (9), 36–49.

794 69. Megersa, S.L. Prediction of Runoff and Sediment Yield Using AnnAGNPS Model: Case of Erer-Guda

795 Catchment, East Hararghe, Ethiopia. *ARPN J. Sci. Technol.* **2014**, *4*, 575–595.

796 70. Setegn, S.G.; Yohannes, F.; Quraishi, S.; Chowdary, V.M.; Mal, B.C. Impact of Land Use/Land Cover

797 Transformations on Alemaya Lake, Ethiopia. *J. Indian Water Resour. Soc.* **2009**, *29*, 40–45.

798 71. Senti, E.T.; Tufa, B.W.; Gebrehiwot, K.A. Soil erosion, sediment yield and conservation practices assessment

799 on Lake Haramaya Catchment. *World J. Agric. Sci.* **2014**, *2*, 186–193.

800 72. Alemayehu, T.; Furi, W.; Legesse, D. Impact of water overexploitation on highland lakes of eastern

801 Ethiopia. *Environ. Geol.* **2007**, *52*(1), 147–154.

802 73. Setegn, S.; Chowdary, V.M.; Mal, B.C.; Yohannes, F.; Kono, Y. Water Balance Study and Irrigation Strategies

803 for Sustainable Management of a Tropical Ethiopian Lake: A Case Study of Lake Alemaya. *Water resources*

804 *Management* **2011**, *25*(9), 2081–2107.

805 74. Solomon, M. Soil Erosion and Sedimentation Analysis of Lake Alemaya Catchments. M.Sc. Thesis Research

806 Alemaya University, Alemaya, Ethiopia, 2002.

807 75. Muleta, S.; Yohannes, F.; Rashid, S.M. Soil erosion assessment of Lake Alemaya catchment, Ethiopia. *Land*

808 *Degradation & Development*. **2006**, *17*(3), 333–341.

809 76. Gebere, S.B. Alamirew, T.; Merkel, B.J.; Melesse, A.M. Land Use and Land Cover Change Impact on

810 Groundwater Recharge: The Case of Lake Haramaya Watershed, Ethiopia. In *Landscape Dynamics, Soils and*

811 *Hydrological Processes in Varied Climates*, Melesse, A.M., Wossenu, A., Eds.; Springer Geography: Springer

812 Cham Heidelberg New York Dordrecht London, Switzerland, 2016; Volume 1, pp. 93–110.

813 77. Ethiopia-Land Degradation Neutrality National Report (LDNNR). Federal Democratic Republic of

814 Ethiopia, Addis Ababa, Ethiopia, 2015.

815 78. Ministry of Agriculture (MOA). *Agroecological Zones of Ethiopia*; MoA: Addis Ababa, Ethiopia, 2000.

816 79. National Meteorological Agency (NMA). Mean monthly rainfall data. Addis Ababa, Ethiopia. **2015**.

817 80. Food and Agriculture Organization (FAO). *The Digital Soil Map of the World, Land and Water Development*

818 *Division*; FAO: Rome, Italy, 1995; Available online: <http://www.fao.org/geonetwork/> (accessed on 20 March

819 2017).

820 81. Landsat Look Viewer: Available online: <http://landsatlook.usgs.gov> (accessed on 25 January 2018).

821 82. National Aeronautics and Space Administration (NASA); Land Processes Distributed Active Archive

822 Center (LPDAAC). *ASTER L1B*; The United States Geological Survey (USGS)/Earth Resources Observation

823 and Science (EROS) Center: Sioux Falls, SD, USA, 2016. Available online:

824 <http://www.gdem.aster.ersdac.or.jp/> (accessed on 28 November 2017).

825 83. ERDAS Field Guide™. *ERDAS, Inc.*: 5th ed.; Norcross, GA, USA, 2009.

826 84. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. *Remote Sensing and Image Interpretation*, 5th ed.; John Wiley

827 & Sons, Inc., River Street, Hoboken, NJ, USA, 2004; p. 763.

828 85. Department of the Interior U.S. Geological Survey. *Landsat 8 (L8) Data Users Handbook*. EROS Sioux Falls,

829 South Dakota. 2016 p.106.

830 86. Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. *A Land Use and Land Cover Classification System*

831 for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, **1976**.

832 87. Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting

833 for persistence. *Agric. Ecosyst. Environ.* **2004**, *101*, 251–268.

834

835 88. Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. *Agric. Ecosyst. Environ.*
836 2006, 113, 254–263.

837 89. Ouedraogo, I.; Barron, J.; Tumbo S.D.; Kahimba, F.C. Land-cover transition in northern Tanzania. *Land*
838 *Degradation and Development*. 2015, 27 (3), 682–692.

839 90. Zhang, X.; Wu, B.; Ling, F.; Zeng, Y.; Yan, N.; Yuan, C. Identification of priority areas for controlling soil
840 erosion. *Catena* 2010, 83, 76–86.

841 91. Yu, B.; Rosewell, C. A robust estimator of the R-reaction for the universal soil loss equation. *Trans. ASAE*
842 1996, 39, 559–561.

843 92. Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE.
844 *J. hydrol.* 1994, 157, 287–306.

845 93. Han, X.; Lv, P.; Zhao, S.; Sun, Y.; Yan, S.; Wang, M.; Han, X.; Wang, X.; The Effect of the Gully Land
846 Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau.
847 *Land* 2018, 7, 113; doi:10.3390/land7040113

848 94. Lo, A.; El-Swaify, S.; Dangler, E.; Shinshiro, L. Effectiveness of EI 30 as an Erosivity Index in Hawaii.
849 Available online: <http://agris.fao.org/agris-search/search.do?recordID=US8639059> (accessed on 20 August
850 2017).

851 95. Alexakis, D.D.; Tapoglou, E. Vozinaki, A.K.; Tsanis, I.K. Integrated Use of Satellite Remote Sensing,
852 Artificial Neural Networks, Field Spectroscopy, and GIS in Estimating Crucial Soil Parameters in Terms of
853 Soil Erosion. *Remote Sens.* 2019, 11, 1106; doi:10.3390/rs11091106

854 96. Chang, T.J.; ASCE, M.; Zhou, H.; ASCE; S.M.; Guan, Y. Applications of Erosion Hotspots for Watershed
855 Investigation in the Appalachian Hills of the United States. *J. Irrig. Drain Eng.* 2016, 142 (3), doi:
856 10.1061/(ASCE)IR.1943-4774.0000974.

857 97. McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the Universal Soil
858 Loss Equation. *Trans. Am. Soc. Agric. Eng.* 1987, 30 (5), 1387–1396.

859 98. McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the Universal Soil
860 Loss Equation. *Trans. Am. Soc. Agric. Eng.* 1989, 32, 1571–1576.

861 99. Foster, G.R.; Wischmeier, W. Evaluating Irregular Slopes for Soil loss prediction. *Trans. Am. Soc. Agric. Eng.*
862 1974, 17, 305–309.

863 100. Desmet, P.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on
864 topographically complex landscape units. *Journal of Soil and Water Conservation*. 1996, 51, 5, 427–433.

865 101. Anache, J.A.A.; Bacchi, C.G.V.; Panachuki, E.; Sobrinho, T.A. Assessment of Methods for Predicting Soil
866 erodibility in Soil Loss Modeling. São Paulo, UNESP. *Geociências* 2015, 34, 32–40.

867 102. McCool, D. K., George, G. O., Freckleton, M., Douglas, C. L., and Papendick Jr., R. I. Topographic effect on
868 erosion from cropland in the northwestern wheat region. *T. ASABE* 1993, 36 (3), 771–775.

869 103. Panagosa, P.; Borrelli, P.; Meusburgerb, K.; Alewellb, C.; Lugatoa, E.; Montanarella, L. Estimating the soil
870 erosion cover-management factor at the European scale. *Land Use Policy* 2015, 48, 38–50.

871 104. De Jong SM. Derivation of vegetative variables from a Landsat TM image for modelling soil erosion. *Earth*
872 *Surface Processes and Landforms*. 1994, 19 (2), 165–78.

873 105. Yahya, F.; Zregat, D.; Farhan, I. Spatial Estimation of Soil Erosion Risk Using RUSLE Approach, RS, and
874 GIS Techniques: A Case Study of Kufranja Watershed, Northern Jordan. *J. Water Resour. Prot.* 2013, 5,
875 1247–1261.

876 106. Arekhi, S.; Shabani, A.; Rostamizad, G. Application of the modified universal soil loss equation (MUSLE)
877 in prediction of sediment yield (Case study: Kengir Watershed, Iran). *Arab. J. Geosci.* 2012, 5, 1259–1267.

878 107. Xu, L.; Xu, X.; Meng, X. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model
879 coupled with information diffusion model: A case study of Bohai Rim, China. *Catena* 2013, 100, 74–82.

880 108. Li, X.S.; Wu, B.F.; Wang, H.; Zhang, J. Regional soil erosion risk assessment in Hai Basin. *J. Remote Sens.*
881 2011, 15, 372–387.

882 109. Troeh, F.R.; Hobbs, A.J.; Donahue, R.L. *Soil and Water Conservation*, 2nd ed.; Prentice-Hall Incorporation:
883 Needham, MA, USA, 1991; pp. 81–86.

884 110. Ariti, A. T.; Vliet, J.V.; Verburg, P.H. Land-use and land-cover changes in the Central Rift Valley of Ethiopia:
885 Assessment of perception and adaptation of stakeholders. *Applied Geography*, 2015, 65, 28–37.

886 111. Meshesha, D.T.; Tsunekawa, A.; Tsubo, M.; Ali, S.A.; Haregeweyn, N. Land-use change and its socio-
887 environmental impact in Eastern Ethiopia's highland. *Reg. Environ Chang.* 2014, 14 (2), 757–768.

888 112. Bewket, W. Land cover dynamics since the 1950s in Chemoga watershed, Blue Nile Basin, Ethiopia.
889 *Mountain Research and Development*. 2002, 22, 263–269.

890 113. Kindu, M.; Schneider, T.; Demel, T.; Knoke, T. Land Use/Land Cover Change Analysis Using Object-Based
891 Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. *Remote Sens.*
892 2013, 5, 2411–2435; doi: 10.3390/rs5052411.

893 114. Kibret, K.F.; Marohn, C.; Cadisch, G. Assessment of land use and land cover change in South Central
894 Ethiopia during four decades based on integrated analysis of multi-temporal images and geospatial vector
895 data. *Remote Sensing Applications: Society and Environment*. 2016, 3, 1–19.

896 115. Mengistu, D.A. Remote sensing and GIS-based Land use and land cover change detection in the upper Dijo
897 river catchment, Silte zone, southern Ethiopia. Working papers on population and land use change in
898 central Ethiopia, 2008, 17

899 116. Tesfaye, S.; Guyassa, E.; Raj, A.J.; Birhane, E.; Wondim, G.T. Land Use and Land Cover Change, and Woody
900 Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia.
901 *International Journal of Forestry Research*, 2014, <http://dx.doi.org/10.1155/2014/614249>.

902 117. Fetene, A.; Hilker, T.; Yeshitela, K.; Prasse, R.; Cohen, W.; Yang, Z. Detecting Trends in Land use and Land
903 cover Change of Nech Sar National Park, Ethiopia. *Environmental Management*, 2016, 57, 137–147; doi
904 10.1007/s00267-015-0603-0.

905 118. Belay, S.; Amsalu, A.; Abebe, E. Land Use and Land Cover Changes in Awash National Park, Ethiopia:
906 Impact of Decentralization on the Use and Management of Resources. *Open Journal of Ecology*, 2014, 4,
907 950–960. <http://dx.doi.org/10.4236/oje.2014.415079>

908 119. Hailemariam, S.N.; Soromessa, T.; Teketay, D. Land Use and Land Cover Change in the Bale Mountain
909 Eco-Region of Ethiopia during 1985 to 2015. *Land* 2016, 5, 41; doi:10.3390/land5040041

910 120. Haregeweyn, N.; Tesfaye, S.; Tsunekawa, A.; Tsubo, M.; Tsegaye, D. M.; Adgo, E.; Elias, A. Dynamics of
911 land use and land cover and its effects on hydrologic responses: case study of the Gilgel Tekeze catchment
912 in the highlands of Northern Ethiopia. *Environ Monit Assess.* 2015, 187; doi 10.1007/s10661-014-4090-1.

913 121. Tadesse, L.; Suryabagavan, K.V.; Sridhar, G.; Legesse, G. Land use and land cover changes and Soil
914 erosion in Yezat Watershed, North Western Ethiopia. *Int. Soil Water Conserv. Res.* 2017, 5, 85–94.

915 122. Belayneh1, M.; Yirgu, T., Tsegaye, D. Potential soil erosion estimation and area prioritization for better
916 conservation planning in Gumara watershed using RUSLE and GIS techniques'. *Environ Syst Res.* 2019, 8
917 (20), 1–17.

918 123. Karamage, F.; Zhang, C.; Kayiranga, A.; Shao, H.; Fang, X.; Ndayisaba, F.; Nahayo, L.; Mupenzi, C.; Tian,
919 G. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda. *Int. J.*
920 *Environ. Res. Public Health* 2016, 13, 835.

921 124. Abate, S. Estimating soil loss rates for soil conservation planning in the Borena Woreda of South Wollo
922 Highlands, Ethiopia. *J. Sustain. Dev. Afr.* 2011, 13, 87–106.

923 125. Paiboonvorachat, C.; Oyan, T. J. Land-cover changes and potential impacts on soil erosion in the Nan
924 watershed, Thailand. *International Journal of Remote Sensing*. 2011, 32 (21), 6587–6609

925 126. Hurni, H. Guidelines for development agents on soil conservation in Ethiopia soil conservation research
926 project. Community Forests and Soil Conservation Development Department, Ministry of Agriculture,
927 Addis Ababa, 1986.

928 127. Hurni, H. Soil formation rates in Ethiopia. Ethiopian highlands reclamation study. Soil Conservation
929 Research Project, FAO, UTF/ETH/037/ETH Working Paper 2, 1983.

930 128. Yohannes, G.G. Soil Erosion Hazard in Errer Dembel Sub-Basin, in Shinille Zone of the Ethiopia Somali
931 Regional State. *Int J Environ Sci Nat Res.* 2019, 17(1), 555951, doi: 10.19080/IJESNR.2019.17.555951.

932 129. Tesfaye, G.; Debebe, Y.; Fikirie, K.; Soil Erosion Risk Assessment Using GIS Based USLE Model for Soil and
933 Water Conservation Planning in Somodo Watershed, South West Ethiopia. *IJOEAR* 2018, 4 (5), 35–43

934 130. Yesuph, A.Y.; Dagnew, A.B. Soil erosion mapping and severity analysis based on RUSLE model and local
935 perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. *Environ Syst Res.* 2019, 8 (17), 1–21.

936 131. Gete, Z. Landscape Dynamics and Soil Erosion Process Modeling in the Northwestern Ethiopia Highlands;
937 African Studies Series; University of Berne: Berne, Switzerland, 2000.

938 132. Amare, B. Landscape transformation and opportunities for sustainable land management along the eastern
939 escarpment of Wollo (EEW), Ethiopia PhD dissertation. University of Bern, Bern, 2007

940 133. Jiu, J.; Wu, H.; Sen Li, S. The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion
941 Risk in the Three Gorges Reservoir Region, China. *Int. J. Environ. Res. Public Health* **2019**, *16*, 1856;
942 doi:10.3390/ijerph16101856