An E-sequence approach to the $3 \mathrm{x}+1$ problem

SanMin Wang
Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
Email: wangsanmin@hotmail.com

Abstract

For any odd positive integer x, define $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(a_{n}\right)_{n \geqslant 1}$ by setting $x_{0}=x, x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}}$ such that all x_{n} are odd. The $3 \mathrm{x}+1$ problem asserts that there is an $x_{n}=1$ for all x. Usually, $\left(x_{n}\right)_{n \geqslant 0}$ is called the trajectory of x. In this paper, we concentrate on $\left(a_{n}\right)_{n \geqslant 1}$ and call it the E-sequence of x. The idea is that, we consider any infinite sequence $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers and call it an E-sequence. We then define $\left(a_{n}\right)_{n \geqslant 1}$ to be Ω-convergent to x if it is the E-sequence of x and to be Ω-divergent if it is not the E-sequence of any odd positive integer. We prove a remarkable fact that the Ω-divergence of all non-periodic E-sequences implies the periodicity of $\left(x_{n}\right)_{n \geqslant 0}$ for all x_{0}. The principal results of this paper are to prove the Ω-divergence of several classes of non-periodic E-sequences. Especially, we prove that all non-periodic E-sequences $\left(a_{n}\right)_{n \geqslant 1}$ with $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2} 3$ are Ω-divergent by using the Wendel's inequality and the Matthews and Watts's formula $x_{n}=\frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$, where $b_{n}=\sum_{k=1}^{n} a_{k}$. These results present a possible way to prove the periodicity of trajectories of all positive integers in the $3 \mathrm{x}+1$ problem and we call it the E-sequence approach.

Keywords:
2000 MSC: 11A99, 11B83
$3 \mathrm{x}+1$ problem, E-sequence approach, Ω-Divergence of non-periodic E-sequences, the Wendel's inequality

1. Introduction

For any odd positive integer x, define two infinite sequences $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers by setting

$$
\begin{equation*}
x_{0}=x, \quad x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}} \tag{1.1}
\end{equation*}
$$

such that x_{n} is odd for all $n \in \mathbb{N}=\{1,2, \ldots\}$. The $3 \mathrm{x}+1$ problem asserts that there is $n \in \mathbb{N}$ such that $x_{n}=1$ for all odd positive integer x. For a survey, see [3]. For recent developments, see [9-14].
$\left(x_{n}\right)_{n \geqslant 0}$ is called the trajectory of x and, the sequence $\left(a_{n}\right)_{n \geqslant 1}$ of exponents of all $2^{a_{n}}$ is called the E-sequence of x. For example, the trajectory and the E-sequence of 3 are $(3,5,1,1, \ldots)$ and $(1,4,2,2, \ldots)$, respectively.

Given any sequence $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers, if it is the E-sequence of the odd positive integer x, it is called to be Ω-convergent to x and, denoted by $\Omega-\lim a_{n}=x$; if $\left(a_{n}\right)_{n \geqslant 1}$ is not the E-sequence of any odd positive integer, it is called to be Ω-divergent and denoted by $\Omega-\lim a_{n}=\infty$. Subsequently, all sequences of positive integers are called E-sequences.

The $3 x+1$ problem in the form (1.1) should be owed to Crandall, Sander et al., see [1, 6]. E-sequences are some variants of Everett's parity sequences [2] and Terras's encoding representations [8]. Everett and Terras focused on finite E-sequences resulted from (1.1). What we concern is the Ω-convergence and Ω-divergence of any infinite sequence of positive integers, i.e., the generalized E -sequences.

A possible way to prove the $3 x+1$ problem were devised by Möller as follows, see [5].
Conjecture 1.1. (i) $\left(x_{n}\right)_{n \geqslant 0}$ is periodic for all odd positive integer x_{0};
(ii) $(1,1, \cdots)$ is the unique pure periodic trajectory.

Usually, we can convert one claim about trajectories into the one about E-sequences. As for E-sequences, we have the following conjecture.

Conjecture 1.2. Let $b_{n}=\sum_{i=1}^{n} a_{i}$. Then
(i) all non-periodic E-sequences are Ω-divergent;
(ii) every E-sequence $\left(a_{n}\right)_{n \geqslant 1}$ satisfying $3^{n}>2^{b_{n}}$ for all $n \in \mathbb{N}$ is Ω-divergent.

Note that Conjecture 1.2 (i) does not hold for some generalizations of the $3 x+1$ problem studied by Möller, Matthews and Watts in [4, 5]; Conjecture 1.2(ii) implies that there is some n such that $2^{b_{n}}>3^{n}$ in the E-sequence $\left(a_{n}\right)_{n \geqslant 1}$ of every odd positive integer x, which is a conjecture posed by Terras in [8] about his τ-stopping time.

A remarkable fact is that Conjecture 1.1(i) is a corollary of Conjecture 1.2(i) by Theorem 3.6. This means that the Ω-divergence of all non-periodic E-sequences implies the periodicity of $\left(x_{n}\right)_{n \geqslant 1}$ for all positive integers x. Then Conjecture 1.2(i) is of significance to the study of the $3 \mathrm{x}+1$ problem. The principal results of this paper are to prove that several classes of non-periodic E-sequences are Ω-divergent. In particular, we prove that
(i) All non-periodic E-sequences $\left(a_{n}\right)_{n \geqslant 1}$ with $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2} 3$ are Ω-divergent.
(ii) If $\left(a_{n}\right)_{n \geqslant 0}$ is $12121112 \cdots$, where $a_{n}=2$ if $n \in\left\{2^{1}, 2^{2}, 2^{3}, \cdots\right\}$ and $a_{n}=1$ otherwise, then $\Omega-\lim a_{n}=\infty$;
(iii) Let $\theta \geqslant 1$ be an irrational number, define $a_{n}=[n \theta]-[(n-1) \theta]$, then $\Omega-\lim a_{n}=\infty$, where $[a]$ denotes the integral part of a for any real a.

Note that we prove the above claim (i) by using the Wendel's inequality and the Matthews and Watts's formula $x_{n}=\frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$. In addition, it seems that our approach cannot help to prove the conjecture 1.1(ii) of the unique cycle. For such a topic, see [7].

2. Preliminaries

Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence. In most cases, there is no odd positive integer x such that $\left(a_{n}\right)_{n \geqslant 1}$ is the E-sequence of x, i.e., $\Omega-\lim a_{n}=\infty$. However, there always exists $x \in \mathbb{N}$ such that the first n terms of the E-sequence of x is $\left(a_{1} \ldots a_{n}\right)$. Furthermore, for any $1 \leqslant u \leqslant v \leqslant n$, there always exists $x \in \mathbb{N}$ such that the first $v-u+1$ terms of the E-sequence of x is the designated block $\left(a_{u} \ldots a_{v}\right)$ of $\left(a_{1} \ldots a_{n}\right)$, which is illustrated as $\left(a_{1} \ldots a_{u-1}\right)\left(a_{u} \ldots a_{v}\right)\left(a_{v+1} \ldots a_{n}\right)$.

Definition 2.1. Define $b_{0}=0, b_{n}=\sum_{i=1}^{n} a_{i}, B_{n}=\sum_{i=0}^{n-1} 3^{n-1-i} 2^{b_{i}}$.
Clearly, $B_{1}=1, B_{n}=3 B_{n-1}+2^{b_{n-1}}, 2+B_{n}, 3+B_{n}$.
Proposition 2.2. Let $\left(x_{n}\right)_{n \geqslant 1}$ and $\left(a_{n}\right)_{n \geqslant 1}$ be defined as in (1.1). Then
$x_{n}=\frac{3^{n} x+B_{n}}{2^{b_{n}}}$.
Proof. The proof is by a procedure similar to that of Theorem 1.1 in [8] and omitted.
Proposition 2.3. Given any positive integer n, there exist two integers x_{n} and x_{0} such that $2^{b_{n}} x_{n}-$ $3^{n} x_{0}=B_{n}, 1 \leqslant x_{n}<3^{n}$ and $1 \leqslant x_{0}<2^{b_{n}}$.

Proof. By $\operatorname{gcd}\left(2^{b_{n}}, 3^{n}\right)=1$, there exist two integers x_{n} and x_{0} such that $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ and $1 \leqslant x_{n} \leqslant 3^{n}$. Then $x_{n}<3^{n}$ by $3+B_{n}$. By $B_{n} \geqslant 1$, we have $x_{0}=\frac{2^{b_{n}} x_{n}-B_{n}}{3^{n}}<\frac{2^{b_{n}} x_{n}}{3^{n}}<2^{b_{n}}$. Thus $x_{0}<2^{b_{n}}$.

By $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$, we have $2^{b_{n}} x_{n} \equiv B_{n}\left(\bmod 3^{n}\right)$. Then
$2^{b_{n-1}}\left(2^{a_{n}} x_{n}-1\right) \equiv 3 B_{n-1}\left(\bmod 3^{n}\right)$ by $B_{n}=2^{b_{n-1}}+3 B_{n-1}$. Thus $3 \mid 2^{a_{n}} x_{n}-1$. Define $x_{n-1}=\frac{2^{a_{n}} x_{n}-1}{3}$. Then $x_{n-1} \in \mathbb{Z}, x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}}$ and
$2^{b_{n-1}} x_{n-1} \equiv B_{n-1}\left(\bmod 3^{n-1}\right)$. Sequentially define x_{n-2}, \ldots, x_{1} such that
$x_{n-1}=\frac{3 x_{n-2}+1}{2^{a_{n-1}}}, \ldots, x_{1}=\frac{3 x_{0}+1}{2^{a_{1}}}$. Then $x_{i} \in \mathbb{Z}$ for all $0 \leqslant i \leqslant n$.
Suppose that $x_{0}<0$. We then sequentially have $x_{1}<0, \ldots, x_{n}<0$, which contradicts with $x_{n} \geqslant 1$. Thus $x_{0} \geqslant 1$.

Note that the validity of Proposition 2.3 is dependent on the structure of B_{n}. We formulate the middle part of the above proof as the following proposition.

Proposition 2.4. Assume that $x_{n}, x_{0} \in \mathbb{Z}$ and $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$. Define $x_{1}=\frac{3 x_{0}+1}{2^{a_{1}}}, \ldots, x_{n-1}=$ $\frac{3 x_{n-2}+1}{2^{a_{n-1}}}$. Then $x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}}$ and $x_{i} \in \mathbb{Z}$ for all $0 \leqslant i \leqslant n$.

Definition 2.5. For any $1 \leqslant u \leqslant v$, define $b_{u}^{u-1}=0, b_{u}^{v}=\sum_{i=u}^{v} a_{i}, B_{u}^{u-2}=0, B_{u}^{u-1}=1, B_{u}^{v}=$ $3^{v-u+1}+3^{v-u} 2_{u}^{b_{u}^{u}}+\cdots+3^{1} 2^{b_{u}^{v-1}}+2^{b_{u}^{v}}=\sum_{i=0}^{v-u+1} 3^{v-u+1-i} 2^{b_{u}^{u-1+i}}$.

Then $b_{u}^{u}=a_{u}, b_{u}^{u+1}=a_{u}+a_{u+1}, B_{u}^{u}=3+2^{a_{u}}, B_{u}^{u+1}=3^{2}+3 \cdot 2^{a_{u}}+2^{a_{u}+a_{u+1}}, B_{u}^{v}=3 B_{u}^{v-1}+2^{b_{u}^{v}}=$ $\sum_{i=u-1}^{v} 3^{v-i} 2^{b_{u}^{i}}$. Clearly, b_{1}^{n} and B_{1}^{n-1} are same as b_{n} and B_{n}, respectively.
Proposition 2.6. $B_{n}=3^{n-u+1} B_{1}^{u-2}+3^{n-1-v} 2^{b_{u-1}} B_{u}^{v}+2^{b_{v+1}} B_{v+2}^{n-1}$.
Proof. By $B_{1}^{u-2}=\sum_{i=0}^{u-2} 3^{u-2-i} 2^{b_{i}}$ and $B_{v+2}^{n-1}=\sum_{i=v+1}^{n-1} 3^{n-1-i} 2^{b_{v+2}^{i}}$, we have

$$
\begin{aligned}
B_{n} & =B_{1}^{n-1}=\sum_{i=0}^{n-1} 3^{n-1-i} 2^{b_{i}}=\sum_{i=0}^{u-2} 3^{n-1-i} 2^{b_{i}}+\sum_{i=u-1}^{v} 3^{n-1-i} 2^{b_{i}}+\sum_{i=v+1}^{n-1} 3^{n-1-i} 2^{b_{i}} \\
& =3^{n-u+1} \sum_{i=0}^{u-2} 3^{u-2-i} 2^{b_{i}}+3^{n-1-v} 2^{b_{u-1}} \sum_{i=u-1}^{v} 3^{v-i} 2^{b_{u}^{i}}+2^{b_{v+1}} \sum_{i=v+1}^{n-1} 3^{n-1-i} 2^{b_{v+2}^{i}} \\
& =3^{n-u+1} B_{1}^{u-2}+3^{n-1-v} 2^{b_{u-1}} B_{u}^{v}+2^{b_{v+1}} B_{v+2}^{n-1} .
\end{aligned}
$$

Definition 2.7. For any $1 \leqslant u \leqslant v$, define two integers $x_{0}^{u, v}$ and $x_{v-u+1}^{u, v}$ such that $2^{b_{u}^{v}} x_{v-u+1}^{u, v}-$ $3^{v-u+1} x_{0}^{u, v}=B_{u}^{v-1}, 1 \leqslant x_{0}^{u, v}<2^{b_{u}^{v}}$ and $1 \leqslant x_{v-u+1}^{u, v}<3^{v-u+1}$. Further define $x_{1}^{u, v}=\frac{3 x_{0}^{u, v}+1}{2^{a_{u}}}$, $x_{2}^{u, v}=\frac{3 x_{1}^{u, v}+1}{2^{a_{u+1}}}, \ldots, x_{v-u}^{u, v}=\frac{3 x_{v-u-1}^{u, v}+1}{2^{a_{v-1}}}$.

Clearly, $x_{0}^{1, n}$ and $x_{n}^{1, n}$ are same as x_{0} and x_{n} in Proposition 2.3, respectively.
Proposition 2.8. (i) $x_{v-u+1}^{u, v}=\frac{3 x_{v-u}^{u, v}+1}{2^{a_{v}}}$;
(ii) For any $0 \leqslant k \leqslant v-u, x_{k}^{u, v}=\frac{3^{k} x_{0}^{u, v}+B_{u}^{u+k-2}}{2_{u}^{b_{u}^{u+k-1}}}$ and

$$
x_{v-u+1}^{u, v}=\frac{3^{v-u+1-k} x_{k}^{u, v}+B_{u+k}^{v-1}}{2^{b_{u+k}^{v}}}
$$

(iii) $x_{0}^{u, v} \leqslant x_{0}^{u, v+1}$;
(iv) $\Omega-\lim a_{n}=x$ if and only if $\lim _{n \rightarrow \infty} x_{0}^{1, n}=x$;
(v) $\Omega-\lim a_{n}=\infty$ if and only if $\lim _{n \rightarrow \infty} x_{0}^{1, n}=\infty$.

Proof. (i) is from Proposition 2.4. (ii) is from (i) and Proposition 2.2.
(iii) By Definition 2.7, $2^{b_{u}^{v}} x_{v-u+1}^{u, v}-3^{v-u+1} x_{0}^{u, v}=B_{u}^{v-1}$,
$2^{b_{u}^{v+1}} x_{v-u+2}^{u, v+1}-3^{v-u+2} x_{0}^{u, v+1}=B_{u}^{v}$. Then
$3^{v-u+1} x_{0}^{u, v}+B_{u}^{v-1} \equiv 0\left(\bmod 2^{b_{u}^{v}}\right), 3^{v-u+2} x_{0}^{u, v+1}+B_{u}^{v} \equiv 0\left(\bmod 2^{b_{u}^{v+1}}\right)$. Thus
$3^{v-u+1} x_{0}^{u, v+1}+B_{u}^{v-1} \equiv 0\left(\bmod 2^{b_{u}^{v}}\right)$ by $B_{u}^{v}=3 B_{u}^{v-1}+2^{b_{u}^{v}}$. Hence
$x_{0}^{u, v} \equiv x_{0}^{u, v+1}\left(\bmod 2^{b_{u}^{v}}\right)$. Therefore
$x_{0}^{u, v} \leqslant x_{0}^{u, v+1}$ by $1 \leqslant x_{0}^{u, v}<2^{b_{u}^{v}}$ and $1 \leqslant x_{0}^{u, v+1}<2^{b_{u}^{v+1}}$.
By (iii), $\left(x_{0}^{1, n}\right)_{n \geqslant 1}$ is increasing, then (iv) and (v) hold trivially.
Proposition 2.8(iv) shows that if $\Omega-\lim a_{n}=x$, then $x_{0}^{1, n}=x$ for all sufficiently large n. Proposition 2.8(v) shows the reasonableness of $\Omega-\lim a_{n}=\infty$.

3. Periodic E-sequences

Definition 3.1. (i) $\left(a_{n}\right)_{n \geqslant 1}$ is periodic if there exist two integers
$l \geqslant 0, r \geqslant 1$ such that $a_{n}=a_{n+r}$ for all $n>l$;
(ii) r is called the period of $\left(a_{n}\right)_{n \geqslant 1}$;
(iii) $\left(a_{1} \cdots a_{l}\right)$ and $\left(a_{l+1} \cdots a_{l+r} \cdots\right)$ are called the non-periodic part and periodic part of $\left(a_{n}\right)_{n \geqslant 1}$, respectively;
(iv) $\left(a_{n}\right)_{n \geqslant 1}$ is called purely periodic if $l=0$ and, eventually periodic if $l>0$;
(v) The E-sequence is denoted by $a_{1} \cdots a_{l} \overline{a_{l+1} \cdots a_{l+r}}$.

Throughout the remainder of this section, define $s=b_{l+1}^{l+r}, B_{r}=B_{l+1}^{l+r-1}$ and let $k \geqslant 0$ be an integer.

Proposition 3.2. Let $a_{1} \cdots a_{l} \overline{a_{l+1} \cdots a_{l+r}}$ be a periodic E-sequence. Then
$B_{r k+l}=3^{r k} B_{l}+2^{b_{l}} B_{r} \frac{3^{r k}-2^{s k}}{3^{r}-2^{s}}$.
Proof. By Proposition 2.6, $B_{r k+l}=B_{1}^{r k+l-1}=3^{r k} B_{1}^{l-1}+3^{r k-r} 2^{b_{l}} B_{l+1}^{l+r-1}+$ $3^{r k-2 r} 2^{b_{l+r}} B_{l+r+1}^{l+2 r-1}+\cdots+2^{b_{l+r k-r}} B_{l+1+r(k-1)}^{l+r k-1}$. By $b_{l+r}=b_{l}+s, b_{l+2 r}=b_{l}+2 s, \cdots$,
$b_{l+r k-r}=b_{l}+(k-1) s, B_{1}^{l-1}=B_{l}, B_{l+r+1}^{l+2 r-1}=\cdots=B_{l+1+r(k-1)}^{l+r k-1}=B_{r}$, we have

$$
\begin{aligned}
B_{r k+l} & =3^{r k} B_{l}+3^{r k-r} 2^{b_{l}} B_{r}+3^{r k-2 r} 2^{b_{l}} 2^{s} B_{r}+\cdots+2^{b_{l}} 2^{(k-1) s} B_{r} \\
& =3^{r k} B_{l}+2^{b_{l}} B_{r}\left(3^{r k-r} 2^{0}+3^{r k-2 r} 2^{s}+\cdots+3^{0} 2^{(k-1) s}\right) \\
& =3^{r k} B_{l}+2^{b_{l}} B_{r} \frac{3^{r k}-2^{s k}}{3^{r}-2^{s}} .
\end{aligned}
$$

Proposition 3.3. Let $a_{1} \cdots a_{l} \overline{a_{l+1} \cdots a_{l+r}}$ be a periodic E-sequence. By Proposition 2.3, define two integers x_{0} and $x_{r k+l}$ such that $2^{s k+b_{l}} x_{r k+l}-3^{r k+l} x_{0}=B_{r k+l}, 1 \leqslant x_{0}<2^{s k+b_{l}}$ and $1 \leqslant x_{r k+l}<3^{r k+l}$. Then there is a constant $K \in \mathbb{N}$, depending on a_{1}, \cdots, a_{l+r} such that when $k>K$ and,
(i) if $2^{s}>3^{r}$, there is $u_{r k+l} \in \mathbb{Z}, 0 \leqslant u_{r k+l}<\left(2^{s}-3^{r}\right) 3^{l}$ such that $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(2^{s}-3^{r}\right)+2^{b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{l}}, x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}} ;$
(ii) if $3^{r}>2^{s}$ there is $u_{r k+l} \in \mathbb{N}, 1 \leqslant u_{r k+l} \leqslant\left(3^{r}-2^{s}\right) 3^{l}$ such that $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}, x_{r k+l}=\frac{3^{r k} u_{r k+l}-B_{r}}{3^{r}-2^{s}}$.

Proof. (i) $2^{s}>3^{r}$. By $x_{r k+l}=\frac{3^{r k+l} x_{0}+B_{r k+l}}{2^{s k+b_{l}}}$, we have $2^{s k+b_{l}} x_{r k+l} \equiv B_{r k+l}\left(\bmod 3^{r k+l}\right)$. Then
$2^{s k+b_{l}} x_{r k+l} \equiv 3^{r k} B_{l}+2^{b_{l}} B_{r} \frac{2^{s k}-3^{r k}}{2^{s}-3^{r}}\left(\bmod 3^{r k+l}\right)$ by Proposition 3.2. Thus

```
\(\left(2^{s}-3^{r}\right) 2^{s k+b_{l}} x_{r k+l} \equiv\left(2^{s}-3^{r}\right) 3^{r k} B_{l}+\left(2^{s k}-3^{r k}\right) 2^{b_{l}} B_{r}\left(\bmod \left(2^{s}-3^{r}\right) 3^{r k+l}\right)\). Hence
\(2^{s k+b_{l}}\left(\left(2^{s}-3^{r}\right) x_{r k+l}-B_{r}\right) \equiv 3^{r k}\left(\left(2^{s}-3^{r}\right) B_{l}-2^{b_{l}} B_{r}\right)\left(\bmod \left(2^{s}-3^{r}\right) 3^{r k+l}\right)\). Define \(u_{r k+l}=\)
\(\frac{\left(2^{s}-3^{r}\right) x_{r k+l}-B_{r}}{3^{r k}}\). Then \(u_{r k+l} \in \mathbb{Z}\) and
\(2^{s k+b_{l}} u_{r k+l} \equiv\left(2^{s}-3^{r}\right) B_{l}-2^{b_{l}} B_{r}\left(\bmod \left(2^{s}-3^{r}\right) 3^{l}\right)\).
Hence \(x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}\) and
```

$$
\begin{aligned}
x_{0} & =\frac{2^{s k+b_{l}} x_{r k+l}-B_{r k+l}}{3^{r k+l}} \\
& =\frac{2^{s k+b_{l}} \frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}-3^{r k} B_{l}-2^{b_{l}} B_{r} \frac{2^{s k}-3^{r k}}{2^{s}-3^{r}}}{3^{r k+l}} \\
& =\frac{3^{r k} 2^{s k+b_{l}} u_{r k+l}+2^{s k+b_{l}} B_{r}-3^{r k} B_{l}\left(2^{s}-3^{r}\right)+3^{r k} 2^{b_{l}} B_{r}-2^{s k+b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{r k+l}} \\
& =\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(2^{s}-3^{r}\right)+2^{b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{l}} .
\end{aligned}
$$

By $x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}<3^{r k+l}$, we have
$u_{r k+l}<\frac{3^{r k+l}\left(2^{s}-3^{r}\right)-B_{r}}{3^{r k}}=3^{l}\left(2^{s}-3^{r}\right)-\frac{B_{r}}{3^{r k}}<3^{l}\left(2^{s}-3^{r}\right)$.
By $x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}>0$, we have $u_{r k+l}>-\frac{B_{r}}{3^{r k}}$. Since
$\lim _{k \rightarrow \infty}-\frac{B_{r}}{3^{r k}}=0$ and $u_{r k+l} \in \mathbb{Z}$, there is a constant $K \in \mathbb{N}$, depending on a_{1}, \cdots, a_{l+r} such that $u_{r k+l} \geqslant 0$ when $k>K$.
(ii) $3^{r}>2^{s}$. By $x_{r k+l}=\frac{3^{r k+l} x_{0}+B_{r k+l}}{2^{s k+b_{l}}}$, we have

$$
2^{s k+b_{l}}\left(\left(3^{r}-2^{s}\right) x_{r k+l}+B_{r}\right) \equiv 3^{r k}\left(\left(3^{r}-2^{s}\right) B_{l}+2^{b_{l}} B_{r}\right)\left(\bmod \left(3^{r}-2^{s}\right) 3^{r k+l}\right) .
$$

Define $u_{r k+l}=\frac{\left(3^{r}-2^{s}\right) x_{r k+l}+B_{r}}{3^{r k}}$. Then

$$
u_{r k+l} \in \mathbb{Z}, 2^{s k+b_{l}} u_{r k+l} \equiv\left(3^{r}-2^{s}\right) B_{l}+2^{b_{l}} B_{r}\left(\bmod \left(3^{r}-2^{s}\right) 3^{l}\right) .
$$

Thus $x_{r k+l}=\frac{3^{r k} u_{r k+l}-B_{r}}{3^{r}-2^{s}}, x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}$.
Since $x_{r k+l}=\frac{3^{r k} u_{r k+l}-B_{r}}{3^{r}-2^{s}}>0$, then $u_{r k+l}>\frac{B_{r}}{3^{r k}}$ and thus $1 \leqslant u_{r k+l}$.
By $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}<2^{s k+b_{l}}$, we have
$u_{r k+l}<\left(3^{r}-2^{s}\right) 3^{l}+\frac{B_{l}\left(3^{r}-2^{s}\right)+2^{b_{l}} B_{r}}{2^{s k+b_{l}}}$. Since
$\lim _{k \rightarrow \infty} \frac{B_{l}\left(3^{r}-2^{s}\right)+2^{b_{l}} B_{r}}{2^{s k+b_{l}}}=0$ and $u_{r k+l} \in \mathbb{Z}$, there is a $K \in \mathbb{N}$ such that $u_{r k+l} \leqslant\left(3^{r}-2^{s}\right) 3^{l}$ when $k>K$.

Theorem 3.4. If $3^{r}>2^{s}$ then $a_{1} \cdots a_{l} \overline{a_{l+1} a_{l+2} \cdots a_{l+r-1} a_{l+r}}$ is Ω-divergent.
Proof. By Proposition 3.3(ii), $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}$ and $u_{r k+l} \geqslant 1$. Then $x_{0} \rightarrow+\infty$ as $k \rightarrow \infty$. Thus the E-sequence is Ω-divergent.

Theorem 3.5. If $a_{1} \cdots a_{l} \overline{a_{l+1} a_{l+2} \cdots a_{l+r-1} a_{l+r}}$ is Ω-convergent to x then $\left(x_{n}\right)_{n \geqslant 0}$ is periodic.
Proof. By Theorem 3.4, $2^{s}>3^{r}$. By Proposition 3.3(i),

$$
x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(2^{s}-3^{r}\right)+2^{b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{l}}
$$

and $u_{r k+l} \geqslant 0$ for all $k>K$. Since $x_{0}=x<\infty$ for all sufficiently large k by Proposition 2.8(iv), then $u_{r k+l}=0$. Thus $x_{0}=\frac{2^{b_{l}} B_{r}-B_{l}\left(2^{s}-3^{r}\right)}{\left(2^{s}-3^{r}\right) 3^{l}}$ and $x_{r k+l}=\frac{B_{r}}{2^{s}-3^{r}}$ for all $k \geq 0$. Hence $\left(x_{n}\right)_{n \geqslant 0}$ is periodic and its non-periodic part and periodic part are $\left(x_{0} x_{1} \cdots x_{l}\right)$ and $\overline{x_{l+1} \cdots x_{l+r}}$, respectively.

Theorem 3.6. Assume that all non-periodic E-sequence are Ω-divergent. Then the trajectory of every odd positive integer is periodic.

Proof. Suppose that x is an odd positive integer, $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(a_{n}\right)_{n \geqslant 1}$ are its trajectory and Esequence, respectively. Then $\Omega-\lim a_{n}=x$. Thus $\left(a_{n}\right)_{n \geqslant 1}$ is periodic by the assumption. Hence $\left(x_{n}\right)_{n \geqslant 0}$ is periodic by Theorem 3.5.

4. Non-periodic E-sequences

For any real number $\alpha,\{\alpha\}$ denotes its fractional part. The following lemma is due to Matthews and Watts (see Lemma 2(b) in [4]). We present its proof for the reader's convenience.

Lemma 4.1. Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence such that $\Omega-\lim a_{n}=x_{0}$ and $\left(x_{n}\right)_{n \geqslant 0}$ is unbounded. Then $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n} \leqslant \log _{2} 3$.

Proof. From $x_{k}=\frac{3 x_{k-1}+1}{2^{a_{k}}}$, we have $2^{a_{k}}=\frac{3 x_{k-1}+1}{x_{k}}$. Then

$$
2^{b_{n}}=\prod_{k=1}^{n} 2^{a_{k}}=\prod_{k=1}^{n} \frac{3 x_{k-1}+1}{x_{k}}=\frac{x_{0}}{x_{n}} \prod_{k=1}^{n} \frac{3 x_{k-1}+1}{x_{k-1}}=\frac{3^{n} x_{0}}{x_{n}} \prod_{k=1}^{n}\left(1+\frac{1}{3 x_{k-1}}\right) .
$$

Thus

$$
x_{n}=\frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=1}^{n}\left(1+\frac{1}{3 x_{k-1}}\right)
$$

which we call the Matthews and Watts's formula (see Lemma 1(b) in [4]).
Since $\left(x_{n}\right)_{n \geqslant 1}$ is unbounded, all x_{n} are distinct. Then

$$
1 \leqslant x_{n} \leqslant \frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=1}^{n}\left(1+\frac{1}{3 k}\right) .
$$

Thus

$$
0 \leqslant \log \frac{3^{n}}{2^{b_{n}}}+\log x_{0}+\sum_{k=1}^{n} \log \left(1+\frac{1}{3 k}\right) \leqslant \log 3^{n}-\log 2^{b_{n}}+\log x_{0}+\sum_{k=1}^{n} \frac{1}{3 k} .
$$

Hence

$$
\log 2^{b_{n}} \leqslant \log 3^{n}+\log x_{0}+\frac{1}{3} \sum_{k=1}^{n} \frac{1}{k} .
$$

Therefore

$$
\frac{b_{n}}{n} \leqslant \log _{2} 3+\frac{\log _{2} x_{0}}{n}+\frac{1}{n \log 8} \sum_{k=1}^{n} \frac{1}{k} .
$$

Then

$$
\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n} \leqslant \log _{2} 3 .
$$

Theorem 4.2. Let $\left(a_{n}\right)_{n \geqslant 1}$ be a non-periodic E-sequence such that $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2}$ 3. Then $\Omega-\lim a_{n}=\infty$.

Proof. Suppose that $\Omega-\lim a_{n}=x_{0}$ for some positive integer x_{0}. It follows from Lemma 4.1 and $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2} 3$ that $\left(x_{n}\right)_{n \geqslant 0}$ is bounded. Then $\left(x_{n}\right)_{n \geqslant 0}$ is periodic. Thus $\left(a_{n}\right)_{n \geqslant 1}$ is periodic, which contradicts the non-periodicity of $\left(a_{n}\right)_{n \geqslant 1}$. Hence $\Omega-\lim a_{n}=\infty$.

The following lemma is the well-known Wendel's inequality (see [15]). Lemma 4.4 is a consequence of an easy calculation.

Lemma 4.3. Let x be a positive real number and let $s \in(0,1)$. Then $\frac{\Gamma(x+s)}{\Gamma(x)} \leqslant x^{s}$.
Lemma 4.4. Let a and b be two integers with $a \geqslant 1$ and $a+b$. Then $\prod_{k=0}^{n}\left(1+\frac{z}{a k+b}\right)=\frac{\Gamma\left(\frac{b}{a}\right) \Gamma\left(\frac{b+z}{a}+n+1\right)}{\Gamma\left(\frac{b+z}{a}\right) \Gamma\left(\frac{b}{a}+n+1\right)}$.
Lemma 4.5. $\prod_{1 \leqslant k<3 n, k=1.5(\bmod 6)}\left(1+\frac{1}{3 k}\right)<1.5 n^{\frac{1}{9}}$ for all $n \geqslant 1$.
$1 \leqslant k<3 n, k \equiv 1,5(\bmod 6)$
Proof. Let $2 \mid n$. Then

$$
\prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right)=\frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{n}{2}+\frac{2}{9}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{n}{2}+\frac{1}{6}\right)} \leqslant \frac{\Gamma\left(\frac{1}{6}\right)}{\Gamma\left(\frac{2}{9}\right)}\left(\frac{n}{2}+\frac{1}{6}\right)^{\frac{1}{18}}
$$

and

$$
\prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+5)}\right)=\frac{\Gamma\left(\frac{5}{6}\right) \Gamma\left(\frac{n}{2}+\frac{8}{9}\right)}{\Gamma\left(\frac{8}{9}\right) \Gamma\left(\frac{n}{2}+\frac{5}{6}\right)} \leqslant \frac{\Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{5}{6}\right)^{\frac{1}{18}}
$$

by the Wendel's inequality. Thus

$$
\begin{aligned}
& \prod_{1 \leqslant k<3 n, k \equiv 1,5(\bmod 6)}\left(1+\frac{1}{3 k}\right)=\prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right) \prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+5)}\right) \leqslant \\
& \frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{5}{6}\right)^{\frac{1}{18}}\left(\frac{n}{2}+\frac{1}{6}\right)^{\frac{1}{18}} \leqslant 1.4196\left(\frac{n^{2}}{3}\right)^{\frac{1}{18}}<1.5 n^{\frac{1}{9}} .
\end{aligned}
$$

Let $2+n$. Then

$$
\prod_{k=0}^{\frac{n+1}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right)=\frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{n}{2}+\frac{13}{18}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{n}{2}+\frac{2}{3}\right)} \leqslant \frac{\Gamma\left(\frac{1}{6}\right)}{\Gamma\left(\frac{2}{9}\right)}\left(\frac{n}{2}+\frac{2}{3}\right)^{\frac{1}{18}}
$$

and

$$
\prod_{k=0}^{\frac{n+1}{2}-2}\left(1+\frac{1}{3(6 k+5)}\right)=\frac{\Gamma\left(\frac{5}{6}\right) \Gamma\left(\frac{n}{2}+\frac{7}{18}\right)}{\Gamma\left(\frac{8}{9}\right) \Gamma\left(\frac{n}{2}+\frac{1}{3}\right)} \leqslant \frac{\Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{1}{3}\right)^{\frac{1}{18}}
$$

by the Wendel's inequality. Thus

$$
\begin{array}{r}
\prod_{1 \leqslant k<3 n, k=1,5(\bmod 6)}\left(1+\frac{1}{3 k}\right)=\prod_{k=0}^{\frac{n+1}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right) \prod_{k=0}^{\frac{n+1}{2}-2}\left(1+\frac{1}{3(6 k+5)}\right) \leqslant \\
\frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{2}{3}\right)^{\frac{1}{18}}\left(\frac{n}{2}+\frac{1}{3}\right)^{\frac{1}{18}}<1.5 n^{\frac{1}{9}} .
\end{array}
$$

Theorem 4.6. Let $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ such that $1 \leqslant x_{0}<2^{b_{n}}, 1 \leqslant x_{n}<3^{n}, 3+x_{0}$, and x_{0}, \cdots, x_{n-1} are distinct integers. Then $x_{0}>\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)}$.

Proof. From the Matthews and Watts's formula and Lemma 4.5, we have

$$
\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=1}^{n}\left(1+\frac{1}{3 x_{k-1}}\right) \leqslant \prod_{1 \leqslant k<3 n, k=1,5(\bmod 6)}\left(1+\frac{1}{3 k}\right)<1.5 n^{\frac{1}{9}} .
$$

Then $\frac{3^{n} x_{0}+B_{n}}{3^{n} x_{0}}<1.5 n^{\frac{1}{9}}$. Thus $x_{0}>\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)}$.
Corollary 4.7. Let $\theta \geqslant \log _{2} 3$ be an irrational number. Define $a_{n}=[n \theta]-[(n-1) \theta]$. Then $\Omega-\lim a_{n}=\infty$.

Proof. Let $\theta=\log _{2} 3$. Then $\frac{B_{n}}{3^{n}}=\sum_{k=1}^{n} \frac{2^{\left[(k-1) \log _{2} 3\right]}}{3^{k}}>\frac{n}{8}$ by $\frac{2^{\left[(k-1) \log _{2} 3\right]}}{3^{k}}>\frac{1}{8}$. Thus $\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)}>\frac{n}{8\left(1.5 n^{\frac{1}{9}}-1\right)} \rightarrow \infty$, as $n \rightarrow \infty$. Hence $\Omega-\lim a_{n}=\infty$ by Theorem 4.6.

Let $\theta>\log _{2}$ 3. Then $\lim _{n \rightarrow \infty} \frac{b_{n}}{n}=\lim _{n \rightarrow \infty} \frac{[\mathrm{n} \theta]}{n}=\theta>\log _{2} 3$. Since θ is an irrational number, $\left(a_{n}\right)_{n \geqslant 1}$ is non-periodic. Thus $\Omega-\lim a_{n}=\infty$ by Theorem 4.2.

Lemma 4.8. Let x and n be two positive integers. Then (i) $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x+k)}\right) \leq 1+\frac{n}{3 x}$; (ii) $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right) \geq 1+\frac{n}{3 x}$ for $x \geq n$; (iii) $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}$ for $x \geq n \geq 2$.

Proof. (i) The proof is by induction on n. For the base step, let $n=1$ then $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x+k)}\right)=$ $1+\frac{1}{3 x}=1+\frac{n}{3 x}$. For the induction step, assume that $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x+k)}\right) \leq 1+\frac{n}{3 x}$. Then $\prod_{k=0}^{n}\left(1+\frac{1}{3(x+k)}\right) \leq\left(1+\frac{n}{3 x}\right)\left(1+\frac{1}{3(x+n)}\right)=1+\frac{n}{3 x}+\frac{1}{3(x+n)}+\frac{n}{9 x(x+n)} \leq 1+\frac{n+1}{3 x}$. Thus the inequality holds for all $n \geq 1$. The proof of (ii) is similar to that of (i) and omitted.
(iii) Let $n=2$. Since $3 x \cdot 3 x-2 \cdot 3 x-3 x+2>3 x \cdot 3 x-3 \cdot 3 x$ then $\frac{3 x-1}{3 x \cdot 3(x-1)}>\frac{1}{3 x-2}$. Thus $1+\frac{1}{3 x}+\frac{1}{3(x-1)}+\frac{1}{3 x \cdot 3(x-1)}>\frac{3 x-2+2}{3 x-2}=1+\frac{2}{3 x-2}$. Hence $\left(1+\frac{1}{3 x}\right)\left(1+\frac{1}{3(x-1)}\right)>\frac{3 x}{3 x-2}$. Therefore $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}$.

$$
\text { Assume that } \prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n} \text {. Since }(3 x-3 n+1)(3 x-n-1)>(3 x-n)(3 x-3 n)
$$

then $\frac{3 x(3 x-3 n)+3 x}{(3 x-n)(3 x-3 n)}>\frac{3 x}{3 x-n-1}$. Thus $\prod_{k=0}^{n}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}\left(1+\frac{1}{3(x-n)}\right)=\frac{3 x}{3 x-n}+$ $\frac{3 x}{(3 x-n)(3 x-3 n)}>\frac{3 x}{3 x-n-1}$.

Lemma 4.9. Let $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ such that $1 \leq x_{0}<2^{b_{n}}, 1 \leq x_{n}<3^{n}, x_{i} \neq x_{j}$ for all $0 \leq i<j \leq$ $n-1$. Then (i) $\frac{B_{n}}{3^{n}} \leq \frac{n}{3}$ if $x_{k}>x_{0}$ for all $1 \leq k \leq n-1$; (ii) $\frac{B_{n}}{2^{b_{n}}}<\frac{n}{3}$ if $x_{n}<x_{k}$ for all $0 \leq k \leq n-1$;
(iii) $\frac{B_{n}}{2^{b_{n}}}>\frac{n}{3}$ if $x_{n}>x_{i}$ for all $0 \leq i \leq n-1$; (iv) $\frac{B_{n}}{3^{n}} \geq \frac{n}{3}$ if $x_{0}>x_{k}$ for all $1 \leq k \leq n$.

Proof. (i) From $\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$, we have

$$
1+\frac{B_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right) \leq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{0}+k\right)}\right) .
$$

Then $1+\frac{B_{n}}{3^{n} x_{0}} \leq 1+\frac{n}{3 x_{0}}$ by Lemma 4.8(i). Thus $\frac{B_{n}}{3^{n}} \leq \frac{n}{3}$.
(ii) From $\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$, we have

$$
\frac{2^{b_{n}} x_{n}-B_{n}}{2^{b_{n}} x_{n}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)^{-1} \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{n}+k\right)}\right)^{-1} .
$$

Then $1-\frac{B_{n}}{2^{b_{n}} x_{n}} \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{n}+k\right)}\right)^{-1} \geq\left(1+\frac{n}{3 x_{n}}\right)^{-1}$ by Lemma 4.8(i). Thus

$$
\frac{B_{n}}{2^{b_{n}} x_{n}} \leq 1-\left(1+\frac{n}{3 x_{n}}\right)^{-1}=\frac{n}{3 x_{n}+n} .
$$

Hence $\frac{B_{n}}{2^{b_{n}}} \leq \frac{n x_{n}}{3 x_{n}+n}<\frac{n}{3}$.
(iii) Let $n=1$. Then $x_{1}=\frac{3 x+1}{2^{a_{1}}}>x$. Thus $\left(3-2^{a_{1}}\right) x+1>0$. Hence $a_{1}=1$. Therefore $\frac{B_{n}}{2^{b_{n}}}=\frac{B_{1}}{2^{b_{1}}}=\frac{1}{2}>\frac{1}{3}=\frac{n}{3}$.

Let $x_{n} \geq n \geq 2$. By Lemma 4.8(iii), we have $\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right) \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{n}-k\right)}\right)>$ $\frac{3 x_{n}}{3 x_{n}-n}$. Then $\frac{2^{b_{n}} x_{n}}{2^{b_{n}} x_{n}-B_{n}}>\frac{3 x_{n}}{3 x_{n}-n}$. Thus $\frac{2^{b_{n}} x_{n}-B_{n}}{2^{b_{n}} x_{n}}<\frac{3 x_{n}-n}{3 x_{n}}$. Hence $\frac{B_{n}}{2^{b_{n}}}>\frac{n}{3}$.
(iv) By Lemma 4.8(ii), we have

$$
1+\frac{B_{n}}{3^{n} x_{0}}=\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right) \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{0}-k\right)}\right) \geq 1+\frac{n}{3 x_{0}} .
$$

Then $\frac{B_{n}}{3^{n}} \geq \frac{n}{3}$.
A direct consequence of Lemma 4.9 is the following theorem, which may imply something unknown.

Theorem 4.10. Let $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ such that $1 \leq x_{0}<2^{b_{n}}, 1 \leq x_{n}<3^{n}, x_{i} \neq x_{j}$ for all $0 \leq i<j \leq n-1$. Then
(i) $\frac{B_{n}}{3^{n}}>\frac{n}{3}$ implies $x_{k} \leq x_{0}$ for some $1 \leq k \leq n-1$;
(ii) $\frac{B_{n}}{3^{n}}<\frac{n}{3}$ implies $x_{0} \leq x_{k}$ for some $1 \leq k \leq n$;
(iii) $\frac{B_{n}}{2^{b_{n}}} \leq \frac{n}{3}$ implies $x_{n} \leq x_{i}$ for some $0 \leq i \leq n-1$;
(iv) $\frac{B_{n}}{2^{b_{n}}} \geq \frac{n}{3}$ implies $x_{n} \geq x_{k}$ for some $0 \leq k \leq n-1$.

Theorem 4.11. Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence such that (i) $3^{n}>2^{b_{n}}$ for all $n \in \mathbb{N}$; (ii) There is a constant $c>\log _{2} 3$ such that there are infinitely many distinct pairs (k, l) of positive integers such that $l>k c, a_{k+1}=\cdots=a_{l}=1$. Then $\Omega-\lim a_{n}=\infty$.

Proof. It follows from (i) that $B_{n}<3^{n} n$ for all $n \in \mathbb{N}$ by induction on $n . B_{k+1}^{l-1}=3^{l-k}-2^{l-k}$ by Proposition 3.2.

Let $x_{l}^{1, l}=\frac{3^{l} x_{0}^{1, l}+B_{1}^{l-1}}{2^{b_{l}}}, 1 \leqslant x_{0}^{1, l}<2^{b_{l}}, 1 \leqslant x_{l}^{1, l}<3^{l}$. Then $x_{k}^{1, l}=\frac{3^{k} x_{0}^{1, l}+B_{1}^{k-1}}{2^{b_{k}}}, x_{l}^{1, l}=$ $\frac{3^{l-k} x_{k}^{1, l}+B_{k+1}^{l-1}}{2^{b_{k+1}^{l}}}$ by Proposition 2.8(ii). By $B_{k+1}^{l-1}=3^{l-k}-2^{l-k}, 2^{b_{k+1}^{l}}=2^{l-k}$,
we have $2^{l-k}\left(x_{l}^{1, l}+1\right)=3^{l-k}\left(x_{k}^{1, l}+1\right)$. Thus $x_{k}^{1, l}=2^{l-k} w-1$ for some $1 \leqslant w$. Hence $x_{k}^{1, l}=$ $\frac{3^{k} x_{0}^{1, l}+B_{1}^{k-1}}{2^{b_{k}}}=2^{l-k} w-1$. Therefore
$x_{0}^{1, l}=\frac{2^{l-k} 2^{b_{k}} w-2^{b_{k}}-B_{1}^{k-1}}{3^{k}} \geqslant \frac{2^{l}}{3^{k}} 2^{b_{k}-k}-1-k \geqslant\left(\frac{2^{c}}{3}\right)^{k} 2^{b_{k}-k}-1-k$. If there are only finitely many distinct k in all pairs $(k, l), x_{0}^{1, l} \geqslant \frac{2^{l}}{3^{k}} 2^{b_{k}-k}-1-k \rightarrow \infty$, as $l \rightarrow \infty$; otherwise $x_{0}^{1, l} \geqslant$ $\left(\frac{2^{c}}{3}\right)^{k} 2^{b_{k}-k}-1-k \rightarrow \infty$, as $k \rightarrow \infty$. Then $\Omega-\lim a_{n}=\infty$.

Corollary 4.12. Let $\left(a_{n}\right)_{n \geqslant 1}$ be the E-sequence $12121112 \cdots$, where $a_{n}=2$ if $n \in\left\{2^{1}, 2^{2}, 2^{3}, \cdots\right\}$ and $a_{n}=1$ otherwise. Then $\Omega-\lim a_{n}=\infty$.

Proof. Take $c=\frac{7}{4}>\log _{2} 3, k=2^{m}$ and $l=2^{m+1}-1$. Then $a_{k+1}=\cdots=a_{l}=1, l>k c$ for all $m \geqslant 3$. Thus $\Omega-\lim a_{n}=\infty$ by Theorem 4.11.

Theorem 4.13. Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence such that (i) $3^{n}>2^{b_{n}}$ for all $n \in \mathbb{N}$; (ii) there is a constant $c>\log _{2} 3$ such that there are infinitely many distinct pairs (r, l) of positive integers such that $l>r, b_{l+r}>l c, a_{l+k}=a_{k}$ for all $1 \leqslant k \leqslant r$, i.e., $\left(a_{1} \cdots a_{r}\right) a_{r+1} \cdots a_{l}\left(a_{l+1} \cdots a_{l+r}\right)$ is contained in $\left(a_{n}\right)_{n \geqslant 1}$. Then $\Omega-\lim a_{n}=\infty$.
Proof. Let $x_{l+r}^{1, l+r}=\frac{3^{l+r} x_{0}^{1, l+r}+B_{1}^{l+r-1}}{2^{b_{1}^{l+r}}}, 1 \leqslant x_{0}^{1, l+r}<2^{b_{1}^{l+r}}, 1 \leqslant x_{l+r}^{1, l+r}<3^{l+r}$. Then $x_{l}^{1, l+r}=$ $\frac{3^{l} x_{0}^{1, l+r}+B_{1}^{l-1}}{2^{b_{1}^{l}}}, x_{l+r}^{1, l+r}=\frac{3^{r} x_{l}^{1, l+r}+B_{l+1}^{l+r-1}}{2^{b_{1+1}^{l+}}}=\frac{3^{r} x_{l}^{1, l+r}+B_{1}^{r-1}}{2^{b_{1}^{r}}}$ by Proposition 2.8(ii). By $3^{l}>2^{b_{1}^{l}}$, we have $x_{l}^{1, l+r}>x_{0}^{1, l+r}$.

Let $x_{r}^{1, r}=\frac{3^{r} x_{0}^{1, r}+B_{1}^{r-1}}{2^{b_{1}^{r}}}, 1 \leqslant x_{0}^{1, r}<2^{b_{1}^{r}}, 1 \leqslant x_{r}^{1, r}<3^{r}$. Then
$x_{0}^{1, r} \equiv x_{l}^{1, l+r}\left(\bmod 2^{b_{1}^{r}}\right)$. By Proposition 2.8(iii), we have $x_{0}^{1, l+r} \geqslant x_{0}^{1, r}$.
Let $x_{l}^{1, l+r}=2^{b_{1}^{r}} u+x_{0}^{1, r}$. Then $u \geqslant 1$ by $x_{l}^{1, l+r}>x_{0}^{1, l+r} \geqslant x_{0}^{1, r}$. Thus

$$
x_{0}^{1, l+r}=\frac{2^{b_{1}^{l}} 2^{b_{1}^{r}} u+2^{b_{1}^{l}} x_{0}^{1, r}-B_{1}^{l-1}}{3^{l}} \geqslant \frac{2^{b_{1}^{l+r}}}{3^{l}}-l \geqslant\left(\frac{2^{c}}{3}\right)^{l}-l \rightarrow \infty \text {, as } l \rightarrow \infty .
$$

Hence $\Omega-\lim a_{n}=\infty$.
Theorem 4.14. Let $1 \leqslant \theta<\log _{2} 3$ and define $a_{n}=[n \theta]-[(n-1) \theta]$. Then $\Omega-\lim a_{n}=\infty$.

Proof. If θ is a rational number then $\left(a_{n}\right)_{n \geqslant 1}$ is purely periodic and the result follows from Theorem 3.4. Let θ be an irrational number in the following. By Hurwitz theorem there are infinite convergents $\frac{s}{r}$ of θ such that $\left|\theta-\frac{s}{r}\right|<\frac{1}{\sqrt{5} r^{2}}$. There are two cases to be considered.

Case 1 There are infinite convergents $\frac{s}{r}$ of θ such that $0<\theta-\frac{s}{r}<\frac{1}{\sqrt{5} r^{2}}$. We prove that $[\theta n]=\left[\begin{array}{c}s \\ r\end{array}\right]$ for all $1 \leqslant n \leqslant[\sqrt{5} r]$. By $1 \leqslant n \leqslant[\sqrt{5} r]$, we have $0<\theta n-\frac{s}{r} n<\frac{n}{\sqrt{5} r^{2}}<\frac{\sqrt{5} r}{\sqrt{5} r^{2}}=\frac{1}{r}$.
 have the following periodic table for $\left(a_{n}\right)_{1 \leqslant n \leqslant[\sqrt{5} r}$.

a_{1}	a_{2}	\cdots	$a_{[\sqrt{5}-2 r]}$	\cdots	a_{r}
a_{r+1}	a_{2+r}	\cdots	$a_{[\sqrt{5} r-r]}$	\cdots	$a_{2 r}$
$a_{2 r+1}$	$a_{2+2 r}$	\cdots	$a_{[\sqrt{5} r]}$		

By Proposition 3.3(ii), $x_{0}^{1,2 r}=\frac{2^{2[r \theta]} u_{2 r}-B_{r}}{3^{r}-2^{[r \theta]}}$ for some $u_{2 r} \geqslant 1$.
By $B_{r}=\sum_{i=0}^{r-1} 3^{r-1-i} 2^{b_{i}}=3^{r-1} \sum_{i=0}^{r-1} \frac{2^{b_{i}}}{3^{i}} \leqslant 3^{r-1} \sum_{i=0}^{r-1} \frac{2^{[i \theta]}}{3^{i}} \leqslant 3^{r-1} \sum_{i=0}^{r-1} \frac{2^{i \theta}}{3^{i}}=\frac{3^{r}}{3} \frac{1-\left(\frac{2^{\theta}}{3}\right)^{r}}{1-\frac{2^{\theta}}{3}}=\frac{3^{r}-2^{r \theta}}{3-2^{\theta}} \leqslant \frac{3^{r}}{3-2^{\theta}}$,
we have

$$
x_{0}^{1,2 r} \geqslant \frac{2^{2[r \theta]}-B_{r}}{3^{r}-2^{[r \theta]}} \geqslant \frac{4^{r \theta-1}-\frac{3^{r}}{3-2^{\theta}}}{3^{r}-2^{r \theta-1}}=\frac{\frac{1}{4}\left(\frac{4^{\theta}}{3}\right)^{r}-\frac{1}{3-2^{\theta}}}{1-\frac{1}{2}\left(\frac{2^{\theta}}{3}\right)^{r}} .
$$

Thus $x_{0}^{1,2 r} \rightarrow \infty$, as $r \rightarrow \infty$. Hence $\Omega-\lim a_{n}=\infty$.
Case 2 There are infinite convergents $\frac{s}{r}$ of θ such that $0<\frac{s}{r}-\theta<\frac{1}{\sqrt{5} r^{2}}$.
Firstly, we prove $[\theta n]=\left[\begin{array}{c}\stackrel{s}{r} \\ r\end{array}\right]$ for all $1 \leqslant n \leqslant[\sqrt{5} r], n \notin\{r, 2 r\}$. By $0<\frac{s}{r}-\theta<\frac{1}{\sqrt{5} r^{2}}$, we
 $n \notin\{r, 2 r\}$, we have $0<\frac{1}{r}-\frac{n}{\sqrt{5} r^{2}} \leqslant \frac{s}{r} n-\left[\frac{s}{r} n\right]-\frac{n}{\sqrt{5} r^{2}}$. Then $0<\theta n-\left[\frac{s}{r}-n\right]<1$. Thus $[\theta n]=\left[\begin{array}{c}s \\ r\end{array}\right]$.

Secondly, we prove $[r \theta]=s-1,[2 r \theta]=2 s-1$. By $1 \leqslant n, 0<\frac{s}{r}-\theta<\frac{1}{\sqrt{5} r^{2}}$, we have $-\frac{n}{\sqrt{5} r^{2}}+\frac{s}{r} n<n \theta<\frac{s}{r} n$. By $n<\sqrt{5} r$, we have $-1<-\frac{1}{r}<-\frac{n}{\sqrt{5} r^{2}}$. Then $-1+\frac{s}{r} n<-\frac{n}{\sqrt{5} r^{2}}+\frac{s}{r} n<$ $n \theta<\frac{s}{r}$. By taking $n=r, 2 r$, we have $[r \theta]=s-1,[2 r \theta]=2 s-1$.

Let $2 \leqslant j \leqslant r-1$ then $r+2 \leqslant r+j \leqslant 2 r-1$ and $r+1 \leqslant r+j-1 \leqslant 2 r-2$. Thus $a_{r+j}=[\theta(r+j)]-[\theta(r+j-1)]=\left[\frac{s}{r}(r+j)\right]-\left[\frac{s}{r}(r+j-1)\right]=\left[s+\frac{s}{r}\right]-\left[s+\frac{s}{r}(j-1)\right]=$ $\left[\frac{s}{r} j\right]-\left[\frac{s}{r}(j-1)\right]=a_{j}$.

Let $2 \leqslant j \leqslant[\sqrt{5} r]-2 r$. Then $2 r+2 \leqslant 2 r+j \leqslant[\sqrt{5} r]$ and $2 r+1 \leqslant 2 r+j-1 \leqslant[\sqrt{5} r]-1$. Thus $a_{2 r+j}=[\theta(2 r+j)]-[\theta(2 r+j-1)]=\left[\frac{s}{r}(2 r+j)\right]-\left[\frac{s}{r}(2 r+j-1)\right]=\left[\frac{s}{r} j\right]-\left[\frac{s}{r}(j-1)\right]=a_{j}$.

By easy calculation, we have $a_{r}=a_{2 r}=1, a_{r+1}=a_{2 r+1}=2$.
Then we have the following periodic table for $\left(a_{n}\right)_{1 \leqslant n \leqslant[\sqrt{5} r}$. Since $\theta<\log _{2} 3$, we then take

a_{1}	a_{2}	a_{3}	\cdots	$\left.a_{[\sqrt{5} r}\right]-2 r$	\cdots	a_{r}	a_{r+1}
	a_{2+r}	a_{3+r}	\cdots	$a_{[\sqrt{5} r]-r}$	\cdots	$a_{2 r}$	$a_{2 r+1}$
	$a_{2+2 r}$	$a_{3+2 r}$	\cdots	$a_{[\sqrt{5} r]}$			

all convergents $\frac{s}{r}$ of θ such that $\frac{s}{r}<\log _{2} 3$ and thus $2^{s}<3^{r}$. By $a_{1}=1, b_{2}^{r+1}=[r \theta]+1=s$ and Proposition 3.3(ii), we have

$$
x_{0}^{1,2 r+1}=\frac{2^{2 s+1} u_{2 r+1}-\left(3^{r}-2^{s}\right)-2 B_{2}^{r}}{3\left(3^{r}-2^{s}\right)}
$$

for some $u_{2 r+1} \geqslant 1$. By $B_{2}^{r}=\sum_{i=0}^{r-1} 3^{r-1-i} 2^{b_{2}^{i+1}}=3^{r-1} \sum_{i=0}^{r-1} \frac{2^{[i \theta+\theta]-1}}{3^{i}} \leqslant 3^{r-1} 2^{\theta-1} \sum_{i=0}^{r-1} \frac{2^{i \theta}}{3^{i}}=2^{\theta-1} \frac{3^{r}}{3} \frac{1-\left(\frac{2^{\theta}}{3}\right)^{r}}{1-\frac{2^{\theta}}{3}}=$ $2^{\theta-1} \frac{3^{r}-2^{r \theta}}{3-2^{\theta}} \leqslant C 3^{r}$, where $C=\frac{2^{\theta-1}}{3-2^{\theta}}$, we have

$$
x_{0}^{1,2 r+1} \geqslant \frac{24^{[r \theta]+1}-C 3^{r}}{3}-\frac{1}{3} \geqslant \frac{24^{r \theta}-C 3^{r}}{3} \frac{1}{3^{r}-2^{s}}-\frac{2}{3} \geqslant \frac{24^{r \theta}-C 3^{r}}{3} \frac{1}{3^{r}}=\frac{2}{3}\left(\frac{4^{\theta}}{3}\right)^{r}-\frac{2}{3} C-\frac{1}{3} .
$$

Thus $\lim _{r \rightarrow \infty} x_{0}^{1,2 r+1}=\infty$. Hence $\Omega-\lim a_{n}=\infty$.

5. Concluding Remarks and open problems

The results on non-periodic E-sequences in Section 4 are based on the theory of periodic Esequences in Section 3 and the Matthews and Watts's formula. Currently, we have no other way to tackle with non-periodic E-sequences. We can obtain various generalizations and analogues of Theorem 4.2, 4.6, 4.10, 4.11 and 4.13. But we need good problems to make some progress.

One seemingly simple problem which we are not able to prove is whether $\left(a_{n}\right)_{n \geqslant 1}$ is divergent, where $a_{n}=2$ if $n \in\left\{2^{2}, 3^{2}, 4^{2}, \ldots\right\}$ and $a_{n}=1$ otherwise, i.e., $\left(a_{n}\right)_{n \geqslant 1}$ is $111211112 \ldots$.

Another interesting problem is whether $\left(a_{n}\right)_{n \geqslant 1}$ with infinitely many n satisfying $b_{n}>n \log _{2} 3$ is Ω-divergent. By virtue of Theorem 4.2, we only need to consider the case of $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}=\log _{2} 3$.

Theorem 4.6 answers the problem if $\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)} \rightarrow \infty$, as $n \rightarrow \infty$. Currently, we don't know how to tackle with the other cases of the problem.

Conjecture 1.2(ii) is also important in some sense.

Availability of data and materials

Not applicable.

Competing interests

The author declares to have no competing interests.

Funding

This work is supported by the National Foundation of Natural Sciences of China (Grant No: $61379018 \& 61662044 \& 11571013$).

Authors contributions

The author completed the work alone, and read and approved the final manuscript.

Acknowledgements

I am greatly indebted to Prof. JunDe Miao for his constant encouragement while I was working on the problem.

References

[1] Crandall, R. E.: On the $3 x+1$ Problem. Math. Com. 32, 1281-1292(1978). Doi: 10.2307/2006353
[2] Everett, C. J.: Iteration of the number-theoretic function $f(2 n)=n, f(2 n+1)=3 n+2$. Adv. in Math. 25, 42-45(1977). Doi: 10.1016/0001-8708(77)90087-1
[3] Lagarias, J. C.: The $3 \mathrm{x}+1$ problem and its generalizations. Amer. Math. Mon. 92, 3-23(1985). Doi: 10.2307/2322189
[4] Matthews, K. R., Watts, A. M.: A generalization of Hasse's generalization of the Syracuse algorithm. Acta Arith. 43, 167-175(1984). Doi:10.1016/0022-314x(87)90032-1
[5] Möller, H.: Uber Hasses Verallgemeinerung des Syracuse -Algorithmus (Kakutanis Problem). Acta Arith. 34, 219226(1978). Doi:
6] Sander, J. W.: On the (3N+1)-conjecture. Acta Arith. 55, 241-248(1990). Doi: 10.1023/B:JOSS. 0000019811.15510 .27
[7] Simons, J. L.: On the (non-)existence of m-cycles for generalized Syracuse sequences. Acta Arith. 131, 217-254 (2008). Doi: 10.4064/aa131-3-2

8] Terras, R.: A stopping time problem on the positive integers. Acta Arith. 30, 241-252(1976). Doi: 10.4064/aa-30 3-241-252
[9] Kadic, S., Tomovic, S.: Computer-Based Validation of $3 n+1$ Hypothesis for Numbers $3^{n}-1$. Tehnički vjesnik, 26(2), 289-293(2019). Doi: 10.17559/TV-20161108221649
[10] Thomas, A.: A non-uniform distribution property of most orbits, in case the $3 x+1$ conjecture is true. Acta Arith. 178, 125-134(2017). Doi: 10.4064/aa8385-9-2016
[11] Colussi, L.: The convergence classes of Collatz function. Theoretical Computer Science, 412(39), 54095419(2011). Doi:10.1016/j.tcs.2011.05.056
[12] Vielma, J., Guale, A.: A topological approach to the UlamCKakutaniCCollatz conjecture. Topology and its Applications. 256, 1-6(2019). Doi: 10.1016/j.topol.2019.01.012
[13] Kari, J.: Universal pattern generation by cellular automata. Theoretical Computer Science, 429, 180-184 (2012). Doi: 10.1016/j.tcs.2011.12.037
[14] Javaheri, M.: A Collatz-type conjecture on the set of rational numbers. Journal of Number Theory, 132(11), 25822594(2012). Doi: 10.1016/j.jnt.2012.05.005
[15] Wendel, J. G.: Note on the Gamma Function. The American Mathematical Monthly, 55(9), 563-564(1948). doi:10.2307/2304460

