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Abstract

3x -1+ 1
For any odd positive integer x, define (x;,),s0 and (a,),>1 by setting xo = x, x,, = nf such

n

that all x,, are odd. The 3x+1 problem asserts that there is an x,, = 1 for all x. Usually, (x,)x50
is called the trajectory of x. In this paper, we concentrate on (a, ), and call it the E-sequence
of x. The idea is that, we consider any infinite sequence (ay,),>1 of positive integers and call it
an E-sequence. We then define (a,),5; to be Q—convergent to x if it is the E-sequence of x and
to be Q—divergent if it is not the E-sequence of any odd positive integer. We prove a remarkable
fact that the Q—divergence of all non-periodic E-sequences implies the periodicity of (x;),so for
all xo. The principal results of this paper are to prove the Q—divergence of several classes of
non-periodic E-sequences. Especially, we prove that all non-periodic E-sequences (ay, ),>1 with
b,
lim —> log2 3 are Q—divergent by using the Wendel’s inequality and the Matthews and Watts’s
n—oco n

n 1
formula x, = il (1 ) where b, = Z ax. These results present a possible way to prove

k=1

the perlodlclty of tra]ectorles of all positive integers in the 3x + 1 problem and we call it the
E-sequence approach.
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1. Introduction

For any odd positive integer x, define two infinite sequences (x;),50 and (a, )1 of positive

integers by setting
3.X,,_1 +1
Xg=X, Xp=——— (1.1)
2an

such that x, is odd for all n € N = {1,2,...}. The 3x+1 problem asserts that there is n € N such
that x, = 1 for all odd positive integer x. For a survey, see [3]. For recent developments, see
[9-14].

(Xn)nz0 is called the trajectory of x and, the sequence (ay),>1 of exponents of all 2" is called
the E-sequence of x. For example, the trajectory and the E-sequence of 3 are (3,5,1,1,...) and
(1,4,2,2,...), respectively.
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Given any sequence (a,),>1 of positive integers, if it is the E-sequence of the odd positive
integer x, it is called to be Q—convergent to x and, denoted by Q — lima, = x; if (a,),s1 is
not the E-sequence of any odd positive integer, it is called to be Q—divergent and denoted by
Q - lima, = . Subsequently, all sequences of positive integers are called E-sequences.

The 3x+1 problem in the form (1.1) should be owed to Crandall, Sander et al., see [1, 6].
E-sequences are some variants of Everett’s parity sequences [2] and Terras’s encoding repre-
sentations [8]. Everett and Terras focused on finite E-sequences resulted from (1.1). What we
concern is the Q—convergence and Q—divergence of any infinite sequence of positive integers,
i.e., the generalized E-sequences.

A possible way to prove the 3x+1 problem were devised by Moller as follows, see [5].

Conjecture 1.1. (i) (x,)ns0 is periodic for all odd positive integer x;
(ii) (1,1,---) is the unique pure periodic trajectory.

Usually, we can convert one claim about trajectories into the one about E-sequences. As for
E-sequences, we have the following conjecture.

Conjecture 1.2. Let b,= > a;. Then
i=1

(1) all non-periodic E-sequences are Q—divergent;
(ii) every E-sequence (a,)ns1 satisfying 3" > 2P for all n € N is Q-divergent.

Note that Conjecture 1.2(i) does not hold for some generalizations of the 3x+1 problem
studied by Moller, Matthews and Watts in [4, 5]; Conjecture 1.2(ii) implies that there is some n
such that 2 > 3" in the E-sequence (a, )51 of every odd positive integer x, which is a conjecture
posed by Terras in [8] about his 7—stopping time.

A remarkable fact is that Conjecture 1.1(i) is a corollary of Conjecture 1.2(i) by Theorem
3.6. This means that the Q—-divergence of all non-periodic E-sequences implies the periodicity
of (x,)us1 for all positive integers x. Then Conjecture 1.2(i) is of significance to the study of the
3x+1 problem. The principal results of this paper are to prove that several classes of non-periodic
E-sequences are Q—divergent. In particular, we prove that

b,
(i) All non-periodic E-sequences (a,)ns1with lim — > log, 3 are Q—divergent.
n—oco n

(i) If (an)ns0 is 12121112+, where a, = 2 if n € {2!,22,23,-..-} and a, = 1 otherwise, then
Q -lima, = oo;

(iii) Let @ > 1 be an irrational number, define a, = [n6] — [(n - 1)6], then Q - lima, = oo, where
[a] denotes the integral part of a for any real a.

Note that we prove the above claim (i) by using the Wendel’s inequality and the Matthews
3" xgn-1
and Watts’s formula x,, = ZTO IT(1+ 317k) In addition, it seems that our approach cannot help
" k=0
to prove the conjecture 1.1(ii) of the unique cycle. For such a topic, see [7].
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2. Preliminaries

Let (ay,)»1 be an E-sequence. In most cases, there is no odd positive integer x such that
(@ )nz1 is the E-sequence of x, i.e., Q —lima, = co. However, there always exists x € N such that
the first n terms of the E-sequence of x is (a; ...a,). Furthermore, for any 1 < u < v < n, there
always exists x € N such that the first v — u + 1 terms of the E-sequence of x is the designated
block (ay...a,) of (ay...a,), which is illustrated as (ay ...a,-1)(ay...a,)(avs1...an).

n n—1 .
Definition 2.1. Define by =0, b, = Y a;, B, = ¥, 3" !712b,
i=1 i=0

Clearly, By = 1, B, =3B, + 21,2 + B,, 3 + B,.

Proposition 2.2. Let (x,),>1 and (a,),s1be defined as in (1.1). Then

3"'x+ B,
Xp = T
Proof. The proof is by a procedure similar to that of Theorem 1.1 in [8] and omitted. O

Proposition 2.3. Given any positive integer n, there exist two integers x,, and xo such that 2" x, —
3"xg =By, 1< x, <3"and 1 < xp < 25,

Proof. By gcd(Zb", 3") = 1, there exist two integers x, and xy such that 2bnx, —3"xy = B, and
20y, - B, 2"x,
<

1 < x, <3" Then x, <3"by 3 } B,. By B, > 1, we have x; = B 3 < 2b+ Thus
Xo < 2b".
By 2% x, - 3"xy = B,, we have 2" x, = B, (mod3"). Then
2y, — 1
2bi-1(2%x,~1) = 3B,_;( mod 3") by B, = 2°-1+3B,,_;. Thus 3|29 x,—1. Define x,_| = —
3)6,,,1 +1
Then x,_1 € Z, x, = BTN and
2br-1x, 1 = B,_1(mod3" ). Sequentially define x,_», ..., x; such that
3xn_2 +1 3X() +1 .
Xyl = ——— ..., X = Then x; € Z forall 0 < i < n.

2an-1 [
Suppose that xo < 0. We then sequentially have x; < 0,...,x, < 0, which contradicts with

x, 2 1. Thus xoy > 1. ]

Note that the validity of Proposition 2.3 is dependent on the structure of B,,. We formulate
the middle part of the above proof as the following proposition.

3xp+ 1
Proposition 2.4. Assume that x,, xo € Z and 2bex, — 3"x0 = B, Define x| = ;a] ey Xl =
3x,0+1 3x,.1 + 1 R
——— Then x, = ————and x; € Z for all 0 < i < n.
2(1,1,1 2‘111

vV
Definition 2.5. For any 1 < u < v, define bﬁ’l =0,0, = Ya, BZ’z =0, BZ’I =1, B,
i=u

u v—1 yoovurl o i1+
v—=u v—u — v—=u =1
gvmutl g 3vounby o 31000 0be =y gmurl=inh
i=0
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Then b" = a,, b'**' = a, + a1, B! = 3 + 2%, B! =32 4 3. 00 4 Dot By = 3pv=l 4 obi =

v i
Y. 3"72%. Clearly, b} and B} 'are same as b, and B,, respectively.
i=u—1

Proposition 2.6. B, = 3" "1 Bu=2 4 3n=1=vpbw1 v 4 pbvi gzl

u-2 . n-1 T
Proof. By Bi™2 = %, 347272k and B'.) = ¥ 3" 172bw2 we have

i=0 i=v+1

u=2 v n-1
B Bn 1 Z 3n 1- l2b Z 3"*1*[’217,‘ + Z 3}1*1*[2@ + Z 3}1*1*!’217,'
i=0 i=u—1 i=v+1
12 2-inh 1-vnb ZV: inbl, | b "i 1-inb!
= 3wl Y gu-d-iphi 4 gn-l=vobut YN gv-igh L gbun §Y gn-l-ighl,
i=0 i=u—1 i=v+1

_ An—u+l pu-2 n—1-vAab,_| pv by1 pn—1
=3 B " +3 2°'By, + 27" B 5.

O
Definition 2.7. For any 1 < u < v, define two integers x;" and x;” ., such that 2bux il =
. ) 5 . 3xp" + 1
gt = By, 1 < xpt < 2% and 1 < XY, < 3" Further define x}" = ———,
26
w 3x”1"" +1 o 3+ 1
2 T Tpaw o M T T o
Clearly, x(l)’”and x!" are same as xo and x,, in Proposition 2.3, respectively.
. 30, +1
Proposition 2.8. (i) x’ ., = T;
3kxu,v + Bu+k—2
(i) ForanyO<k<v—u, x" = %and
—u+1-k 1
x: Vu+l - bu v+ B:Hk’
2 u+k
(ifi) x4 < xt
(iv) Q -lima, = x if and only if lim,_, o, x(])’" =X
(v) Q-lima, = oo if and only if lim,_, o, X" = co.
Proof. (i) is from Proposition 2 4 (ii) is from (i) and Proposition 2.2.
(iii) By Definition 2.7, 2bix xt =3 kv = gr-l,
bv+l 1 2 1
2 X': v’:—+2 3\/ u+ uv+ Bv Then
3wl + Bl = O(mod 2%, 32+ 4 B = 0 (mod 2%). Thus
3yl "V“ + B =0 (mod 2%) by BV 3B)" U4 2% Hence
Xy = xg v+ (mod 2%). Therefore
XY < by 1< xl < 28 and 1< X! <2t
By (111), (xO ),,21 is increasing, then (iv) and (v) hold trivially. O]

Proposition 2.8(iv) shows that if Q — lima, = x, then xo = x for all sufficiently large n.

Proposition 2.8(v) shows the reasonableness of Q — lima, = co.
4
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3. Periodic E-sequences

Definition 3.1. (i) (a,).»1 is periodic if there exist two integers
[>0,r>1suchthata, =a,,, foralln > [

(ii) r is called the period of (a,)ns1;

(iii) (a;--a;) and (aj41---ap4,-+) are called the non-periodic part and periodic part of (a,)s1,
respectively;

(iv) (@n)nz1 is called purely periodic if / = 0 and, eventually periodic if / > 0;
(v) The E-sequence is denoted by a;---a;a;+1-aj+,-

Throughout the remainder of this section, define s = b, B, = B/*/"! and let k > 0 be an
integer.

Proposition 3.2. Let ay---aja;1-—ai;, be a periodic E-sequence. Then

rk _ zsk
Brk+l = 3rkBl + 2”’Brﬂ.
Prkogf hBy l?r;)position 2.5, B,k+l, = BikHi=l = 3rkplel oy 3rkerpbiglir=ly
3rk=2ro MBI:rSl ] I+rk_rBl:;+;}k—1)' By by, = b + 8,b130, = by + 25, -+,
brever = b+ (k=1)s, By = B, Bi711' = = B4 |y = By, we have

By = 3B, + 3752 B, 4 3% 2robigs g Ly k(s g,
_ 3rkBl n 2blBr(3rk—r20 i 3rk—2r25 T 302(k—l)5)
rk _ 2sk
=3%p, + 2B, — .
3r — 25‘

O

Proposition 3.3. Let ai---aja;+1-—ai, be a periodic E-sequence. By Proposition 2.3, define two
integers xo and X,y such that 2% x,.; — 3™ xg = B, 1 < x0 < 2% and 1 < x4 < 3™
Then there is a constant K € N, depending on ay,---, a;,, such that when k > K and,

() if2% > 37, there is uyp; € Zo O < sy < (2° = 37)3! such that

psktbiyy Bi(2° -3 + 2hip, 3™ Upss + By
s (25 -37)31 O YO T
(i) if 3" > 2% there is upy; € N, 1 < tppyy < (3" = 2%)3! such that
23k+b1urk+l _ Bl(3r _ 2s) _ 2b1Br 3rkurk+l _ Br
X0 = (3r_23)3l s Xrk+l = 3r_2s

3%+ x0 + Byt

Proof. (1) 2°>3". By X441 = ok , we have
25641y 11 = Brwy (mod 3™*). Then
sk _ 2rk
2sktbiy =3B+ ZbIB’ﬁ (mod 3™*!) by Proposition 3.2. Thus

5
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(28 = 3M)2%*bix = (25 = 37)3% B, + (2°F - 3) 2% B, (mod (2* - 37)3"*!). Hence
25K4b1((25 — 3" x4y — By) = 3™((2° = 3")B; - 2%B,) (mod (2° — 3")3"**!). Define u,y; =
(2°=3")Xpk41 — By
3rk
2sk+biy, = (25 - 3")B; - 2" B, (mod (2° - 3")3!).

k
3" Urk+l + Br
Hence x,4,; = ———— and
25 —3r

. Then u,;,; € Z and

k+b,
25 X st = Brcn
X0= —=7 57

3rk+l
rk sk rk
Dsk+by 3% urps1 + B, _ 3rkB1 _ 2blBr -3
25 = 3r 25 -3

3rk+l
3K by + 25 B, — 37 By (25 - 37) + 3727 B, — 24P B,
- (25 - 37)3rk+l
25k+biy o — Bi(2° = 37) + 22 B,
B (25 - 37)3l ‘

3rkurk+l + Br

BY Xis :k l 7% < 3™+ we have
3" + (23 _ 3r)_Br Br
Upks] < T:y(zf - 3’)—37 <325 -3").
B 3rkurk+l + Br 0 h Br Si
ktl = A A 2 U, rk+l >~
Y Xrk+1 253 W€ nave U,y 3rk mce

B
limy_s o0 —3—;{ =0 and w4 € Z, there is a constant K € N, depending on ay, ---, a;;, such that
Urr; > 0 when k > K.

3™+ X0 + Byiss

Y , we have

(i) 3" > 2°. By xpss =

25K 01 (37— 2%) xpps + By) = 3 ((3" = 2°)B; + 2" B,) (mod(3" - 2°)3"**).

(3" =2°)Xp41 + B,

3 Then

Define Upky] =

Unir1 € 2o 2" P upy = (3" = 2°) By + 2" B, (mod(3" - 2°)3").

Thus x 3* U1 — B, N 2Ky~ By (37 - 2%) - 2" B,
rk+l = > Xo = .
3r—2s 3r— Qs 3[
. 3rkurkJrl - Br ( Br )
Since x4 = 3 > 0, then w44 > T and thus 1 < 4.
2xk+blur — B)(3" =25 - zhlBr
By xo = k+l(3r Z(2s)3l ) < 2%+l e have
r s b
U1 < (37 =2%)3" + B3 -2)+ 2B, Since
rk+1 25k+b1 .

6
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By(3"-2%) +2%B,

limy_, o0 X =0 and u,4; € Z, there is a K € N such that u,;,; < (3" - 2&)31
when k > K.
O
Theorem 3.4. If3" > 2° then a;---aja;; 1021414, is Q—divergent.
.. .. 254 = Bz(3r -2%)-2"B,
Proof. By Proposition 3.3(ii), xo = BPOEY and
Ures; 2 1. Then xg — +o00 as k — oo. Thus the E sequence is Q—divergent. O]

Theorem 3.5. If a\---a;aj; G112 A1y 1S Q—convergent to x then (X, )ns0 is periodic.
Proof. By Theorem 3.4, 2° > 3". By Proposition 3.3(i),

25k+blu,k+l - B,(ZS - 3r) + 2b’Br
(25 -37)3!

X0 =

and u,;4; 2 0 for all k > K. Since xy = x < oo for all sufficiently large k by Proposition 2.8(iv),
2bB, — By(2° - 3")
(25-31)3!
is periodic and its non-periodic part and periodic part are (xox---x;) and Xj31-X1,, respectively.

O

then u,;,; = 0. Thus xy =

B,
and Xy = EYrT for all k > 0. Hence (x,)us0

Theorem 3.6. Assume that all non-periodic E-sequence are Q—divergent. Then the trajectory of
every odd positive integer is periodic.

Proof. Suppose that x is an odd positive integer, (x,).s0 and (a,),»1 are its trajectory and E-
sequence, respectively. Then Q - lima, = x. Thus (a, ), is periodic by the assumption. Hence
(x1)ns0 is periodic by Theorem 3.5. O

4. Non-periodic E-sequences

For any real number @, {a} denotes its fractional part. The following lemma is due to
Matthews and Watts (see Lemma 2(b) in [4]). We present its proof for the reader’s convenience.

Lemma 4.1. Let (a,),s1 be an E-sequence such that Q —lim a, = xo and (x,) 50 is unbounded.

— by
Then lim — < log, 3.

n—oco n
3xp1 + 1 3xp-q + 1
Proof. From x; = ————, we have 2% = ——— Then
2“" -xk
n 3xk1+1 x0”3xk1+1 3"xo M
2 =TT2% =T —— .
lg JQ X X IH X1 I:I 3xk 1
Thus
3" xp

X = H(1+
7

3Xk 1
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which we call the Matthews and Watts’s formula (see Lemma 1(b) in [4]).
Since (x,),>1 is unbounded, all x,, are distinct. Then

3")(?0
1<x < — > H( t a2

Thus
3}1
0<log — > +log xo + Zlog(l + —) log 3" —log 2" +log xo + Z
Hence
A R 11
log2™ <log3" +log xp + gz T
Therefore
b, log, xi no1
—<log, 3+ g2%0 Z’
n nlog ok
Then

I bn
lim —<log, 3.
n—oo n

b,
Theorem 4.2. Let (a,),s1 be a non-periodic E-sequence such that lim — > log, 3. Then

n—oco n

Q-lima, = oco.
Proof. Suppose that Q — lima, = xy for some positive integer xo. It follows from Lemma 4.1

b,
and lim — > log, 3 that (x, ), is bounded. Then (x,),s0 is periodic. Thus (a, ), is periodic,

n—oo

which contradlcts the non-periodicity of (a,),>1. Hence Q —lima, = co. O

The following lemma is the well-known Wendel’s inequality (see [15]). Lemma 4.4 is a
consequence of an easy calculation.

[(x+s)

)

Lemma 4.3. Let x be a positive real number and let s € (0,1). Then

rOr+n+1)
ak+b) - r(b+z)r(b +n+ 1)

Lemma4.4. Let a and b be two integers witha > 1 and a + b. Then H (1+

Lemma 4.5. 1 (1+ %) <1.5n5 foralln > 1
1<k<3n, k=1,5( mod 6)

Proof. Let 2|n. Then
L TG a1,

,Q)(1+3(6k+1))_r(§)1“(§ v r(g)(fé)

3

and
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i1 TOrG+Y) TG 0 s,
ﬂ( 3(6k ) e St e e

by the Wendel’s inequality. Thus
n_ n -1
2
(1+ )—1'[(1+ )]'I(1+ ) <
I<k<3n, k=1,5( mod 6) 3(6k+1) 3(6k+5)

r(Hre )(g 7) f(

2
Iy% < 14196(") % < 1505
rré) 2 6 276 3

Let 2 + n. Then

= L TEIGHR) _T@) n 2.,
H) U Sk~ r(ﬁg)r(2§+l%8) ) ré)(§+g)8

and

2 1 r()r+ I(2) n 1.1
kn) U Seeas)) ~ r(g)r(zg 38) Sré)(f?g

by the Wendel’s inequality. Thus

m—l n+l -2
(1+5)= (1+3(6k+1)) H (1+3(6k+5))\
1<k<3n,k=1,5( mod 6)
1 5
F(g)r(g) Ca2yhC s Dk e
rrE) 2 3 2
O
Theorem 4.6. Let 2" x, — 3"xo = B, such that 1 < xo < 2,1 < x, < 3", 3 + x0, and xo, -+, Xy_1
B,
are distinct integers. Then xyg > —————.
37(1.5n9 - 1)
Proof. From the Matthews and Watts’s formula and Lemma 4.5, we have
2””x,, 1
H(l I1 (1+—)<15n%
3xk l 1<k<3n, k=1,5( mod 6) 3k
3")60 + Bn 1 Bn
Then ——— < 1.5n5. Thus xp > ————. O
3 xg 3”(1.5115 - 1)

Corollary 4.7. Ler 0 > log,3 be an irrational number. Define a, = [n0] - [(n — 1)8]. Then
Q-1lim a, = co.
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2[(k=1)log 3]

noolt-Diog3] N

P Letf=1o 3Then—— 27 > —by ————> —. Thus

roof. 2, 3 Z g y 3% g u

B, n .

RE ] D > 8(15 ] D — 00, as n — oco. Hence Q —lim a, = oo by Theorem 4.6.

"(1.5n% — ond —

by [nd] . o
Let 6 > log,3. Then lim — = lim —— = 6 > log, 3. Since 6 is an irrational number,
n—oo n n—o0o n

(@ )ns1 is non-periodic. Thus Q — lim a, = oo by Theorem 4.2. O

)£1+%;(ii)

n—1
Lemma 4.8. Let x and n be two positive integers. Then (i) T] (1 +
k=0

3(x+k)
nﬁl(l 1 )>1 nf S ()nI:Il(l 1 ) 3x f .
+ + — N + > 2n 22

a 3k o or x > n; (iii a 3=k 3xon orx>n

) =

n-1
Proof. (i) The proof is by induction on n. For the base step, let n = 1 then [T (1 +
k=0 3(x + k)
n . . n=1 n
1+ — =1+ —. For the induction step, assume that ] (1 + ) < 1+ —. Then
3x 3x k=0 3(x+k) 3x

11 (1 "y Y= 14— : PN

+ —)(1+ =1+—+ + + .
=0 3( ) 3x 3(x+n) 3x 3(x+n) 9x(x+n) " 3x s
the inequality holds for all n > 1. The proof of (ii) is similar to that of (i) and omitted.

3x-1 1
(iii) Let n = 2. Since 3x-3x—-2-3x-3x+2 > 3x-3x—-3-3x then > . Thus
3x-3(x-1) 3x-2

1 1 1 3x-2+2 2
1+ —+ + > =1+ ——. Hence
3x 3(x-1) 3x-3(x—1) 3x-2 3x-2

1 1 3x 1
1+—)(1 . Theref 1
( +3x)( +3(x—1))>3x— ereorekHO( +3(x—k))>

n-1 1 3
Assume that [T (1 + ) > Y Since (Bx-3n+1)(3x-n-1) > (3x-n)(3x-3n)
k=0 3(x-k)" 3x-n

3x(3x-3n) +3x 3x n 1 3x 1 3x
then > . Thus JT (1 + )> (1+ )= +
(3x-n)(3x-3n) 3x-n-1 k=0 3(x-k)" 3x-n 3(x-n)" 3x-n

3x 3x
> :
(3x-n)(3x-3n) 3x-n-1

3x

3x-n

O

Lemma 4.9. Let 2% x, — 3"xy = B, such that 1 < xo <2, 1< x,, < 3", x; + xjforall0<i< j<
B, n B, n
n—1. Then (i) 53 gika>xof0ralllsl<£n—1; (ii) 27< glfxn<xkf0ral103k§n—1;
Bn n Bn n
(iii)27> gifx,,>x,~f0rallO§i§n—1; (iv) 3—"2 gifx0>xkf0ralllgk§n.

b

20n
Proof. (i) From

- 1
3 I;[ (1+ 3Xk), we have

w0 s fl0 s

10
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B, B,
Then 1 +3—< 1 +—byLemma48(1) Thus 3—< =

.X() 3.X() 3
. 2bex, n-1 1
(ii) From =TI (1 +=—), we have
3'x0 k=0 3xk
2bnx,

n—1
2bnx ]!jo 1+—) >H(1+ k)) L

n—1 n
Thenl- ——> ] (1+=——)">(1+-—)"byL 4.8(i). Th
en 2”"xn_kl:{)( +3(x,,+k)) > ( +3xn) y Lemma 4.8(i). Thus
B, n
<1-(1+ = :
20 x ( 3xn) 3x, +n

nx, n

"< .
260 " 3x,+n 3

3x+1
(iii) Let » = 1. Then x| = TR Thus (3 -2%)x+ 1 > 0. Hence a; = 1. Therefore
Bn B] 1 1 n
= — = —> —=—,
26w 2br 27 3 3

b

X, n-l 1 n—1
=MM(0+=—)>T1(1+

1
Let x, > n > 2. By Lemma 4.8(iii), we have > —_—) >
= Y i 3'x0 k=0 3% k=0 3 — k))
3x, 20y, 3x, 2bex, — B, 3x,-n B, n
. Then > . Thus < . Hence — > =
3x,-n 20nx, =B, 3x,-n 2bnx, 3x, 2bn = 3
(iv) By Lemma 4.8(ii), we have
B nx n—1 n—1 1 n
. H( t3o >0+ —) 21+ —.
3")60 k=0 3()6() - k) 3xp
B, n
Then — > —. O]
3n 3
A direct consequence of Lemma 4.9 is the following theorem, which may imply something
unknown.

Theorem 4.10. Let 2% x, — 3"xy = B, such that 1 < xg < 2, 1 < x, < 3", x; # x; for all
0<i<j<n-1.Then

B, n

(i)§> gimplieskaxoforsomel£k£n—l;

By o, .

(ll) % < 3 implies xo < xi for some 1 <k <n;
n

(m)—< glmpliesxnSxiforsomeOSiSn—l;
n

(lv) > ftmplles Xn > xi for some 0 <k<n-—1.

Theorem 4.11. Let (a,),s1 be an E-sequence such that (i) 3" > 2 for all n € N; (ii) There is
a constant ¢ > log, 3 such that there are infinitely many distinct pairs (k,1) of positive integers
such that | > ke, a1 =--=a; = 1. Then Q —lima, = oo.

11
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Proof. 1t follows from (i) that B, < 3"n for all n € N by induction on n. B} = 3% - 2/~* by
Proposition 3.2.
3lx1,l +Bl—1
1,0 _ 0 1 1,/ b, 1, ! 1,0 _
Let x;" = —on I € x5 <271 < x;° < 3. Then x =
3l—kxl,l +Bl—1
% by Proposition 2.8(ii). By B} = 3!k — 21k 2br = 21k,
k+1
we have 2% (x" + 1) = 37 (x}! + 1). Thus x;' = 2/~%w ~ 1 for some 1 < w. Hence x;' =
3kxy! + B!
2b

3 xy! + B! 1
w0 M

=21k, _ 1. Therefore

k
2[7k2bkw _ 2bk _ Bk71 2[ ¢
x(l)’l = 3 ! > ﬁzbrk -1-k > (?)kZbk’k — 1 — k. If there are only finite-

21
ly many distinct k in all pairs (k,[), x(l)’l > §2bk’k —1-k - oo, as | —» oo; otherwise x(l)‘l >
2()
(g)kZb"‘k—l—kaoo,askﬁoo. Then Q - lima, = co. O

Corollary 4.12. Let (a,),s1be the E-sequence 12121112, where a, = 2 if n € {2',22,23,...}
and a, = 1 otherwise. Then Q — lima,, = co.

7
Proof. Take ¢ = 1 >log,3,k=2"and [ = 2+l _ 1. Then agyy = =a; = 1,1 > ke for all m > 3.
Thus Q - lima, = oo by Theorem 4.11. O
Theorem 4.13. Let (a,)q51 be an E-sequence such that (i) 3" > 2% for all n € N; (ii) there is
a constant ¢ > log, 3 such that there are infinitely many distinct pairs (r,1) of positive integers

such that 1 > r, by, > le, ajp = ag for all 1 <k < v, ie, (a;-a,)ar1--ai(ap--an,) is contained
in (ay)ns1- Then Q —lima, = oo.

I+r  Ll+r [+r—1
3 xy" + By

I+r
PVOOf. Let xll:rl:rr _ T’ 1< x(l),l+r < b L1 < xll;l:rr < 3% Then xll,l+r _
1
g™+ B g, 3BT 3 B N o
— o Xior = o = T by Proposition 2.8(ii). By 3' > 21,

we have xll’l” > x(l)’l”.

rLr r—1
3"xy" + By

25
r .. e
xy" = x*"(mod 2°1). By Proposition 2.8(iii), we have xj*" > x}".

Let x;"*" = 28y + x;". Then u > 1 by x;™*" > xy"*" > x;". Thus

Let x'" = ,1<xy" <28, 1< x!" < 3. Then

! r ! I+r
ey 202w 2P - BT 2h 2,
Xy = 3 > 3 —l}(g) -1 — 00, asl— oo.

Hence Q - lima,, = oo. O

Theorem 4.14. Let 1 < 6 < log, 3 and define a, = [nf] — [(n - 1)6]. Then
Q -lima, = oo.

12
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Proof. 1f 0 is a rational number then (a, )51 is purely periodic and the result follows from The-
orem 3.4. Let 6 be an irrational number in the following. By Hurwitz theorem there are infinite

K K 1
convergents — of 6 such that |0 — —| <
gents -1 \/§r2

s
Case 1 There are infinite convergents - of 0 such that 0 < 6 — — <

§ s
[6n] = [-n] forall 1 <n < [V/5r]. By 1 <n<[V/5r], we have 0 < 6n— n<
r

. There are two cases to be considered.

\/_r

V512 \/§r2: r

We prove that

n \/§r1

s s I s s s
Then0< {-n} <On—-[-n] < —+{-n} < 1. Thus 0 < On — [-n] < 1. Hence [6n] = [-n]. Then we
r roor r r

.
have the following periodic table for (a,), 5]

aq ay a[ \/§r—2r] ay
ar1 az+r a[ \/gr—r] azr
ar+1 azyor (1[ \/gr]
22[r0] uy, — B,
By Proposition 3.3(ii), )c1 = ST for some uy, > 1.
_ 9
r—13 1 ‘2b ; | -1 2b[ ; ] r—1 2[i9] ; | r—1 2i9 3r1 — (g)r 3 _ 2r9 3"
By B, = T =3 <3 — <3 == = < )
yB=2 53 53 5373 P 3 D
3
we have .
3" 1 4
220 _ g, 47071 — 320 *( )r T
[REIaN > 3-29_
0 3r _ 2[r6] 3r _ Qro-1
gy
Thus x(l)’zr — 00, as r — oo. Hence Q —lima, = oo .
s s 1
Case 2 There are infinite convergents — of 6 such that 0 < - -6 < ——.
r r V512
. N s 1
Firstly, we prove [6n] = [fn] forall 1 <n<[V5r],n¢ {rn2r}. ByO< --6< we
r

N n N N

<6< Then ‘n- [-n]-

1
V512 r roort /s
¢ (2} have 0 1 no n
n¢{r,2r},wehave 0 < —— —— nl|-
roNsr2r r /52

s
Secondly, we prove [rf] = s — 1, [2rf] =2s—1. By 1 < n, 0 < -
.

S
have — —
r

s
. Then 0 < On—[-n]
r

K 1 n
+ n<n9<7n Byn< \/_r we have -1 < —— < ———— Then

\/_r oo V/52

né < n. By taking n = r,2r, we have [r8] = s -1, [2r0] = 25 - 1.
r
13

s
<On-[-n]<-n-[-n]<1.Byl<
r A

s
-1+-n<

ro VAR

< 1. Thus [6n] =

n< [V5r],

[on].

1
- 6§ < ——, we have

V512

n

N

+-n<

r
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Let2 < j<r—-1thenr+2<r+j<2r-landr+1<r+j-1<2r-2. Thus
s s s s
arej = [0(r+ NI =100 +j-D] = [+ DI -[r+j-D) = s+ 1= [s+(j-1)] =

- G-D]=a;
Let2< j<[V5r] -2r. Then2r+2<2r+j < [\/5r]and 2r + 1 <2r+ j— 1 < [V/5r] - 1.
Thus azre, = [02r+ )] = [02r+ = D] = [-@r+ )] = [22r+ j= D] = [ [-(- D] =z

By easy calculation, we have a, = ay, = 1, a,+1 = a1 = 2.
Then we have the following periodic table for (a,) l<n<[ ﬁr]' Since 6 < log, 3, we then take

aj ap as a[ \/§r]—2r A N Ary1
azyr a3y a[ \/gr]—r | Agr | Q2ryd
2+2r | A3+2r | °° a[\/gr]

s s
all convergents — of 4 such that — < log, 3 and thus 2° < 3". By a; = 1, b5*' = [rf] + 1 = s and
r r

Proposition 3.3(ii), we have

22‘Y+lu2r+1 _ (3r _ 2?) _ ZBS

12r+1 _
%o 3(3—2%)
29
1 . r_1 plio+6]-1 Y 3l - (?)’
forsome ., > 1. By By = 3, 3771720 =371y —— <37y — =0l
i=0 =0 3 i=0 3' 3 2
3
3" _2r0 -1
20-1 320 < C3", where C = T we have
ey 2400 e o431 24%-C3 1 24° 2 1]
AR -2 -3 -z=3z)r-3-2
3 3r-2s 3733 -29 373 3 3 337 3 3
Thus lim, . xy>*" = co. Hence Q — lima, = co. O

5. Concluding Remarks and open problems

The results on non-periodic E-sequences in Section 4 are based on the theory of periodic E-
sequences in Section 3 and the Matthews and Watts’s formula. Currently, we have no other way
to tackle with non-periodic E-sequences. We can obtain various generalizations and analogues
of Theorem 4.2, 4.6, 4.10, 4.11 and 4.13. But we need good problems to make some progress.

One seemingly simple problem which we are not able to prove is whether (a, ), is diver-
gent, where a, = 2 if n € {22,3%,4%,...} and a, = 1 otherwise, i.e., (a,),»1 is 111211112....

Another interesting problem is whether (a, ),>1 with infinitely many n satisfying b, > nlog, 3

— b,
is Q—divergent. By virtue of Theorem 4.2, we only need to consider the case of lim — = log, 3.
n—-oco n
14


https://doi.org/10.20944/preprints201908.0071.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2019 d0i:10.20944/preprints201908.0071.v1

3n(1.5n5 — 1)
how to tackle with the other cases of the problem.
Conjecture 1.2(ii) is also important in some sense.

Theorem 4.6 answers the problem if — 00, as n — oo. Currently, we don’t know
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