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29 2.3 Sample extraction and instrument analysis

30 Other instrumental parameters of UPLC/MS/MS were showed in Table S1 and Table S2.

31 Table S1

Time (min)

Composition of the mobile phase (%)

Negative mode

Eluent A2 (0.01%Ammonium hydroxide)

Eluent B1 (Acetonitrile)

0 90 10
0.25 90 10
3.00 10 90
4.00 10 90
4.01 90 10
5.00 90 10
32
33  TableS2
Collision
Retention  Parent Daughter Dewll  Conevol
Compound . . . . . energy
time/min  ion (m/z) ions(m/z) time(s)  tage (V) )
v
93.10 20
Bisohenol F 2.74 199.10 0.042 30
105.10% 20
198.00% 22
Bisphenol E 2.89 213.10 / 0.042 40 /
133.00 25
Bisphenol A 3.03 227.10 0.042 31
212.00* 17
92.05 30
Bisphenol S 0.66 249.13 0.161 42
108.07* 24
93.02 32
Bisphenol Z 3.45 267.22 0.042 56
173.17% 30
197.10 25
Bisphenol AF 3.25 335.23 265.16* 0.042 32 22
419.92* 40

34 represents quantification ion.

35

36 2.4 Quality assurance and quality control
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53

The strict QA/QC protocol was used to detect the extraction efficiency of BPs in the water sample.

The performance of the analytical method was evaluated in terms of linearity, limit of detection

(LOD) and limit of quantitative (LOQ) and recovery rate. When analyzing each group of samples,

running solvent, standar, and process blanks in turn to check background BPs, peak identification,

and quantification. Respectively, LOD and LOQ were determined to be the minimum detectable

amounts of the analyte with signal-to-noise (S/N) of 3 and 10. Through injecting different

concentrations of the standard solutions (seven-point calibration curve) into the 1.0-200 ng/mL range

(R?>0.998), the linearity of the target compounds was studied. In order to evaluate the recovery, the

spiked samples were prepared using ordinary surface water samples. Prior to use, surface water

samples used for recovery test were analyzed to detect the presence of BPs. The recovery data for BPs

had been corrected to take into account the fact that the average blank peak area of BPs was subtracted

from the average peak area of the other recovery points. Six separate chromatographic runs were

performed on each of the two concentration levels. The analysis of the reagent blanks (n=3) showed

that the analysis system and glassware did not contain BPs.

Table S3
Recovery [%] (n=6) Quantitation limits (n = 3)
Compound Water sample SPM samples Water SPM
10 ng/L 100 ng/L 10 ng/g 100 ng/g (ng/L) (ng/g)

BPF 83.0+12.4  97.8+10.2 82.4+13.1 90.2+10.0 11.10 1.50

BPE 88.4+7.2 92.3+10.7 75.7+6.3 82.0+10.4 1.83 0.50

BPA 91.0+8.1 108+9.9 102+10.8 110+11.5 2.60 0.25

BPS 80.3+4.0 91.4+16.3 79.3£9.3 84.7+6.5 0.53 0.30

BPZ 70.345.6 85.6+10.0 73.5+7 .4 80.2+7.1 7.07 1.00

BPAF 93.1+16.3 96.2+8.0 82.2+114 92.3+10.1 1.70 0.30

2.5 Parameter measurement and statistical analysis
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Using the risk quotient (RQ) to evaluate the risk assessment of the target compounds in the urban

water. The RQs was calculated as Eq (1).

MEC MEC
RQ= PNEC  EC50 or LC50/f 1)

MEC and PNEC are measured environmental concentrations and predicted no-effect

concentrations. According to the REACH guidance document, in order to estimate PNEC based on

toxicity data when only short-term/acute toxicity data ECso or LCso is available, PNEC is calculated

by the EC50 or LC50 that divides the safety factor (f) 1000. Once a long-term/chronic NOEC value of

one, two or three nutritional levels is available, using the f of the 100, 50, or 10 (ECHA, 2008). PNEC

is derived from chronic and acute toxicity data in the literature and is 100 or 1000 fin our study. Table

3 provides PNEC calculations for algae, daphnia and fish.

Calculation of the oestrogen equivalent concentration (EEQ) of a chemically determined mixture

is based on all measured xenoestrogens with a known oestrogen equivalency factor (EEF; Table 3), as

shown in the following equation (Eq. (2)). When EEQrotal >1.0 ng Ez/L, the contaminants are thought

to affect the endocrine systems of organisms in the water bodies. So EEQ is also used to assess the

risk of BPs to human health.

EEQtowt = LEEQ = ©(C~EEF)) @)

The Cirefers to the compound i with a concentration of C in the traditional dissolved phase.

EEQrol is the total estradiol equivalent and EEF: is the estradiol equivalent.

Table S4
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Sampling Concentrations (ng/L) in traditionally soluble phase
Time Reference
locations BPA BPS BPF BPAF
2.53
20182 290 (244) 43.6(42.1) 6.68 (4.51) This
Study area (2.23)
(07) 133-576 5.87-83.5 1.62-17.8 study
ND-5.44
7.13
2018 217 (157) 60.5(32.1) 2.70 (2.05)
Woujin district (4.61) [1]
(08) 73.5-678 7.80-319 0.30-17.7
1.14-40.1
2013 8.5(7.9) 6.0 (2.0) 0.83 (0.5) 0.28 (0.2)
Taihu Lake (2]
(09) 4.2-14 0.28-67 ND-5.6 0.13-1.1
2015 9.7 (7.3) 2.6 (094) 1.24(1.1) 0.27(0.1)
Taihu Lake [3]
(05) 3.9-33.2 0.32-27.3 0.5-3.28 0.06-2
2015 92.6 (53.2)
Taihu Lake [4]
1n 28-565
2016 97 120 140 8.2
Taihu Lake [5]
(04) 28-560 45-1600 ND-1600 0.7-23
2016 25.7 (23.8) 15.9 (6.6) 78 (30) 114 (111)
Taihu Lake [6]
(11) 19.4-68.5 41.-157 25.6-723  110-140
2016 86 21 6.8 17
Luoma Lake [5]
(04) 49-110 ND-9%4 3.5-14 12-84
2013 47 (29) 14 (8.9) 1.9 (1.0
Liaohe River NDp [2]
(09) 5.9-141 0.22-52 0.5-9.6
2013 40 (42) 11 (8.4) 2.4 (0.94)
Hunhe River ND [2]
(09) 4.4-107 0.61-46 0.61-11
2013 73 (73) 135 (135) 773 (757)
Pearl River ND
(07) - ND-98 ND-135 448-1110 -
2014 43 (43) 64 (64)
West River ND ND
(03) ND-43 ND-105
20 source water 2017 12.8 (10.5) 1.1 (0.4) 22 (ND) 3.0(0.1) 8]
China (11 ND-34.9 ND-5.2 ND-12.6 ND-10.8
Several Rivers, 104 53 638 ND
Bay (Japan) 2013 ND-431 ND-15 ND-2850
Several Rivers (07) - 105.7 41 633
ND [7]
(Korea) 2014 1.0-272 ND-42 ND-1300
Several Rivers, (03) 551 2174 91.5
Lake (India) ND-1950 ND-7200 ND-289

Table S5

aYear (Month). » ND: not detected.
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Non-

Compou target Test Toxicity data PNEC Referenc EEF
nd organis  Endpoint  (mg/L) (ng/L) e Ref. [17]
m
BPA Algae 72h-EC50 2.2 (Growth) 2200 [9] 1.07x10+
Daphnia 48h-EC50 3.9 (Immobility) 3900 [10]
s
Fish 48h-EC50 3.6 3600 [11]
(Pigmentation)
BPS Algae 96h-EC50 6.9 6900 [13]2 1.06x106
Daphnia 48h-EC50 55 (Immobility) 55000  [14]
s
Fish 72 hpf- 155 (Mortality) 155000 [15]
EC50
BPF Algae 72h-IC50  22.1 (Growth) 22100  [11] 1.08x10+
Daphnia 21d- 0.84 8400 [11]
s NOEC (Reproduction)
Fish 48h-EC50 1.1 1100 [11]
(Pigmentation)
BPAF Algae 72h-IC50 3.0 (Growth) 3000 [11] 7.23x104
Daphnia 21d- 0.23 2300 [11]
s NOEC (Reproduction)
Fish 72hpf- 0.92 (Mortality) 920 [15]
EC50
BPE Daphnia 48h-EC50 18 18000  [14] 5.92x105
s
Fish EC50 0.0579 57.9 [16]
a The toxicity data was calculated from the ecological structure activity relationships (ECOSAR)
model.
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