

1 **Occurrence, Distribution and Ecological Risk of**
2 **Bisphenol Analogues in The Surface Water from A**
3 **Water Diversion Project in Nanjing, China**

4 **Chaoya Zheng ^a, Jianchao Liu ^{a,*}, Jinghua Ren ^b, Jie Shen ^c, Jian Fan ^b, Ruiyu Xi ^a, Wei Chen ^a and**
5 **Qing Chen ^d**

6
7 ^a Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai
8 University, Nanjing 210098, China

9 ^b Engineering innovation center of land ecological monitoring and remediation, ministry of natural resources,
10 Geological Survey of Jiangsu Province, Nanjing 210018, China

11 ^c Everbright environmental technology equipment (Changzhou) Co., Ltd., Changzhou 213011, China

12 ^d Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou 215000, China

13 * Correspondence to: Jianchao Liu

14 Phone number: 86-25-83787894

15 Fax number: 86-25-83787330

16 mail address: jianchao-liu@hhu.edu.cn

17 **Contents**

18 2.3 Sample extraction and instrument analysis

19 2.4 Quality assurance and quality control

20 2.5 Parameter measurement and statistical analysis

21 Table S1. The mobile phase compositions of the separation methods.

22 Table S2. The six BPs of the optimized MS/MS parameters.

23 Table S3. Recovery values obtained for the three independent concentrations of spiked quality control

24 samples.

25 Table S4. Concentrations of BPs reported as mean (median) and minimum-maximum observed
26 globally.

27 Table S5. The BPs' aquatic toxicity data of the most sensitive aquatic species.

28

29 2.3 Sample extraction and instrument analysis

30 Other instrumental parameters of UPLC/MS/MS were showed in Table S1 and Table S2.

31 Table S1

Time (min)	Composition of the mobile phase (%)	
Negative mode	Eluent A2 (0.01%Ammonium hydroxide)	Eluent B1 (Acetonitrile)
0	90	10
0.25	90	10
3.00	10	90
4.00	10	90
4.01	90	10
5.00	90	10

32

33 Table S2

Compound	Retention time/min	Parent ion (m/z)	Daughter ions(m/z)	Dewll time(s)	Conevol tage (v)	Collision energy (v)
Bisphenol F	2.74	199.10	93.10 105.10*	0.042	30	20
Bisphenol E	2.89	213.10	198.00* /	0.042	40	22
Bisphenol A	3.03	227.10	133.00 212.00*	0.042	31	25
Bisphenol S	0.66	249.13	92.05 108.07*	0.161	42	30
Bisphenol Z	3.45	267.22	93.02 173.17*	0.042	56	32
			197.10			25
Bisphenol AF	3.25	335.23	265.16* 419.92*	0.042	32	22
						40

34 * represents quantification ion.

35

36 2.4 Quality assurance and quality control

37 The strict QA/QC protocol was used to detect the extraction efficiency of BPs in the water sample.

38 The performance of the analytical method was evaluated in terms of linearity, limit of detection

39 (LOD) and limit of quantitative (LOQ) and recovery rate. When analyzing each group of samples,

40 running solvent, standar, and process blanks in turn to check background BPs, peak identification,

41 and quantification. Respectively, LOD and LOQ were determined to be the minimum detectable

42 amounts of the analyte with signal-to-noise (S/N) of 3 and 10. Through injecting different

43 concentrations of the standard solutions (seven-point calibration curve) into the 1.0-200 ng/mL range

44 ($R^2 > 0.998$), the linearity of the target compounds was studied. In order to evaluate the recovery, the

45 spiked samples were prepared using ordinary surface water samples. Prior to use, surface water

46 samples used for recovery test were analyzed to detect the presence of BPs. The recovery data for BPs

47 had been corrected to take into account the fact that the average blank peak area of BPs was subtracted

48 from the average peak area of the other recovery points. Six separate chromatographic runs were

49 performed on each of the two concentration levels. The analysis of the reagent blanks ($n=3$) showed

50 that the analysis system and glassware did not contain BPs.

51 Table S3

Compound	Recovery [%] (n = 6)				Quantitation limits (n = 3)	
	Water sample		SPM samples		Water (ng/L)	SPM (ng/g)
	10 ng/L	100 ng/L	10 ng/g	100 ng/g		
BPF	83.0±12.4	97.8±10.2	82.4±13.1	90.2±10.0	11.10	1.50
BPE	88.4±7.2	92.3±10.7	75.7±6.3	82.0±10.4	1.83	0.50
BPA	91.0±8.1	108±9.9	102±10.8	110±11.5	2.60	0.25
BPS	80.3±4.0	91.4±16.3	79.3±9.3	84.7±6.5	0.53	0.30
BPZ	70.3±5.6	85.6±10.0	73.5±7.4	80.2±7.1	7.07	1.00
BPAF	93.1±16.3	96.2±8.0	82.2±11.4	92.3±10.1	1.70	0.30

52

53 2.5 Parameter measurement and statistical analysis

54 Using the risk quotient (RQ) to evaluate the risk assessment of the target compounds in the urban
 55 water. The RQ_s was calculated as Eq (1).

56
$$RQ = \frac{MEC}{PNEC} = \frac{MEC}{EC50 \text{ or } LC50/f} \quad (1)$$

57 MEC and PNEC are measured environmental concentrations and predicted no-effect
 58 concentrations. According to the REACH guidance document, in order to estimate PNEC based on
 59 toxicity data when only short-term/acute toxicity data EC₅₀ or LC₅₀ is available, PNEC is calculated
 60 by the EC₅₀ or LC₅₀ that divides the safety factor (*f*) 1000. Once a long-term/chronic NOEC value of
 61 one, two or three nutritional levels is available, using the *f* of the 100, 50, or 10 (ECHA, 2008). PNEC
 62 is derived from chronic and acute toxicity data in the literature and is 100 or 1000 *f* in our study. Table
 63 3 provides PNEC calculations for algae, daphnia and fish.

64 Calculation of the oestrogen equivalent concentration (EEQ) of a chemically determined mixture
 65 is based on all measured xenoestrogens with a known oestrogen equivalency factor (EEF; Table 3), as
 66 shown in the following equation (Eq. (2)). When EEQ_{total} > 1.0 ng E₂/L, the contaminants are thought
 67 to affect the endocrine systems of organisms in the water bodies. So EEQ is also used to assess the
 68 risk of BPs to human health.

69
$$EEQ_{Total} = \sum EEQ_i = \sum (C_i \times EEF_i) \quad (2)$$

70 The C_{*i*} refers to the compound *i* with a concentration of C in the traditional dissolved phase.
 71 EEQ_{total} is the total estradiol equivalent and EEF_{*i*} is the estradiol equivalent.

72
 73
 74
 75
 76

77 **Table S4**

Sampling locations	Time	Concentrations (ng/L) in traditionally soluble phase				Reference
		BPA	BPS	BPF	BPAF	
Study area	2018 ^a (07)	290 (244) 133-576	43.6(42.1) 5.87-83.5	2.53 (2.23) ND-5.44	6.68 (4.51) 1.62-17.8	This study
	2018 (08)	217 (157) 73.5-678	60.5(32.1) 7.80-319	7.13 (4.61) 1.14-40.1	2.70 (2.05) 0.30-17.7	[1]
Wujin district	2013 (09)	8.5 (7.9) 4.2-14	6.0 (2.0) 0.28-67	0.83 (0.5) ND-5.6	0.28 (0.2) 0.13-1.1	[2]
	2015 (05)	9.7 (7.3) 3.9-33.2	2.6 (0.94) 0.32-27.3	1.24 (1.1) 0.5-3.28	0.27 (0.1) 0.06-2	[3]
Taihu Lake	2015 (11)	92.6 (53.2) 28-565				[4]
	2016 (04)	97 28-560	120 4.5-1600	140 ND-1600	8.2 0.7-23	[5]
Taihu Lake	2016 (11)	25.7 (23.8) 19.4-68.5	15.9 (6.6) 41.-157	78 (30) 25.6-723	114 (111) 110-140	[6]
	2016 (04)	86 49-110	21 ND-94	6.8 3.5-14	17 12-84	[5]
Luoma Lake	2013 (09)	47 (29) 5.9-141	14 (8.9) 0.22-52	ND ^b	1.9 (1.0) 0.5-9.6	[2]
	2013 (09)	40 (42) 4.4-107	11 (8.4) 0.61-46	ND	2.4 (0.94) 0.61-11	[2]
Liaohe River	2013 (07) -	73 (73) ND-98	135 (135) ND-135	773 (757) 448-1110	ND	
	2014 (03)	43 (43) ND-43	ND	64 (64) ND-105	ND	[7]
Hunhe River	2017 (11)	12.8 (10.5) ND-34.9	1.1 (0.4) ND-5.2	2.2 (ND) ND-12.6	3.0 (0.1) ND-10.8	[8]
	Several Rivers, Bay (Japan)	104 ND-431	5.3 ND-15	638 ND-2850	ND	
Several Rivers (Korea)	2013 (07) -	105.7 1.0-272	41 ND-42	633 ND-1300	ND	[7]
	2014 (03)	551 ND-1950	2174 ND-7200	91.5 ND-289	ND	
Several Rivers, Lake (India)						

78 ^a Year (Month). ^b ND: not detected.

79 **Table S5**

Compound	Non-target organism	Test Endpoint	Toxicity data (mg/L)	PNEC (ng/L)	Reference	EEF Ref. [17]
BPA	Algae	72h-EC50	2.2 (Growth)	2200	[9]	1.07×10^{-4}
	Daphnia	48h-EC50	3.9 (Immobility)	3900	[10]	
	Fish	48h-EC50	3.6 (Pigmentation)	3600	[11]	
BPS	Algae	96h-EC50	6.9	6900	[13] ^a	1.06×10^{-6}
	Daphnia	48h-EC50	55 (Immobility)	55000	[14]	
	Fish	72 hpf-EC50	155 (Mortality)	155000	[15]	
BPF	Algae	72h-IC50	22.1 (Growth)	22100	[11]	1.08×10^{-4}
	Daphnia	21d-NOEC	0.84 (Reproduction)	8400	[11]	
	Fish	48h-EC50	1.1 (Pigmentation)	1100	[11]	
BPAF	Algae	72h-IC50	3.0 (Growth)	3000	[11]	7.23×10^{-4}
	Daphnia	21d-NOEC	0.23 (Reproduction)	2300	[11]	
	Fish	72hpf-EC50	0.92 (Mortality)	920	[15]	
BPE	Daphnia	48h-EC50	18	18000	[14]	5.92×10^{-5}
	Fish	EC50	0.0579	57.9	[16]	

^a The toxicity data was calculated from the ecological structure activity relationships (ECOSAR) model.

Reference

1. Si, W., Cai, Y., Liu, J., Shen, J., Chen, Q., Chen, C., Ning, L., 2019. Investigating the role of colloids on the distribution of bisphenol analogues in surface water from an ecological demonstration area, China. *Science of the Total Environment.* 673, 699-707.
2. Jin, H., Zhu, L., 2016. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River basin and Taihu Lake, China. *Water Research.* 103, 343-351.
3. Wang, Q., Chen, M., Shan, G., Chen, P., Cui, S., Yi, S., Zhu, L., 2017. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China.

91 Science of the Total Environment 598, 814-820.

92 4. Liu, D., Liu, J.N., Guo, M., Xu, H.Z., Zhang, S.H., Shi, L.L., Yao, C., 2016. Occurrence, distribution,
93 and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water,
94 suspended particulate matter, and sediment in Taihu Lake and its tributaries. Marine Pollution
95 Bulletin. 112, 142-150.

96 5. Yan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., Guo, R., Chen, M., Yang, Q., Zhang, S., Chen, J., 2017.
97 Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes:
98 Occurrence, distribution, source apportionment, and ecological and human health risk.
99 Chemosphere. 184, 318-328.

100 6. Liu, Y., Zhang, S., Song, N., Guo, R., Chen, M., Mai, D., Yan, Z., Han, Z., Chen, J., 2017. Occurrence,
101 distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu
102 Lake): Implications for ecological and human health risk. Science of the Total Environment. 599,
103 1090-1098.

104 7. Yamazaki, E., Yamashita, N., Taniyasu, S., Lam, J., Lam, P. K.S., Moon, H.B., Jeong, Y., Kannan, P.,
105 Achyuthan, H., Munuswamy, N., Kannan, K., 2015. Bisphenol A and other bisphenol analogues
106 including BPS and BPF in surface water samples from Japan, China, Korea and India.
107 Ecotoxicology and Environmental Safety. 122, 565-572.

108 8. Zhang, H., Zhang, Y., Li, J., Yang, M., 2019. Occurrence and exposure assessment of bisphenol
109 analogues in source water and drinking water in China. Science of the total Environment. 655,
110 607-613.

111 9. Debenest, T., Gagné, F., Petit, A. N., André, C., Kohli, M., Blaise, C., 2010. Ecotoxicity of a
112 brominated flame retardant (tetrabromobisphenol A) and its derivatives to aquatic organisms
113 Comp. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 152. 407-
114 412.

115 10. Staples, C.A., Dome, P.B., Klecka, G.M., Oblock, S.T., Harris, L.R., 1998. A review of the

116 environmental fate, effects, and exposures of bisphenol A. *Chemosphere*. 36, 2149-2173.

117 11. Tišler, T., Krel, A., Gerželj, U., Erjavec, B., Dolenc, M. S., Pintar, A., 2016. Hazard identification and

118 risk characterization of bisphenols A, F and AF to aquatic organisms. *Environmental Pollution*.

119 212, 472-479.

120 13. US Environmental Protection Agency. 2011. Estimation Program Interface EPI, Suite, Version

121 Environmental Protection Agency, Office of Pollution Prevention and Toxic's, Washington, DC,

122 USA.

123 14. Chen, M.Y., Ike, M., Fujita, M., 2002. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-

124 A and other bisphenols. *Environmental Toxicology*. 17, 80-86.

125 15. Moreman, J., Lee, O., Trznadel, M., David, A., Kudoh, T., Tyler, C.R., 2017. Acute toxicity,

126 teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S,

127 bisphenol F, and bisphenol AF in zebrafish embryo-larvae. *Environmental Science & Technology*.

128 51, 12796-12805.

129 16. Owczarek, K., Kudlak, B., Simeonov, V., Mazerska, Z., Namiesnik, J., 2018. Binary Mixtures of

130 Selected Bisphenols in the Environment: Their Toxicity in Relationship to Individual Constituents.

131 Molecules. 23, 3226.

132 17. Ruan, T., Liang, D., Song, S., Song, M., Wang, H., Jiang, G., 2015. Evaluation of the in vitro

133 estrogenicity of emerging bisphenol analogs and their respective estrogenic contributions in

134 municipal sewage sludge in China. *Chemosphere*. 124, 150-155.