

1 Article

2 The Effect of Recreation in a Snow-Covered Forest

3 Environment on the Psychological Relaxation of

4 Young Females

5 Ernest Bielinis ^{1*}, Adrian Łukowski ^{2,3}, Aneta Omelan ⁴, Sergii Boiko ⁵ and Norimasa Takayama ⁶6 ¹ Department of Forestry and Forest Ecology, Faculty of Environmental Management and Agriculture,
7 University of Warmia and Mazury, Pl. Łódzki 2, 10-727 Olsztyn, Poland; ernest.bielinis@uwm.edu.pl8 ² Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland;
9 adrian.lukowski@gmail.com10 ³ Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland11 ⁴ Department of Tourism, Recreation and Ecology, Faculty of Environmental Sciences, University of Warmia
12 and Mazury, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland; aneta.omelan@uwm.edu.pl13 ⁵ Forest Culture Center in Gołuchów, ul. Działyńskich 2, 63-322 Gołuchów; ternianyn@gmail.com14 ⁶ Environmental Planning Laboratory, Department of Forest Management, Forestry and Forest Products
15 Research Institute in Japan, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; hanri@ffpri.affrc.go.jp

16 * Correspondence: ernest.bielinis@uwm.edu.pl; Tel.: +48-603-809-211

17

18 **Abstract:** Forest recreation can be successfully conducted for the purpose of psychological
19 relaxation, as has been proven in previous scientific studies. During the winter in many countries,
20 when snow cover occurs frequently, forest recreation (walking, relaxation, photography, etc.) is
21 common. Nevertheless, whether forest therapy conducted in a forest environment with a snow
22 cover will also have a positive effect on psychological indicators remains unknown. Furthermore,
23 male subjects frequently participate in forest therapy experiments, whereas females are rarely
24 involved. Thus, in this study, the effectuality of forest recreation during winter and with snow
25 cover was tested on 32 young females. For these reasons, the experiment involved 15-minute
26 periods of relaxation in a forest environment or in an urban environment, in addition to a pre-test
27 under indoor conditions. Four psychological questionnaires (POMS, PANAS, ROS, SVS) were
28 administered to participants before and after interventions. Results showed that participants' levels
29 of negative mood, as measured by different aspects of the POMS questionnaire (tension-anxiety,
30 anger-hostility, depression-dejection, confusion, fatigue), decreased after exposure to the forest
31 environment. In contrast, both tension-anxiety and anger-hostility increased in the urban
32 environment. The indicator of negative affect from the PANAS questionnaire also increased after
33 exposure to the urban environment, whereas the indicator of positive affect based on PANAS was
34 higher in the forest environment than in the urban environment. Restorativeness and subjective
35 vitality exhibited higher values after exposure to the forest environment in comparison to those
36 from the control and pre-test. The changes in these indicators demonstrates that forest recreation in
37 the snow during winter can significantly increase psychological relaxation in young females, as
38 well as showing that recreation can be successfully conducted under these winter conditions.

39 **Keywords:** deciduous forest; female; forest bathing; forest therapy; Positive and Negative Affect
40 Schedule; Profile of Mood States; Restorative Outcome Scale; restoration; Shinrin-Yoku; snow
41 covered forest; Subjective Vitality Scale; winter.

42

43 1. Introduction

44 Forest recreation is an activity in which one engages for pleasure, and it is done without the
45 confines of buildings, in a natural forest environment [1]. One specific form of this activity is forest
46 recreation for the purpose of health improvement, mainly called forest therapy (or forest bathing, or

47 *Shinrin-yoku*). The importance of forest recreation for health improvement has increased in recent
48 years, as manifested by, *inter alia*, an increase in the number of scientific publications regarding this
49 issue (based on Google Scholar search data). This popularity is not without base; many of these
50 scientific papers report various positive influences of forest recreation interventions on humans with
51 stress symptoms, both psychological and physiological [2-10]. Many positive outcomes have been
52 reported in both males and females, including lowered negative and heightened positive mood
53 states [11], lowered pulse rate and blood pressure [12], reduced rates of hormones involved in stress
54 [13], increased immunological activity, and increased levels of cells responsible for cancer resistance
55 [14]. This beneficial impact on health has been observed in Scandinavian and Asian countries, and
56 various strategies, including forest therapy roads [15] and the forest garden Nacadia® [16], have
57 been introduced to facilitate using the forest and nature for health recreation purposes. Knowledge
58 concerning the management of forest environments to best achieve the purpose of forest recreation,
59 and knowledge regarding how and when to organise forest recreation, is crucial for interested
60 subjects (e.g. forest owners, foresters, and therapists).

61 Previous research has confirmed that forest recreation may also be successfully conducted
62 during the winter and still exhibit beneficial effects on mental health. In a previous study of ours,
63 psychological relaxation was observed in male and female participants; however, the study was
64 conducted during a period without snow cover, and any additional effects of snow cover have not
65 been examined before [17]. Participants in preference tests positively evaluated winter landscapes of
66 forests with snow, but the potential of this environment to induce psychological relaxation has not
67 been determined [18]. Thus, the effectuality of forest recreation on psychological relaxation was
68 tested in the current study. Snow in a forest may influence visual properties of the landscape: the
69 ground is covered, plants growing on the forest floor are not visible, the branches of standing trees
70 are covered, and the dominant colour of scenery is changed from green and brown to white.
71 Furthermore, a layer of snow can affect the process of visual stimulation. In other studies, different
72 indices of greens induced different effects on relaxation, with lower amounts of observed greens
73 resulting in lower levels of relaxation in participants [19]. Thus, hypothetically, a forest covered by
74 snow might not have the same restorative effect because greens are hidden. A lack of relaxing effect
75 of the forest environment on respondents may therefore be expected if the forest is snow-covered.
76 Nevertheless, standing trees continue to fill the forest environment, regardless of snow, and this
77 could still stimulate relaxation. One of the aims of this study was therefore to test the influence of a
78 forest with snow cover on psychological relaxation. Effects were tested with the participation of
79 young females – a group which has not frequently been represented in research regarding forest
80 recreation. This study thus provided a good opportunity to examine the influence of the forest
81 environment on psychological relaxation in this under-represented group.

82 Overall, the purpose of this work was to test the hypothesis that short periods of forest
83 recreation could induce the psychological relaxation of participants in a forest environment with
84 snow cover. If this hypothesis is confirmed, this would suggest that forest recreation could also be
85 successfully conducted under snowy winter conditions. To examine the hypothesis, an experiment
86 was designed with an urban environment as a control and a snow-covered forest environment as an
87 experimental group.

88 2. Materials and Methods

89 2.1. Participants

90 A group of 34 female students from the University of Warmia and Mazury in Olsztyn
91 participated in this study. Females were selected over males because it is common in Poland that in
92 the winter, females spend their free time, as well as much of their time spent with children, on walks.
93 For this reason, we suggested that this form of activity related to staying in forest areas should be
94 examined by this experimental study involving females. Students were recruited from one study
95 course at the University (a non-forestry course) and participation in the study was voluntary.
96 Participants reporting menstruation (two persons) were not involved in the research. A female

97 researcher (A.O.) performed this exclusion, asking participants this question in a discreet, kind, and
98 private way. A female researcher (A.O.) asked in a discreet, kind, and private way if they wished to
99 take part in the study. These two women did not want to participate in the research voluntarily.
100 Qualified participants (32 females; mean age = 20.97 years, S.D. = 0.63) were randomly assigned to
101 one of two groups (16 persons in each): experimental group (group 1) and control group (group 2).
102 Before the experiment, participants from each group were informed that they would be asked to
103 contribute to a research study of 'forest recreation' and informed consent was obtained. The purpose
104 of the study was explained thoroughly after the experiment, because the authors of the research
105 wished to omit the effect of suggestion on participants. All procedures performed in this study were
106 in accordance with the ethical standards of the Polish Committee of Ethics in Science and with the
107 1964 Helsinki Declaration and its later amendments.

108 *2.2. Study sites*

109 Before the experiment, all participants completed research questionnaires under indoor
110 conditions, in one of the classrooms at the University in Olsztyn city (north-eastern Poland). This
111 place was also a gathering point. Afterwards, the experiment was conducted in a forest environment
112 at the forest point (group 1) and in an urban environment at the urban point (group 2). The participants
113 reached each of these two areas by walking. The locations of the indoor, forest, and
114 urban environments are shown in Figure 1. The distance from the gathering point to either the urban
115 point or the forest point was approximately 1 km, which required 20 minutes of walking for
116 participants in each group. The roads to both points were constantly flat, without any hills or other
117 hindrances.

118
119 **Figure 1.** Map of experimental locations.

120 The indoor environment was quite warm (21.5°C), exhibited no noise from outside, and was
121 also without any potted plants. The forest environment was located a 20-min walk from the
122 gathering point. A deciduous, broadleaved urban forest was selected, consisting of European beech
123 (*Fagus sylvatica* L.), Pedunculate oak (*Quercus robur* L.), Common aspen (*Populus tremula* L.), and
124 Black alder (*Alnus glutinosa* [L.] Gaertn.). Larger shrubs or dead wood did not interrupt the view in

125 this area, although in some places there was Norway spruce (*Picea abies* [L.] H. Karst) in the shrub
126 layer. The ground was mainly covered by snow during the experiment, and small amounts of snow
127 were also visible on trunks. The urban environment (urban point) was also a 20-min walk from the
128 gathering point, near the centre of Olsztyn. A particular place was selected without visible tree
129 trunks and crowns, and without any greens. In the city environment, the snow dissolved and was
130 not visible during the experiment. The forest environment and urban environment used in the
131 experiment are shown in Figure 2.

132 **Figure 2.** Photos showing the urban (A) and forest (B) views used for the viewing session. Photos of
133 the research group during viewing sessions in the urban environment (C) and forest environment
134 (D).

135 During the field experiment, the level of noise was measured with the application 'Sound level
136 analyser (SLA)' using an iPhone 6. This method of noise measure has been scientifically tested and
137 shown to give excellent results [20]. The mean sound level (\pm S.D.) in the urban environment was
138 66.61 ± 5.38 dB, whereas the mean sound level in the forest environment was 37.18 ± 5.23 dB.

139 Meteorological data was not recorded in the forest and urban environments; however,
140 information regarding temperature, humidity, and wind speed was available from the nearest area
141 recorded by a meteorological station. On the day of experiment, meteorological conditions were
142 noted from the meteorological station in Olsztyn-Mazury (location: $53^{\circ}28'50.0''$ N, $20^{\circ}56'10.9''$ E). The
143 temperature was -0.5° C, humidity was 100%, cloudiness was 100%, atmospheric pressure was 995
144 hPa, and the speed of the west wind was 9 km/h. No snow precipitation was observed, but snow
145 cover occurred on the ground and dissolved during the day in the city.

146 2.3. Psychological measurements

147 In the current study, four psychological questionnaires were used to measure the reactions of
148 participants to the investigated environments. The Profile of Mood States (POMS) is a valid and
149 reliable measure of negative mood states, such as psychological distress, as well as positive mood

150 states, such as vigour [21]. This tool has been used previously to measure participants' responses to
 151 forest environments (e.g. Lee et al. [22]). POMS measures six different mood states: tension-anxiety,
 152 depression-dejection, anger-hostility, vigour, fatigue, and confusion. Occasionally, a short version of
 153 this questionnaire is used. In this research, the regular Polish version with 65 items was applied [23].
 154 The Positive and Negative Affect Schedule (PANAS) is another reliable and valid instrument for
 155 measuring negative (10 items) and positive (10 items) affects [24]. Its original version is in English
 156 [25], but the Polish edition was applied in the current study [26]. PANAS has also previously been
 157 used for forest environment assessment (e.g. Takayama et al. [27]). The Restorative Outcome Scale
 158 (ROS), which measures the restorative phenomenon, is a valid and reliable scale [28, 29] that has
 159 been used to measure restorativeness induced by the forest environment [27]. A Polish adaptation
 160 with six items was successfully developed and used in this study [17]. The Subjective Vitality Scale
 161 (SVS), which measures a participant's level of vitality, is another scale that has been shown to be
 162 reliable and valid [30]. The Polish adaptation, consisting of four items [17], was used in the current
 163 work.

164 In all four questionnaires that were used, the time frame 'during present moment' was applied,
 165 which allowed the measurement of participant reactions to different environments over a relatively
 166 short time. All scales used in this study involved the Likert scale, with the response to each item
 167 noted by participants as one of a continuous series of numbers. To assess items in the POMS scale, a
 168 0 to 4 Likert scale was used. For PANAS, a 1 to 5 scale was used, and for ROS and SVS, a 1 to 7 scale
 169 was used.

170 The raw data from each questionnaire were applied in all further calculations. The internal
 171 consistencies and numbers of items for each scale and subscale are included in Table 1. Most of the
 172 scales used exhibited good internal consistency, with the exception of the POMS subscale
 173 'confusion', where internal consistency was lower (but still acceptable).

174 **Table 1.** Verification of internal consistency and number of items for each (sub)scale.

Scales and Subscales	Number of Items	Crobach's Alpha
POMS		
Tension-Anxiety	9	0.854
Depression-Dejection	15	0.891
Anger-Hostility	12	0.867
Vigour	8	0.829
Fatigue	7	0.883
Confusion	7	0.794
PANAS		
Negative	10	0.881
Positive	10	0.832
ROS		
	6	0.921
SVS		
	4	0.807

175 POMS: Profile of Mood States; PANAS: Positive and Negative Affect Schedule; ROS: Restorative
 176 Outcome Scale; SVS: Subjective Vitality Scale; n = 32.

177 *2.4. Procedure*

178 Meeting with participants was planned for 6th March 2018, at 9:00. At this time, while at the
 179 gathering point, participants were randomly divided into one of two groups (experimental and
 180 control). Each group then completed the questionnaires at the gathering point, a classroom at the
 181 University. Afterwards, participants were asked to walk to the urban point or to the forest point,
 182 with researchers to guide this walk (two researchers per group). At the destination point,
 183 participants were asked to stand in a line, 1 meter apart from one another. Each participant was
 184 placed with a proper view throughout the urban or forest environment. The viewing property for
 185 each participant was the same. While standing as described, participants were asked to relax and
 186 observe the view for 15 minutes. Talking was not allowed. Relaxation during standing was applied

187 because during the winter in Poland, it is too cold to relax in a seated position. After 15 minutes of
 188 relaxation, participants were asked to fill out the questionnaires once again. The procedure followed
 189 for the experiment is also described in Table 2.

190 **Table 2.** Procedure followed during the experiment.

Date	Time	Activity
2018/03/06 (Thu.)	09:00	Meeting in the gathering point and orientation
	09:15~09:30	Random division into two groups
		Group 1 (control) Group 2 (forest)
	09:30~09:45	Filling in questionnaires (pretest) Filling in questionnaires (pretest)
	09:45~10:05	Walk to the city Walk to the forest
	10:05~10:10	Standing in a row in urban point Standing in a row in forest point
	10:10~10:25	Standing and viewing at the urban environment Standing and viewing at the forest environment
	10:25~10:40	Filling in questionnaires (posttest) Filling in questionnaires (posttest)
	10:40~11:05	Return to the campus Return to the campus
	11:05	End of the experiment

191 **2.5. Data analysis**

192 Means and S.D. values were calculated in Excel (Microsoft, USA). A parametric, mixed-design
 193 ANOVA was conducted to analyse the interactions and main effects of the POMS, PANAS, ROS,
 194 and SVS scores as pre–post indicators of the psychological restorative effect of exposure to the urban
 195 versus forest environment. After ANOVA, *post-hoc* comparisons using the LSD test were conducted,
 196 a method that has also been used in previous studies [31, 32]. For each analysis, effect size η^2 was
 197 calculated, with effects set as: small = 0.10; medium = 0.30; and large = 0.50. All statistical analyses
 198 were conducted using SPSS Statistics Version 24 (IBM, USA).

199 **3. Results**

200 **3.1. POMS**

201 Two types of psychological restorative effects were considered: the effect of different conditions
 202 (urban vs. forest environment) and effect of exposure to a different environment (pre vs. post). These
 203 two factors were analysed using a mixed model ANOVA to compare the changes in the POMS
 204 scores and to analyse the interactions between factors (Table 3). For four of the six POMS indicators
 205 (tension-anxiety, depression-dejection, anger-hostility, confusion), interactions between conditions
 206 and time were found. Regarding main effects, conditions had a significant effect on anger-hostility
 207 and time had a highly significant effect on fatigue.

208 The results of the LSD comparisons showed that tension-anxiety and anger-hostility were
 209 significantly increased after participants in the urban group were exposed to the urban environment
 210 (urban: pre vs. post; Table 4). In contrast, tension-anxiety, depression-dejection, anger-hostility,
 211 fatigue, and confusion significantly decreased in the forest group after exposure to the forest
 212 environment (forest: pre vs. post). All POMS indicators were similar in both the urban and forest
 213 groups before the intervention (pre: urban vs. forest). After the intervention, all POMS indicators

214 (except vigour) showed significantly lower values in the forest group than in the urban group (post:
215 urban vs. forest).

216

Table 3. Results for mixed-model ANOVAs investigating POMS scores.

POMS	Main Effect						Interaction			
	Conditions: Urban vs. Forest			Time: Pre vs. Post			Conditions × Time			
	F	p	η ²	F	p	η ²	F	p	η ²	
Tension-Anxiety	3.680	0.065	-	0.025	0.875	-	0.001	18.056	0.000	***
Depression-Dejection	0.881	0.355	-	0.386	0.539	-	0.013	7.315	0.011	*
Anger-Hostility	4.500	0.042	*	0.130	1.185	0.285	-	16.198	0.000	***
Vigour	0.023	0.879	-	0.001	1.572	0.220	-	1.775	0.193	-
Fatigue	2.587	0.118	-	0.079	9.827	0.004	**	0.247	0.081	-
Confusion	0.718	0.404	-	0.023	0.273	0.605	-	0.009	0.005	**

217 ***: p<0.001, **: p < 0.01, *: p < 0.05, -: not significant, mixed-design (split-plot) ANOVA; POMS: Profile of Mood States; n = 32.

218

Table 4. Results of multiple comparisons of POMS scores for urban versus forest environments, as well as before and after environmental exposure.

	Urban						Forest				
	Pre		Post		p	Pre		Post		p	**
	Average	S.D.	Average	S.D.		Average	S.D.	Average	S.D.		
Tension-Anxiety	0.85	0.36	1.33	0.73	0.007	**	0.99	0.81	0.47	0.46	0.004
Depression-Dejection	0.71	0.56	0.95	0.55	0.151	-	0.85	0.72	0.48	0.54	0.025
Anger-Hostility	0.85	0.48	1.38	0.76	0.001	**	0.88	0.67	0.57	0.39	0.047
Vigour	1.93	0.78	1.91	0.71	0.956	-	1.75	0.72	2.15	0.73	0.077
Fatigue	1.81	0.88	1.59	0.84	0.355	-	1.65	1.13	0.82	0.91	0.002
Confusion	1.17	0.63	1.47	0.87	0.087	-	1.33	0.65	0.91	0.77	0.018
	Pre						Post				
	Urban		Forest		p	Urban		Forest		p	***
	Average	S.D.	Average	S.D.		Average	S.D.	Average	S.D.		
Tension-Anxiety	0.85	0.36	0.99	0.81	0.522	-	1.33	0.73	0.47	0.46	0.000
Depression-Dejection	0.71	0.56	0.85	0.72	0.505	-	0.95	0.55	0.48	0.54	0.029
Anger-Hostility	0.85	0.48	0.88	0.67	0.902	-	1.38	0.76	0.57	0.39	0.000
Vigour	1.93	0.78	1.75	0.72	0.500	-	1.91	0.71	2.15	0.73	0.360
Fatigue	1.81	0.88	1.65	1.13	0.633	-	1.59	0.84	0.82	0.91	0.026
Confusion	1.17	0.63	1.33	0.65	0.541	-	1.47	0.87	0.91	0.77	0.039

219 ***: p<0.001, **: p < 0.01, *: p < 0.05, -: not significant, ANOVA-LSD test; n = 32, POMS: Profile of Mood States.

220 3.2. PANAS

221 A mixed-model ANOVA of the PANAS data was conducted, with conditions differences and
 222 time differences used as two factors (Table 5). The results showed that an interaction occurred in the
 223 case of 'PANAS negative affect'. Regarding main effects, no statistically significant differences were
 224 found for conditions or time. The results of the multiple comparisons tests (Table 6) showed that in
 225 the case of the urban group, there was a marginal ($p = 0.044$) difference in negative affect between
 226 pre- and post-test (negative affect was slightly higher after exposure to the urban environment).
 227 When comparing the urban and forest groups after the intervention (urban: pre vs. post), a marginal
 228 effect on 'PANAS positive' was observed ($p = 0.033$), with positive affect slightly increased in the
 229 forest environment; however, this is likely an effect of non-conservative comparison.

230 **Table 5.** Results for mixed-model ANOVAs investigating PANAS scores.

PANAS	Main Effect						Interaction					
	Conditions: Urban vs. Forest			Time: Pre vs. Post			Conditions \times Time					
	F	p	η^2	F	p	η^2	F	p	η^2			
Negative	0.461	0.503	-	0.015	0.541	0.468	-	0.018	4.999	0.033	*	0.143
Positive	1.624	0.212	-	0.051	0.696	0.411	-	0.023	3.371	0.076	-	0.101

231 ***: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$, -: not significant, mixed-model ANOVA; n = 32, PANAS: Positive
 232 and Negative Affect Schedule States.

233 **Table 6.** Results of multiple comparisons of PANAS scores for urban versus forest environments, as
 234 well as before and after environmental exposure.

	Urban					Forest						
	Pre		Post			Pre		Post				
	Average	S.D.	Average	S.D.	p	Average	S.D.	Average	S.D.	p		
PANAS Negative	1.43	0.42	1.79	0.64	0.044	*	1.59	0.72	1.41	0.51	0.297	-
PANAS Positive	2.73	0.69	2.56	0.74	0.484	-	2.65	0.63	3.08	0.62	0.069	-

	Pre					Post						
	Urban		Forest			Urban		Forest				
	Average	S.D.	Average	S.D.	p	Average	S.D.	Average	S.D.	p		
PANAS Negative	1.43	0.42	1.59	0.72	0.453	-	1.79	0.64	1.41	0.51	0.069	-
PANAS Positive	2.73	0.69	2.65	0.63	0.753	-	2.56	0.74	3.08	0.62	0.033	*

235 ***: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$, -: not significant, ANOVA-LSD test; n = 32, PANAS: Positive and
 236 Negative Affect Schedule.

237 3.3. ROS

238 In the case of the ROS, a mixed-model ANOVA was used to investigate restorativeness of the
 239 two environments, with conditions and time as factors. This analysis was similar to those conducted
 240 for data from the POMS and PANAS questionnaires (Table 7). An interaction was observed between
 241 conditions and time. Regarding main effects, a significant of environment was observed. The results
 242 of multiple comparisons LSD tests (Table 8) showed that in the forest group, there was a significant
 243 increase in ROS scores after exposure to the forest environment (forest: pre vs. post). Furthermore, in
 244 the forest group, values of ROS were higher after exposure to the forest environment than they were
 245 in the urban group after exposure to the urban environment (post: urban vs. forest).

246 **Table 7.** Results for mixed-model ANOVAs investigating ROS scores.

ROS	Main Effect						Interaction					
	Conditions: Urban vs. Forest			Time: Pre vs. Post			Conditions \times Time					
	F	p	η^2	F	p	η^2	F	p	η^2			
	12.284	0.001	**	0.291	0.220	0.643	-	0.007	8.885	0.006	**	0.228

247 ***: p<0.001. **: p < 0.01. *p < 0.05. -: not significant; mixed-model ANOVA; n = 32;
 248 ROS: Restorative Outcome Scale

249 **Table 8.** Results of multiple comparisons of ROS scores for urban versus forest environments, as well
 250 as before and after environmental exposure.

ROS	Urban					Forest					
	Pre		Post		p	Pre		Post		p	
	Average	S.D.	Average	S.D.		Average	S.D.	Average	S.D.		
ROS	4.00	1.25	3.30	1.41	0.086	-	4.31	1.19	5.27	0.94	0.021 *

ROS	Pre					Post					
	Urban		Forest		p	Urban		Forest		p	
	Average	S.D.	Average	S.D.		Average	S.D.	Average	S.D.		
ROS	4.00	1.25	4.31	1.19	0.468	-	3.30	1.41	5.27	0.94	0.000 ***

251 ***: p<0.001, **: p < 0.01, *p < 0.05, -: not significant, ANOVA-LSD test; n = 32, ROS: Restorative
 252 Outcome Scale.

253 3.4. SVS

254 A mixed-model ANOVA was conducted to compare changes in SVS scores and to analyse the
 255 interaction between factors and main effects, as was done for POMS, PANAS, and ROS data (Table
 256 9). As with ROS data, an interaction was observed between conditions and time for SVS score data.
 257 When main effects of the conditions and time differences were analysed, a statistically significant
 258 effect of conditions was confirmed, and the time effect was not significant. The results of LSD
 259 comparisons (Table 10) showed that in the forest group, SVS scores significantly increased after
 260 exposure to the forest environment. Furthermore, after exposure to the forest environment, SVS
 261 scores were higher than after exposure to the urban environment.

262 **Table 9.** Results for mixed-model ANOVAs investigating SVS scores.

SVS	Main Effect						Interaction					
	Conditions: Urban vs. Forest			Time: Pre vs. Post								
	F	p	η^2	F	p	η^2	F	p	η^2			
SVS	5.524	0.026	*	0.155	1.103	0.302	-	0.035	4.527	0.042	*	0.131

263 ***: p<0.001. **: p < 0.01. *p < 0.05. -: not significant; mixed-model ANOVA; n = 32; SVS: Subjective
 264 Vitality Scale.

265 **Table 10.** Results of multiple comparisons of SVS scores for urban versus forest environments, as
 266 well as before and after environmental exposure.

SVS	Urban					Forest					
	Pre		Post		p	Pre		Post		p	
	Average	S.D.	Average	S.D.		Average	S.D.	Average	S.D.		
SVS	3.86	1.52	3.55	1.29	0.452	-	4.08	1.23	5.00	1.12	0.032 *

SVS	Pre					Post					
	Urban		Forest		p	Urban		Forest		p	
	Average	S.D.	Average	S.D.		Average	S.D.	Average	S.D.		
SVS	3.86	1.52	4.08	1.23	0.635	-	3.55	1.29	5.00	1.12	0.002 **

267 ***: p < 0.001, **: p < 0.01, *p < 0.05, -: not significant, ANOVA-LSD test; n = 32, SVS: Subjective Vitality
 268 Scale.

269 4. Discussion

270 4.1. Mood states

271 Consistent with previous studies [2, 5, 10, 11, 14, 17, 33, 34], this study confirmed that short
272 periods of forest recreation in a snow-covered forest (in this case: 15 minutes of relaxation in this
273 environment) have a significant effect on mood states of participants. The negative indices of mood
274 states, including tension-anxiety, anger-hostility, depression-dejection, confusion, and fatigue,
275 decreased after exposure to the forest environment. This confirms our hypothesis, that this type of
276 intervention results in a positive outcome. The positive index of mood states (vigour) did not
277 increase after exposure, but neither did it decrease significantly. This is not consistent with a
278 previous study [14] or another study conducted only with females [4]. Lower levels of indicators of
279 negative mood have many positive outcomes, confirming that brief forest recreation during the
280 winter, when snow has occurred, can be successfully conducted for the purpose of stress reduction
281 in females. Females may, however, react differently to the forest environment than do men [17],
282 which indicates the need for further testing of these effects on both sexes.

283 The effect of lowering negative mood states is useful information for therapists who work with
284 individuals living with high levels of stress, such as a highly stressful work environment. The
285 positive effect of nature therapy on this topic is already known [6-9], but a novel element of this
286 study was the addition of snow cover. As snow occurs in the winter in many countries, the way in
287 which this element affects individuals requires examination. A positive effect of forest recreation
288 was still observed with snow cover in this study, and there are several hypotheses as to why this
289 effect was observed. It is possible that snow in the forest environment does not obstruct the view
290 that is generally visible in this environment. Some authors suggest that some fractal dimensions are
291 responsible for the existence of the effect of visual stimulation on mood states. For example, some
292 kinds of natural fractals might, hypothetically, induce this positive effect [35, 36] and in a
293 snow-covered forest, these fractal dimensions are still perceivable to respondents. This stimulation
294 during forest recreation is crucial, and this reaction of humans is possibly some special effect
295 connected to the biophilia hypothesis [37], which states that people evolved in a natural
296 environment, and hence feel healthy in a natural environment like a forest [38].

297 4.2. Positive and Negative Affect

298 Previous studies have indicated that subjects exhibit a significant decrease in negative affect
299 after forest recreation and a significant increase in positive affect [17, 27]. In the current study, an
300 effect on positive affect was observed, as this indicator increased in the forest environment. Negative
301 affect did not decrease in the forest environment after the experiment, however, although it did
302 increase after exposure to the urban environment. These two indicators, positive and negative affect,
303 are important in psychological research, as their usage gives researchers and therapists information
304 concerning the mental state of participants and patients [24].

305 The interpretation of results regarding negative affect is similar to that of the negative mood
306 states of POMS – any negative symptoms are not necessary, so any decrease in this effect is welcome.
307 In this case, a lowering effect on this indicator was unfortunately not observed. In the urban
308 environment, an increase in negative affect was observed, possibly due to the higher level of noise in
309 that environment [39]. Further research should compare environments with more similar levels of
310 noise. In the case of positive affect, a difference was observed when comparing forest and urban
311 environments. In the forest environment, this indicator had higher values, suggesting that in the
312 forest environment, successful recreation could be conducted with positive effects. Because positive
313 affect increased in the forest environment, this tendency might be explained by the biophilia
314 hypothesis [37, 38].

315 4.3. Restorative outcome

316 Our findings are consistent with those of previous studies [17, 27], showing that restorativeness
317 significantly increased after exposure to the forest environment. The phenomenon of restoration in
318 the natural environment has been previously described. This effect is frequently explained by
319 Attention Restoration Theory [40], which states that the mental refreshment of humans, as measured
320 by level of restoration, increases in natural environments. This theory suggests that this mental

321 restoration might be a natural tool of the human nervous system, meant to naturally maintain
322 alertness in non-safe environments, such as the forest, as opposed to safe places, such as houses and
323 caves. Increasing thinking capacity in a natural environment could be a natural adaptation to
324 hunting or foraging. Perhaps restoration is a mechanism in humans predisposed to save calories
325 [41], although this hypothesis requires further investigation.

326 *4.4. Subjective vitality*

327 Consistent with previous studies [17, 27], this study's findings suggest that short, 15-min
328 periods of relaxation in a snow-covered forest during winter can have psychological benefits for
329 subjective vitality levels. Vitality is a concept that can be measured objectively using physiological
330 reactions or subjectively using psychological reactions [30]. In the case of the current work,
331 subjective methods were used. The importance of factors that increase vitality is great, as a high level
332 of vitality is connected with better accomplishments of subjects [42], and anything that increases
333 human performance is important for society. Based on the current study, snow cover should not be a
334 barrier to increasing vitality during recreational stays or walks in the forest. Thus, successful forest
335 recreation in snow-covered forests may be a good activity for people interested in increasing their
336 personal effectiveness by stimulating an increase in their own vitality.

337 **5. Conclusions**

338 This study examined the effect of a snow-covered forest environment during winter on young
339 females' psychological relaxation, with the urban environment as a control. The results showed that
340 participants' levels of negative mood indicators (tension-anxiety, anger-hostility,
341 depression-dejection, confusion, fatigue) decreased after exposure to a forest environment with
342 snow cover. Furthermore, some of these indicators increased in the urban environment
343 (tension-anxiety, anger-hostility). An indicator of negative affect increased after exposure to the
344 urban environment, whereas an indicator of positive affect was higher in the forest environment
345 than in the urban environment. Restorativeness and subjective vitality exhibited higher values after
346 exposure to the forest environment in comparison to both the control and pre-test. This indicates
347 that forest recreation, during winter and with snow cover, continues to have a significant influence
348 on the psychological relaxation of young females. These findings are import for forest therapy
349 practitioners, as well as for individuals who want to obtain the positive effects of forest recreation.
350 Such recreation could be successfully conducted during winter in a forest with snow cover, and
351 there should still be a positive effect on psychological parameters.

352 This study has several limitations. First, in this study, the psychological effect of relaxation
353 while simply standing in the forest environment was measured. These effects should be measured
354 during other activities in a forest with snow cover. In fact, some reports indicate that being involved
355 in certain activities may harm the positive effects of nature relaxation [43]; it is therefore worth
356 examining why some activities induce relaxation and some do not. Second, only young females were
357 involved in this study. Future studies should investigate how recreation in a snow-covered forest
358 influences younger and older females, as well as how this activity influences males of different ages.
359 Third, only psychological measurements were used in this case; the physiological effects of this
360 activity were not considered. Fourth, different respondents went to each research site. The
361 respondents at each research point can therefore not be compared directly, meaning that the
362 differences among individuals in the two respondent groups could have caused the significant
363 differences observed between the urban and forest environments. In future studies, this occurrence
364 could be eliminated by exposing respondents from the two groups to both environments in reverse
365 order. Fifth, as respondents walked to each point on foot, they would have viewed surrounding
366 scenery before getting to either experimental point. It is therefore possible that the time period
367 during which respondents were exposed to the stimulus was not exactly 15 minutes in length. It is
368 worth mentioning, however, that the walks to the two analysed environments were conducted
369 through either the urban environment or the forest (Figure 1), so only one environment was able to
370 influence each group. Sixthly, in the planned experiments, a carryover effect could possibly have

371 occurred, as the positive effect of forest recreation on health can persist for a longer period of time in
372 subjects, and the tests had to be carried out as soon as possible (due to periodic snowfall only).
373 Conducting a crossover study could therefore be burdened with a carryover effect and the use of this
374 research system was abandoned. Thus, a parallel study was carried out in which the carryover effect
375 was avoided. In addition, such a study can be carried out in a relatively short time. This study did
376 not compare the effects of forest recreation to the effects of conventional recreation (active control),
377 which would not take place under forest conditions. This is a limitation of the current research and
378 should be investigated in future work. Seventh, In this study, it was assumed that snow was present
379 in the forest landscape if 90% of the ground's surface was covered by it. It is not known, however,
380 what amount of snow affects the psychological reactions of subjects. This requires future research.
381 Eight, in the described research, it was tested whether the forest environment with the existing snow
382 cover affects the psychological relaxation of the subjects. Indeed, it has been shown that in a forest
383 environment with a snow cover causes a psychological relaxation effect. The aim of the study was
384 not to compare the forest with the snow cover with the forest environment without snow cover,
385 however in future studies, this type of comparison could be done (including the same participants)
386 to find out whether the snow cover in the forest environment affects another way on the subjects
387 than the forest environment without snow cover. Ninth, it will also be important, however, to
388 examine how different seasons, during which forest stands in the temperate climate zone change,
389 can affect the intensity of the psychological relaxation of subjects. Research regarding this should be
390 carried out in the future. Tenthly, this paper focuses on examining the impact of a forest
391 environment on the psychological relaxation of young adult students. In the future, it is worth
392 investigating how forest recreation, also conducted in winter, can affect people of different ages and
393 from other demographic groups (e.g. older people, working, etc.). Eleventh, this study did not
394 include men, so future studies concerning recreation in a forest environment with snow cover
395 present should include this group. Twelfth, it is also possible that spending too much time in the
396 forest may have a negative effect, depending on the temperature. For this reason, encouraging
397 people to move around to stay warm may be less stressful. The effect of ambient temperature should
398 be examined in future research. All these limitations could likely be overcome in further
399 experiments in the area of forest recreation research. Future studies should also test the effect of
400 forest recreation on males and on different age groups (e.g. on elderly participants).

401 **Author Contributions:** E.B. conceived and designed the experiment, conducted data analysis, and prepared the
402 first version of the manuscript. A.Ł. consulted on the design of the experiment, and reviewed and edited the
403 manuscript. A.O. and S.B. were responsible for the implementation of field research and minor editorial
404 comments on the text. L.B. contributed to publication by editing the content and English of the manuscript. N.T.
405 contributed to publication by reviewing and editing the manuscript.

406 **Funding:** The publication process was supported by funds of the Poznań University of Life Sciences. The
407 publication id co-financed within the framework of Ministry of Science and Higher Education programme as
408 "Regional Initiative Excellence" in years 2019-2022, project number 005/RID/2018/19.

409 **Acknowledgments:** The authors of this article thank Dominik Dobrzyński for technical assistance during the
410 research.

411 **Conflicts of Interest:** The authors declare no conflicts of interest.

412 **References**

1. Douglas, R.W. *Forest Recreation*, 3rd ed.; Pergamon Press: New York, USA, 1982; p. 336, 9781483148267.
2. Lee, J.; Tsunetsugu, Y.; Takayama, N.; Park, B.J.; Li, Q.; Song, C.; Komatsu, M.; Ikei, H.; Tyrväinen L.; Kagawa T.; Miyazaki, Y. Influence of forest therapy on cardiovascular relaxation in young adults. *Evid.-Based Compl. Alt.* **2014**, 834360, 1-7.
3. Sung, J.; Woo, J.M.; Kim, W.; Lim, S.K.; Chung, E.J. The effect of cognitive behavior therapy-based "forest therapy" program on blood pressure, salivary cortisol level, and quality of life in elderly hypertensive patients. *Clin. Exp. Hypertens.* **2012**, 34, 1-7.

420 4. Ochiai, H.; Ikei, H.; Song, C.; Kobayashi, M.; Miura, T.; Kagawa, T.; Li, Q.; Kumeda, S.; Imai, M.; Miyazaki, Y. Physiological and psychological effects of a forest therapy program on middle-aged females. *Int. J. Environ. Res. Public Health* **2015**, *12*, 15222–15232.

421 5. Ochiai, H.; Ikei, H.; Song, C.; Kobayashi, M.; Takamatsu, A.; Miura, T.; Kagawa, T.; Li, Q.; Kumeda, S.; Imai, M.; Miyazaki, Y. Physiological and psychological effects of forest therapy on middle-aged males with high-normal blood pressure. *Int. J. Environ. Res. Public Health* **2015**, *12*, 2532–2542.

422 6. Morita, E.; Fukuda, S.; Nagano, J.; Hamajima, N.; Yamamoto, H.; Iwai, Y.; Nakashima, T.; Ohira H.; Shirakawa, T. Psychological effects of forest environments on healthy adults: Shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. *Public Health* **2007**, *121*, 54–63.

423 7. Jung, W.H.; Woo, J.M.; Ryu, J.S. Effect of a forest therapy program and the forest environment on female workers' stress. *Urban For. Urban Gree.* **2015**, *14*, 274–281.

424 8. Poulsen, D.V.; Stigsdotter, U.K.; Djernis, D.; Sidenius, U. 'Everything just seems much more right in nature': How veterans with post-traumatic stress disorder experience nature-based activities in a forest therapy garden. *Health Psychol. Open* **2016**, *3*, 1–14.

425 9. Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. (2014). The influence of urban green environments on stress relief measures: A field experiment. *J. Environ. Psychol.* **2014**, *38*, 1–9.

426 10. Tsunetsugu, Y.; Park, B.J.; Lee, J.; Kagawa, T.; Miyazaki, Y. Psychological relaxation effect of forest therapy: results of field experiments in 19 forests in Japan involving 228 participants. *Jap. J. Hyg.* **2011**, *66*, 670–676.

427 11. Song, C.; Joung, D.; Ikei, H.; Igarashi, M.; Aga, M.; Park, B. J.; Miwa, M.; Takagaki, M.; Miyazaki, Y. Physiological and psychological effects of walking on young males in urban parks in winter. *J. Physiol. Anthropol.* **2013**, *32*, 1–18.

428 12. Song, C.; Imai, H.; Miyazaki, Y. Physiological effects of nature therapy: A review of the research in Japan. *Int. J. Environ. Res. Public Health* **2016**, *13*, 1–17.

429 13. Kamioka, H.; Tsutani, K.; Mutoh, Y.; Honda, T.; Shiozawa, N.; Okada, S.; Park, S.J.; Kitayuguchi, J.; Kamada, M.; Okuzumi, H.; Handa, S. A systematic review of randomized controlled trials on curative and health enhancement effects of forest therapy. *Psych. Res. Behav. Manag.* **2012**, *5*, 85–95.

430 14. Li, Q.; Kawada, T. Effect of forest therapy on the human psycho-neuro-endocrino-immune network. *Jap. J. Hyg.* **2011**, *66*, 645–650.

431 15. Hanai, T. Tourism meets psychology. *J. Glob. Tour. Res.* **2016**, *1*, 89–92.

432 16. Sidenius, U.; Stigsdotter, U.K.; Dahl Refshauge, A. A year in the therapy forest garden Nacadia®-participants' use and preferred locations in the garden during a nature-based treatment program. *Alam Cipta* **2015**, *8*, 44–53.

433 17. Bielinis, E.; Takayama, N.; Boiko, S.; Omelan, A.; Bielinis, L. The effect of winter forest bathing on psychological relaxation of young Polish adults. *Urban For. Urban Gree.* **2018**, *29*, 276–283.

434 18. Tyrväinen, L.; Silvennoinen, H.; Hallikainen, V. Effect of the season and forest management on the visual quality of the nature-based tourism environment: a case from Finnish Lapland. *Scand. J. Forest Res.* **2017**, *32*, 349–359.

435 19. Choi, J.Y.; Park, S.A.; Jung, S.J.; Lee, J.Y.; Son, K.C.; An, Y.J.; Lee, S.W. Physiological and psychological responses of humans to the index of greenness of an interior space. *Complement. Ther. Med.* **2016**, *28*, 37–43.

436 20. Murphy, E.; King, E.A. Testing the accuracy of smartphones and sound level meter applications for measurement environmental noise. *Appl. Acoust.* **2016**, *106*: 16–22.

437 21. McNair, D.M.; Maurice, L. An analysis of mood in neurotics. *J. Abnorm. Soc. Psychol.* **1964**, *69*, 620–627.

438 22. Lee, J.; Park, B.J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects. *Public Health* **2011**, *125*, 93–100.

439 23. Dudek, B.; Koniarek, J. The adaptation of Profile of Mood States (POMS) by D.M. McNair, M. Lorr and L.F. Droppelman. *Przegląd Psychologiczny* **1987**, *30*, 753–762. [in Polish]

440 24. Crawford, J.R.; Henry, J.D. The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. *Br. J. Clin. Psychol.* **2004**, *43*, 245–265.

441 25. Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. *J. Pers. Soc. Psychol.* **1998**, *54*, 1063.

473 26. Brzozowski, P. Polish Adaptation of the Positive and Negative Affect Scale (PANAS) by David Watson
474 and Lee Anna Clark. PTPPTP: Warsaw, Poland, 2010, pp. 34-113. [in Polish]

475 27. Takayama, N.; Korpela, K.; Lee, J.; Morikawa, T.; Tsunetsugu, Y.; Park, B.J.; Li, Q.; Tyrväinen, L.; Miyazaki,
476 Y.; Kagawa, T. Emotional, restorative and vitalizing effects of forest and urban environments at four sites
477 in Japan. *Int. J. Environ. Res. Public Health* **2014**, *11*, 7207–7230.

478 28. Korpela, K.M.; Ylén, M.; Tyrväinen, L.; Silvennoinen, H. Determinants of restorative experiences in
479 everyday favorite places. *Health Place* **2008**, *14*, 636–652.

480 29. Korpela, K.M.; Ylén, M.; Tyrväinen, L.; Silvennoinen, H. Favorite green, waterside and urban
481 environments: restorative experiences and perceived health in Finland. *Health Promot. Int.* **2010**, *25*, 200–
482 209.

483 30. Ryan, R.M.; Frederick, C. On energy, personality, and health: subjective vitality as a dynamic reflection of
484 well-being. *J. Pers.* **1997**, *65*, 529–565.

485 31. Pedersen, E.; Weisner, S.E.; Johansson, M. Wetland areas' direct contributions to residents' well-being
486 entitle them to high cultural ecosystem values. *Sci. Total Environ.* **2019**, *646*, 1315–1326.

487 32. Dobbie, M.F. Public aesthetic preferences to inform sustainable wetland management in Victoria,
488 Australia. *Landscape Urban Plan.* **2013**, *120*, 178–189.

489 33. Ikei, H.; Song, C.; Kagawa, T.; Miyazaki, Y. Physiological and psychological effects of viewing forest
490 landscapes in a seated position in one-day forest therapy experimental model. *Jap. J. Hyg.* **2014**, *69*, 104–110.

491 34. Joung, D.; Kim, G.; Choi, Y.; Lim, H.; Park, S.; Woo, J.M.; Park, B.J. The prefrontal cortex activity and
492 psychological effects of viewing forest landscapes in autumn season. *Int. J. Environ. Res. Public Health* **2015**,
493 *12*, 7235–7243.

494 35. Kaiserman, J. G. Urban Nature for Well-being: Design Recommendations for Psychological Benefits in
495 Urban Public Spaces. Doctoral dissertation, University of Washington, 2017, pp. 1–91.

496 36. van Almkerk, M.; Huisman, G. Virtual Nature Environments Based on Fractal Geometry for Optimizing
497 Restorative Effects. *Environment*, **2018**, *12*, 1–11.

498 37. Wilson, E.O. *Biophilia: The Human Bond with Other Species*, Harvard University Press, Cambridge, UK,
499 1984; pp. 160.

500 38. Kobayashi, H.; Song, C.; Ikei, H.; Kagawa, T.; Miyazaki, Y. Analysis of individual variations in autonomic
501 responses to urban and forest environments. *Evid.-Based Compl. Alt.* **2015**, Vol. 2015, 1–7.

502 39. Benfield, J. A.; Bell, P. A.; Troup, L. J.; Soderstrom, N. C. Aesthetic and affective effects of vocal and traffic
503 noise on natural landscape assessment. *J. Environ. Psychol.* **2010**, *30*, 103–111.

504 40. Kaplan, S. The restorative benefits of nature: Toward an integrative framework. *J. Environ. Psychol.* **1995**,
505 *15*, 169–182.

506 41. Cheval, B.; Tipura, E.; Burra, N.; Frossard, J.; Chanal, J.; Orsholits, D.; Radel, R.; Boisgontier, M.P.
507 Avoiding sedentary behaviors requires more cortical resources than avoiding physical activity: An EEG
508 study. *Neuropsychologia* **2018**, *119*: 68–80.

509 42. Hone, L. C.; Jarden, A.; Schofield, G.M.; Duncan, S. Measuring flourishing: The impact of operational
510 definitions on the prevalence of high levels of wellbeing. *Int. J. Wellbeing* **2014**, *4*, 62–90.

511 43. Jiang, B.; Schmillen, R.; Sullivan, W. C. (). How to Waste a Break: Using Portable Electronic Devices
512 Substantially Counteracts Attention Enhancement Effects of Green Spaces. *Environ. Beh.* **2018**, 1–28.