
Article

A Modification of the Fast Inverse Square Root Algorithm

Cezary J. Walczyk 1, Leonid V. Moroz 2 and Jan L. Cieśli ński 1,∗

1 Uniwersytet w Białymstoku, Wydział Fizyki, ul. Ciołkowskiego 1L, 15-245 Białystok, Poland;
c.walczyk@uwb.edu.pl, j.cieslinski@uwb.edu.pl

1

2

3

4

5

2 Lviv Polytechnic National University, Department of Security Information and Technology, st. Kn. Romana
1/3, 79000 Lviv, Ukraine; moroz_lv@polynet.lviv.ua

Abstract: We present an improved algorithm for fast calculation of the inverse square root for
single-precision floating-point numbers. The algorithm is much more accurate than the famous fast
inverse square root algorithm and has a similar computational cost. The presented modification concern
Newton-Raphson corrections and can be applied when the distribution of these corrections is not
symmetric (for instance, in our case they are always negative).

Keywords: floating-point arithmetic; inverse square root; magic constant; Newton-Raphson method6

1. Introduction7

Floating-point arithmetic has became widely used in many applications such as 3D graphics,8

scientific computing and signal processing [1–5], implemented both in hardware and software [6–10].9

Many algorithms can be used to approximate elementary functions [1,2,10–18]. The inverse square root10

function is of particular importance because it is widely used in 3D computer graphics, especially in11

lightning reflections [19–21], and has many other applications, see [22–36]. All of these algorithms require12

an initial seed to start the approximation. The more accurate is the initial seed, the fewer iterations are13

needed. Usually, the initial seed is obtained from a look-up table (LUT) which is memory consuming.14

In this paper we consider an algorithm for computing the inverse square root using the so called15

magic constant instead of a LUT [37–40]. The following code realizes the fast inverse square root algorithm16

in the case of single-precision IEEE Standard 754 floating-point numbers (type float).17

1. float InvSqrt(float x){
2. float halfnumber = 0.5f*x;
3. int i = *(int*) &x;
4. i = R - (i>>1);
5. y = *(float*) &i;
6. y = y*(1.5f - halfnumber*y*y);
7. y = y*(1.5f - halfnumber*y*y);
8. return y ;
9. }

The code InvSqrt consists of two main parts. Lines 4 and 5 produce in a very cheap way a quite good18

zeroth approximation of the inverse square root of a given positive floating-point number x. Lines 6 and19

7 apply the Newton-Raphson corrections twice (often a version with just one iteration is used, as well).20

Originally R was proposed as 0x5F3759DF, see [37,38].21

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
https://doi.org/10.20944/preprints201908.0045.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation7030041

2 of 14

InvSqrt is characterized by a high speed, more that 3 times higher than in computing the inverse22

square root using library functions. This property is discussed in detail in [41]. The errors of the fast23

inverse square root algorithm depend on the choice of the “magic constant” R. In several theoretical24

papers [38,41–44] (see also Eberly’s monograph [19]) attempts were made to determine analytically the25

optimal value of the magic constant (i.e., to minimize errors). In general, this optimal value can depend26

on the number of iterations, which is a general phenomenon [45]. The derivation and comprehensive27

mathematical description of all steps of the fast inverse square root algorithm is given in our recent paper28

[46]. We found the optimum value of the magic constant by minimizing the final maximum relative error.29

In the present paper we develop our analytical approach to construct an improved algorithm30

(InvSqrt1) for fast computing of the inverse square root, see section 4. In both codes, InvSqrt and InvSqrt1,31

magic constants serve as a low-cost way of generating a reasonably accurate first approximation of the32

inverse square root. These magic constants turn out to be the same. The main novelty of the new algorithm33

is in the second part of the code which is changed significantly. In fact, we propose a modification of the34

Newton-Raphson formulae which has a similar computational cost but improve the accuracy even by35

several times.36

2. Analytical approach to algorithm InvSqrt37

In this paper we confine ourselves to positive floating-point numbers38

x = (1 + mx)2ex (2.1)

where mx ∈ [0, 1) and ex is an integer (note that this formula does not hold for subnormal numbers). In39

the case of the IEEE-754 standard, a floating-point number is encoded by 32 bits. The first bit corresponds40

to a sign (in our case this bit is simply equal to zero), the next 8 bits correspond to an exponent ex and the41

last 23 bits encodes a mantissa mx. The integer encoded by these 32 bits, denoted by Ix, is given by42

Ix = Nm(B + ex + mx) (2.2)

where Nm = 223 and B = 127 (thus B + ex = 1, 2, . . . , 254). The lines 3 and 5 of the InvSqrt code interprete43

a number as an integer (2.2) or float (2.1), respectively. The lines 4, 6 and 7 of the code can be written as44

Iy0 = R− bIx/2c, y1 = 1
2 y0(3− y2

0x), y2 = 1
2 y1(3− y2

1x). (2.3)

The first equation produces, in a surprisingly simple way, a good zeroth approximation y0 of the inverse45

square root y = 1/
√

x. Of course, this needs a very special form of R. In particular, in the single precision46

case we have eR = 63, see [46]. The next equations can be easily recognized as the Newton-Raphson47

corrections. We point out that the code InvSqrt is invariant with respect to the scaling48

x → x̃ = 2−2nx, yk → ỹk = 2nyk (k = 0, 1, 2), (2.4)

like the equality y = 1/
√

x itself. Therefore, without loss of the generality, we can confine our analysis to49

the interval50

Ã := [1, 4). (2.5)

The tilde will denote quantities defined on this interval. In [46] we have shown that the function ỹ051

defined by the first equation of (2.3) can be approximated with a very good accuracy by the piece-wise52

linear function ỹ00 given by53

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

3 of 14

ỹ00(x̃, t) =



−1
4

x̃ +
3
4
+

1
8

t for x̃ ∈ [1, 2)

−1
8

x̃ +
1
2
+

1
8

t for x̃ ∈ [2, t)

− 1
16

x̃ +
1
2
+

1
16

t for x̃ ∈ [t, 4)

(2.6)

where
t = 2 + 4mR + 2N−1

m , (2.7)

and mR := N−1
m R− bN−1

m Rc (mR is the mantissa of the floating-point number corresponding to R). Note54

that the parameter t, defined by (2.7), is uniquely determined by R.55

The only difference between y0 produced by the code InvSqrt and y00 given by (2.6) is the definition56

of t, because t related to the code depends (although in a negligible way) on x. Namely,57

|ỹ00 − ỹ0| 6
1
4

N−1
m = 2−25 ≈ 2.98 · 10−8. (2.8)

Taking into account the invariance (2.4), we obtain58 ∣∣∣∣y00 − y0

y0

∣∣∣∣ 6 2−24 ≈ 5.96 · 10−8. (2.9)

These estimates do not depend on t (in other words, they do not depend on R). The relative error of the59

zeroth approximation (2.6) is given by60

δ̃0(x̃, t) =
√

x̃ ỹ00(x̃, t)− 1 (2.10)

This is a continuous function with local maxima at61

x̃I
0 = (6 + t)/6, x̃I I

0 = (4 + t)/3, x̃I I I
0 = (8 + t)/3, (2.11)

given respectively by62

δ̃0(x̃I
0, t) = −1 +

1
2

(
1 +

t
6

)3/2
,

δ̃0(x̃I I
0 , t) = −1 + 2

(
1
3

(
1 +

t
4

))3/2
,

δ̃0(x̃I I I
0 , t) = −1 +

(
2
3

(
1 +

t
8

))3/2
.

(2.12)

In order to study global extrema of δ̃0(x̃, t) we need also boundary values:63

δ̃0(1, t) = δ̃0(4, t) =
1
8
(t− 4) , δ̃0(2, t) =

√
2

4

(
1 +

t
2

)
− 1, δ̃0(t, t) =

√
t

2
− 1, (2.13)

which are, in fact, local minima. Taking into account64

δ̃0(1, t)− δ̃0(t, t) =
1
8

(√
t− 2

)2
> 0 , δ̃0(2, t)− δ̃0(t, t) =

√
2

8

(√
t−
√

2
)2

> 0, (2.14)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

4 of 14

we conclude that65

min
x̃∈Ã

δ̃0(x̃, t) = δ̃0(t, t) < 0. (2.15)

Because δ̃0(x̃I I I
0 , t) < 0 for t ∈ (2, 4), the global maximum is one of the remaining local maxima:66

max
x̃∈Ã

δ̃0(x̃, t) = max{δ̃0(x̃I
0, t), δ̃0(x̃I I

0 , t)}. (2.16)

Therefore,67

max
x∈Ã
|δ̃0(x̃, t)| = max{|δ̃0(t, t)|, δ̃0(x̃I

0, t), δ̃0(x̃I I
0 , t)}. (2.17)

In order to minimize this value with respect to t, i.e., to find tr
0 such that68

max
x∈Ã
|δ̃0(x̃, tr

0)| < max
x∈Ã
|δ̃0(x̃, t)| for t 6= tr

0, (2.18)

we observe that |δ̃0(t, t)| is a decreasing function of t, while both maxima (δ̃0(x̃I
0, t) and δ̃0(x̃I I

0 , t)) are69

increasing functions. Therefore, it is sufficient to find t = tI
0 and t = tI I

0 such that70

|δ̃0(tI
0, tI

0)| = δ̃0(x̃I
0, tI

0) , |δ̃0(tI I
0 , tI I

0)| = δ̃0(x̃I I
0 , tI I

0), (2.19)

and to choose the greater of these two values. In [46] we have shown that

|δ̃0(tI
0, tI

0)| < |δ̃0(tI I
0 , tI I

0)|. (2.20)

Therefore tr
0 = tI I

0 and71

δ̃0 max := min
t∈(2,4)

(
max
x∈Ã
|δ̃0(x̃, t)|

)
= |δ̃0(tr

0, tr
0)|. (2.21)

The following numerical values result from these calculations [46]:72

tr
0 ≈ 3.7309796, R0 = 0x5F37642F, δ̃0 max ≈ 0.03421281. (2.22)

Newton-Raphson corrections for the zeroth approximation (ỹ00) will be denoted by ỹ0k (k = 1, 2, . . .). In73

particular, we have:74

ỹ01(x̃, t) = 1
2 ỹ00(x̃, t)(3− ỹ2

00(x̃, t) x̃),

ỹ02(x̃, t) = 1
2 ỹ01(x̃, t)(3− ỹ2

01(x̃, t) x̃).
(2.23)

and the corresponding relative error functions will be denoted by δ̃k(x̃, t):75

δ̃k(x̃, t) :=
ỹ0k(x̃, t)− ỹ

ỹ
=
√

x̃ỹ0k(x̃, t)− 1, (k = 0, 1, 2, . . .), (2.24)

where we included also the case k = 0, see (2.10). The obtained approximations of the inverse square76

root depend on the parameter t directly related to the magic constant R. The value of this parameter can77

be estimated by analysing the relative error of ỹ0k(x̃, t) with respect to 1/
√

x̃. As the best estimation we78

consider t = t(r)k minimizing the relative error δ̃k(x̃, t):79

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

5 of 14

∀
t 6=t(r)k

(
δ̃k max ≡ max

x̃∈Ã
|δ̃k(x̃, t(r)k)| < max

x̃∈Ã
|δ̃k(x̃, t)|

)
. (2.25)

We point out that in general the optimum value of the magic constant can depend on the number of80

Newton-Raphson corrections. Calculations carried out in [46] gave the following results:81

tr
1 = tr

2 = 3.7298003, Rr
1 = Rr

2 = 0x5F375A86,

δ̃1 max ≈ 1.75118 · 10−3, δ̃2 max ≈ 4.60 · 10−6.
(2.26)

We omit details of the computations except one important point. Using (2.24) for expressing ỹ0k by δ̃k and82 √
x̃ we can rewrite (2.23) as83

δ̃k(x̃, t) = −1
2

δ̃2
k−1(x̃, t)(3 + δ̃k−1(x̃, t)), (k = 1, 2, . . .). (2.27)

The quadratic dependence on δ̃k−1 means that every Newton-Raphson correction improves the accuracy84

by several orders of magnitude (until the machine precision is reached), compare (2.26).85

The formula (2.27) suggests another way of improving the accuracy because the functions δ̃k are86

always non-positive for any k > 1. Roughly saying, we are going to shift the graph of δ̃k upwards by an87

appropriate modification of the Newton-Raphson formula. In the next section we describe the general88

idea of this modification.89

3. Modified Newton-Raphson formulas90

The formula (2.27) shows that errors introduced by Newton-Raphson corrections are nonpositive,91

i.e., they take values in intervals [−δ̃k max, 0], where k = 1, 2, Therefore, it is natural to introduce a92

correction term into the Newton-Raphson formulas (2.23). We expect that the corrections will be roughly93

half of the maximal relative error. Instead of the maximal error we introduce two parameters, d1 and d2.94

Thus we get modified Newton-Raphson formulas:95

ỹ11(x̃, t, d1) = 2−1ỹ00(x̃, t)(3− ỹ2
00(x̃, t) x̃) +

d1

2
√

x̃
,

ỹ12(x̃, t, d1, d2) = 2−1ỹ11(x̃, t, d1)(3− ỹ2
11(x̃, t, d1) x̃) +

d2

2
√

x̃
,

(3.1)

where zeroth approximation is assumed in the form (2.6). In the following section the term 1/
√

x̃ will be96

replaced by some approximations of ỹ, tranforming (3.1) into a computer code. In order to estimate a97

possible gain in accuracy, in this section we temporarily assume that ỹ is the exact value of the inverse98

square root. The corresponding error functions,99

δ̃
′′
k (x̃, t, d1, . . . , dk) =

√
x̃ ỹ1k(x̃, t, d1, . . . , dk)− 1, k ∈ {0, 1, 2, . . .}, (3.2)

(where ỹ10(x̃, t) := ỹ00(x̃, t)), satisfy100

δ̃
′′
k = −1

2
δ̃
′′2
k−1(3 + δ̃

′′
k−1) +

dk
2

, (3.3)

where: δ̃
′′
0 (x̃, t) = δ̃0(x̃, t). Note that101

δ̃
′′
1 (x̃, t, d1) = δ̃1(x̃, t) +

1
2

d1. (3.4)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

6 of 14

In order to simplify notation we usually will supress the explicit dependence on dj. We will write, for102

instance, δ̃
′′
2 (x̃, t) instead of δ̃

′′
2 (x̃, t, d1, d2).103

The corrections of the form (3.1) will decrease relative errors in comparison with the results of earlier104

papers [38,46]. We have 3 free parameters (d1, d2 and t) to be determined by minimizing the maximal105

error (in principle the new parameterization can give a new estimation of the parameter t). By analogy to106

(2.25), we are going to find t = t(0) minimizing the error of the first correction (2.25):107

∀t 6=t(0) max
x̃∈Ã
|δ̃′′1 (x̃, t(0))| < max

x̃∈Ã
|δ̃′′1 (x̃, t)|, (3.5)

where, as usual, Ã = [1, 4].108

The first of Eqs. (3.3) implies that for any t the maximal value of δ̃
′′
1 (x̃, t) equals 1

2 d1 and is attained at109

zeros of δ̃
′′
0 (x̃, t). Using results of section 2, including (2.15), (2.16), (2.20) and (2.21), we conclude that the110

minimum value of δ̃
′′
1 (x̃, t) is attained either for x̃ = t or for x̃ = xI I

0 (where there is the second maximum111

of δ̃
′′
0 (x̃, t)), i.e.,112

min
x̃∈Ã

δ̃
′′
1 (x̃, t) = min

{
δ̃
′′
1 (t, t), δ̃

′′
1 (xI I

0 , t)
}

(3.6)

Minimization of |δ̃′′1 (x̃, t)| can be done with respect to t and with respect to d1 (these operations obviously113

commute), which corresponds to114

max
x̃∈Ã

δ̃
′′
1 (x̃, t(0))︸ ︷︷ ︸

δ̃
′′
1 max

= −min
x̃∈Ã

δ̃
′′
1 (x̃, t(0)). (3.7)

Taking into account115

max
x̃∈Ã

δ̃
′′
1 (x̃, t(0)) =

d1

2
, min

x̃∈Ã
δ̃
′′
1 (x̃, t(0)) = δ̃

′′
1 (t

(0), t(0)) = −δ̃1 max +
d1

2
, (3.8)

we get from (3.7):116

δ̃
′′
1 max =

1
2

d1 =
1
2

δ̃1 max ' 8.7559 · 10−4, (3.9)

where117

δ̃1 max := min
t∈(2,4)

(
max
x∈Ã
|δ̃1(x̃, t)|

)
. (3.10)

and the numerical value of δ̃1 max is given by (2.26). These conditions are satisfied for118

t(0) = t(r)1 ' 3.7298003. (3.11)

In order to minimize the relative error of the second correction we use equation analogous to (3.7):119

max
x̃∈Ã

δ̃
′′
2 (x̃, t(0))︸ ︷︷ ︸

δ̃
′′
2 max

= −min
x̃∈Ã

δ̃
′′
2 (x̃, t(0)), (3.12)

where from (3.3) we have120

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

7 of 14

max
x̃∈Ã

δ̃
′′
2 (x̃, t(0)) =

d2

2
, min

x̃∈Ã
δ̃
′′
2 (x̃, t(0)) = −1

2
δ̃
′′2
1 max

(
3 + δ̃

′′
1 max

)
+

d2

2
. (3.13)

Hence121

δ̃
′′
2 max =

1
4

δ̃
′′2
1 max

(
3 + δ̃

′′
1 max

)
. (3.14)

Expressing this result in terms of formerly computed δ̃1 max and δ̃2 max, we obtain122

δ̃
′′
2 max =

1
8

δ̃2 max +
3
32

δ̃3
1 max ' 5.75164 · 10−7 ' δ̃2 max

7.99
, (3.15)

where
δ̃2 max =

1
2

δ̃2
1 max(3− δ̃1 max).

Therefore, the above modification of Newton-Raphson formulas decreases the relative error 2 times after123

one iteration and almost 8 times after two iterations as compared to the standard InvSqrt algorithm.124

In order to implement this idea in the form of a computer code, we have to replace the unknown125

1/
√

x̃ (i.e., ỹ) on the right-hand sides of (3.1) by some numerical approximations.126

4. New algorithm of higher accuracy127

Approximating 1/
√

x̃ in formulas (3.1) by values at left hand sides, we transform (3.1) into128

ỹ21 =
1
2

ỹ20(3− ỹ2
20 x̃) +

1
2

d1ỹ21,

ỹ22 =
1
2

ỹ21(3− ỹ2
21 x̃) +

1
2

d2ỹ22,
(4.1)

where ỹ2k (k = 1, 2, . . .) depend on x̃, t and dj (for 1 6 j 6 k). We assume ỹ20 ≡ ỹ00, i.e., the zeroth129

approximation is still given by (2.6). We can see that ỹ21 and ỹ22 can be explicitly expressed by ỹ20 and130

ỹ21, respectively.131

Parameters d1 and d2 have to be determined by minimization of the maximum error. We define error132

functions in the usual way:133

∆(1)
k =

ỹ2k − ỹ
ỹ

=
√

x̃ ỹ2k − 1 . (4.2)

Substituting (4.2) into (4.1) we get:134

∆(1)
1 (x̃, t, d1) =

d1

2− d1
− 1

2− d1
δ̃2

0(x̃, t)(3 + δ̃0(x̃, t)) =
d1 + 2δ̃1(x̃, t)

2− d1
, (4.3)

∆(1)
2 (x̃, t, d,d2) =

d2

2− d2
− 1

2− d2

(
∆(1)

1 (x̃, t, d1)
)2 (

3 + ∆(1)
1 (x̃, t, d1)

)
. (4.4)

The equation (4.3) expresses ∆(1)
1 (x̃, t, d1) as a linear function of the nonpositive function δ̃1(x̃, t) with135

coefficients depending on the parameter d1. The optimum parameters t and d1 will be estimated by the136

procedure described in section 3. First, we minimize the amplitude of the relative error function, i.e., we137

find t(1) such that138

max
x̃∈Ã

∆(1)
1 (x̃, t(1))−min

x̃∈Ã
∆(1)

1 (x̃, t(1)) 6 max
x̃∈Ã

∆(1)
1 (x̃, t)−min

x̃∈Ã
∆(1)

1 (x̃, t) (4.5)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

8 of 14

Figure 1. Graph of the function ∆(1)
1 (x̃, t(1)).

for all t 6= t(1). Second, we determine d(1)1 such that139

max
x̃∈Ã

∆(1)
1 (x̃, t(1), d(1)1) = −min

x̃∈Ã
∆(1)

1 (x̃, t(1), d(1)1) . (4.6)

Thus we have140

max
x̃∈Ã
|∆(1)

1 (x̃, t(1), d(1)1)| 6 max
x̃∈Ã
|∆(1)

1 (x̃, t, d1)| (4.7)

for all real d1 and t ∈ (2, 4). ∆(1)
1 (x̃, t) is an increasing function of δ̃1(x̃, t), hence141

−
d(1)1 − 2 maxx̃∈Ã |δ̃1(x̃, t(1)1)|

2− d(1)1

=
d(1)1

2− d(1)1

, (4.8)

which is satisfied for142

d(1)1 = max
x̃∈Ã
|δ̃1(x̃, t(1)1)| = δ̃1 max. (4.9)

Thus we can find the maximum error of the first correction ∆(1)
1 (x̃, t(1)1) (presented at Fig. 1):143

max
x̃∈Ã
|∆(1)

1 (x̃, t(1))| =
maxx̃∈Ã |δ̃1(x̃, t(1))|

2−maxx̃∈Ã |δ̃1(x̃, t(1))|
, (4.10)

which assumes the minimum value for t(1) = t(r)1 :144

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

9 of 14

∆(1)
1 max =

maxx̃∈Ã |δ̃1(x̃, t(r)1)|
2−maxx̃∈Ã |δ̃1(x̃, t(r)1)|

=
δ̃1 max

2− δ̃1 max
' 8.7636 · 10−4 ' δ̃1 max

2.00
. (4.11)

This result practically coincides with δ̃
′′
1 max given by (3.9).145

Analogously we can determine the value of d(1)2 (assuming that t = t(1) is fixed):146

−
d(1)2 −maxx̃∈Ã |∆

(1)2
1 (x̃, t(1))(3 + ∆(1)

1 (x̃, t(1)))|
2− d(1)2

=
d(1)2

2− d(1)2

. (4.12)

Now, the deepest minimum comes from the global maximum147

max
x̃∈Ã
|∆(1)2

1 (x̃, t(1))(3 + ∆(1)
1 (x̃, t(1)))| =

2δ̃2
1 max(3− δ̃1 max)

(2− δ̃1 max)3
. (4.13)

Therefore we get148

d(1)2 =
δ̃2

1 max(3− δ̃1 max)

(2− δ̃1 max)3
' 1.15234 · 10−6, (4.14)

and the maximum error of the second correction is given by149

∆(1)
2 max =

d(1)2

2− d(1)2

' 5.76173 · 10−7 ' δ̃2 max

7.98
, (4.15)

which is very close to the value of δ̃
′′
2 max given by (3.15).150

Thus we have obtained the algorithm InvSqrt1 which looks like InvSqrt with modified values of151

numerical coefficients.152

1. float InvSqrt1(float x){
2. float simhalfnumber = 0.500438180f*x;
3. int i = *(int*) &x;
4. i = 0x5F375A86 - (i>>1);
5. y = *(float*) &i;
6. y = y*(1.50131454f - simhalfnumber*y*y);
7. y = y*(1.50000086f - 0.999124984f*simhalfnumber*y*y);
8. return y ;
9. }

Comparing InvSqrt1 with InvSqrt we easily see that the number of algebraic operations in InvSqrt1153

is greater by 1 (an additional multiplication in line 7, corresponding to the second iteration of the modified154

Newton-Raphson procedure). We point out that magic constants for InvSqrt and InvSqrt1 are the same.155

5. Numerical experiments156

The new algorithms were tested on the processor Intel Core i5-3470 using the compiler TDM-GCC157

4.9.2 32-bit (then, in the case of InvSqrt, the values of errors are practically the same as those obtained by158

Lomont [38]). The same results were obtained also on Intel i7-5700. In this section we analyze rounding159

errors for the code InvSqrt1.160

Applying algorithm InvSqrt1 we obtain relative errors characterized by “oscillations” with a center161

slightly shifted with respect to the analytical solution, see Fig. 2. Calculations were carried out for all162

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

10 of 14

Figure 2. Solid lines represent function ∆(1)
2 (x̃, t(1)). Its vertical shifts by ±6 · 10−8 are denoted by

dashed lines. Finally, dots represent relative errors for 4000 random values x ∈ (2−126, 2128) produced by
algorithms InvSqrt1.

Figure 3. Relative error ε(1) arising during the float approximation of corrections ỹ22(x̃, t). Dots represent
errors determined for 2000 random values x̃ ∈ [1, 4). Solid lines represent maximum (maxi) and minimum
(mini) values of relative errors (intervals [1, 2) and [2, 4) were divided into 64 equal intervals, and then
extremum values were determined in all these intervals).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

11 of 14

numbers x of the type float such that ex ∈ [−126, 128). The range of errors is the same for all these163

intervals (except ex = −126):164

∆(1)
2;N(x) = sqrt(x) ∗ InvSqrt1(x)− 1. ∈ (∆(1)

2,N min, ∆(1)
2,N max), (5.1)

where
∆(1)

2,N min = −6.62 · 10−7, ∆(1)
2,N max = 6.35 · 10−7.

For ex = −126 the interval of errors is slightly wider:

[−6.72 · 10−7, 6.49 · 10−7].

This can be explained by the fact that the analysis presented in this paper is not applicable to subnormals165

numbers, see (2.1). The observed blur can be noticed already for the approximation error of the correction166

ỹ22(x̃):167

ε(1)(x̃) =
InvSqrt1(x)− ỹ22(x̃, t(1))

ỹ22(x̃, t(1))
. (5.2)

The values of this error are distributed symmetrically around the mean value 〈ε(1)〉:168

〈ε(1)〉 = 2−1N−1
m ∑

x∈[1,4)
ε(1)(x̃) = −1.398 · 10−8 (5.3)

enclosing the range:169

ε(1)(x̃) ∈ [−9.676 · 10−8, 6.805 · 10−8], (5.4)

see Fig. 3. The blur parameters of the function ε(1)(x̃, t) show that the main source of the difference170

between analytical and numerical results is the use of precision float and, in particular, rounding of171

constant parameters of the function InvSqrt1. It is worthwhile to point out that in this case the amplitude172

of the error oscillations is about 40% greater than the amplitude of oscillations of (ỹ00 − ỹ0)/ỹ0 (i.e., in173

the case of InvSqrt), see the right part of Fig. 2 in [46].174

6. Conclusions175

In this paper we have presented a modification of the famous code InvSqrt for fast computation of176

the inverse square root. The new code has the same magic constant but the second part (which consists177

of Newton-Raphson iterations) is modified. In the case of one Newton-Raphson iteration the new code178

InvSqrt1 has the same computational cost as InvSqrt and is 2 times more accurate. In the case of two179

iterations the computational cost of the new code is sligtly higher but its accuracy is higher by 8 times.180

The main idea of our work consists in modifying coefficients in the Newton-Raphson method and181

demanding that the maximal error is as small as possible. Such modifications can be constructed if the182

distribution of errors for Newton-Raphson corrections is not symmetric (like in the case of the inverse183

square root, when they are non-positive functions).184

Author Contributions: Conceptualization, Leonid V. Moroz; Formal analysis, Cezary J. Walczyk; Investigation,185

Cezary J. Walczyk, Leonid V. Moroz and Jan L. Cieśliński; Methodology, Cezary J. Walczyk and Leonid V. Moroz;186

Visualization, Cezary J. Walczyk; Writing–original draft, Jan L. Cieśliński; Writing–review & editing, Jan L. Cieśliński187

Funding: This research received no external funding.188

Conflicts of Interest: The authors declare no conflict of interest.189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

12 of 14

References190

1. M.D. Ercegovac, T. Lang: Digital Arithmetic, Morgan Kaufmann 2003.191

2. B. Parhami: Computer Arithmetic: Algorithms and Hardware Designs, 2nd edition, Oxford Univ. Press, New York,192

2010193

3. K. Diefendorff, P. K. Dubey, R. Hochsprung, H. Scales: AltiVec extension to PowerPC accelerates media194

processing, IEEE Micro 20 (2) (2000) 85-95.195

4. D. Harris: A Powering Unit for an OpenGL Lighting Engine, Proc. 35th Asilomar Conf. Singals, Systems, and196

Computers (2001), pp. 1641–1645.197

5. M. Sadeghian, J. Stine: Optimized Low-Power Elementary Function Approximation for Chybyshev series198

Approximation, 46th Asilomar Conf. on Signal Systems and Computers, 2012.199

6. D. M. Russinoff: A Mechanically Checked Proof of Correctness of the AMD K5 Floating Point Square Root200

Microcode, Formal Methods in System Design 14 (1) (1999) 75–125.201

7. M.Cornea, C. Anderson, C. Tsen: Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic,202

Software and Data Technologies (Communications in Computer and Information Science, vol. 10), Springer 2008, pp.203

97–109.204

8. J.-M. Muller, N. Brisebarre, F. Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D.Stehlé, S.205

Torres: Hardware Implementation of Floating-Point Arithmetic, Handbook of Floating-Point Arithmetic (2009), pp.206

269–320.207

9. J.-M. Muller, N. Brisebarre, F. Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D.Stehlé, S. Torres:208

Software Implementation of Floating-Point Arithmetic, Handbook of Floating-Point Arithmetic (2009), pp. 321–372.209

10. T. Viitanen, P. Jääskeläinen, O. Esko, J. Takala: Simplified floating-point division and square root, Proc. IEEE Int.210

Conf. Acoustics Speech and Signal Process., pp. 2707–2711, May 26–31 2013.211

11. M.D. Ercegovac, T. Lang: Division and Square Root: Digit Recurrence Algorithms and Implementations, Boston:212

Kluwer Academic Publishers, 1994.213

12. W. Liu, A. Nannarelli: Power Efficient Division and Square root Unit, IEEE Trans. Comp. 61 (8) (2012) 1059–1070.214

13. L.X. Deng, J.S. An: A low latency High-throughput Elementary Function Generator based on Enhanced double215

rotation CORDIC, IEEE Symposium on Computer Applications and Communications (SCAC), 2014.216

14. M. X. Nguyen, A. Dinh-Duc: Hardware-Based Algorithm for Sine and Cosine Computations using Fixed Point217

Processor, 11th International Conf. on Electrical Engineering/Electronics Computer, Telecommuncations and Information218

Technology, IEEE 2014.219

15. M. Cornea, Intel
R©

AVX-512 Instructions and Their Use in the Implementation of Math Functions, Intel220

Corporation 2015.221

16. H. Jiang, S. Graillat, R. Barrio, C. Yang: Accurate, validated and fast evaluation of elementary symmetric222

functions and its application, Appl. Math. Computation 273 (2016) 1160–1178.223

17. A. Fog: Software optimization resources, Instruction tables: Lists of instruction latencies, throughputs and224

micro-operation breakdowns for Intel, AMD and VIA CPUs, http://www.agner.org/optimize/225

18. L. Moroz, W. Samotyy: Efficient floating-point division for digital signal processing application, IEEE Signal226

Processing Magazine 36 (1) (2019) 159–163.227

19. D.H. Eberly: GPGPU Programming for Games and Science, CRC Press 2015.228

20. N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato, T. Kamei, T. Okada, M. Suzuoki:229

2.44-GFLOPS 300-MHz Floating-Point Vector-Processing Unit for High-Performance 3D Graphics Computing,230

IEEE J. Solid-State Circuits 35 (7) (2000) 1025-1033.231

21. S. Oberman, G. Favor, F. Weber: AMD 3DNow! technology: architecture and implementations, IEEE Micro 19232

(2) (1999) 37-48.233

22. T.J. Kwon, J. Draper: Floating-point Division and Square root Implementation using a Taylor-Series Expansion234

Algorithm with Reduced Look-Up Table, 51st Midwest Symposium on Circuits and Systems, 2008.235

23. T.O. Hands, I. Griffiths, D.A. Marshall, G. Douglas: The fast inverse square root in scientific computing, Journal236

of Physics Special Topics 10 (1) (2011) A2-1.237

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

13 of 14

24. J. Blinn: Floating-point tricks, IEEE Comput. Graphics Appl. 17 (4) (1997) 80-84.238

25. J. Janhunen: Programmable MIMO detectors, PhD thesis, University of Oulu, Tampere 2011.239

26. J.L.V.M. Stanislaus, T. Mohsenin: High Performance Compressive Sensing Reconstruction Hardware with QRD240

Process, IEEE International Symposium on Circuits and Systems (ISCAS’12), May 2012.241

27. Q. Avril, V. Gouranton, B. Arnaldi: Fast Collision Culling in Large-Scale Environments Using GPU Mapping242

Function, ACM Eurographics Parallel Graphics and Visualization, Cagliari, Italy (2012).243

28. R. Schattschneider: Accurate high-resolution 3D surface reconstruction and localisation using a wide-angle flat244

port underwater stereo camera, PhD thesis, University of Canterbury, Christchurch, New Zealand, 2014.245

29. S. Zafar, R. Adapa: Hardware architecture design and mapping of “Fast Inverse Square Root’s algorithm”,246

International Conference on Advances in Electrical Engineering (ICAEE), 2014, pp. 1-4.247

30. T. Hänninen, J. Janhunen, M. Juntti: Novel detector implementations for 3G LTE downlink and uplink, Analog.248

Integr. Circ. Sig. Process. 78 (2014) 645–655.249

31. Z.Q. Li, Y. Chen, X.Y. Zeng: OFDM Synchronization implementation based on Chisel platform for 5G research,250

2015 IEEE 11th International Conference on ASIC (ASICON).251

32. C.J. Hsu, J.L. Chen, L.G. Chen: An Efficient Hardware Implementation of HON4D Feature Extraction for252

Real-time Action Recognition, 2015 IEEE International Symposium on Consumer Electronics (ISCE).253

33. C.H. Hsieh, Y.F. Chiu, Y.H. Shen, T.S. Chu, Y.H. Huang: A UWB Radar Signal Processing Platform for Real-Time254

Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model, IEEE Trans. Biomed.255

Circ. Syst. 10 (1) (2016) 219–230.256

34. J.D. Lv, F. Wang, Z.H. Ma: Peach Fruit Recognition Method under Natural Environment, Eighth International257

Conference on Digital Image Processing (ICDIP 2016), Proc. of SPIE Vol. 10033, edited by C.M.Falco, X.D.Jiang,258

1003317 (29 August 2016).259

35. D. Sangeetha, P. Deepa: Efficient Scale Invariant Human Detection using Histogram of Oriented Gradients for260

IoT Services, 2017 30th International Conference on VLSI Design and 2017 16th International Conference on261

Embedded Systems, p. 61–66, IEEE 2016.262

36. J. Lin, Z.G. Xu, A. Nukada, N. Maruyama, S. Matsuoka: Optimizations of Two Compute-bound Scientific263

Kernels on the SW26010 Many-core Processor, 46th International Conference on Parallel Processing, p. 432–441,264

IEEE 2017.265

37. id software, quake3-1.32b/code/game/q_math.c , Quake III Arena, 1999.266

38. C. Lomont, Fast inverse square root, Purdue University, Tech. Rep., 2003. Available online:267

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf.268

39. H.S. Warren: Hacker’s delight, second edition, Pearson Education 2013.269

40. P. Martin: Eight Rooty Pieces, Overload Journal 135 (2016) 8–12.270

41. M. Robertson: A Brief History of InvSqrt, Bachelor Thesis, Univ. of New Brunswick 2012.271

42. B. Self: Efficiently Computing the Inverse Square Root Using Integer Operations. May 31, 2012.272

43. C. McEniry: The Mathematics Behind the Fast Inverse Square Root Function Code, Tech. rep. 2007.273

44. D. Eberly: An approximation for the Inverse Square Root Function, 2015, Available online:274

http://www.geometrictools.com/Documentation/ApproxInvSqrt.pdf.275

45. P. Kornerup, J.-M. Muller: Choosing starting values for certain Newton-Raphson iterations, Theor. Comp. Sci.276

351 (2006) 101–110.277

46. L. Moroz, C.J. Walczyk, A. Hrynchyshyn, V. Holimath, J.L. Cieśliński: Fast calculation of inverse square root278

with the use of magic constant – analytical approach, Appl. Math. Computation 316 (2018) 245–255.279

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 doi:10.20944/preprints201908.0045.v1

Peer-reviewed version available at Computation 2019, 7, 41; doi:10.3390/computation7030041

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

	Introduction
	Analytical approach to algorithm InvSqrt
	Modified Newton-Raphson formulas
	New algorithm of higher accuracy
	Numerical experiments
	Conclusions
	References

