Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

Article

A Modification of the Fast Inverse Square Root Algorithm

Cezary J. Walczyk !, Leonid V. Moroz % and Jan L. Cieslifiski *

1 Uniwersytet w Biatymstoku, Wydziat Fizyki, ul. Ciotkowskiego 1L, 15-245 Bialystok, Poland;
c.walczyk@uwb.edu.pl, j.cieslinski@uwb.edu.pl

Lviv Polytechnic National University, Department of Security Information and Technology, st. Kn. Romana
1/3, 79000 Lviv, Ukraine; moroz_lv@polynet.lviv.ua

1 Abstract: We present an improved algorithm for fast calculation of the inverse square root for
- single-precision floating-point numbers. The algorithm is much more accurate than the famous fast
s inverse square root algorithm and has a similar computational cost. The presented modification concern
+ Newton-Raphson corrections and can be applied when the distribution of these corrections is not
s symmetric (for instance, in our case they are always negative).

s Keywords: floating-point arithmetic; inverse square root; magic constant; Newton-Raphson method

7z 1. Introduction

e Floating-point arithmetic has became widely used in many applications such as 3D graphics,
» scientific computing and signal processing [1-5], implemented both in hardware and software [6-10].
1o Many algorithms can be used to approximate elementary functions [1,2,10-18]. The inverse square root
1 function is of particular importance because it is widely used in 3D computer graphics, especially in
12 lightning reflections [19-21], and has many other applications, see [22-36]. All of these algorithms require
1z an initial seed to start the approximation. The more accurate is the initial seed, the fewer iterations are
14 needed. Usually, the initial seed is obtained from a look-up table (LUT) which is memory consuming,.

15 In this paper we consider an algorithm for computing the inverse square root using the so called
16 magic constant instead of a LUT [37-40]. The following code realizes the fast inverse square root algorithm
1z in the case of single-precision IEEE Standard 754 floating-point numbers (type float).

1. float InvSqrt(float x){

2. float halfnumber = 0.5f*x;
inti = *(int*) &x;
i=R-({>>1);

y = *(float*) &i;

y = y*(1.5f - halfnumber*y*y);
y = y*(1.5f - halfnumber*y*y);
returny ;

© ®©° NS s W

}

1 The code InvSqrt consists of two main parts. Lines 4 and 5 produce in a very cheap way a quite good
1o zeroth approximation of the inverse square root of a given positive floating-point number x. Lines 6 and
20 7 apply the Newton-Raphson corrections twice (often a version with just one iteration is used, as well).
a1 Originally R was proposed as 0x5F3759DF, see [37,38].

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
https://doi.org/10.20944/preprints201908.0045.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

2 of 14

22 InvSqrt is characterized by a high speed, more that 3 times higher than in computing the inverse
23 square root using library functions. This property is discussed in detail in [41]. The errors of the fast
22 inverse square root algorithm depend on the choice of the “magic constant” R. In several theoretical
2 papers [38,41-44] (see also Eberly’s monograph [19]) attempts were made to determine analytically the
26 optimal value of the magic constant (i.e., to minimize errors). In general, this optimal value can depend
2z on the number of iterations, which is a general phenomenon [45]. The derivation and comprehensive
2s mathematical description of all steps of the fast inverse square root algorithm is given in our recent paper
20 [46]. We found the optimum value of the magic constant by minimizing the final maximum relative error.
30 In the present paper we develop our analytical approach to construct an improved algorithm
a1 (InvSqrtl) for fast computing of the inverse square root, see section 4. In both codes, InvSqrt and InvSqrtl,
;2 magic constants serve as a low-cost way of generating a reasonably accurate first approximation of the
:s inverse square root. These magic constants turn out to be the same. The main novelty of the new algorithm
3« is in the second part of the code which is changed significantly. In fact, we propose a modification of the
s Newton-Raphson formulae which has a similar computational cost but improve the accuracy even by
36 several times.

sz 2. Analytical approach to algorithm InvSqrt

38 In this paper we confine ourselves to positive floating-point numbers

x = (14 my)2% (2.1)

ss where m, € [0,1) and ey is an integer (note that this formula does not hold for subnormal numbers). In
a0 the case of the IEEE-754 standard, a floating-point number is encoded by 32 bits. The first bit corresponds
a1 to asign (in our case this bit is simply equal to zero), the next 8 bits correspond to an exponent e, and the
«2 last 23 bits encodes a mantissa m,. The integer encoded by these 32 bits, denoted by Iy, is given by

L = Ny (B + ex + miy) (2.2)

s where N, = 2% and B = 127 (thus B+ ey = 1,2, ...,254). The lines 3 and 5 of the InvSgrt code interprete
«« anumber as an integer (2.2) or float (2.1), respectively. The lines 4, 6 and 7 of the code can be written as

Iy =R—[1:/2], y1=300B-yx), y2= 3103~ yix). (2.3)

a5 The first equation produces, in a surprisingly simple way, a good zeroth approximation yy of the inverse
s square root y = 1//x. Of course, this needs a very special form of R. In particular, in the single precision
4z case we have eg = 63, see [46]. The next equations can be easily recognized as the Newton-Raphson
«s corrections. We point out that the code InvSqrt is invariant with respect to the scaling

x = ¥=2""x, y—oHp=2y (k=0,1,2), (2.4)

s like the equality y = 1/+/x itself. Therefore, without loss of the generality, we can confine our analysis to
so the interval

A:=[1,4). (2.5)

s1 The tilde will denote quantities defined on this interval. In [46] we have shown that the function 7
s2 defined by the first equation of (2.3) can be approximated with a very good accuracy by the piece-wise
ss linear function oy given by

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019

o

0

61

o

2

63

64

doi:10.20944/,

3of 14

1. 3 1 .

—i¥tgtgt for ¥ € [1,2)

Yoo(%,t) = el forge 2,1) (2.6)

8 2 8 ’
1_ 1 1 .

_Rx+§+ﬁt for ¥ € [t,4)

where
t =24 4mg + 2N, 1, (2.7)

and mg := N,,;'R — | N,;!R] (mp is the mantissa of the floating-point number corresponding to R). Note
that the parameter t, defined by (2.7), is uniquely determined by R.

The only difference between vy produced by the code InvSqrt and ygg given by (2.6) is the definition
of t, because ¢ related to the code depends (although in a negligible way) on x. Namely,

_ . 1. _ _
|00 — Fol < ZN’”l =225 ~2098.10°8. 2.8)
Taking into account the invariance (2.4), we obtain
yo‘)yJ <22~ 59105, (2.9)
0

These estimates do not depend on ¢ (in other words, they do not depend on R). The relative error of the
zeroth approximation (2.6) is given by

So(%, 1) = VT Joo(%,£) — 1 (2.10)
This is a continuous function with local maxima at
< 1T <111
X =(6+1)/6, Xy = (4+1)/3, o = (8+1)/3, (2.11)
given respectively by
. ; 1 3/2
0o (%p,t) = —1—|—§ (1—1—6) ,
_ 1 ¢ 3/2
So(EL) =—-142 (3 (1 + 4>) , (2.12)
. 2 f 3/2
SoEM) =14+ (2 (142 .
(el =1+ (3 (1+5))
In order to study global extrema of 5y (%, t) we need also boundary values:
~ ~ 1 ~ 2 «
do(1,t) = dp(4,t) = 3 (t—4), d(2,t) = % (1 + é) -1, do(t, t) = g -1, (2.13)
which are, in fact, local minima. Taking into account
. . 1 2 < . V2 2
oL —do(tt) =5 (VE-2) 20, &@H—d(t) = (Vi-v2) >0, (214)

reprints201908.0045.v1

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

4of 14

es we conclude that

mindy(%,t) = b(t,t) < 0. (2.15)
XcA

es Because &y(%}!!,) < 0 fort € (2,4), the global maximum is one of the remaining local maxima:

max &y (%, t) = max{d(}, 1), (2!, 1)} (2.16)
xeA
ez Therefore,
max |6 (%, 1) :max{|50(t,t)|,5o(fo,), 00(% I,t)} (2.17)

xeA

es In order to minimize this value with respect to ¢, i.e., to find t{; such that

max |0o(%, th)| < max|§0(x 1] for t # t, (2.18)
x€A €A

» we observe that |0y (¢, t)| is a decreasing function of ¢, while both maxima (6y(%}, t) and &y (%}!,t)) are
70 increasing functions. Therefore, it is sufficient to find t = #] and t = t{I such that

10 (td, 0)1 = do(x5,t0) , 160 (1", 16| = do (53", 1)), (2.19)

and to choose the greater of these two values. In [46] we have shown that

[0 (to,)| < |8o(td', £")]- (2.20)

71 Therefore t; = tél and
5 := min | max |dy(%, ¢ = [6o(th, th)]. 2.21
e = i (max|Gu(5,)]) = 18u(t,) @21)

72 The following numerical values result from these calculations [46]:

~ 3.7309796, Rop = 0x5F37642F, S0 max ~ 0.03421281. (2.22)

73 Newton-Raphson corrections for the zeroth approximation (o) will be denoted by fopx (k =1,2,...). In
e particular, we have:

Jor(%,£) = 3700(%, 1) (3 — 5o (%, 1) %),
(2.23)
]702(9?/ t) = %g01 (x~/ t) (3 - 37%1 (f/ t) X)
75 and the corresponding relative error functions will be denoted by &; (%, t):
Se(%,t) = Joe(%H) =9 _ = V(% t) -1, (k=0,1,2,...), (2.24)

¥

7 where we included also the case k = 0, see (2.10). The obtained approximations of the inverse square
7z root depend on the parameter ¢ directly related to the magic constant R. The value of this parameter can
76 be estimated by analysing the relative error of fig(%, t) with respect to 1/+/%. As the best estimation we
(r)

7 consider t =t/ minimizing the relative error & (,t):

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

50f 14

s (Fomon = max 5, 1)] < max (5,0) (2.25)
k XeA XeA

s We point out that in general the optimum value of the magic constant can depend on the number of
a1 Newton-Raphson corrections. Calculations carried out in [46] gave the following results:

t) = t; = 3.7298003, R} = R}, = 0x5F375A86,

iy . (2.26)
O max = 1.75118 - 1073, 5y max ~ 4.60 - 107°.

2 We omit details of the computations except one important point. Using (2.24) for expressing o by J; and
es \/X we can rewrite (2.23) as

5u(x 1) = —%5@1(;@ DGB+81(B1), (k=1,2,...). 227)

ss The quadratic dependence on J;_; means that every Newton-Raphson correction improves the accuracy
ss by several orders of magnitude (until the machine precision is reached), compare (2.26).

s The formula (2.27) suggests another way of improving the accuracy because the functions & are
sz always non-positive for any k > 1. Roughly saying, we are going to shift the graph of J; upwards by an
ss appropriate modification of the Newton-Raphson formula. In the next section we describe the general
s idea of this modification.

o0 3. Modified Newton-Raphson formulas

o1 The formula (2.27) shows that errors introduced by Newton-Raphson corrections are nonpositive,
2 i.e., they take values in intervals [—5k maxs 0], where k = 1,2, Therefore, it is natural to introduce a
s correction term into the Newton-Raphson formulas (2.23). We expect that the corrections will be roughly
o« half of the maximal relative error. Instead of the maximal error we introduce two parameters, d; and ds.
os Thus we get modified Newton-Raphson formulas:

J11(%,t,d1) =27 oo (%,£) (3 — 3o (%, 1) %) + e -

_ 1 ya o . d
2% t,dy, dy) = 270 (%, ,d1) (3 — 7 (%, t,d1) %) + —=,
2V%
os Where zeroth approximation is assumed in the form (2.6). In the following section the term 1/+/% will be
oz replaced by some approximations of j, tranforming (3.1) into a computer code. In order to estimate a

s possible gain in accuracy, in this section we temporarily assume that 7 is the exact value of the inverse
9o square root. The corresponding error functions,

~I

o (%, t,dy,...,dy) = VEju (& t,dy,...d) -1, ke€{0,1,2,...}, (32)
10 (Where 710(%, t) := oo (%, 1)), satisfy

~I 1 ~I ~I d
51(= —55,{31(3 + 5](,1) + ?k/ (33)
101 where: 53 (%,t) = 5o(%,t). Note that

~1 o

1
01(%, t,dy) = 01(%,t) + Edl- (34)

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

6 of 14

102 In order to simplify notation we usually will supress the explicit dependence on d;. We will write, for
103 instance, 5/2/ (%, t) instead of 5/2/ (%,t,dq,d7).

104 The corrections of the form (3.1) will decrease relative errors in comparison with the results of earlier
105 papers [38,46]. We have 3 free parameters (d1,d; and t) to be determined by minimizing the maximal
10 error (in principle the new parameterization can give a new estimation of the parameter t). By analogy to
w07 (2.25), we are going to find ¢t = £(0) minimizing the error of the first correction (2.25):

¥,y max 8 (%, ¢)] < max|dy (%,1)], (3.5)
€A €A
s where, as usual, A = [1,4].
100 The first of Eqs. (3.3) implies that for any t the maximal value of 5;/ (%,t) equals 3d; and is attained at
110 zeros of 58 (%,t). Using results of section 2, including (2.15), (2.16), (2.20) and (2.21), we conclude that the
11 minimum value of 5/1/ (%,t) is attained either for ¥ = t or for £ = x/ (where there is the second maximum
112 of 58 (f, t)), i.e.,
mind; (%,¢) = min {5;’ (t), 8, (L, t)} (3.6)
zeA
s Minimization of |8 (%,)| can be done with respect to t and with respect to d; (these operations obviously
us commute), which corresponds to

magS{(f,t(O)) = —mir}g/l/ (x,£0). (3.7
TeA €A
|
Si,max
us Taking into account
maxd! (7, 60y = B mind (7,60) = 510 40y = _5, 4N (3.9)
zeA 27 %ei 2
ue we get from (3.7):
1 1 1= 4
01 max = Edl = 5(51 max = 8.7559 - 107%, (3.9)
11z Where
81 max = min (rnax|51(f,t)|> : (3.10)
te(24) \ xeA

us and the numerical value of 6] may is given by (2.26). These conditions are satisfied for

t0) =) ~ 37298003, (3.11)
110 In order to minimize the relative error of the second correction we use equation analogous to (3.7):
max 5/2/ (%) = —min 5/2/ (x,t0)), (3.12)
XcA XcA
—_——
S;Imax

120 where from (3.3) we have

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

7 of 14
~Il d ~I 1 ~I ~I d
max 3y (%0) = 2, mindy (,t0) = — 2512, (3+ 8l max) + 2 (3.13)
zcA zeA 2
121 Hence
52 max — 51%11ax (3 + 51 max) . (3.14)
122 Expressing this result in terms of formerly computed 51 max and &y max, We obtain
5// N 5 3 7 52 max
2 max — 2 max + 51 max — 575164 . 10 ~ 7 99 ’ (315)
where
52 max — 1 max (3 51 max)

123 Therefore, the above modification of Newton-Raphson formulas decreases the relative error 2 times after
124 one iteration and almost 8 times after two iterations as compared to the standard InvSqrt algorithm.

125 In order to implement this idea in the form of a computer code, we have to replace the unknown
126 1/+/% (i.e.,) on the right-hand sides of (3.1) by some numerical approximations.

12z 4. New algorithm of higher accuracy

128 Approximating 1/ V/% in formulas (3.1) by values at left hand sides, we transform (3.1) into

- 1._ o . 1. .
a1 = 57203 = P30 %) + 5177,

4.1)
W = 2]/21(3 751 %) + dz]/zz,

120 Where 7 (k = 1,2,...) depend on %, and d]- (for 1 < j < k). We assume 9 = oo, i-e., the zeroth
130 approximation is still given by (2.6). We can see that §/»; and > can be explicitly expressed by {29 and
131 Jp1, respectively.

132 Parameters d; and d, have to be determined by minimization of the maximum error. We define error
13 functions in the usual way:

Al = kay_ = VEjy—1. (4.2)
134 Substituting (4.2) into (4.1) we get:
1), - . dy _ 1 o, . x . dq +251(.’f, t)
AV (Rt dy) = 4 2.4, 05(%,1)(3+09(%, 1)) = B (4.3)
AV (x,t,d dy) = —2 L (A" (5.t dl))z (3+a @) (4.4)
2 dz 2 _ dz 1 7 vr 1 7 vr

1ss The equation (4.3) expresses Ag)(3?, t,d1) as a linear function of the nonpositive function d; (%, t) with
16 coefficients depending on the parameter d;. The optimum parameters t and d; will be estimated by the
137 procedure described in section 3. First, we minimize the amplitude of the relative error function, i.e., we
e find +Y) such that

maxA()(Lty — mmA()(JZ,t(l)) < max Agl)(f t) — mmA()(,t) (4.5)
xeA A ¥eA xel

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

8of 14

0.0005

0.0000

—0.0005 \/

:\ T B T B T T B /_\7

L0 15 20 25 30 7 354(1)40

Figure 1. Graph of the function Agl) (x,).

e forall t # t(). Second, we determine dgl) such that

max Agl)(i,t(l),dgl)) = —mir}Agl)(f,t(l),dgl)) . (4.6)
fcA X€A
120 Thus we have
max |Agl) (i,t(l),dgl)ﬂ < max |A§1) (%,t,d71)| 4.7)
zeA zeA

1n forallreald; and t € (2,4). Agl) (%,t) is an increasing function of &, (%, t), hence

dV —2max 4 |5 (5) dl
- @ = (48)
2—dl 2—dl
a2 which is satisfied for
AV = max |5, (%, £1Y)] = & max- (4.9)

xcd
1aa Thus we can find the maximum error of the first correction Agl) (%, tgl)) (presented at Fig. 1):

maxg 4 |61(%,t)|

(D) & (1)) —
max |A St = = ,
Jzeag(A7 (%)| 2 —max,_; |51 (%,)|

X
s which assumes the minimum value for (1) = tgr):

(4.10)

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/, rints201908.0045.v1

9 of 14
- i |0 t 5 5
AV maXees | (T - |) = Olmax L g7636. 1074 ~ 2lmax, (411)
2 — maXg- 1 |(51(1)| 2 — 01 max 2.00
15 This result practically coincides with 5 ax 8iven by (3.9).
146 Analogously we can determine the Value of d (assummg that t = t() is fixed):
oy —maxg 4 A5 D) 3+ A (5, 1D))) Y w12
2—aV 2—dV
1z Now, the deepest minimum comes from the global maximum
267 (36
max | A2 (5, #1)(3 1 AL (5, £0)) | = 2Lmax(3 = Ot max) (4.13)
¥€A (2 =0 max)
1 Therefore we get
6 nax (3 =0
al) = I max (3 — 91 “;’X) ~1.15234 - 107, (4.14)
(2 01 max)
190 and the maximum error of the second correction is given by
(1) 5
(1) _ d2 ~ — 52 max
A = Ol 761731077 ~ 52, (4.15)
d;

150 which is very close to the value of 5/2/ max given by (3.15).
151 Thus we have obtained the algorithm InvSqrt1 which looks like InvSqrt with modified values of
12 numerical coefficients.

1. float InvSqrtl(float x){

2 float simhalfnumber = 0.500438180f*x;

3 inti = *(int*) &x;

4. i=0x5F375A86 - (i>>1);

5. y = *(float*) &i;

6 y = y*(1.50131454f - simhalfnumber*y*y);

7 y = y*(1.50000086f - 0.999124984f*simhalfnumber*y*y);
8 returny ;

9

}

153 Comparing InvSqrtl with InvSqrt we easily see that the number of algebraic operations in InvSqrtl
1s¢ is greater by 1 (an additional multiplication in line 7, corresponding to the second iteration of the modified
155 Newton-Raphson procedure). We point out that magic constants for InvSqrt and InvSqrt1 are the same.

156 5. Numerical experiments

157 The new algorithms were tested on the processor Intel Core i5-3470 using the compiler TDM-GCC
s 4.9.2 32-bit (then, in the case of InvSqrt, the values of errors are practically the same as those obtained by
10 Lomont [38]). The same results were obtained also on Intel i7-5700. In this section we analyze rounding
10 errors for the code InvSqrtl.

161 Applying algorithm InvSqrtl we obtain relative errors characterized by “oscillations” with a center
12 slightly shifted with respect to the analytical solution, see Fig. 2. Calculations were carried out for all

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

10 of 14

2.5 3.0 7

Figure 2. Solid lines represent function A;l) (%,t1)). Tts vertical shifts by 46 - 1078 are denoted by
dashed lines. Finally, dots represent relative errors for 4000 random values x € (27126,2128) produced by
algorithms InvSqrtl.

8-107% max; — (1)) 1
I !
6- 1078k - e —]
4-1078¢ ‘ :
el X 4* | 00 & P 09 0 g oq,- vl
21078 i 1
: e®(&) — (V)3
21078 3 |
IR0 oG 22 | g0 04 p0 & 77‘*
—4-1078 | 3
|- ‘ | —
—6- 107 e e
i 7 |
_8.10-8] min; — (M) R

L L L L T T O S S S
10 15 20 25 30 z35%¢ 40
Figure 3. Relative error ¢(1) arising during the float approximation of corrections i (%, t). Dots represent
errors determined for 2000 random values £ € [1,4). Solid lines represent maximum (max;) and minimum

(min;) values of relative errors (intervals [1,2) and [2,4) were divided into 64 equal intervals, and then
extremum values were determined in all these intervals).

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

11 of 14

1s numbers x of the type float such that e, € [—126,128). The range of errors is the same for all these

1es intervals (except ey = —126):
AR (x) = sqrt(x) + nvSqre (x) = 1. € (A i A o), (5.1)
where

1 -7 1 -7
A min = —662-107, A —635.107.

2,Nmax ~—

For e, = —126 the interval of errors is slightly wider:
[~6.72-1077,6.49-1077].

1es This can be explained by the fact that the analysis presented in this paper is not applicable to subnormals
16s numbers, see (2.1). The observed blur can be noticed already for the approximation error of the correction

167 }722(55):
— Gon (&, t(D
e (5) = InvSqrtl(x) — 7o (%,) (5.2)
o (%,t)
s The values of this error are distributed symmetrically around the mean value (¢(!)):
W)y =27IN;1 Y M (x) = -1.398-1078 (5.3)
x€[14)

1o enclosing the range:

eV (%) € [-9.676-1078,6.805-1078], (5.4)

1o see Fig. 3. The blur parameters of the function ¢ (%,t) show that the main source of the difference
11 between analytical and numerical results is the use of precision float and, in particular, rounding of
172 constant parameters of the function InvSqrtl. It is worthwhile to point out that in this case the amplitude
17s Of the error oscillations is about 40% greater than the amplitude of oscillations of (oo — 7o)/ 7o (i-e., in
1za the case of InvSqrt), see the right part of Fig. 2 in [46].

175 6. Conclusions

176 In this paper we have presented a modification of the famous code InvSqrt for fast computation of
177 the inverse square root. The new code has the same magic constant but the second part (which consists
17e of Newton-Raphson iterations) is modified. In the case of one Newton-Raphson iteration the new code
1o [nvSqrtl has the same computational cost as InvSqrt and is 2 times more accurate. In the case of two
10 iterations the computational cost of the new code is sligtly higher but its accuracy is higher by 8 times.
161 The main idea of our work consists in modifying coefficients in the Newton-Raphson method and
12 demanding that the maximal error is as small as possible. Such modifications can be constructed if the
13 distribution of errors for Newton-Raphson corrections is not symmetric (like in the case of the inverse
1es square root, when they are non-positive functions).

1ss Author Contributions: Conceptualization, Leonid V. Moroz; Formal analysis, Cezary J. Walczyk; Investigation,

186 Cezary J. Walczyk, Leonid V. Moroz and Jan L. Ciesliriski; Methodology, Cezary J. Walczyk and Leonid V. Moroz;
1e7 Visualization, Cezary J. Walczyk; Writing—original draft, Jan L. Ciesliriski; Writing-review & editing, Jan L. Ciesliriski

188 Funding: This research received no external funding.

180 Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

12 of 14

100 References

11 1. M.D. Ercegovac, T. Lang: Digital Arithmetic, Morgan Kaufmann 2003.
12 2. B.Parhami: Computer Arithmetic: Algorithms and Hardware Designs, 2" edition, Oxford Univ. Press, New York,

103 2010

1va 3. K. Diefendorff, P. K. Dubey, R. Hochsprung, H. Scales: AltiVec extension to PowerPC accelerates media
195 processing, IEEE Micro 20 (2) (2000) 85-95.

16 4. D. Harris: A Powering Unit for an OpenGL Lighting Engine, Proc. 35th Asilomar Conf. Singals, Systems, and
107 Computers (2001), pp. 1641-1645.

18 5. M. Sadeghian, J. Stine: Optimized Low-Power Elementary Function Approximation for Chybyshev series
109 Approximation, 46th Asilomar Conf. on Signal Systems and Computers, 2012.

200 6. D.M. Russinoff: A Mechanically Checked Proof of Correctness of the AMD K5 Floating Point Square Root
201 Microcode, Formal Methods in System Design 14 (1) (1999) 75-125.

202 7. M.Cornea, C. Anderson, C. Tsen: Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic,
203 Software and Data Technologies (Communications in Computer and Information Science, vol. 10), Springer 2008, pp.
204 97—109

20 8. J.-M. Muller, N. Brisebarre, F. Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond, N. Revol, D.Stehlé, S.
206 Torres: Hardware Implementation of Floating-Point Arithmetic, Handbook of Floating-Point Arithmetic (2009), pp.
207 269-320.

208 9. J.-M. Muller, N. Brisebarre, F. Dinechin, C.-P. Jeannerod, V. Lefévre, G. Melquiond, N. Revol, D.Stehlé, S. Torres:
200 Software Implementation of Floating-Point Arithmetic, Handbook of Floating-Point Arithmetic (2009), pp. 321-372.
210 10. T. Viitanen, P. Jddskeldinen, O. Esko, J. Takala: Simplified floating-point division and square root, Proc. IEEE Int.
211 Conf. Acoustics Speech and Signal Process., pp. 27072711, May 26-31 2013.

212 11. M.D. Ercegovac, T. Lang: Division and Square Root: Digit Recurrence Algorithms and Implementations, Boston:
213 Kluwer Academic Publishers, 1994.

214 12, W. Liu, A. Nannarelli: Power Efficient Division and Square root Unit, IEEE Trans. Comp. 61 (8) (2012) 1059-1070.
215 13. L.X. Deng,].S. An: A low latency High-throughput Elementary Function Generator based on Enhanced double
216 rotation CORDIC, IEEE Symposium on Computer Applications and Communications (SCAC), 2014.

21z 14. M. X. Nguyen, A. Dinh-Duc: Hardware-Based Algorithm for Sine and Cosine Computations using Fixed Point

218 Processor, 11th International Conf. on Electrical Engineering/Electronics Computer, Telecommuncations and Information
210 Technology, IEEE 2014.

220 15. M. Cornea, Intel® AVX-512 Instructions and Their Use in the Implementation of Math Functions, Intel
221 Corporation 2015.

222 16. H. Jiang, S. Graillat, R. Barrio, C. Yang: Accurate, validated and fast evaluation of elementary symmetric
223 functions and its application, Appl. Math. Computation 273 (2016) 1160-1178.

224 17. A.Fog: Software optimization resources, Instruction tables: Lists of instruction latencies, throughputs and
225 micro-operation breakdowns for Intel, AMD and VIA CPUs, http://www.agner.org/optimize/

226 18. L.Moroz, W. Samotyy: Efficient floating-point division for digital signal processing application, IEEE Signal
227 Processing Magazine 36 (1) (2019) 159-163.

228 19. D.H. Eberly: GPGPU Programming for Games and Science, CRC Press 2015.

220 20. N.Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato, T. Kamei, T. Okada, M. Suzuoki:

230 2.44-GFLOPS 300-MHz Floating-Point Vector-Processing Unit for High-Performance 3D Graphics Computing,
231 IEEE]. Solid-State Circuits 35 (7) (2000) 1025-1033.

232 21. S.Oberman, G. Favor, F. Weber: AMD 3DNow! technology: architecture and implementations, IEEE Micro 19
233 (2) (1999) 37-48.

234 22. TJ.Kwon, J. Draper: Floating-point Division and Square root Implementation using a Taylor-Series Expansion
235 Algorithm with Reduced Look-Up Table, 51st Midwest Symposium on Circuits and Systems, 2008.

226 23. T.O.Hands, L. Griffiths, D.A. Marshall, G. Douglas: The fast inverse square root in scientific computing, Journal
237 of Physics Special Topics 10 (1) (2011) A2-1.

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0045.v1

13 of 14

238 24. . Blinn: Floating-point tricks, IEEE Comput. Graphics Appl. 17 (4) (1997) 80-84.
230 25. . Janhunen: Programmable MIMO detectors, PhD thesis, University of Oulu, Tampere 2011.
20 26. J.L.V.M. Stanislaus, T. Mohsenin: High Performance Compressive Sensing Reconstruction Hardware with QRD

241 Process, IEEE International Symposium on Circuits and Systems (ISCAS"12), May 2012.

22 27. Q. Avril, V. Gouranton, B. Arnaldi: Fast Collision Culling in Large-Scale Environments Using GPU Mapping
243 Function, ACM Eurographics Parallel Graphics and Visualization, Cagliari, Italy (2012).

224 28. R Schattschneider: Accurate high-resolution 3D surface reconstruction and localisation using a wide-angle flat
245 port underwater stereo camera, PhD thesis, University of Canterbury, Christchurch, New Zealand, 2014.

s 29. S.Zafar, R. Adapa: Hardware architecture design and mapping of “Fast Inverse Square Root’s algorithm”,
247 International Conference on Advances in Electrical Engineering (ICAEE), 2014, pp. 1-4.

2s 30. T. Héanninen, J. Janhunen, M. Juntti: Novel detector implementations for 3G LTE downlink and uplink, Analog.
249 Integr. Circ. Sig. Process. 78 (2014) 645-655.

250 31. Z.Q.Li, Y. Chen, X.Y. Zeng: OFDM Synchronization implementation based on Chisel platform for 5G research,
251 2015 IEEE 11th International Conference on ASIC (ASICON).

252 32. CJ. Hsu, J.L. Chen, L.G. Chen: An Efficient Hardware Implementation of HON4D Feature Extraction for
253 Real-time Action Recognition, 2015 IEEE International Symposium on Consumer Electronics (ISCE).

254 33. C.H.Hsieh, Y.F. Chiu, Y.H. Shen, T.S. Chu, Y.H. Huang: A UWB Radar Signal Processing Platform for Real-Time
255 Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model, IEEE Trans. Biomed.
256 Circ. Syst. 10 (1) (2016) 219-230.

257 34.].D.Lv, E Wang, Z.H. Ma: Peach Fruit Recognition Method under Natural Environment, Eighth International
258 Conference on Digital Image Processing (ICDIP 2016), Proc. of SPIE Vol. 10033, edited by C.M.Falco, X.D.Jiang,
250 1003317 (29 August 2016).

200 35. D.Sangeetha, P. Deepa: Efficient Scale Invariant Human Detection using Histogram of Oriented Gradients for
261 IoT Services, 2017 30th International Conference on VLSI Design and 2017 16th International Conference on
262 Embedded Systems, p. 61-66, IEEE 2016.

263 36. J.Lin, Z.G. Xu, A. Nukada, N. Maruyama, S. Matsuoka: Optimizations of Two Compute-bound Scientific
264 Kernels on the SW26010 Many-core Processor, 46th International Conference on Parallel Processing, p. 432441,
205 IEEE 2017.

26 37. id software, quake3-1.32b/code/game/q_math.c, Quake III Arena, 1999.

267z 38. C.Lomont, Fast inverse square root, Purdue University, Tech. Rep., 2003. Available online:

268 http:/ /www.lomont.org/Math /Papers /2003 /InvSqrt.pdf.

200 39. H.S. Warren: Hacker’s delight, second edition, Pearson Education 2013.

270 40. P. Martin: Eight Rooty Pieces, Overload Journal 135 (2016) 8-12.

2r1 41. M. Robertson: A Brief History of InvSqrt, Bachelor Thesis, Univ. of New Brunswick 2012.

222 42. B. Self: Efficiently Computing the Inverse Square Root Using Integer Operations. May 31, 2012.

273 43. C. McEniry: The Mathematics Behind the Fast Inverse Square Root Function Code, Tech. rep. 2007.

274 44. D. Eberly: An approximation for the Inverse Square Root Function, 2015, Available online:

275 http:/ /www.geometrictools.com/Documentation/ ApproxInvSqrt.pdf.

276 45. P. Kornerup,].-M. Muller: Choosing starting values for certain Newton-Raphson iterations, Theor. Comp. Sci.
277 351 (2006) 101-110.

27s 46. L.Moroz, C.J. Walczyk, A. Hrynchyshyn, V. Holimath, J.L. Cieslifiski: Fast calculation of inverse square root
279 with the use of magic constant — analytical approach, Appl. Math. Computation 316 (2018) 245-255.

https://doi.org/10.20944/preprints201908.0045.v1
https://doi.org/10.3390/computation7030041

	Introduction
	Analytical approach to algorithm InvSqrt
	Modified Newton-Raphson formulas
	New algorithm of higher accuracy
	Numerical experiments
	Conclusions
	References

