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Abstract: Improvements that can be attained in seasonal climate predictions in various parts of
Africa using the multimodel supersensemble scheme are presented in this study. The synthetic
superensemble (SSE) used follows the approach originally developed at Florida State University
(FSU). The technique takes more advantage of the skill in the climate forecast data sets from
atmosphere-ocean general circulation models running at many centres worldwide including the
WMO global producing centers (GPCs). The module used in this work drew data sets from the Four
versions of FSU coupled model system, seven models from the DEMETER project which is the
forerun to the current European Ensembles Forecast System, the NCAR Model, and the Predictive
Ocean Atmosphere Model for Australia (POAMA), all making a set of 13 individual models. An
archive consisting of monthly simulations of precipitation was available over all the 5 regions of
Africa, namely Eastern, Central, Northern, Southern, and Western Africa.The results showed that
the SSE forecast for precipitation carries a higher skill compared to each of the member models and
the ensemble mean. Relative to the ensemble mean (EM), the SSE provides an improvement of 18%
in simulation of season cycle of precipitation climatology. In Eastern Africa, during December-
February season, a north-south gradient of precipitation prevails between Tropical East Africa and
the sector of the region towards Southern Africa. This regional scale climate pattern is a direct
influence of the Intertropical Convergence Zone (ITZC) across the African continent during this time
of the year. The SSE emerges with superior skill scores such as lowest root mean square error above
the EM and the member models, for example in the prediction of spatial location and precipitation
magnitudes that characterize the see-saw precipitation pattern in Eastern Africa.In all parts of
Africa, and especially Eastern Africa where seasonal precipitation variability is a frequent cause
huge human suffering in due to droughts and famine, the multimodel superensemble and its
subsequent improvements will always provide a forecast that out weighs the best Atmosphere-
Ocean Climate Model.
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1. INTRODUCTION

The livelihoods and economies of most African countries depend on rain-fed agriculture. The
rainfall is seasonal everywhere in the continent and for any given season, there are many periods
when the seasonal precipitation amounts are too low to support agriculture and sometimes too
heavy. Thus climate extremes in form of droughts and floods are very common in most parts of Africa
and they have catastrophic impacts. Improved climate predictions for Africa is the only means of
providing quantitative information that can be used for planning and management of socio-economic
activities dependant on seasonal precipitation. Good examples are the climatic extremes experienced
in East Africa from 1997 through 2000. The period September 1997 to March 1998 was a prolonged
season of devastating rainfall floods in East Africa and those rain floods were also associated to the
1997/98 warm ENSO event (Goddard and Graham, 1999; Mutemi, 2003). In Kenya, the 1997/98 floods
caused rotting of food crops due to water logging and too much water vapour in the air, submerging
of homes in urban and rural areas, huge destruction of roads and bridges and disease outbreaks
due to contamination of fresh water supplies. The total economic loss due to the 1997/98 floods over
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Kenya has been estimated to the tune of US$670 million (Karanja et al., 2000). A severe drought and
famine ravaged much of Kenya and Southern Ethiopia from mid 1998 through 2000 and it’s
catastrophic impacts included starvation of communities, massive deaths of livestock, luck of water
for domestic and industrial use including hydropower generation, and closure of industries. Plate 1
is a good depiction of the effects on the ground during 1997-2000 extreme climatic events in Kenya.
The impacts of these climatic extremes can be minimized with availability of high accuracy climate
forecasts for Africa, examples of which are illustrated in this study.

(c) Maize crop failure: Early stages of 1999 drought (d) Agonies of the 1999-2000 drought in Kenya.
GHA2010-2011 and recent droughts are very similar

Plate 1. Socio-economic impacts of extreme climate events in Kenya, East Africa during 1997-2000
(Impacts of recent climate extremes in East Africa like 2018 floods in Kenya are the same)

Droughts and floods are basically extremes embedded within the interannual variability of
climate over the various regions of Africa. The mechanisms that have been linked to climate extremes
in East Africa include the El Nifio/Southern Oscillation (ENSO), boundary forcing of certain sea
surface temperature (SST) anomalies in the oceans, and fluctuations in the large-scale atmosphere-
ocean circulation system. Some of the most recent studies on these mechanisms include Mutemi
(2003); Indeje et al., (2000); Goddard and Graham (1999); and Ogallo (1988). Thus, the predictability
of the seasonal climate extremes is not only an interesting scientific venture, but the quantified
forecast information is the only means of providing societies with the quantitative information that
can be factored into early warning, policy decision, and disaster preparedness in advance of the onset
of the extremes. Precipitation in form of rainfall is by far the most important climate element over all
the regions of Africa, and it will constitute the main subject of the present study. The objective of this
study is to illustrate that it is possible to produce quantitatively skillful seasonal rainfall/ climate
forecasts over various regions of the Africa by an optimal combination of real-time forecasts made by
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the state-of-art global climate models (GCMs) that are running at several centers worldwide. In
addition to addressing the forecasting needs, accurate predictions can also help in understanding the
evolution of the climate mechanisms over the diverse regions of the continent.

One of the most authoritative illustrations of the performance of GCMs in the simulation of
various variables of the climate may be found in Gates et al., (1999) following the multimodel data
sets of the Atmospheric Model Intercomparison Project (AMIP). AMIP results of the late 1990s and
the current results from the Atmosphere-Ocean General Circulation Models (AOGCMs) of Randall
et al., (2007) show that there are still big model-to-model differences in simulation of precipitation.

Climate forecasts, even from the state-of-the-art AOGCMs inevitably suffer from model
differences and model errors. Following the modeling experiences such as the AMIP results, the
multimodel ensemble mean (EM) method evolved as one way of overcoming problems associated
with model errors (that arise from truncation, discretization, sampling of boundary conditions, and
also from unknown sources). Within the recent years, the use of multimodel forecasts and EM has
been an important component in climate predictions done at many centers worldwide (Krishnamurti
et al., 1999). The skill of single and multi-model ensembles has been reported in many studies
including Graham et al., (2000); Palmer et al., (2004), and Doblas-Reyes and Palmer (2005). Forecasts
made from model ensemble systems and the EM still show large space and time variability in skill.
Owing to modeling differences, some models have better skill than others, yet the EM weights all the
member models equally. The multimodel superensemble scheme developed at the Florida State
University (FSUSE) has emerged as an objective means of overcoming these practical difficulties.
Some recent studies which have used the FSUSE scheme in climate forecasts include Krishnamurti et
al., (2005) and Chaves et al., (2005). By using a criteria that reduces the root mean square error (RMSE)
for each individual model forecast based on its past performance, FSUSE product emerges superior
to the multi-models and the EM (Mutemi ef al., 2007).

The mutlimodel superensemble forecast scheme used in the present study is a modified version
of the conventional FSUSE approach. The variation is necessitated by attributes in the observational
analysis field and member model forecasts that affect the skill of the consensus product. Poor analysis
field and low skill in individual member models degrade the skill (Mutemi et al., 2006). In the
conventional approach, the optimal weights used to combine the models are derived from the past
performance of each model and minimization of the root mean square error. This criterion however
does not ensure that the spatial-temporal multimodel fields evolve consistently with the dominant
spatial-temporal evolution of the observations (Yun et al., 2005). Furthermore, redundancy in both
multimodel data sets and analysis field may also mask some useful aspects of the superensemble
forecast product. In this study, the conventional superensemble technique is modified by inclusion
of these aspects to improve the data quality and enhance the stability of the climate forecasts in the
various regions of Africa. This version is called synthetic superensemble, hereafter referred to as SSE.
It has given major improvements in seasonal climate forecasts, not only on the improved skill scores,
but also predictability of the spatial patterns of the climate evolution and some results on it's
performance may be found in Krishnamurti et al., (2005) and Yun et. al., (2005).

A set of 13 GCMs is used in this study to construct the SSE forecasts in five
regions of Africa. The regions are delineated in accordance with the large scale
forcing mechanisms that prevail during the course of the year and the regions are
shown in Fig. 1. In particular, the study attempts to determine if there is an
improvement in the use of SSE relative to the EM and individual models in the
simulation of annual cycle of precipitation, simulation of the spatial extend and
magnitude of seasonal precipitation, and capability in forecasting the seasonal
extremes, especially those associated with the evolutionary phases ENSO
phenomenon. East Africa is used as a region of detailed study. It is a region where,
like most tropical areas, interannual variability is strongly influenced by ENSO
(Lakeman, 1995). The climate models used are discussed in the next section. Section
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3 provides an outline of the SSE scheme, the observational analysis fields used, and
the measures of skill used. Section 4 is a discussion of results and section 5 presents
conclusions and future plans.
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Figure 1. The five regions of Africa used in the study.

2. THE GLOBAL CLIMATE MODELS

The first set of climate models used in the study is the FSU ensemble system consisting of
four versions the FSU atmospheric model following Krishnamurti et al., (1998) that is coupled to the
Hamburg Ocean Model following Latif (1987). The four FSU versions are configurations of this
atmospheric-ocean system with two versions of the cumulus parameterization scheme, the modified
Kuo scheme following Krishnamurti and Bedi (1983), and the Arakawa-Schubert type of scheme
following Grell (1993). The model can also use two versions of radiative transfer scheme, an ‘older’
emissivity-absorptivity radiative transfer procedure following Chang (1979) and a ‘newer’ version of
radiative transfer scheme following Lacis and Hansen (1974). The FSU model with Kuo scheme with
‘older’ radiation is called “KOR”; the version with Kuo scheme combined with ‘newer’ radiation
scheme is called “KNR”; the version using Arakawa-Schubert scheme with ‘older’ radiation
procedure is “AOR”, and that using Arakawa-Schubert scheme combined with ‘newer’ radiation is
called “ANR”.

The fifth model is National Center for Atmospheric Research (NCAR) community climate
model (CCM3). CCM3 is spectral and the version use in our study is a triangular truncation at 63
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waves, and 26 levels in the vertical (T63L26). A complete description of CCM3 is provided by Kiehl
et al., (1998).

The sixth model in the set is the Predictive Ocean Atmosphere Model of Australia
(POAMA). POAMA is also a spectral model, and the version used in these results is a T42L17.A good
description of the model may be obtained from Wang et al., (2001).

The other seven models in the study are the Development of a European Multimodel
Ensemble System for seasonal to interannual prediction, called DEMETER multi-model ensemble
system. DEMETER prediction system comprises coupled ocean —atmosphere models of the
following institutions: the European Centre for Medium-Range Weather Forecasts (ECMWF); UK
Met Office (UKMO); Max-Planck Institut fiir Meteorologie, Germany (MPI); Istituto Nazionale de
Geofisica e Vulcanologia, Italy (INGV); European Centre for Research and Advanced Training in
Scientific Computation, France (CERFACS); Centre National de Recherche Météorologiques, France
(CNRM); and Laboratoire d'Océanographie Dynamique et de Climatologie, France (LODYC).
DEMETER models have been used in hindcast simulations of monthly global climate over the years
1989-2001, for which initial data assimilation were the ERA-40. The ERA-40 is a European Reanalysis
Project that availed high-quality global analysis of atmosphere, land and ocean conditions for the
years 1957-2002. The ERA-40 reanalysis are described in Kallberg et al., (2005). Details of the
DEMETER models and climate simulations may be found in Hagedorn et al., (2005). Table 1 provides
an overview of the 13 models and the length of monthly simulations of precipitation for each model
used in the study.
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Table 1. Summary of the 13 climate models and length of monthly averages of climate parameters

available for each model used in the study.

Model characteristics

Length of month by
month model

Name and source Nature Resolution Initial conditions
forecast data
Spectral atmosphere ECMWF with
KOR, FSU model coupled to HOPE T63L14 .P.hy.small 1989 — 2001
ocean model Initialization
Spectral atmosphere ECMWEF with
KNR, FSU model coupled to HOPE T63L14 .P.hy.small 1989 — 2001
ocean model Initialization
Spectral atmosphere ECMWEF with
AOR, FSU model coupled to HOPE T63L14 .Phy.sma} 1989 — 2001
ocean model Initialization
Spectral atmosphere ECMWEF with
ANR, FSU model coupled to HOPE T63L14 'P'hy'sma.l 1989 — 2001
ocean model Initialization
Spectral atmosphere
CCM3, NCAR model coupled to NCOM T63L26 AVN 1989 — 2001
Slab ocean model
Spectral atmosphere
POAMA, .
AUSTRALIA model coupled to ACOM T47L17 BAM analysis 1989 — 2001
ocean model
CERFACS Spectral atmosphere
FRANCE model coupled to OPA 8.2 T63L31 ERA-40 1989 — 2001
ocean model
Spectral atmosphere
CNRM, FRANCE  model coupled to OPA 8.0 T63L31 ERA-40 1989 — 2001
ocean model
Spectral atmosphere
LODYC, FRANCE model coupled to OPA 8.2 T95L40 ERA-40 1989 — 2001
ocean model
Spectral atmosphere
INGV, ITALY  model coupled to OPA 8.1 T42L19 Coupled AMIP-
type 1989 - 2001
ocean model
Spectral atmosphere
MPI, GERMANY model coupled to MPI- T42119 Coupled Run
1989 — 2001
OMI ocean model
Spectral atmosphere
UKMO, UK model coupled to GloSea T63L31 ERA-40 1989 — 2001
OGCM ocean model
Spectral atmosphere
ECMWE, Europe  model coupled to HOPE-E T95L40 ERA-40 1989 — 2001

ocean model
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3. DATA SETS AND METHODS

3.1. Data sets

The observed precipitation data sets used are the Climate Prediction Center (CPC) merged
analysis of precipitation, called CMAP data. The data is global, starting from 1979 to present and
the part used in the study was for the 13 years 1989-2001. CMAP data is created by a technique that
produces monthly values and patterns of global precipitation by merging rain gauge observations
with precipitation estimates from several satellite-based algorithms that make use of infrared and
microwave channels. CMAP data set may contain an artificial downward trend for the period after
1996. Inthe study, the data is used for qualitative applications and results are verified against station
records wherever applicable. A description of CMAP data is given by Xie and Arkin (1997).

For all the 13 global climate models, an archive consisting of month by month hindcasts for
a 13 year period 1989 — 2001 was available for the study. A summary of these model data sets is
included in table 1. From these model archives and observational data sets, annual cycles and
interannual variability of precipitation were extracted and studied using the multimodel
superensemble scheme as outlined in the next section.

3.2. The multimodel superensemble scheme

The Florida State University multimodel superensemble technique has been developed as a tool
for making skillfully deterministic forecasts by a combination of global model forecasts that are made
by many centers round the world. The scheme follows the studies of Krishnamurti ef al., (1999, 2000a,
b, 2001) briefly outlined as follows. Given a set of climate forecasts from a group of “N” multilevel
global models, the conventional multimodel superensemble (S) is defined by the multiple linear
regression equation written as:

aly - Y)+ 2 (1)

S =t

N
i=1

Where S is the multimodel superensemble, a: is a statistical weight for the i model,

Y, is the i model forecast, Y,is time average of the forecast by the i member

model, and Z is the time average of the observation. For the determination of the

statistical weights, the forecast time line is split into 2 parts, a training period and a
validation period. The statistical weights are then determined by the minimization
of the root-mean-square error (RMSE) function (E) expressed as:

Train 2

E = > -2) (2)

Where Trin denotes the length of the training period. St is the multimodel superensemble and Z: the
observation. This process is also referred to as the conventional multimodel superensemble scheme
and the regression coefficients ai are solved for using a Gauss-Jordan elimination algorithm. The
weights are calculated at every grid point and at every vertical level over the whole training period
of the superensemble. For a single level climate parameter such as precipitation, there are as many as
1.7 x 106 weights.

For all the models, the total length of monthly data was 13 years and 12 months for each year.
This length was too short to give stable results in forecasts of climate. Cross validation was used to
increase the statistical stability the climate forecasts. A good discussions on the usefulness of cross
validation may be found in Déqué (1997) and Wilks (1995). The cross validation procedure was done
by exclusion of one year at a time, training the superensemble with the remaining data series and
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using the weights obtained to forecast the year excluded. All the climate results discussed in this
study are cross validated.

3.3. The multimodel synthetic superensemble scheme

As discussed in section 1, the change from conventional superensemble scheme to the synthetic
superensemble (SSE) technique is necessitated by attributes in the multimodel predictor data sets and
analysis field that degrade the skill of the forecasts as discussed in Mutemi et al., (2006), Yun et al.,
(2005) and Krishnamurti et al., (2001).

The multimodel predictor data set for each model and the predictand analysis field are first pre-
processed into empirical orthogonal functions (EOFs) that represent the most significant modes of
internal variance in space and the corresponding principal components (PCs) that track the temporal
evolution of the map patterns. Assuming that there are a total of “m” leading EOFs and PCs of each
member model and observations, all of which are determined over a training length (t), the
predictand (Z) and the multimodel predictor set (Yi) are expressed as linear combinations of EOFs

"y
1

and PCs by:
2 = 2 Z, 06 3)
WD = D080 @

Where Z. n(©), Y~i,m (t) and €, (X) arethe PC and EOF corresponding to the m* mode for the

observation and the i" member model. M is the total number of EOFs used. The number of EOFs
used in the analysis is such that the cumulative variance recovered by those EOFs is at least 95%
because the objective of using EOFs in this case is to improve the quality of the data sets. The PCs
required in equations (3) and (4) are calculated over the length of training phase (t).

The next problem is the determination of spatial patterns of multimodel predictor field that
evolves in a way that is most consistent with the EOFs of observed analysis. This consistent pattern
is obtained by a regression of the predictand PCs calculated by equation (3) onto the PCs of the
models calculated by equation (4). This is a linear regression problem on EOF space and it is given
by the equation:

70 = Ya .0 + 6.0 ©)

Where aim are regression coefficients and rim is the residual error of the i model at
the m™ EOF mode. The coefficients aim are determined such that the residual error
variance E(r?) is minimum and once the coefficients are determined, PCs of the
predictor multimodel set over the total time line (T) are given the equation:

VM = YA ©)

The new PCs are computed for each model, and they are referred to as multimodel
synthetic ensemble predictor set. The synthetic multimodel predictor field is give

by:

T = XY (Men () )
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The rest of the synthetic superensemble forecast scheme proceeds following the
conventional multimodel superensemble technique as outlined in section 3.2 above.

3.4. The statistical measures of skill

The measures of skill used in the study include the root mean square error (RMSE) and anomaly
correlation. The root mean square error (RMSE) is always positive. It measures the total error and a
minimum RMSE is a basic criterion used in the construction of superensemble forecast scheme.
Anomaly correlation is also used to measure how well the forecast departs from the climatological
mean in comparison to departures from the same climatological mean in the verification analysis. A
detailed discussion of statistical measures of skill and their use in the validation of superensemble
forecasts may be obtained in Ross and Krishnamurti (2005).

4. RESULTS AND DISCUSSION

In the assessment of climate simulations and forecasts using a global climate model (GCM) it is
important that the modeled and observed climate variables are compared and some measures of
goodness used to quantify the model skill. Africa is climatologically diverse and different areas have
unique regimes of annual cycle of seasonal precipitation and atmospheric circulation. Considering
precipitation, various regions of the continent experience clearly defined wet and dry seasons. For
example, areas of tropical Africa within the neighborhood of the equator have two wet seasons
during the year, referred to as bimodal precipitation regime and areas further to the north and south
experience a unimodal distribution (Ogallo, 1989). A comprehensive discussion of the physical
mechanisms associated with seasonal climate in the various regions of Africa may be found in
Krishnamurti (1979) and Asnani (1993) among other authors. Thus a starting point in using a climate
model to provide climate forecasts is first to ascertain that the model is capable of simulating
realistically the annual and seasonal cycles of climate over the region of interest. Taking Eastern
Africa (20°E-50°E, 20°5-10°N) as a region for detailed study analysis, the following discussion
highlights these aspects using the 13 individual models, the multimodel ensemble mean (EM) and
the superensemble (SSE) simulations.

4.1. Annual and seasonal cycle of Precipitation in East Africa

Figure 2 shows the climatology of precipitation for each month of the year in the East African
region. The observations used are the CMAP data sets of Xie and Arkin (1997) and the long term
means for each month were calculated over the 13 year period 1989-2001. In January, the precipitation
can be up to 4 mm/day and the amounts decrease during February, and subsequent months to a
minimum of 1 mm/day in June. June to August is a dry season and significant amounts of rainfall
starts to be received in September and increase to be as high as 3.5 mm/day in December.
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Figure 2. Monthly climatology of precipitation (mm/day) in Eastern Africa from CMAP data sets pf
Xie and Arkin (1997).

Figures 3 shows the observed and model simulated spatial distribution of precipitation
climatology during the December - February (DJF) season in Eastern Africa. Figure 3(a) shows the
observed pattern and it can be noticed that during the DJF season, there exists a regional north-south
gradient of precipitation. The gradient consists of heavy precipitation southwards of the equator, and
a general precipitation deficit northwards. It is found that southwards of the equator, the
precipitation amounts are greater than 3 mm/day, and to the north, the season precipitation is
substantially less.

An important question that may be considered is whether the model precipitation amounts
are comparable to those in the observed annual cycle, and if the spatial distributions in the model
and observations are physically consistent with the synoptic mechanisms that prevail during the
season. The Intertropical Convergence Zone (ITCZ) is the main mechanism of seasonal precipitation
in Eastern Africa, and during the DJF season, it is located within the southern sector of Eastern Africa.
Furthermore, the Northeasterlies flowing into the Southern sector of Eastern Africa are a component
of the Indian Ocean winter monsoon circulation (Asnani, 1993), and the consequence is heavy rainfall
over the southern sector. The observed north-south precipitation gradient appearing in Fig. 3(a) is
therefore physically consistent with the large-scale circulation mechanisms.

Figure 3(b) shows the DJF precipitation climatology simulated by the superensemble (SSE).
Comparing Fig. 3(b) with Fig. 3(a), it is seen that the spatial distribution of precipitation and
magnitudes in the SSE product represent all the salient features of the observed season precipitation.
The SSE simulated precipitation exhibits the regional scale north-south gradient very well. The
simulation of the DJF climatology by the multimodel ensemble mean (EM) is shown in Fig. 3(c) and
one of the most notable shortcoming of the EM is an underestimation of the gradient pattern and the
northward coverage of precipitation is beyond area of observed precipitation. The performance of
the individual models is shown in Figs. 3(d) to (p). It is found that some of the models are a very poor
representation of season climatology, for example models 8 and 10 shown in Fig. 3(k) and Fig. 3(m).
Most of the other models capture to some extend an aspect of the season climatology, but there is a
big difference from model to model in the simulation of precipitation magnitudes and spatial
distribution. Nevertheless, it is useful to investigate how the entire annual cycle of precipitation
climatology is represented by the SSE, EM, and the member models.
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Figure 3. Observed and simulated climatology of precipitation during December-February (DJF)
season in Eastern Africa by the superensemble (SSE), ensemble mean (EM), and member models.

Contour interval is 2mm/day: (a) Observations, (b) SSE, (c) EM, (d) - (p) Member models 1 to 13.

The performance of the member models, the EM, and the SSE in simulation of the complete
annual cycle of precipitation in East Africa is shown in Fig. 4 for the four seasons March-May (MAM),
June-August (JJA), September-November (SON), and December-February (DJF). In Fig.4, the bars
show the precipitation in mm/day and for each season, first bar is the observation, the next 13bars
are the models 1 to 13, 14t bar is the EM, and the last bar is the SSE. For any season, the difference
between the observation and the models is an expression of model skill/performance. From these
results, it is evident that there are two main wet seasons MAM and SON separated by a drier JJA
season for Eastern Africa. The DJF season is slightly wetter than JJA. In general, the annual cycle is a
bimodal distribution in Eastern Africa and the member models simulate this basic characteristic with
a big difference in skill from model to model. For all the seasons, it is found that the SSE precipitation
is closest to the observation and it is only during MAM season that the EM is comparable to the
observation. An effective way to compare the SSE simulation with the EM (or a member model) is
computation of the difference between the SSE and EM (or a member model) and then dividing by
the EM (or member model) and multiplying by 100 so as to express the skill as a percentage
improvement (Ross and Krishnamurti, 2005). Using this approach, it is may be deduced that the SSE
provides an average improvement of 18% above the EM in the simulation of the season to season
climatology of precipitation. Thus in addition to simulating a realistic annual cycle, the
superensemble resolves the huge inter-model differences. This skill capability of the superensemble
is also valid for Central, North, South, and West Africa domains and it indicates that the SSE scheme
can be relied upon to make seasonal forecasts of precipitation.
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Figure 4. Simulation of the complete annual cycle of precipitation climatology in East Africa by the
member models, ensemble mean (EM) and superensemble (SSE) during seasons MAM, JTA, SON,
and DIF. For every season, the observation is first bar and last 2-bars are EM and SSE.

4.2. Seasonal forecasting of precipitation

Figure 5 shows the root mean square error (RMSE) in forecasts of January-March (JFM) seasonal
precipitation in East Africa for all the 13 years 1989-2001. The forecasts were made by each member
model, the multimodel ensemble mean (EM), and by the multimodel synthetic superensemble
technique (SSE). Comparing the RMSE of the members and EM, it is seen that the EM is a generally
a superior forecast product relative to the individual models. For example in all the 13 years, it is only
4 cases where an individual model shows lower error than the EM. This outcome suggests that given
a suit of models, the forecast made by a simple averaging of all the individual model forecasts is a
product superior to the individual models, and it is these type of results that motivated the use of
multimodel ensemble mean methodology that has been popularly used in many centers worldwide
(Krishnamurti et al., 1999). However, comparing the EM and SSE forecast as shown in Fig.5 by the
last 2-bars for each year, it is seen that in 12 of all the 13 years, the RMSE of the superensemble is
smaller than that of the ensemble mean.

It is important to establish the confidence level at which the RMSE of the SSE is superior to that
of the EM. A student's t-test statistic is used. The test is constructed under the null hypothesis that no
difference exists, and details of the t-test are given in Appendix. The percentage significance level at
which the RMSE of the SSE forecast is superior to that of the EM product in each one of all the years
are illustrated by the additional numbers appearing on the top of Fig. 5. For the East African JFM
season precipitation, the average RMSE in the forecasts made by the SSE and EM are 1 mm/day and
1.5 mm/day respectively. The total errors of the member models are much higher than these values
and these larger errors indicate low skills in the members. On average, it is seen that in the forecasts
of JFM season precipitation, the SSE performs 33% better than the EM with a confidence of 85%.
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Figure 5. Root mean square error (RMSE) in precipitation anomaly forecasts (in mm/day) during
January-March over East Africa from the 13 models, ensemble mean (EM) and superensemble
(SSE). For each year. the last 2-bars are EM and SSE. The numbers appearing on top are the
confidence level (in percentage) at which the SSE RMSE is different from that of the EM using a {
test statistic (see Appendix).

Figures 6(a)-(c) summarize the total errors in seasonal forecasts of precipitation in three other
regions of Africa. The seasons considered are March - May (MAM) in Central Africa shown in Fig,.
6(a), July - September (JAS) illustrated in Fig. 6(b) for North Africa, and also JAS season in West
Africa demonstrated in Fig. 6(c). It is seen from these results that, in all the regions, the total errors in
the member models are remarkably higher than those of the ensemble mean and the superensemble.
The superensemble performs much better than the ensemble mean in all regions. For example, in the
JAS 1989 precipitation over North Africa shown in Fig. 6(b), the ensemble mean RMSE was 1.5
mm/day, while the superensemble RMSE was only 0.5 mm/day. This is equivalent to improving the
forecast by the ensemble mean by 67%. It is also found that in all the three regions of Africa, the RMSE
of the superensemble product is superior to that of the ensemble mean at a confidence level above

95%.
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Figure 6(a): The root mean square errors in seasonal forecasts of precipitation. March-May (MAM)
season in Central Africa. For each year, the last 2-bars are EM and SSE as in Figure 5.
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Figure 6(b): The root mean square errors in seasonal forecasts of precipitation. July-September
(JAS) in North Africa. For each year, the last 2-bars are EM and SSE as in Figure 5.
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Figure 6(c): The root mean square errors in seasonal forecasts of precipitation. July-September
(JAS) season in West Africa. For each year, the last 2-bars are EM and SSE as in Figure 5.

4.3. Precipitation extremes associated with ENSO in Eastern Africa

In Eastern Africa, one of the global mechanisms that is associated with extremes in the
interannual variability of seasonal precipitation is the El-Nino/Southern Oscillation (warm ENSO)
phenomenon. The Tropical Eastern sector of East Africa receives heavy precipitation during the
warm ENSO phase (Mutemi, 2003; Ogallo, 1989), while the southern sector of the region extending
into Southern Africa suffers drought conditions. The condition reverses during the cold ENSO phase
to give drought conditions in the Tropical Eastern Africa and enhanced precipitation in Southeastern
Africa (Semazzi and Indeje, 1999; Ropelewski and Halpert, 1987). Studies using global climate models
done over the region, including those of Goddard and Graham (1999) and Mutemi (2003) suggest
that the ENSO teleconnection with East Africa precipitation during the seasons within September to
February is physically consistent with the underlying boundary forcing and atmospheric dynamics.

Figure 7 shows a time-longitude section, also called hovmoller diagram of precipitation in East
Africa from longitude 20°E to 50°E during the years 1989 to 2001 for seasons MAM, JJA, SON, and
DJF. Figure 7(a) shows the observed pattern. One of the most conspicuous precipitation events in
Fig. 7(a) is the 1997/98 flood event that started during the season September 1997 and continued into
early months of 1998. It has been associated with the 1997/98 El-Nifio phenomenon (Mutemi, 2003).
The suppressed precipitation leading to the droughts of 1996 and 1999 which were associated with
La Nifa event of these years are also evident in Fig. 7(a). Figure 7(b) shows the corresponding SSE
forecast. It found that the succession of wet and dry events in the SSE forecast and their longitudinal
positions coincide very well with observations. The precipitation magnitudes are also to the same
order. The ensemble mean (EM) and best performing member model time-longitude sections are
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shown in Fig.7(c) and Fig. 7(d). Comparing the EM to the observations, it is may be seen that the
wettest events that occur in the westward side of East Africa are shifted eastwards, and the
magnitudes seem too high. On the other hand, the best performing member model tends to
underestimate the wet events, for example the magnitude of the 1997/98 flood in the best model is
just a small precipitation signal to the extreme east of the region. This result can be seen by comparing
the patterns along year 1998 in Fig. 7(a) and Fig. 7(d).
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Figure 7. Time-longitude cross section of precipitation in East Africa for seasons MAM. JJA, SON,
and DJF for years 1989-2001. Contour interval 2 mm/day. (a) Observations, (b) SSE, (¢) EM, (d)
Best model.

Figure 8 shows the interannual variability of East Africa precipitation during the September-
November (SON) season as simulated by the superensemble, the ensemble mean, and a member
model. It is found that the overall wet and dry precipitation events associated with ENSO events are
captured with some appreciable skill. From Fig. 8, good examples are the droughts of 1996 and 1999
which were associated with La Nifia events and the El Nifio associated floods of 1994 and 1997. The
superensemble does not capture well the precipitation magnitude of the 1997 event during SON
season, but the peak is evident in the result. An explanation for this outcome could be that in the
1989-2001 multimodel archives that were available for the study, this was the only intense
precipitation extreme in East Africa. The cross validation approach used in the linear regression omits
its weights out of the linear regression model that forecasts it and this lowers the statistical skill in its
prediction. In a operational application, a multimodel data set of at least 30 years will give even better
results because within a 30 year climatological period, there would be a number of ENSO and/or sea
surface temperature (SST) associated precipitation extremes and therefore several superensemble
weights. It is interesting to study how the various models, the EM, and SSE performed in the
placement of the precipitation anomalies for these wet and dry extremes in the climate.
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Figure 8. Interannual variability of September-November (SON) precipitation anomalies
in East Africa during the 13 years 1989-2001.

Figures 9(a) to (p) illustrate the space patterns of observed and simulated precipitation
anomalies during September-November (SON) season of the year 1994 in Eastern Africa. During the
SON season, the 1994 wet event rather than 1997 is used because in the interannual variability, the
skill of the former is better as observed in Fig. 8. The base period used for calculation of the long term
mean in all cases is the 13 years from 1989 to 2001. The contouring of the precipitation anomalies
illustrated in all the panels in Fig. 9 has been done to show areas of positive and negative precipitation
anomalies on the same scale. Panel (a) shows the observed anomaly and it is found that the flood
event was concentrated in the Tropical East Africa sector, centered around the equator and oriented
in a manner that suggests an influence the Indian ocean. The area extending southwards into South
Africa is dry. Nevertheless, it is important to remember that during SON period, the southern sector
of Eastern Africa is normally dry. The forecasts of the 1994 flood event by the SSE, EM, and the
member models are shown by the series of panels (b) to (p). Comparing the SSE product with
observation, it is noticed that the East Africa precipitation flood event is predicted with good skill in
magnitude and spatial extend. As found from the comparison of panels (c) to (p) with (a) in Figs. 9,
the EM and member models performed poorly in forecasting the flood event. The season SON during
1994 was a moderate warm ENSO event in the global climate system and it is therefore reasonable to
associate the skill seen in this result with that warm ENSO event. For the season SON, a warm ENSO
wet composite can be defined as the average of the 1994 and 1997. The results are similar to those
shown in Fig.9 and the SSE product emerges as a much forecast for the flood conditions in
magnitudes and spatial distribution precipitations associated with warm ENSO events in Eastern
Africa. From Fig. 8, it is found that the 1996 drought that occurred during the SON season was
predicted with good skill and it is useful to study the spatial distribution of the precipitation
anomalies.
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Figure 9. The spatial distribution of precipitation anomalies in East Africa during the moderate
flood event of September-November (SON) during 1994. (a) Observations, (b) S'SE, (c) EM, (d)-(p)

Member models 1 to 13.

Figure 10 shows the observations and forecasts of the 1996 drought. In Fig. 10, the season
precipitation anomalies have been contoured to show areas of drought as those with negative
precipitation anomalies and from panel (a), it is may be seen that the drought area of interest is the
Tropical Eastern sector of East Africa. The superensemble forecast for the drought is shown in panel
(b) and it captures the precipitation deficit well in magnitude and spatial coverage. The EM and
member model forecasts are shown in panels (c) to (p) and it is found that none of these simulations
compares with observations as favorably as the SSE product.
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Figure 10. The spatial distribution of precipitation anomalies in East Africa during the drought
event of September-November (SON) during 1996. (a) Observations, (b) SSE, (c) EM, (d)-(p)

member models 1 to 13.

The prediction of the regional scale precipitation gradient that exists within Eastern Africa
during the December-February (DJF) season is a feature that models simulate with huge differences.
During the warm ENSO phase, Equatorial East Africa tends to receive enhanced precipitation and
Southern Africa surfers a drought. The pattern is nearly opposite during cold ENSO phase and it is
characterized by droughts in Equatorial Eastern Africa and flooding in Southern Africa. This regional
scale climate feature can be recognized as a seesaw or dipole pattern. Additional discussions of the
ENSO teleconnection with seasonal precipitation over the region may be found in Ogallo (1989),
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Ropelewski and Halpert (1987), Semazzi and Indeje (1999) and Mutemi (2003) among other authors.
It is useful to determine how well the superensemble predicts this regional feature. In Eastern Africa,
seasonal forecasts of climate are usually done SSTs and ENSO derived statistical relationships with
precipitation. The statistical models cannot always give forecasts that are physically consistent with
the large-scale mechanisms such as the atmospheric circulation characteristics and its modulation by
regional and local scale processes. In this study, it is sufficient to focus on the skill of the SSE relative
to the EM in forecasting this see-saw pattern in precipitation between Tropical East Africa and
Southern Parts the larger Eastern Africa. By obtaining the average of the warm ENSO and cold ENSO
events within the model data sets used in this study, Figure 11 summarizes the predictability of the
regional precipitation gradient in which panels (a) and (d) show observations for the gradient pattern,
panels (b) and (e) illustrate predictability by the SSE scheme and panels (c) and (f) show the
performance of the EM. For the two scenarios, it is found that the multimodel superensemble
simulates the “see-saw” in precipitation quite consistently with observations and outperforms the
ensemble mean in getting accurately the magnitudes and spatial distribution of the season
precipitation.
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Figure 11. The predictability of the ENSO related dipole pattern of precipitation anomalies during
December-February (DJF) season in Eastern Africa. Positive anomalies are also contoured at
departures of 0.6mm/day from long term mean. (a) Observations, (b) SSE, (¢) EM., (d)-(p) member
models 1 to 13.

Thus, the multimodel superensemble scheme can provide skill and robust results that are
spatially consistent over very large areas, such as seen in these results for the Eastern Africa ENSO
precipitation dipole pattern. In global climate models and also climate forecasts in many parts of
Africa, SST anomaly patterns have been the most reliable long-range predictors. Accurate predictions
of SST anomalies including ocean specific modes of variability, for example the Indian Ocean dipole
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mode (Saji ef al., 1999) and ENSO SST anomalies in the equatorial Pacific are crucial for improvement
of seasonal climate predictability, especially in Eastern Africa. Krishnamurti et al., (2005) have shown
that the superensemble provides accurate predictions of SST anomalies in all the tropical oceans.
Therefore, superensemble modeling can be used in prediction of all aspects of the climate system,
with an accuracy that address the spatial and temporal evolution of the climate extremes better than
any one climate model. The prediction skill seen in the above results for dipole pattern of
precipitation the larger Eastern Africa is a confirmation that this technique of climate modeling
provides a robust means of predicting accurately regional scale climate extremes. Regional scale
information of this nature and quality is a necessary input in the socio-economic planning and
mobilization of resources for early warning, long-term advisories and policies actions towards
addressing of tribal/ethnic conflicts due to climatically driven resources in the Arid and Semi-Arid
Lands (ASALs), for example fatal conflicts over grasslands and watering points between Semi-
Nomadic communities living in Northern Kenya, Northeastern Uganda, and Southern Ethiopia
during drought periods due to failure of seasonal rainfall. The construction of a multimodel
superensemble forecasts can be the climate modeling solution to climate scientists working in Africa
provided the worldwide centers with the facilities for continuous improvements of specific climate
models avail the real-time model data sets to scientists within Africa.

5. CONCLUSIONS

A comprehensive data from a suit of 13 global climate models has been used to construct
superensemble climate forecasts in various regions of Africa. The multimodel superensemble
technique that has been developed in Florida State University is used. The approach removes the
collective bias of the individual model forecasts by assigning weights to each of the member models
based on their past performance and using those weights in a multiple linear regression to produce
a consensus forecast for the variable of interest. In this study, the main objective is predictability of
seasonal precipitation over various regions of Africa, and the potential improvements that can be
achieved by using the superensemble relative the skill attributes if the individual models and
multimodel ensemble mean were the only forecast schemes available.

In the study, Eastern Africa is taken as a region of detailed analysis. In Eastern Africa, the
interannual variability of precipitation during some seasons is strongly associated with the global
ocean SSTs and ENSO phenomenon, and often leads to heavy rainfall floods in Tropical Eastern
Africa and drought conditions in South-eastern Africa during warm ENSO phases and the pattern
reverses during the cold ENSO phase. This may be viewed as a see-saw of climate-stress across the
larger Eastern African and it has far reaching socio-economic implications on communities who are
generally very poor and depend on rain-fed agriculture and agro-pastoral activities for food
production. Improvements of prediction of seasonal climate anomalies that affect such huge areas is
therefore a matter of priority in many parts of Africa.

The results have shown that even though the individual climate models and the ensemble mean
simulate the basic annual and seasonal cycles of precipitation, the magnitudes and spatial
distribution compare poorly with observations. In the simulation of the seasonal cycle of precipitation
in the various regions of Africa, the superensemble product is found to be closest to the observed
climatology, while the member models and ensemble mean simulations show big departures from
observations. For the East Africa region, the superensemble may be said to provide an improvement
of 18% above the multimodel ensemble mean during the seasons March-May (MAM), June-August
(JJA), September-November (SON), and December-February (DJF). During the DJF season, a regional
scale north-south gradient of precipitation prevails between Tropical East Africa and South-eastern
Africa. This regional scale climate pattern is a direct influence of the intertropical convergence zone
(ITZC) across the African continent during this time of the year. The superensemble emerges as best
among the member models and ensemble mean in the simulation of the north-south gradient of
precipitation in the region.

When applied on a seasonal basis in various regions of Africa, the superensemble gave
precipitation forecasts that outperformed the member models and ensemble mean in skill scores.
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For example, in the July-September (JAS) precipitation in North Africa during 1989, the ensemble
mean root mean square error (RMSE) was 1.5 mm/day, while the superensemble error was only 0.5
mm/day. In the region, the superensemble may be viewed as improving the performance of the
ensemble mean by 67%. It is also found that in all the four regions of Africa, the RMSE of the
superensemble product is lower, and different from the ensemble mean at more than 95% significance
level. A lower RMSE indicates a superior performance.

The multimodel superensemble provides seasonal precipitation forecast over Eastern Africa that
is consistent with all the salient features in the regional precipitation extremes associated with warm
and cold ENSO phases in the region. However, the scheme did not pick the entire magnitude of the
1997 floods in East Africa, which were associated with the 1997/98 El Nifio. This may have been due
to the short length of multimodel archive data sets that were available to this particular study and
the results would come out much better with use of model data sets of at least 30 year climatological
period. However, the superensemble provides the best prediction of the spatial distribution of
precipitation that characterizes the north-south dipole consisting of wetter than normal conditions in
Tropical Eastern Africa and drought stricken Southern Africa during warm ENSO phases. This
precipitation anomaly pattern reverses during the cold ENSO phase and it is therefore a regional
scale climate feature. Even for the reversed ENSO scenario, the superensemble forecasts stands with
skill characteristics superior to those of the individual models and ensemble mean. The multimodel
superensemble approach is therefore an innovative scheme for the prediction of regional scale climate
extremes over the diverse regions of Africa.

When real time forecasts are made with several climate models, it is difficult to know in advance
which among these models can be relied upon to give the most skilful climate forecast for the season
and region of interest. It will help a lot if climatological hindcasts of global climate models are
generated and archived for longer periods. However, knowing that the superensemble has the
highest skills always as illustrated in this study, it would be safer to rely on the superensemble in
seasonal forecasts and for future projections of climate.

The multimodel superensemble should be useful for real time climate forecasts over continental
Africa and the surrounding ocean basins and future improvements are certain from the advancement
of physical climate modeling and more accurate observational analysis fields.
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Appendix
The root mean square error (RMSE) is given by:

1 N 1/2
RMSE = {WZ(fn —on)z}
n=1

Where:
N =number of grid points

t, = forecast value at grid point n

o ,=observed value at grind point n

Student’s t-test
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The significance level at which the RMSE of the superensemble is superior to that of
the ensemble mean is expressed as a percentage and indicated at the top of each
panel for each year of forecast in Figs.5-6. The student's t-test used is:

. |RMSEem - RMSE

sse|

Where Sq is the standard deviation of the RMSEs within an ensemble of n members.
tf>t ,.n-1
(1*5]
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