
  

 

Article 

Improving Seasonal Climate Forecasts over Various 
Regions of Africa using the Multimodel 
Superensemble Approach 

Joseph Nzau Mutemi  

Department of Meteorology, University of Nairobi, P.O. Box 30197 00100 GPO, Nairobi, Kenya, Tel: 

+254722890176 mnzau@uonbi.ac.ke, jnmutemi@yahoo.co.uk 

Abstract: Improvements that can be attained in seasonal climate predictions in various parts of 

Africa using the multimodel supersensemble scheme are presented in this study. The synthetic 

superensemble (SSE) used follows the approach originally developed at Florida State University 

(FSU). The technique takes more advantage of the skill in the climate forecast data sets from 

atmosphere-ocean general circulation models running at many centres worldwide including the 

WMO global producing centers (GPCs). The module used in this work drew data sets from the Four 

versions of FSU coupled model system, seven models from the DEMETER project which is the 

forerun to the current European Ensembles Forecast System, the NCAR Model, and the Predictive 

Ocean Atmosphere Model for Australia (POAMA), all making a set of 13 individual models. An 

archive consisting of monthly simulations of precipitation was available over all the 5 regions of 

Africa, namely Eastern, Central, Northern, Southern, and Western Africa.The results showed that 

the SSE forecast for precipitation carries a higher skill compared to each of the member models and 

the ensemble mean. Relative to the ensemble mean (EM), the SSE provides an improvement of 18% 

in simulation of season cycle of precipitation climatology. In Eastern Africa, during December-

February season, a north-south gradient of precipitation prevails between Tropical East Africa and 

the sector of the region towards Southern Africa. This regional scale climate pattern is a direct 

influence of the Intertropical Convergence Zone (ITZC) across the African continent during this time 

of the year. The SSE emerges with superior skill scores such as lowest root mean square error above 

the EM and the member models, for example in the prediction of spatial location and precipitation 

magnitudes that characterize the see-saw precipitation pattern in Eastern Africa.In all parts of 

Africa, and especially Eastern Africa where seasonal precipitation variability is a frequent cause 

huge human suffering in due to droughts and famine, the multimodel superensemble and its 

subsequent improvements will always provide a forecast that out weighs the best Atmosphere-

Ocean Climate Model. 
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1. INTRODUCTION 

The livelihoods and economies of most African countries depend on rain-fed agriculture. The 

rainfall is seasonal everywhere in the continent and for any given season, there are many periods 

when the seasonal precipitation amounts are too low to support agriculture and sometimes too 

heavy. Thus climate extremes in form of droughts and floods are very common in most parts of Africa 

and they have catastrophic impacts. Improved climate predictions for Africa is the only means of 

providing quantitative information that can be used for planning and management of socio-economic 

activities dependant on seasonal precipitation. Good examples are the climatic extremes experienced 

in East Africa from 1997 through 2000. The period September 1997 to March 1998 was a prolonged 

season of devastating rainfall floods in East Africa and those rain floods were also associated to the 

1997/98 warm ENSO event (Goddard and Graham, 1999; Mutemi, 2003). In Kenya, the 1997/98 floods 

caused rotting of food crops due to water logging and too much water vapour in the air, submerging 

of homes in urban and rural areas,  huge destruction of roads and bridges and disease outbreaks 

due to contamination of fresh water supplies. The total economic loss due to the 1997/98 floods over 
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Kenya has been estimated to the tune of US$670 million (Karanja et al., 2000).  A severe drought and 

famine ravaged much of Kenya and Southern Ethiopia from mid 1998 through 2000 and it’s 

catastrophic impacts included starvation of communities, massive deaths of livestock, luck of water 

for domestic and industrial use including hydropower generation, and closure of industries. Plate 1 

is a good depiction of the effects on the ground during 1997-2000 extreme climatic events in Kenya. 

The impacts of these climatic extremes can be minimized with availability of high accuracy climate 

forecasts for Africa, examples of which are illustrated in this study. 

 

 

Droughts and floods are basically extremes embedded within the interannual variability of 

climate over the various regions of Africa. The mechanisms that have been linked to climate extremes 

in East Africa include the El Niño/Southern Oscillation (ENSO), boundary forcing of certain sea 

surface temperature (SST) anomalies in the oceans, and fluctuations in the large-scale atmosphere-

ocean circulation system. Some of the most recent studies on these mechanisms include Mutemi 

(2003); Indeje et al., (2000); Goddard and Graham (1999); and Ogallo (1988). Thus, the predictability 

of the seasonal climate extremes is not only an interesting scientific venture, but the quantified 

forecast information is the only means of providing societies with the quantitative information that 

can be factored into early warning, policy decision, and disaster preparedness in advance of the onset 

of the extremes. Precipitation in form of rainfall is by far the most important climate element over all 

the regions of Africa, and it will constitute the main subject of the present study. The objective of this 

study is to illustrate that it is possible to produce quantitatively skillful seasonal rainfall/ climate 

forecasts over various regions of the Africa by an optimal combination of real-time forecasts made by 
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the state-of-art global climate models (GCMs) that are running at several centers worldwide. In 

addition to addressing the forecasting needs, accurate predictions can also help in understanding the 

evolution of the climate mechanisms over the diverse regions of the continent. 

One of the most authoritative illustrations of the performance of GCMs in the simulation of 

various variables of the climate may be found in Gates et al., (1999) following the multimodel data 

sets of the Atmospheric Model Intercomparison Project (AMIP). AMIP results of the late 1990s and 

the current results from the Atmosphere-Ocean General Circulation Models (AOGCMs) of Randall 

et al., (2007) show that there are still big model-to-model differences in simulation of precipitation.  

Climate forecasts, even from the state-of-the-art AOGCMs inevitably suffer from model 

differences and model errors. Following the modeling experiences such as the AMIP results, the 

multimodel ensemble mean (EM) method evolved as one way of overcoming problems associated 

with model errors (that arise from truncation, discretization, sampling of boundary conditions, and 

also from unknown sources). Within the recent years, the use of multimodel forecasts and EM has 

been an important component in climate predictions done at many centers worldwide (Krishnamurti 

et al., 1999). The skill of single and multi-model ensembles has been reported in many studies 

including Graham et al., (2000); Palmer et al., (2004), and Doblas-Reyes and Palmer (2005). Forecasts 

made from model ensemble systems and the EM still show large space and time variability in skill. 

Owing to modeling differences, some models have better skill than others, yet the EM weights all the 

member models equally. The multimodel superensemble scheme developed at the Florida State 

University (FSUSE) has emerged as an objective means of overcoming these practical difficulties. 

Some recent studies which have used the FSUSE scheme in climate forecasts include Krishnamurti et 

al., (2005) and Chaves et al., (2005). By using a criteria that reduces the root mean square error (RMSE) 

for each individual model forecast based on its past performance, FSUSE product emerges superior 

to the multi-models and the EM (Mutemi et al., 2007). 

The mutlimodel superensemble forecast scheme used in the present study is a modified version 

of the conventional FSUSE approach. The variation is necessitated by attributes in the observational 

analysis field and member model forecasts that affect the skill of the consensus product. Poor analysis 

field and low skill in individual member models degrade the skill (Mutemi et al., 2006). In the 

conventional approach, the optimal weights used to combine the models are derived from the past 

performance of each model and minimization of the root mean square error. This criterion however 

does not ensure that the spatial-temporal multimodel fields evolve consistently with the dominant 

spatial-temporal evolution of the observations (Yun et al., 2005).  Furthermore, redundancy in both 

multimodel data sets and analysis field may also mask some useful aspects of the superensemble 

forecast product. In this study, the conventional superensemble technique is modified by inclusion 

of these aspects to improve the data quality and enhance the stability of the climate forecasts in the 

various regions of Africa. This version is called synthetic superensemble, hereafter referred to as SSE. 

It has given major improvements in seasonal climate forecasts, not only on the improved skill scores, 

but also predictability of the spatial patterns of the climate evolution and some results on it’s 

performance may be found in Krishnamurti et al., (2005) and Yun et. al., (2005). 

 A set of 13 GCMs is used in this study to construct the SSE forecasts in five 

regions of Africa. The regions are delineated in accordance with the large scale 

forcing mechanisms that prevail during the course of the year and the regions are 

shown in Fig. 1. In particular, the study attempts to determine if there is an 

improvement in the use of SSE relative to the EM and individual models in the 

simulation of annual cycle of precipitation, simulation of the spatial extend and 

magnitude of seasonal precipitation, and capability in forecasting the seasonal 

extremes, especially those associated with the evolutionary phases ENSO 

phenomenon. East Africa is used as a region of detailed study. It is a region where, 

like most tropical areas, interannual variability is strongly influenced by ENSO 

(Lakeman, 1995). The climate models used are discussed in the next section. Section 
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3 provides an outline of the SSE scheme, the observational analysis fields used, and 

the measures of skill used. Section 4 is a discussion of results and section 5 presents 

conclusions and future plans. 

 

 

2. THE GLOBAL CLIMATE MODELS 

 The first set of climate models used in the study is the FSU ensemble system consisting of 

four versions the FSU atmospheric model following Krishnamurti et al., (1998) that is coupled to the 

Hamburg Ocean Model following Latif (1987). The four FSU versions are configurations of this 

atmospheric-ocean system with two versions of the cumulus parameterization scheme, the modified 

Kuo scheme following Krishnamurti and Bedi (1983), and the Arakawa-Schubert type of scheme 

following Grell (1993). The model can also use two versions of radiative transfer scheme, an ‘older’ 

emissivity-absorptivity radiative transfer procedure following Chang (1979) and a ‘newer’ version of 

radiative transfer scheme following Lacis and Hansen (1974). The FSU model with Kuo scheme with 

‘older’ radiation is called “KOR”; the version with Kuo scheme combined with ‘newer’ radiation 

scheme is called “KNR”; the version using Arakawa-Schubert scheme with ‘older’ radiation 

procedure is “AOR”, and that using Arakawa-Schubert scheme combined with ‘newer’ radiation is 

called “ANR”.  

 The fifth model is National Center for Atmospheric Research (NCAR) community climate 

model (CCM3). CCM3 is spectral and the version use in our study is a triangular truncation at 63 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2019                   doi:10.20944/preprints201908.0042.v1

https://doi.org/10.20944/preprints201908.0042.v1


 

 

waves, and 26 levels in the vertical (T63L26). A complete description of CCM3 is provided by Kiehl 

et al., (1998). 

  The sixth model in the set is the Predictive Ocean Atmosphere Model of Australia 

(POAMA). POAMA is also a spectral model, and the version used in these results is a T42L17.A good 

description of the model may be obtained from Wang et al., (2001). 

 The other seven models in the study are the Development of a European Multimodel 

Ensemble System for seasonal to interannual prediction, called DEMETER multi-model ensemble 

system.  DEMETER prediction system comprises coupled ocean atmosphere models of the 

following institutions: the European Centre for Medium-Range Weather Forecasts (ECMWF); UK 

Met Office (UKMO); Max-Planck Institut für Meteorologie, Germany (MPI); Istituto Nazionale de 

Geofisica e Vulcanologia, Italy (INGV); European Centre for Research and Advanced Training in 

Scientific Computation, France (CERFACS); Centre National de Recherche Météorologiques, France 

(CNRM); and Laboratoire d'Océanographie Dynamique et de Climatologie, France (LODYC). 

DEMETER models have been used in hindcast simulations of monthly global climate over the years 

1989-2001, for which initial data assimilation were the ERA-40. The ERA-40 is a European Reanalysis 

Project that availed high-quality global analysis of atmosphere, land and ocean conditions for the 

years 1957-2002. The ERA-40 reanalysis are described in Kållberg et al., (2005). Details of the 

DEMETER models and climate simulations may be found in Hagedorn et al., (2005). Table 1 provides 

an overview of the 13 models and the length of monthly simulations of precipitation for each model 

used in the study. 
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Table 1. Summary of the 13 climate models and length of monthly averages of climate parameters 

available for each model used in the study. 

 

Name and source 

Model characteristics Length of month by 

month model 

forecast data 
Nature  Resolution Initial conditions 

KOR, FSU 

Spectral atmosphere 

model coupled to HOPE 

ocean model 

T63L14 

ECMWF with 

Physical 

Initialization 

 

1989 – 2001 

KNR, FSU 

Spectral atmosphere 

model coupled to HOPE 

ocean model 

T63L14 

ECMWF with 

Physical 

Initialization 

 

1989 – 2001 

AOR, FSU 

Spectral atmosphere 

model coupled to HOPE 

ocean model 

T63L14 

ECMWF with 

Physical 

Initialization 

 

1989 – 2001 

ANR, FSU 

Spectral atmosphere 

model coupled to HOPE 

ocean model 

T63L14 

ECMWF with 

Physical 

Initialization 

 

1989 – 2001 

CCM3, NCAR 

Spectral atmosphere 

model coupled to NCOM 

Slab ocean model 

T63L26 AVN 
 

1989 – 2001 

POAMA, 

AUSTRALIA 

Spectral atmosphere 

model coupled to ACOM 

ocean model 

T47L17 BAM analysis 
 

1989 – 2001 

CERFACS, 

FRANCE 

Spectral atmosphere 

model coupled to OPA 8.2 

ocean model 

T63L31 ERA-40 
 

1989 – 2001 

CNRM, FRANCE 

Spectral atmosphere 

model coupled to OPA 8.0 

ocean model 

T63L31 ERA-40 
 

1989 – 2001 

LODYC, FRANCE 

Spectral atmosphere 

model coupled to OPA 8.2 

ocean model 

T95L40 ERA-40 
 

1989 – 2001 

INGV, ITALY 

Spectral atmosphere 

model coupled to OPA 8.1 

ocean model 

T42L19 
Coupled AMIP-

type 

 

1989 – 2001 

MPI, GERMANY 

Spectral atmosphere 

model coupled to MPI-

OMI ocean model 

T42L19 Coupled Run 
 

1989 – 2001 

UKMO, UK 

Spectral atmosphere 

model coupled to GloSea 

OGCM ocean model 

T63L31 ERA-40 
 

1989 – 2001 

ECMWF, Europe 

Spectral atmosphere 

model coupled to HOPE-E 

ocean model 

T95L40 ERA-40 
 

1989 – 2001 
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3.  DATA SETS AND METHODS 

3.1. Data sets 

The observed precipitation data sets used are the Climate Prediction Center (CPC) merged 

analysis of precipitation, called CMAP data.  The data is global, starting from 1979 to present and 

the part used in the study was for the 13 years 1989-2001. CMAP data is created by a technique that 

produces monthly values and patterns of global precipitation by merging rain gauge observations 

with precipitation estimates from several satellite-based algorithms that make use of infrared and 

microwave channels. CMAP data set may contain an artificial downward trend for the period after 

1996.  In the study, the data is used for qualitative applications and results are verified against station 

records wherever applicable. A description of CMAP data is given by Xie and Arkin (1997).  

 For all the 13 global climate models, an archive consisting of month by month hindcasts for 

a 13 year period 1989 – 2001 was available for the study. A summary of these model data sets is 

included in table 1. From these model archives and observational data sets, annual cycles and 

interannual variability of precipitation were extracted and studied using the multimodel 

superensemble scheme as outlined in the next section. 

3.2. The multimodel superensemble scheme 

The Florida State University multimodel superensemble technique has been developed as a tool 

for making skillfully deterministic forecasts by a combination of global model forecasts that are made 

by many centers round the world. The scheme follows the studies of Krishnamurti et al., (1999, 2000a, 

b, 2001) briefly outlined as follows. Given a set of climate forecasts from a group of “N” multilevel 

global models, the conventional multimodel superensemble (S) is defined by the multiple linear 

regression equation written as: 

  Z     Y    -   a            i

1

i  


i

N

i

YS      (1) 

Where S is the multimodel superensemble, ai is a statistical weight for the ith model, 

Y i  is the ith model forecast, 
iY is time average of the forecast by the ith member 

model, and Z  is the time average of the observation. For the determination of the 

statistical weights, the forecast time line is split into 2 parts, a training period and a 

validation period. The statistical weights are then determined by the minimization 

of the root-mean-square error (RMSE) function (E) expressed as: 

 
2

1

tt    Z-   S         



Train

t

E      (2) 

Where Train denotes the length of the training period. St is the multimodel superensemble and Zt the 

observation. This process is also referred to as the conventional multimodel superensemble scheme 

and the regression coefficients ai are solved for using a Gauss-Jordan elimination algorithm. The 

weights are calculated at every grid point and at every vertical level over the whole training period 

of the superensemble. For a single level climate parameter such as precipitation, there are as many as 

1.7 x 106 weights. 

For all the models, the total length of monthly data was 13 years and 12 months for each year. 

This length was too short to give stable results in forecasts of climate. Cross validation was used to 

increase the statistical stability the climate forecasts. A good discussions on the usefulness of cross 

validation may be found in Dẻquẻ (1997) and Wilks (1995). The cross validation procedure was done 

by exclusion of one year at a time, training the superensemble with the remaining data series and 
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using the weights obtained to forecast the year excluded. All the climate results discussed in this 

study are cross validated. 

3.3. The multimodel synthetic superensemble scheme 

As discussed in section 1, the change from conventional superensemble scheme to the synthetic 

superensemble (SSE) technique is necessitated by attributes in the multimodel predictor data sets and 

analysis field that degrade the skill of the forecasts as discussed in Mutemi et al., (2006), Yun et al., 

(2005) and Krishnamurti et al., (2001). 

The multimodel predictor data set for each model and the predictand analysis field are first pre-

processed into empirical orthogonal functions (EOFs) that represent the most significant modes of 

internal variance in space and the corresponding principal components (PCs) that track the temporal 

evolution of the map patterns. Assuming that there are a total of “m” leading EOFs and PCs of each 

member model “i” and observations, all of which are determined over a training length (t), the 

predictand (Z) and the multimodel predictor set (Yi) are expressed as linear combinations of EOFs 

and PCs by: 

)()(
~

               ),(
M

1m

xetZtxZ mm


    (3) 





M

1m

,, )()(
~

               ),( xetYtxY mimii    (4) 

Where )(
~

tZm
, )(

~
, tY mi  and )(, xe mi  are the PC and EOF corresponding to the mth mode for the 

observation and the ith member model. M is the total number of EOFs used. The number of EOFs 

used in the analysis is such that the cumulative variance recovered by those EOFs is at least 95% 

because the objective of using EOFs in this case is to improve the quality of the data sets.  The PCs 

required in equations (3) and (4) are calculated over the length of training phase (t).  

 The next problem is the determination of spatial patterns of multimodel predictor field that 

evolves in a way that is most consistent with the EOFs of observed analysis. This consistent pattern 

is obtained by a regression of the predictand PCs calculated by equation (3) onto the PCs of the 

models calculated by equation (4). This is a linear regression problem on EOF space and it is given 

by the equation: 
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~

a              )(
~
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1
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M

m

 
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   (5) 

Where ai,m are regression coefficients and ri,m is the residual error of the ith model at 

the mth EOF mode. The coefficients ai,m are determined such that the residual error 

variance E(r2) is minimum and once the coefficients are determined, PCs of the 

predictor multimodel set over the total time line (T) are given the equation: 





M

1m
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~

a               )(
~

TY
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The new PCs are computed for each model, and they are referred to as multimodel 

synthetic ensemble predictor set. The synthetic multimodel predictor field is give 

by: 


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The rest of the synthetic superensemble forecast scheme proceeds following the 

conventional multimodel superensemble technique as outlined in section 3.2 above. 

 

3.4. The statistical measures of skill 

The measures of skill used in the study include the root mean square error (RMSE) and anomaly 

correlation. The root mean square error (RMSE) is always positive. It measures the total error and a 

minimum RMSE is a basic criterion used in the construction of superensemble forecast scheme.  

Anomaly correlation is also used to measure how well the forecast departs from the climatological 

mean in comparison to departures from the same climatological mean in the verification analysis.  A 

detailed discussion of statistical measures of skill and their use in the validation of superensemble 

forecasts may be obtained in Ross and Krishnamurti (2005). 

4. RESULTS AND DISCUSSION 

In the assessment of climate simulations and forecasts using a global climate model (GCM) it is 

important that the modeled and observed climate variables are compared and some measures of 

goodness used to quantify the model skill. Africa is climatologically diverse and different areas have 

unique regimes of annual cycle of seasonal precipitation and atmospheric circulation. Considering 

precipitation, various regions of the continent experience clearly defined wet and dry seasons. For 

example, areas of tropical Africa within the neighborhood of the equator have two wet seasons 

during the year, referred to as bimodal precipitation regime and areas further to the north and south 

experience a unimodal distribution (Ogallo, 1989). A comprehensive discussion of the physical 

mechanisms associated with seasonal climate in the various regions of Africa may be found in 

Krishnamurti (1979) and Asnani (1993) among other authors. Thus a starting point in using a climate 

model to provide climate forecasts is first to ascertain that the model is capable of simulating 

realistically the annual and seasonal cycles of climate over the region of interest. Taking Eastern 

Africa (20oE-50oE, 20oS-10oN)  as a region for detailed study analysis, the following discussion 

highlights these aspects using the 13 individual models, the multimodel ensemble mean (EM) and 

the superensemble (SSE) simulations. 

4.1. Annual and seasonal cycle of Precipitation in East Africa 

Figure 2 shows the climatology of precipitation for each month of the year in the East African 

region. The observations used are the CMAP data sets of Xie and Arkin (1997) and the long term 

means for each month were calculated over the 13 year period 1989-2001. In January, the precipitation 

can be up to 4 mm/day and the amounts decrease during February, and subsequent months to a 

minimum of 1 mm/day in June. June to August is a dry season and significant amounts of rainfall 

starts to be received in September and increase to be as high as 3.5 mm/day in December.  
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Figures 3 shows the observed and model simulated spatial distribution of precipitation 

climatology during the December - February (DJF) season in Eastern Africa. Figure 3(a) shows the 

observed pattern and it can be noticed that during the DJF season, there exists a regional north-south 

gradient of precipitation. The gradient consists of heavy precipitation southwards of the equator, and 

a general precipitation deficit northwards. It is found that southwards of the equator, the 

precipitation amounts are greater than 3 mm/day, and to the north, the season precipitation is 

substantially less.  

 An important question that may be considered is whether the model precipitation amounts 

are comparable to those in the observed annual cycle, and if the spatial distributions in the model 

and observations are physically consistent with the synoptic mechanisms that prevail during the 

season. The Intertropical Convergence Zone (ITCZ) is the main mechanism of seasonal precipitation 

in Eastern Africa, and during the DJF season, it is located within the southern sector of Eastern Africa. 

Furthermore, the Northeasterlies flowing into the Southern sector of Eastern Africa are a component 

of the Indian Ocean winter monsoon circulation (Asnani, 1993), and the consequence is heavy rainfall 

over the southern sector. The observed north-south precipitation gradient appearing in Fig. 3(a) is 

therefore physically consistent with the large-scale circulation mechanisms. 

 Figure 3(b) shows the DJF precipitation climatology simulated by the superensemble (SSE). 

Comparing Fig. 3(b) with Fig. 3(a), it is seen that the spatial distribution of precipitation and 

magnitudes in the SSE product represent all the salient features of the observed season precipitation. 

The SSE simulated precipitation exhibits the regional scale north-south gradient very well. The 

simulation of the DJF climatology by the multimodel ensemble mean (EM) is shown in Fig. 3(c) and 

one of the most notable shortcoming of the EM is an underestimation of the gradient pattern and the 

northward coverage of precipitation is beyond area of observed precipitation. The performance of 

the individual models is shown in Figs. 3(d) to (p). It is found that some of the models are a very poor 

representation of season climatology, for example models 8 and 10 shown in Fig. 3(k) and Fig. 3(m). 

Most of the other models capture to some extend an aspect of the season climatology, but there is a 

big difference from model to model in the simulation of precipitation magnitudes and spatial 

distribution. Nevertheless, it is useful to investigate how the entire annual cycle of precipitation 

climatology is represented by the SSE, EM, and the member models. 
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Figure 3. Observed and simulated climatology of precipitation during December-February (DJF) 

season in Eastern Africa by the superensemble (SSE), ensemble mean (EM), and member models. 

Contour interval is 2mm/day: (a) Observations, (b) SSE, (c) EM, (d) – (p) Member models 1 to 13. 

 
The performance of the member models, the EM, and the SSE in simulation of the complete 

annual cycle of precipitation in East Africa is shown in Fig. 4 for the four seasons March-May (MAM), 

June-August (JJA), September-November (SON), and December-February (DJF). In Fig.4, the bars 

show the precipitation in mm/day and for each season, first bar is the observation, the next 13bars 

are the models 1 to 13, 14th bar is the EM, and the last bar is the SSE. For any season, the difference 

between the observation and the models is an expression of model skill/performance. From these 

results, it is evident that there are two main wet seasons MAM and SON separated by a drier JJA 

season for Eastern Africa. The DJF season is slightly wetter than JJA. In general, the annual cycle is a 

bimodal distribution in Eastern Africa and the member models simulate this basic characteristic with 

a big difference in skill from model to model. For all the seasons, it is found that the SSE precipitation 

is closest to the observation and it is only during MAM season that the EM is comparable to the 

observation. An effective way to compare the SSE simulation with the EM (or a member model) is 

computation of the difference between the SSE and EM (or a member model) and then dividing by 

the EM (or member model) and multiplying by 100 so as to express the skill as a percentage 

improvement (Ross and Krishnamurti, 2005). Using this approach, it is may be deduced that the SSE 

provides an average improvement of 18% above the EM in the simulation of the season to season 

climatology of precipitation. Thus in addition to simulating a realistic annual cycle, the 

superensemble resolves the huge inter-model differences. This skill capability of the superensemble 

is also valid for Central, North, South, and West Africa domains and it indicates that the SSE scheme 

can be relied upon to make seasonal forecasts of precipitation. 
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4.2. Seasonal forecasting of precipitation 

Figure 5 shows the root mean square error (RMSE) in forecasts of January-March (JFM) seasonal 

precipitation in East Africa for all the 13 years 1989-2001. The forecasts were made by each member 

model, the multimodel ensemble mean (EM), and by the multimodel synthetic superensemble 

technique (SSE). Comparing the RMSE of the members and EM, it is seen that the EM is a generally 

a superior forecast product relative to the individual models. For example in all the 13 years, it is only 

4 cases where an individual model shows lower error than the EM. This outcome suggests that given 

a suit of models, the forecast made by a simple averaging of all the individual model forecasts is a 

product superior to the individual models, and it is these type of results that motivated the use of 

multimodel ensemble mean methodology that has been popularly used in many centers worldwide 

(Krishnamurti et al., 1999). However, comparing the EM and SSE forecast as shown in Fig.5 by the 

last 2-bars for each year, it is seen that in 12 of all the 13 years, the RMSE of the superensemble is 

smaller than that of the ensemble mean.  

It is important to establish the confidence level at which the RMSE of the SSE is superior to that 

of the EM. A student's t-test statistic is used. The test is constructed under the null hypothesis that no 

difference exists, and details of the t-test are given in Appendix. The percentage significance level at 

which the RMSE of the SSE forecast is superior to that of the EM product in each one of all the years 

are illustrated by the additional numbers appearing on the top of Fig. 5.  For the East African JFM 

season precipitation, the average RMSE in the forecasts made by the SSE and EM are 1 mm/day and 

1.5 mm/day respectively. The total errors of the member models are much higher than these values 

and these larger errors indicate low skills in the members. On average, it is seen that in the forecasts 

of JFM season precipitation, the SSE performs 33% better than the EM with a confidence of 85%.  
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Figures 6(a)-(c) summarize the total errors in seasonal forecasts of precipitation in three other 

regions of Africa. The seasons considered are March - May (MAM) in Central Africa shown in Fig. 

6(a), July - September (JAS) illustrated in Fig. 6(b) for North Africa, and also JAS season in West 

Africa demonstrated in Fig. 6(c). It is seen from these results that, in all the regions, the total errors in 

the member models are remarkably higher than those of the ensemble mean and the superensemble. 

The superensemble performs much better than the ensemble mean in all regions. For example, in the 

JAS 1989 precipitation over North Africa shown in Fig. 6(b), the ensemble mean RMSE was 1.5 

mm/day, while the superensemble RMSE was only 0.5 mm/day. This is equivalent to improving the 

forecast by the ensemble mean by 67%. It is also found that in all the three regions of Africa, the RMSE 

of the superensemble product is superior to that of the ensemble mean at a confidence level above 

95%. 
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4.3. Precipitation extremes associated with ENSO in Eastern Africa 

In Eastern Africa, one of the global mechanisms that is associated with extremes in the 

interannual variability of seasonal precipitation is the El-Nińo/Southern Oscillation (warm ENSO) 

phenomenon. The Tropical Eastern sector of East Africa receives heavy precipitation during the 

warm ENSO phase (Mutemi, 2003; Ogallo, 1989), while the southern sector of the region extending 

into Southern Africa suffers drought conditions. The condition reverses during the cold ENSO phase 

to give drought conditions in the Tropical Eastern Africa and enhanced precipitation in Southeastern 

Africa (Semazzi and Indeje, 1999; Ropelewski and Halpert, 1987). Studies using global climate models 

done over the region, including those of Goddard and Graham (1999) and Mutemi (2003) suggest 

that the ENSO teleconnection with East Africa precipitation during the seasons within September to 

February is physically consistent with the underlying boundary forcing and atmospheric dynamics. 

Figure 7 shows a time-longitude section, also called hovmoller diagram of precipitation in East 

Africa from longitude 20oE to 50oE during the years 1989 to 2001 for seasons MAM, JJA, SON, and 

DJF.  Figure 7(a) shows the observed pattern. One of the most conspicuous precipitation events in 

Fig. 7(a) is the 1997/98 flood event that started during the season September 1997 and continued into 

early months of 1998. It has been associated with the 1997/98 El-Niño phenomenon (Mutemi, 2003). 

The suppressed precipitation leading to the droughts of 1996 and 1999 which were associated with 

La Niña event of these years are also evident in Fig. 7(a). Figure 7(b) shows the corresponding SSE 

forecast. It found that the succession of wet and dry events in the SSE forecast and their longitudinal 

positions coincide very well with observations. The precipitation magnitudes are also to the same 

order. The ensemble mean (EM) and best performing member model time-longitude sections are 
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shown in Fig.7(c) and Fig. 7(d). Comparing the EM to the observations, it is may be seen that the 

wettest events that occur in the westward side of East Africa are shifted eastwards, and the 

magnitudes seem too high. On the other hand, the best performing member model tends to 

underestimate the wet events, for example the magnitude of the 1997/98 flood in the best model is 

just a small precipitation signal to the extreme east of the region. This result can be seen by comparing 

the patterns along year 1998 in Fig. 7(a) and Fig. 7(d).  

 

 

 
Figure 8 shows the interannual variability of East Africa precipitation during the September-

November (SON) season as simulated by the superensemble, the ensemble mean, and a member 

model. It is found that the overall wet and dry precipitation events associated with ENSO events are 

captured with some appreciable skill. From Fig. 8, good examples are the droughts of 1996 and 1999 

which were associated with La Niña events and the El Niño associated floods of 1994 and 1997. The 

superensemble does not capture well the precipitation magnitude of the 1997 event during SON 

season, but the peak is evident in the result. An explanation for this outcome could be that in the 

1989-2001 multimodel archives that were available for the study, this was the only intense 

precipitation extreme in East Africa. The cross validation approach used in the linear regression omits 

its weights out of the linear regression model that forecasts it and this lowers the statistical skill in its 

prediction. In a operational application, a multimodel data set of at least 30 years will give even better 

results because within a 30 year climatological period, there would be a number of ENSO and/or sea 

surface temperature (SST) associated precipitation extremes and therefore several superensemble 

weights. It is interesting to study how the various models, the EM, and SSE performed in the 

placement of the precipitation anomalies for these wet and dry extremes in the climate.  
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Figures 9(a) to (p) illustrate the space patterns of observed and simulated precipitation 

anomalies during September-November (SON) season of the year 1994 in Eastern Africa. During the 

SON season, the 1994 wet event rather than 1997 is used because in the interannual variability, the 

skill of the former is better as observed in Fig. 8. The base period used for calculation of the long term 

mean in all cases is the 13 years from 1989 to 2001. The contouring of the precipitation anomalies 

illustrated in all the panels in Fig. 9 has been done to show areas of positive and negative precipitation 

anomalies on the same scale. Panel (a) shows the observed anomaly and it is found that the flood 

event was concentrated in the Tropical East Africa sector, centered around the equator and oriented 

in a manner that suggests an influence the Indian ocean. The area extending southwards into South 

Africa is dry. Nevertheless, it is important to remember that during SON period, the southern sector 

of Eastern Africa is normally dry. The forecasts of the 1994 flood event by the SSE, EM, and the 

member models are shown by the series of panels (b) to (p). Comparing the SSE product with 

observation, it is noticed that the East Africa precipitation flood event is predicted with good skill in 

magnitude and spatial extend. As found from the comparison of panels (c) to (p) with (a) in Figs. 9, 

the EM and member models performed poorly in forecasting the flood event. The season SON during 

1994 was a moderate warm ENSO event in the global climate system and it is therefore reasonable to 

associate the skill seen in this result with that warm ENSO event. For the season SON, a warm ENSO 

wet composite can be defined as the average of the 1994 and 1997. The results are similar to those 

shown in Fig.9 and the SSE product emerges as a much forecast for the flood conditions in 

magnitudes and spatial distribution precipitations associated with warm ENSO events in Eastern 

Africa. From Fig. 8, it is found that the 1996 drought that occurred during the SON season was 

predicted with good skill and it is useful to study the spatial distribution of the precipitation 

anomalies.  
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Figure 9. The spatial distribution of precipitation anomalies in East Africa during the moderate 

flood event of September-November (SON) during 1994. (a) Observations, (b) S`SE, (c) EM, (d)-(p) 

Member models 1 to 13. 

Figure 10 shows the observations and forecasts of the 1996 drought. In Fig. 10, the season 

precipitation anomalies have been contoured to show areas of drought as those with negative 

precipitation anomalies and from panel (a), it is may be seen that the drought area of interest is the 

Tropical Eastern sector of East Africa. The superensemble forecast for the drought is shown in panel 

(b) and it captures the precipitation deficit well in magnitude and spatial coverage. The EM and 

member model forecasts are shown in panels (c) to (p) and it is found that none of these simulations 

compares with observations as favorably as the SSE product.  

 

  

Figure 10. The spatial distribution of precipitation anomalies in East Africa during the drought 

event of September-November (SON) during 1996. (a) Observations, (b) SSE, (c) EM, (d)-(p) 

member models 1 to 13. 

The prediction of the regional scale precipitation gradient that exists within Eastern Africa 

during the December-February (DJF) season is a feature that models simulate with huge differences. 

During the warm ENSO phase, Equatorial East Africa tends to receive enhanced precipitation and 

Southern Africa surfers a drought. The pattern is nearly opposite during cold ENSO phase and it is 

characterized by droughts in Equatorial Eastern Africa and flooding in Southern Africa. This regional 

scale climate feature can be recognized as a seesaw or  dipole pattern. Additional discussions of the 

ENSO teleconnection with seasonal precipitation over the region may be found in Ogallo (1989), 
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Ropelewski and Halpert (1987), Semazzi and Indeje (1999) and Mutemi (2003) among other authors. 

It is useful to determine how well the superensemble predicts this regional feature. In Eastern Africa, 

seasonal forecasts of climate are usually done SSTs and ENSO derived statistical relationships with 

precipitation. The statistical models cannot always give forecasts that are physically consistent with 

the large-scale mechanisms such as the atmospheric circulation characteristics and its modulation by 

regional and local scale processes. In this study, it is sufficient to focus on the skill of the SSE relative 

to the EM in forecasting this see-saw pattern in precipitation between Tropical East Africa and 

Southern Parts the larger Eastern Africa. By obtaining the average of the warm ENSO and cold ENSO 

events within the model data sets used in this study, Figure 11 summarizes the predictability of the 

regional precipitation gradient in which panels (a) and (d) show observations for the gradient pattern, 

panels (b) and (e) illustrate predictability by the SSE scheme and panels (c) and (f) show the 

performance of the EM. For the two scenarios, it is found that the multimodel superensemble 

simulates the “see-saw” in precipitation quite consistently with observations and outperforms the 

ensemble mean in getting accurately the magnitudes and spatial distribution of the season 

precipitation. 

 

 

 
Thus, the multimodel superensemble scheme can provide skill and robust results that are 

spatially consistent over very large areas, such as seen in these results for the Eastern Africa ENSO 

precipitation dipole pattern. In global climate models and also climate forecasts in many parts of 

Africa, SST anomaly patterns have been the most reliable long-range predictors. Accurate predictions 

of SST anomalies including ocean specific modes of variability, for example the Indian Ocean dipole 
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mode (Saji et al., 1999) and ENSO SST anomalies in the equatorial Pacific are crucial for improvement 

of seasonal climate predictability, especially in Eastern Africa. Krishnamurti et al., (2005) have shown 

that the superensemble provides accurate predictions of SST anomalies in all the tropical oceans. 

Therefore, superensemble modeling can be used in prediction of all aspects of the climate system, 

with an accuracy that address the spatial and temporal evolution of the climate extremes better than 

any one climate model. The prediction skill seen in the above results for dipole pattern of 

precipitation the larger Eastern Africa is a confirmation that this technique of climate modeling 

provides a robust means of predicting accurately regional scale climate extremes. Regional scale 

information of this nature and quality is a necessary input in the socio-economic planning and 

mobilization of resources for early warning, long-term advisories and policies actions towards 

addressing of tribal/ethnic conflicts due to climatically driven resources in the Arid and Semi-Arid 

Lands (ASALs), for example fatal conflicts over grasslands and watering points between Semi-

Nomadic communities living in Northern Kenya, Northeastern Uganda, and Southern Ethiopia 

during drought periods due to failure of seasonal rainfall.  The construction of a multimodel 

superensemble forecasts can be the climate modeling solution to climate scientists working in Africa 

provided the worldwide centers with the facilities for continuous improvements of specific climate 

models avail the real-time model data sets to scientists within Africa. 

5. CONCLUSIONS 

A comprehensive data from a suit of 13 global climate models has been used to construct 

superensemble climate forecasts in various regions of Africa. The multimodel superensemble 

technique that has been developed in Florida State University is used. The approach removes the 

collective bias of the individual model forecasts by assigning weights to each of the member models 

based on their past performance and using those weights in a multiple linear regression to produce 

a consensus forecast for the variable of interest. In this study, the main objective is predictability of 

seasonal precipitation over various regions of Africa, and the potential improvements that can be 

achieved by using the superensemble relative the skill attributes if the individual models and 

multimodel ensemble mean were the only forecast schemes available. 

In the study, Eastern Africa is taken as a region of detailed analysis. In Eastern Africa, the 

interannual variability of precipitation during some seasons is strongly associated with the global 

ocean SSTs and ENSO phenomenon, and often leads to heavy rainfall floods in Tropical Eastern 

Africa and drought conditions in South-eastern Africa during warm ENSO phases and the pattern 

reverses during the cold ENSO phase. This may be viewed as a see-saw of climate-stress across the 

larger Eastern African and it has far reaching socio-economic implications on communities who are 

generally very poor and depend on rain-fed agriculture and agro-pastoral activities for food 

production. Improvements of prediction of seasonal climate anomalies that affect such huge areas is 

therefore a matter of priority in many parts of Africa. 

The results have shown that even though the individual climate models and the ensemble mean 

simulate the basic annual and seasonal cycles of precipitation, the magnitudes and spatial 

distribution compare poorly with observations. In the simulation of the seasonal cycle of precipitation 

in the various regions of Africa, the superensemble product is found to be closest to the observed 

climatology, while the member models and ensemble mean simulations show big departures from 

observations. For the East Africa region, the superensemble may be said to provide an improvement 

of 18% above the multimodel ensemble mean during the seasons March-May (MAM), June-August 

(JJA), September-November (SON), and December-February (DJF). During the DJF season, a regional 

scale north-south gradient of precipitation prevails between Tropical East Africa and South-eastern 

Africa. This regional scale climate pattern is a direct influence of the intertropical convergence zone 

(ITZC) across the African continent during this time of the year. The superensemble emerges as best 

among the member models and ensemble mean in the simulation of the north-south gradient of 

precipitation in the region. 

When applied on a seasonal basis in various regions of Africa, the superensemble gave 

precipitation forecasts that outperformed the member models and ensemble mean in skill scores.  
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For example, in the July-September (JAS) precipitation in North Africa during 1989, the ensemble 

mean root mean square error (RMSE) was 1.5 mm/day, while the superensemble error was only 0.5 

mm/day. In the region, the superensemble may be viewed as improving the performance of the 

ensemble mean by 67%. It is also found that in all the four regions of Africa, the RMSE of the 

superensemble product is lower, and different from the ensemble mean at more than 95% significance 

level. A lower RMSE indicates a superior performance. 

The multimodel superensemble provides seasonal precipitation forecast over Eastern Africa that 

is consistent with all the salient features in the regional precipitation extremes associated with warm 

and cold ENSO phases in the region. However, the scheme did not pick the entire magnitude of the 

1997 floods in East Africa, which were associated with the 1997/98 El Niño. This may have been due 

to the short length of multimodel archive data sets that were available to this particular study and 

the results would come out much better with use of model data sets of at least 30 year climatological 

period. However, the superensemble provides the best prediction of the spatial distribution of 

precipitation that characterizes the north-south dipole consisting of wetter than normal conditions in 

Tropical Eastern Africa and drought stricken Southern Africa during warm ENSO phases. This 

precipitation anomaly pattern reverses during the cold ENSO phase and it is therefore a regional 

scale climate feature. Even for the reversed ENSO scenario, the superensemble forecasts stands with 

skill characteristics superior to those of the individual models and ensemble mean. The multimodel 

superensemble approach is therefore an innovative scheme for the prediction of regional scale climate 

extremes over the diverse regions of Africa. 

When real time forecasts are made with several climate models, it is difficult to know in advance 

which among these models can be relied upon to give the most skilful climate forecast for the season 

and region of interest. It will help a lot if climatological hindcasts of global climate models are 

generated and archived for longer periods.  However, knowing that the superensemble has the 

highest skills always as illustrated in this study, it would be safer to rely on the superensemble in 

seasonal forecasts and for future projections of climate. 

The multimodel superensemble should be useful for real time climate forecasts over continental 

Africa and the surrounding ocean basins and future improvements are certain from the advancement 

of physical climate modeling and more accurate observational analysis fields. 
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Appendix 

The root mean square error (RMSE) is given by: 
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Student’s t-test  
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The significance level at which the RMSE of the superensemble is superior to that of 

the ensemble mean is expressed as a percentage and indicated at the top of each 

panel for each year of forecast in Figs.5-6. The student's t-test used is: 
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