
Sparse complete sets for coNP: Solution of the P
versus NP problem
Frank Vega !Ï

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin.
Since that date, all efforts to find a proof for this problem have failed. Another major complexity
class is coNP. Whether NP = coNP is another fundamental question that it is as important as it is
unresolved. In 1979, Fortune showed that if any sparse language is coNP-complete, then P = NP.
We prove there is a possible sparse language in coNP-complete. In this way, we demonstrate the
complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computa-
tion Problems, reductions and completeness

Keywords and phrases Complexity Classes, Complement Language, Sparse, Completeness, Polyno-
mial Time

1 Introduction

The P versus NP problem is a major unsolved problem in computer science [6]. This is
considered by many to be the most important open problem in the field [6]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [6]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency [1]. However,
the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in a
seminal paper [6].

In 1936, Turing developed his theoretical computational model [19]. The deterministic
and nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [19]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [19]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [19].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [7].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [7].

In the computational complexity theory, the class P contains those languages that can be
decided in polynomial time by a deterministic Turing machine [13]. The class NP consists in
those languages that can be decided in polynomial time by a nondeterministic Turing machine
[13]. The biggest open question in theoretical computer science concerns the relationship
between these classes: Is P equal to NP ? In 2012, a poll of 151 researchers showed that 126
(83%) believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the
question may be independent of the currently accepted axioms and therefore impossible to
prove or disprove, 8 (5%) said either do not know or do not care or don’t want the answer to
be yes nor the problem to be resolved [12].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:vega.frank@gmail.com
https://uh-cu.academia.edu/FrankVega
https://orcid.org/0000-0001-8210-4126
https://doi.org/10.20944/preprints201908.0037.v7
http://creativecommons.org/licenses/by/4.0/

2 Sparse complete sets for coNP: Solution of the P versus NP problem

It is fully expected that P ̸= NP [18]. Indeed, if P = NP then there are stunning
practical consequences [18]. For that reason, P = NP is considered as a very unlikely event
[18]. Certainly, P versus NP is one of the greatest open problems in science and a correct
solution for this incognita would have a great impact not only for computer science, but for
many other fields as well [1]. Whether P = NP or not is still a controversial and unsolved
problem [1]. In this work, we state some evidences which claim that the complexity class P

could be equal to NP .

2 Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w

in Σ∗ there is a computation associated with M on input w [2]. We say that M accepts w if
this computation terminates in the accepting state, that is M(w) = “yes” [2]. Note that M

fails to accept w either if this computation ends in the rejecting state, that is M(w) = “no”,
or if the computation fails to terminate [2].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet
Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w [2]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [2]. In other words, this
means the language L(M) can be accepted by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be accepted in polynomial time
by deterministic Turing machines [7]. A verifier for a language L is a deterministic Turing
machine M , where

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L. This information
is called certificate. NP is also the complexity class of languages defined by polynomial
time verifiers [18]. If NP is the class of problems that have succinct certificates, then the
complexity class coNP must contain those problems that have succinct disqualifications [18].
That is, a “no” instance of a problem in coNP possesses a short proof of its being a “no”
instance [18].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[19]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗

is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [13]. A language L ⊆ {0, 1}∗ is NP–complete
if

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

F. Vega 3

L ∈ NP , and
L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is NP–hard
[13]. Moreover, if L ∈ NP , then L ∈ NP–complete [13]. A principal NP–complete problem
is HAM–CYCLE [7].

A simple graph is an undirected graph without multiple edges or loops [7]. An instance of
the language HAM–CYCLE is a simple graph G = (V, E) where V is the set of vertices and
E is the set of edges, each edge being an unordered pair of vertices [7]. We say (u, v) ∈ E

is an edge in a simple graph G = (V, E) where u and v are vertices. For a simple graph
G = (V, E), a simple cycle in G is a sequence of distinct vertices ⟨v0, v1, v2, ..., vk⟩ such that
(vk, v0) ∈ E and (vi−1, vi) ∈ E for i = 1, 2, ..., k [7]. A Hamiltonian cycle is a simple cycle of
the simple graph which contains all the vertices of the graph. A simple graph that contains a
hamiltonian cycle is said to be hamiltonian; otherwise, it is nonhamiltonian [7]. The problem
HAM–CYCLE asks whether a simple graph is hamiltonian [7].

3 Summary

In computational complexity theory, a sparse language is a formal language (a set of strings)
such that the complexity function, counting the number of strings of length n in the language,
is bounded by a polynomial function of n. The complexity class of all sparse languages is
called SPARSE. SPARSE contains TALLY , the class of unary languages, since these
have at most one string of any one length.

Fortune showed in 1979 that if any sparse language is coNP–complete, then P = NP (this
is Fortune’s theorem) [10]. Mahaney used this to show in 1982 that if any sparse language
is NP–complete, then P = NP [15]. A simpler proof of this based on left-sets was given
by Ogihara and Watanabe in 1991 [17]. Mahaney’s argument does not actually require the
sparse language to be in NP , so there is a sparse NP–hard set if and only if P = NP [15].

We create a class with the opposite definition, that is a class of languages that are dense
instead of sparse. We show there is a sequence of languages that are in NP–complete, but
their density grows as much as we go forward into the iteration of the sequence. The first
element of the sequence is a variation of the NP–complete problem known as HAM–CYCLE
[18]. The next element in the sequence is constructed from this new version of HAM–CYCLE.
Indeed, each language is created from its previous one in the sequence.

Since the density grows according we move forward into the sequence, then there could be
a language so much dense such that its complement might be sparse. Fortunately, we see this
property from a language created with the elements of these languages on the sequence when
the bit-length n of the binary strings tends to infinity. However, this incredible dense language
is still NP–complete. Thus, the complement of this language remains in coNP–complete,
because the complement of every NP–complete language is complete for coNP [18]. As a
consequence of Fortune’s theorem, we claim that P could be equal to NP , since we show the
existence of such sparse complete set for coNP .

4 Results

▶ Definition 1. A dense language on m is a formal language (a set of binary strings) where
there exists a positive integer n0 such that the counting of the number of strings of length
n ≥ n0 in the language is greater than or equal to 2n−m where m is a real number and
0 < m ≤ 1. The complexity class of all dense languages on m is called DENSE(m).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

4 Sparse complete sets for coNP: Solution of the P versus NP problem

▶ Definition 2. A formal language (a set of binary strings) is in DENSE(0) if for every
value of 0 < m ≤ 1 that we could choose, then the language is always in DENSE(m).

In this work, we are going to represent the simple graphs with an adjacency-matrix [7].
For the adjacency-matrix representation of a simple graph G = (V, E), we assume that
the vertices are numbered 1, 2, . . . , |V | in some arbitrary manner. The adjacency-matrix
representation of a simple graph G consists of a |V | × |V | matrix A = (ai,j) such that ai,j = 1
when (i, j) ∈ E and ai,j = 0 otherwise [7]. In this way, every simple graph of k vertices could
be represented by a binary string of k2 bits.

Observe the symmetry along the main diagonal of the adjacency matrix in this kind of
graph that is called simple. We define the transpose of a matrix A = (ai,j) to be the matrix
AT = (aT

i,j) given by aT
i,j = aj,i. Hence the adjacency matrix A of a simple graph is its own

transpose A = AT .

▶ Definition 3. The language NON–SIMPLE contains all the graph that are represented by
an adjacency-matrix A such that A ̸= AT or there is some ai,j = 1 where i = j.

▶ Lemma 4. NON–SIMPLE ∈ P .

Proof. Given a binary string x, we can check whether x is an adjacency-matrix which is
not equal to its own transpose in time O(|x|2) just iterating each bit ai,j in x and checking
whether ai,j ≠ aj,i or ai,j = 1 when i = j where | . . . | represents the bit-length function
[7]. ◀

▶ Definition 5. The language HAM–CYCLE’ contains all the binary strings z such that
z = xy, the bit-length of x is equal to (⌊

√
|z|⌋)2 and x ∈ HAM–CYCLE or x ∈ NON–SIMPLE

where y could be the empty string when | . . . | and ⌊. . .⌋ represent the bit-length function and
the floor function respectively.

▶ Lemma 6. HAM–CYCLE’ ∈ NP–complete.

Proof. Given a binary string z such that z = xy and the bit-length of x is equal to (⌊
√

|z|⌋)2,
we can decide in polynomial time whether x /∈ NON–SIMPLE just verifying when x = xT

and ai,i = 0 for all vertex i. In this way, we can reduce in polynomial time a simple graph
G = (V, E) of k vertices encoded as the binary string x such that when x has k2 bits and
x /∈ NON–SIMPLE then

x ∈ HAM–CYCLE if and only if xy ∈ HAM–CYCLE’

where y could be the empty string. In this way, we can reduce in polynomial time each
element of HAM–CYCLE to some element of HAM–CYCLE’. Therefore, HAM–CYCLE’ is
in NP–hard. Moreover, we can check in polynomial time over a binary string z such that
z = xy and the bit-length of x is equal to (⌊

√
|z|⌋)2 whether x ∈ HAM–CYCLE or x ∈

NON–SIMPLE since HAM–CYCLE ∈ NP and NON–SIMPLE ∈ NP because of P ⊆ NP

[18]. Consequently, HAM–CYCLE’ is in NP. Hence, HAM–CYCLE’ ∈ NP–complete. ◀

▶ Lemma 7. HAM–CYCLE’ ∈ DENSE(1). This would mean the existence of a sufficiently
large positive integer n′

0 such that all the binary strings of length n ≥ n′
0 which belong to

HAM–CYCLE’ are more than or equal to 2n−1 elements.

Proof. OEIS A000088 gives some number of graphs on n unlabeled points [21]. For 8 points
there are 12346 so just over half the graphs on 8 points are Hamiltonian [21]. For 12 points,
there are 152522187830 Hamiltonian graphs out of 165091172592 which would claim that

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

F. Vega 5

over 92% of the 12 point graphs are Hamiltonian [21]. For n = 2 there are two graphs,
neither of which is Hamiltonian [21]. For n < 8 over half the graphs are not Hamiltonian
[21]. It does not seem surprising that once n gets large most graphs are Hamiltonian [21].

Choosing a graph on n vertices at random is the same as including each edge in the
graph with probability 1

2 , independently of the other edges [4]. You get a more general
model of random graphs if you choose each edge with probability p [4]. This model is known
as Gn,p [4]. It turns out that for any constant p > 0, the probability that Gn,p contains a
Hamiltonian cycle tends to 1 when n tends to infinity [4]. In fact, this is true whenever
p > c×log n

n for some constant c. In particular this is true for p = 1
2 , which is our case [4].

For all the binary strings z such that z = xy and the bit-length of x is equal to (⌊
√

|z|⌋)2,
the amount of elements of size |z| in HAM–CYCLE’ is equal to the number of binary strings
x ∈ HAM–CYCLE or x ∈ NON–SIMPLE of size (⌊

√
|z|⌋)2 multiplied by 2|z|−(⌊

√
|z|⌋)2

. Since
the number of Hamiltonian graphs increases as much as we go further on n, it does not
seem surprising either that once n gets large most binary strings belong to HAM–CYCLE’.
Moreover, the amount of binary strings which have some bit-length k2 and belongs to
NON–SIMPLE is considerably superior to the amount of strings with the same bit-length
which are valid simple graphs. Actually, we can affirm for a sufficiently large positive integer
n′

0, all the binary strings of length n ≥ n′
0 which belong to HAM–CYCLE’ are indeed more

than or equal to 2n−1 elements. In this way, we show that HAM–CYCLE’ ∈ DENSE(1). ◀

▶ Definition 8. We will define a sequence of languages HAM–CYCLE’k for every possible
integer 1 ≤ k. We state HAM–CYCLE’1 as the language HAM–CYCLE’. Recursively,
from a language HAM–CYCLE’k, we define HAM–CYCLE’k+1 as follows: A binary string
xy complies with xy ∈ HAM–CYCLE’k+1 if and only if x and y are binary strings, x ∈
HAM–CYCLE’k or y ∈ HAM–CYCLE’k such that |x| = ⌊ |xy|

2 ⌋ where | . . . | represents the
bit-length function and ⌊. . .⌋ is the floor function.

▶ Lemma 9. For every integer 1 ≤ k, HAM–CYCLE’k ∈ NP .

Proof. This is true for k = 1 as we see in Lemma 6. Every string xy which belongs to
HAM–CYCLE’2 complies with x ∈ HAM–CYCLE’1 or y ∈ HAM–CYCLE’1 such that |x| =
⌊ |xy|

2 ⌋. Moreover, every string xy which belongs to the language HAM–CYCLE’3 complies
with x ∈ HAM–CYCLE’2 or y ∈ HAM–CYCLE’2 such that |x| = ⌊ |xy|

2 ⌋. Furthermore,
we can extend this property for every positive integer k > 3 in HAM–CYCLE’k. Indeed,
HAM–CYCLE’k is in NP for every integer 1 ≤ k, since the verification of whether the two
substrings are indeed elements of HAM–CYCLE’k−1 can be done in polynomial time with
the appropriated certificates using the mathematical induction on k. ◀

▶ Theorem 10. For every integer 1 ≤ k, HAM–CYCLE’k ∈ NP–complete.

Proof. This is true for k = 1 by the Lemma 6. Let’s assume it is valid for some positive
integer 1 ≤ k′. Let’s prove this for k′ + 1. We already know the adjacency-matrix of n2

zeros represents a simple graph of n vertices which does not contain any edge. This kind
of a simple graph does not belong to HAM–CYCLE’1. As a consequence, this string will
not belong to any HAM–CYCLE’k′ , because its substrings of a quadratic length are also
adjacency-matrix of only zeros. Suppose, we have an instance y of HAM–CYCLE’k′ . We
can reduce y in HAM–CYCLE’k′ to zy in HAM–CYCLE’k′+1 such that

y ∈ HAM–CYCLE’k′ if and only if zy ∈ HAM–CYCLE’k′+1

where the binary string z is exactly a sequence of ⌊ |zy|
2 ⌋ zeros. We can do this since we

already know z /∈ HAM–CYCLE’k′ . Certainly, if the membership zy ∈ HAM–CYCLE’k′+1 is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

6 Sparse complete sets for coNP: Solution of the P versus NP problem

true, z /∈ HAM–CYCLE’k′ and |z| = ⌊ |zy|
2 ⌋, then y ∈ HAM–CYCLE’k′ also holds according

to the Definition 8. Since this reduction remains in polynomial time for every positive integer
1 ≤ k′, then we show that HAM–CYCLE’k′+1 is in NP–hard. Moreover, HAM–CYCLE’k′+1
is also in NP–complete, because of the Lemma 9. ◀

▶ Theorem 11. For every integer 1 ≤ k, if the language HAM–CYCLE’k is in DENSE(k′)
for every instance of bit-length n′ ≥ n0, then HAM–CYCLE’k+1 is in DENSE(k′

2) for every
instance of bit-length n′ ≥ 2 × n0.

Proof. If the language HAM–CYCLE’k is in DENSE(k′) for every instance of bit-length
n′ ≥ n0, then for every integer n ≥ n0 the amount of elements of size n+i in HAM–CYCLE’k+1
(where i ≥ n0 and i = ⌊ n+i

2 ⌋) is greater than or equal to

2i−k′
× 2n + 2n−k′

× (2i − 2i−k′
).

This is because there must be more than or equal to 2i−k′ elements of size i in HAM–CYCLE’k
which are prefixes of the binary strings of size n + i in the language HAM–CYCLE’k+1. We
multiply that amount by 2n since this is the number of different combinations of suffixes
with length n in the binary strings of size n + i. Moreover, there must be more than or equal
to 2n−k′ elements of size n in HAM–CYCLE’k which are suffixes of the binary strings of
size n + i in HAM–CYCLE’k+1. We multiply that amount by (2i − 2i−k′) since this is the
number of different combinations of prefixes with length i in the binary strings of size n + i

just avoiding to count the previous prefixes twice. If we join both properties, we obtain the
sum described by the formula above.

Indeed, this formula can be simplified to

2n+i−k′
+ 2n+i−k′

× (20 − 2−k′
)

and extracting a common factor we obtain

2n+i−k′
× (1 + (1 − 2−k′

))

which is equal to

2n+i−k′
× (2 − 1

2k′).

Nevertheless, for every real number 0 < k′ ≤ 1 we have that

(2 − 1
2k′) ≥ 2 k′

2 .

Certainly, if we multiply both member of the inequality by 2k′ , we obtain

(2k′+1 − 1) ≥ 2k′+ k′
2

which is equivalent to

2k′
× (2 − 2 k′

2) ≥ 1

that it is true for every real number 0 < k′ ≤ 1. We can check in the Figure 1 that the
function f(x) = 2x × (2 − 2 x

2) is greater than or equal to 1 over the interval [0, 1]. Thus

2n+i−k′
× (2 − 1

2k′) ≥ 2n+i−k′
× 2 k′

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

F. Vega 7

Figure 1 Plot the function f(x) on the interval [-3, 3]

where

2n+i−k′
× 2 k′

2 = 2n+i−(k′− k′
2) = 2n+i− k′

2 .

Since there are more than or equal to 2n′−(k′
2) elements of the language HAM–CYCLE’k+1

with length n′ ≥ 2 × n0 therefore, we show that HAM–CYCLE’k+1 is in DENSE(k′

2) for
every instance of bit-length n′ ≥ 2 × n0. ◀

▶ Lemma 12. HAM–CYCLE’k ∈ DENSE(1
2k−1) for every instance of bit-length n ≥

2k−1 × n′
0, where the constant n′

0 is the positive integer used in the Definition 1 and Lemma
7 for HAM–CYCLE’.

Proof. According to the Lemma 7, HAM–CYCLE’1 is in DENSE(1) for every instance
of bit-length n ≥ 20 × n′

0 = n′
0. Consequently, due to Theorem 11, HAM–CYCLE’2 is in

DENSE(1
2) for every instance of bit-length n ≥ 21 × n′

0. Moreover, HAM–CYCLE’3 is
in DENSE(1

4) for every instance of bit-length n ≥ 22 × n′
0 and so forth . . . and thus, for

every language HAM–CYCLE’k, we have that HAM–CYCLE’k ∈ DENSE(1
2k−1) for every

instance of bit-length n ≥ 2k−1 × n′
0. ◀

▶ Definition 13. We will define a language HAM–CYCLE’∞ as follows: A binary string x

complies with x ∈ HAM–CYCLE’∞ if and only if we obtain that x ∈ HAM–CYCLE’k and
2k−1 × n′

0 ≤ |x| < 2k × n′
0 where | . . . | represents the bit-length function and the constant n′

0
is the positive integer used in the Definition 1 and Lemma 7 for HAM–CYCLE’.

▶ Lemma 14. HAM–CYCLE’∞ ∈ NP .

Proof. We can calculate the value of k from some binary string x that is approxim-
ately ⌈log2(|x|

n′
0
)⌉, where ⌈. . .⌉ is the ceiling function. In this way, we should know if

x ∈ HAM–CYCLE’∞, then x ∈ HAM–CYCLE’k. However, for every positive integer
k, we can check in polynomial time whether x ∈ HAM–CYCLE’k just splitting the bin-
ary string x into the following substrings x = x1x2x3 . . . x2k−1 and verifying later whether
x1 ∈ HAM–CYCLE’1 or x2 ∈ HAM–CYCLE’1 or x3 ∈ HAM–CYCLE’1 and so forth . . .

until we finally check whether x2k−1 ∈ HAM–CYCLE’1 where 2k−1 is polynomially bounded
by the bit-length string |x|. Indeed, the language HAM–CYCLE’∞ is in NP , because
the verification of whether the whole string or a polynomially amount of substrings are
indeed elements of HAM–CYCLE’1 can be done in polynomial time with the appropriated
certificates. ◀

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

8 Sparse complete sets for coNP: Solution of the P versus NP problem

▶ Theorem 15. HAM–CYCLE’∞ ∈ NP–complete.

Proof. We already know the adjacency-matrix of n2 zeros represents a simple graph of n

vertices which does not contain any edge. This kind of a simple graph does not belong to
HAM–CYCLE’1. Suppose, we have an instance y of HAM–CYCLE’1. We can reduce y in
HAM–CYCLE’1 to zy in HAM–CYCLE’∞ such that

y ∈ HAM–CYCLE’1 if and only if zy ∈ HAM–CYCLE’∞

where z is a binary string of a sequence of zeros such that 2k−1 × n′
0 ≤ |zy| < 2k × n′

0 and the
membership in zy ∈ HAM–CYCLE’k implies that y ∈ HAM–CYCLE’1, where the constant
n′

0 is the positive integer used in the Definition 1 and Lemma 7 for HAM–CYCLE’. We
claim that the bit-length of zy is polynomially bounded by |y|. Certainly, the bit-length
of z is bounded by 2k−1 × n′

0 which is polynomially bounded by |y| since k ≈ ⌈log2(|zy|
n′

0
)⌉,

where ⌈. . .⌉ is the ceiling function. That expression is equivalent to 2k ≈ |y|+2k−1×n′
0

n′
0

which
means that |y|

2k×n′
0

≈ 1 and thus, our claim should be true. In this way, we show that
HAM–CYCLE’∞ is in NP–hard. Moreover, we demonstrate HAM–CYCLE’∞ is also in
NP–complete, because of the Lemma 14. ◀

▶ Lemma 16. HAM–CYCLE’∞ ∈ DENSE(0) since HAM–CYCLE’∞ ∈ DENSE(2×n′
0

n),
where n is the bit-length of the binary strings and the constant n′

0 is the positive integer used
in the Definition 1 and Lemma 7 for HAM–CYCLE’.

Proof. When k tends to infinity, then 1
2k−1 tends to 0. In this way, we obtain that

HAM–CYCLE’k ∈ DENSE(0) as a consequence of the Lemma 12. HAM–CYCLE’∞
contains the elements of the languages HAM–CYCLE’k into the interval of the binary strings
between the bit-length 2k−1 ×n′

0 ≤ n < 2k ×n′
0. Those elements will have a bit-length greater

than 2k−1 × n′
0 and by the Lemma 12 the density in the interval will be DENSE(1

2k−1)
which is equivalent to

DENSE(1

2
log2(n

n′
0

)−1)

in the same interval of the binary strings between the bit-length 2k−1 × n′
0 ≤ n < 2k × n′

0.
In this way, we know that

DENSE(1

2
log2(n

n′
0

)−1) = DENSE(2

2
log2(n

n′
0

)) = DENSE(2 × n′
0

n
).

◀

▶ Theorem 17. There is a sparse language in coNP–complete.

Proof. In the Lemma 16, the complement of HAM–CYCLE’∞ could be sparse. Thus, the
complexity of counting the number of strings with length n in the complement of this language
could be bounded by a polynomial function of n. Actually, when a language is sparse, then
its complement is in DENSE(0) [15]. Indeed, the sparse languages are called sparse because
there are a total of 2n strings of length n, and if a language only contains polynomially many
of these, then the proportion of strings of length n that it contains rapidly goes to zero as n

grows (which means its complement should be in DENSE(0)) [15]. Furthermore, we claim
that if a language belongs to DENSE(α

n), then its complement should be sparse, where

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

F. Vega 9

α = 2 × n′
0 is a constant and n is the bit-length of the binary strings. Certainly, we know by

the L’Hospital’s rule that

lim
n→∞

nc

2n
= 0

for some positive constant c [20]. The number of binary strings of bit-length n in the
complement of HAM–CYCLE’∞ would be lesser than or equal to 2n − 2n− α

n for a sufficiently
large value of n. However, it is enough to show that

lim
n→∞

2n − 2n− α
n

2n
= lim

n→∞
(1 − 1

2 α
n

) = 0.

We claim that the expressions (1 − 1
2

α
n

) and nc

2n rapidly go to zero as n grows in a very
simultaneous way. In addition, according to Theorem 15, the complement of this language
HAM–CYCLE’∞ must be in coNP-complete, because the complements of the NP-complete
problems are complete for coNP [18]. ◀

▶ Lemma 18. P = NP .

Proof. By the Fortune’s theorem, if any sparse language is coNP–complete, then P = NP

[10]. As result of Theorem 17, there exists a possible sparse language in coNP–complete.
Finally, we claim that P could be equal to NP . ◀

5 Discussion

A logarithmic space Turing machine has a read-only input tape, a write-only output tape,
and a read/write work tape [19]. The work tape may contain O(log n) symbols [19]. In
computational complexity theory, LOGSPACE is the complexity class containing those
decision problems that can be decided by a logarithmic space Turing machine which is
deterministic [18]. Whether LOGSPACE = P is another fundamental question that it is as
important as it is unresolved [18].

In 1999, Jin-Yi Cai and D. Sivakumar, building on work by Ogihara, showed that if
there exists a sparse P-complete problem, then LOGSPACE = P [5]. We might extend
the proof of this paper to show the same result on P and claim that LOGSPACE = P .
Certainly, we might only need to find some P-complete which belongs to DENSE(1) because
the P-completeness is closed under complement [18]. Indeed, the other steps of that possible
proof might be similar to the arguments that we follow in this paper. Consequently, this
work might help us not only to solve P versus NP , but also LOGSPACE versus P .

6 Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP–complete problems [11]. A proof of P = NP will have stunning
practical consequences, because it leads to efficient methods for solving some of the important
problems in NP [6]. The consequences, both positive and negative, arise since various
NP–complete problems are fundamental in many fields [6]. This result explicitly concludes
with the evidence of a feasible solution for the NP–complete problems.

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as 3SAT will break most existing
cryptosystems including: Public-key cryptography [14], symmetric ciphers [16] and one-way

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.20944/preprints201908.0037.v7

10 Sparse complete sets for coNP: Solution of the P versus NP problem

functions used in cryptographic hashing [8]. These would need to be modified or replaced by
information-theoretically secure solutions not inherently based on P–NP equivalence.

Learning becomes easy by using the principle of Occam’s razor-we simply find the smallest
program consistent with the data [9]. Near perfect vision recognition, language comprehension
and translation and all other learning tasks become trivial [9]. We would also have much
better predictions of weather and earthquakes and other natural phenomenon [9].

There are enormous positive consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in operations
research are NP–complete, such as some types of integer programming and the traveling
salesman problem [11]. Efficient solutions to these problems have enormous implications for
logistics [6]. Many other important problems, such as some problems in protein structure
prediction, are also NP–complete, so this will spur considerable advances in biology [3].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself. Research mathematicians
spend their careers trying to prove theorems, and some proofs have taken decades or even
centuries to find after problems have been stated. For instance, Fermat’s Last Theorem
took over three centuries to prove. A method that is guaranteed to find proofs to theorems,
should one exist of a “reasonable” size, would essentially end this struggle.

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model
is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998. doi:10.1145/279069.
279080.

4 Béla Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2 edition, 2001. doi:10.1017/CBO9780511814068.

5 Jin-Yi Cai and D. Sivakumar. Sparse hard sets for P: resolution of a conjecture of Hartmanis.
Journal of Computer and System Sciences, 58(2):280–296, 1999. doi:10.1006/jcss.1998.
1615.

6 Stephen A Cook. The P versus NP Problem, April 2000. at http://www.claymath.org/
sites/default/files/pvsnp.pdf.

7 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

8 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
attacks on secure hash functions using SAT solvers. In International Conference on Theory
and Applications of Satisfiability Testing, pages 377–382. Springer, 2007.

9 Lance Fortnow. The Status of the P Versus NP Problem. Commun. ACM, 52(9):78–86,
September 2009. doi:10.1145/1562164.1562186.

10 S. Fortune. A note on sparse complete sets. SIAM Journal on Computing, 8(3):431–433, 1979.
doi:10.1137/0208034.

11 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

12 William I Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012.

13 Oded Goldreich. P, NP, and NP-Completeness: The basics of computational complexity.
Cambridge University Press, 2010.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.1145/279069.279080
https://doi.org/10.1145/279069.279080
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1006/jcss.1998.1615
https://doi.org/10.1006/jcss.1998.1615
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1137/0208034
https://doi.org/10.20944/preprints201908.0037.v7

F. Vega 11

14 Satoshi Horie and Osamu Watanabe. Hard instance generation for SAT. Algorithms and
Computation, pages 22–31, 1997. doi:10.1007/3-540-63890-3_4.

15 S. R. Mahaney. Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis.
Journal of Computer and System Sciences, 25:130–143, 1982. doi:10.1016/0022-0000(82)
90002-2.

16 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning, 24(1):165–203, 2000. doi:10.1023/A:1006326723002.

17 M. Ogiwara and O. Watanabe. On polynomial time bounded truth-table reducibility of NP
sets to sparse sets. SIAM Journal on Computing, 20:471–483, 1991. doi:10.1137/0220030.

18 Christos H Papadimitriou. Computational complexity. Addison-Wesley, 1994.
19 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.
20 Angus E Taylor. L’Hospital’s Rule. The American Mathematical Monthly, 59(1):20–24, 1952.

doi:10.1080/00029890.1952.11988058.
21 The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes,

August 2018. at http://oeis.org/A000088.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2021 doi:10.20944/preprints201908.0037.v7

https://doi.org/10.1007/3-540-63890-3_4
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1023/A:1006326723002
https://doi.org/10.1137/0220030
https://doi.org/10.1080/00029890.1952.11988058
http://oeis.org/A000088
https://doi.org/10.20944/preprints201908.0037.v7

