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—— Abstract

P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus N P problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. It is
one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US 1,000,000 prize for the first correct solution. Another major complexity class is P-Sel. P-Sel is
the class of decision problems for which there is a polynomial time algorithm (called a selector) with
the following property: Whenever it’s given two instances, a "yes" and a "no" instance, the algorithm
can always decide which is the "yes" instance. It is known that if NP is contained in P-Sel, then
P=NP.

In this paper we consider the problem of computing the sum of the weighted densities of states
of a Boolean formula in 3CNF'. Given a Boolean formula ¢, the density of states n(E) counts the
number of truth assignments that leave exactly F clauses unsatisfied in ¢. The weighted density of
states m(F) is equal to E X n(F). The sum of the weighted densities of states of a Boolean formula
in 3CNF with m clauses is equal to Z’;:O m(E). We prove that we can calculate the sum of the
weighted densities of states in polynomial time. The lowest value of E with a non-zero density (i.e.
ming{E[n(E) > 0}) is the solution of the corresponding MAX-SAT problem.

The minimum lowest value with a non-zero density from the two formulas ¢; and ¢2 is equal to
the minimum value between F; and FE2, where F; is the lowest value with a non-zero density of
¢ for i € {1,2}. Given two Boolean formulas ¢ and ¢2 in 3CNF with n variables and m clauses,
the combinatorial optimization problem SELECTOR-3SAT consists in selecting the formula which
has the minimum lowest value with a non-zero density, where every clause from ¢; and ¢2 can be
unsatisfied for some truth assignment. We assume that the formula with the minimum lowest value
with a non-zero density has the minimum sum of the weighted densities of states. In this way, we
solve SELECTOR-3SAT with an exact polynomial time algorithm. Finally, we claim that this could
be used for a possible selector of 3SAT and thus, P = NP.
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1 Introduction

The P versus NP problem is a major unsolved problem in computer science [5]. This is
considered by many to be the most important open problem in the field [5]. The precise
statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [5]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to
be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent
of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said
either do not know or do not care or don’t want the answer to be yes nor the problem to be
resolved [10].

The P = NP question is also singular in the number of approaches that researchers have
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brought to bear upon it over the years [7]. From the initial question in logic, the focus moved
to complexity theory where early work used diagonalization and relativization techniques
[7]. It was showed that these methods were perhaps inadequate to resolve P versus NP
by demonstrating relativized worlds in which P = NP and others in which P # NP [3].
This shifted the focus to methods using circuit complexity and for a while this approach
was deemed the one most likely to resolve the question [7]. Once again, a negative result
showed that a class of techniques known as “Natural Proofs” that subsumed the above
could not separate the classes NP and P, provided one-way functions exist [15]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [7]. More precisely, the question might be independent of standard
axioms of set theory [7]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [11].

In 1936, Turing developed his theoretical computational model [17]. The deterministic
and nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [17]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [17]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [17]. Another relevant
advance in the last century has been the definition of a complexity class. A language over an
alphabet is any set of strings made up of symbols from that alphabet [6]. A complexity class
is a set of problems, which are represented as a language, grouped by measures such as the
running time, memory, etc [6]. NP is the complexity class which contains those languages
that can be decided in polynomial time by nondeterministic Turing machines.

A major complexity class is Sharp-P (denoted as #P) [18]. This can be defined by the
class of function problems of the form “compute f(z)”, where f is the number of accepting
paths of a nondeterministic Turing machines, where this machine always accepts in polynomial
time [18]. In previous years there has been great interest in the verification or checking of
computations [13]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi
can be viewed as a model of the verification process [13]. Dwork and Stockmeyer and Condon
have studied interactive proofs where the verifier is a space bounded computation instead of
the original model where the verifier is a time bounded computation [13]. In addition, Blum
and Kannan have studied another model where the goal is to check a computation based
solely on the final answer [13]. More about probabilistic logarithmic space verifiers and the
complexity class NP has been investigated on a technique of Lipton [13]. We show some
results about the logarithmic space verifiers applied to a problem in the class #P.

A set Ly C {0,1}* is defined to be p-selective if there is a function f: {0,1}* x {0,1}* —
{0,1}* so that

= f is computable in polynomial time,

= flz,y)=zor f(z,y) =y,

= 2 € Ly or y € Ly implies that f(x,y) € L.

The function f is a selector for L. P-Selis the class of decision problems defined on languages
which are p-selective [16]. We show a possible selector for some NP-complete problem and
thus, P = NP [16]. No one has been able to find a polynomial time algorithm for any of
more than 300 important known NP-complete problems [9]. A proof of P = NP will have
stunning practical consequences, because it leads to efficient methods for solving some of the
important problems in NP [5]. The consequences, both positive and negative, arise since
various NP-complete problems are fundamental in many fields [5].
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2 Materials & Methods

2.1 Polynomial time verifiers

Let ¥ be a finite alphabet with at least two elements, and let 3* be the set of finite strings
over ¥ [2]. A Turing machine M has an associated input alphabet ¥ [2]. For each string w
in ¥* there is a computation associated with M on input w [2]. We say that M accepts w if
this computation terminates in the accepting state, that is M (w) = “yes” [2]. Note that M
fails to accept w either if this computation ends in the rejecting state, that is M (w) = “no”,
or if the computation fails to terminate, or the computation ends in the halting state with
some output, that is M(w) =y (when M outputs the string y on the input w) [2].

The language accepted by a Turing machine M, denoted L(M ), has an associated alphabet
Y and is defined by:

L(M)={weX: Mw) = “yes"}.

Moreover, L(M) is decided by M, when w ¢ L(M) if and only if M(w) = “no” [6]. We
denote by tas(w) the number of steps in the computation of M on input w [2]. For n € N
we denote by Ths(n) the worst case run time of M; that is:

Tr(n) = max{ty(w) :we X"}

where X" is the set of all strings over ¥ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, Thr(n) < n* + k [2]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [6]. A verifier for a language L; is a deterministic Turing
machine M, where:

Ly ={w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol ¢, to verify that a string w is a member of L;. This information
is called certificate. NP is also the complexity class of languages defined by polynomial time
verifiers [14].

A decision problem in NP can be restated in this way: There is a string ¢ with M (w, ¢) =
“yes” if and only if w € Ly, where L; is defined by the polynomial time verifier M [14].
The function problem associated with L, denoted F'L;, is the following computational
problem: Given w, find a string ¢ such that M(w,c) = “yes” if such string exists; if no
such string exists, then reject, that is, return “no” [14]. The complexity class of all function
problems associated with languages in NP is called FNP [14]. FP is the complexity class
that contains those problems in F'N P which can be solved in polynomial time [14].

To attack the P versus N P question the concept of NP-completeness has been very useful
[9]. The equivalent definition for the function problems is the FNP-completeness [14]. A
principal NP-complete problem is SAT [9]. An instance of SAT is a Boolean formula ¢
which is composed of:

1. Boolean variables: z1,xs, ..., Tn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such
as A(AND), V(OR), —(NOT), = (implication), < (if and only if);
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3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. On the
one hand, a satisfying truth assignment is a truth assignment that causes ¢ to be evaluated
as true. On the other hand, a truth assignment that causes ¢ to be evaluated as false is
a unsatisfying truth assignment. A Boolean formula with a satisfying truth assignment is
satisfiable and without any satisfying truth assignment is unsatisfiable. The problem SAT
asks whether a given Boolean formula is satisfiable [9].

A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CN F, if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [6]. Given a CNF' formula, MAX-SAT consists in
finding a truth assignment that satisfies the largest number of clauses. MAX-SAT belongs
to FNP-complete [14]. A Boolean formula is in 3-conjunctive normal form or 3CNF, if
each clause has exactly three distinct literals [6]. Another relevant NP-complete language is
3CNF satisfiability, or 3SAT [6]. In 3SAT, it is asked whether a given Boolean formula ¢
in 3CNF is satisfiable.

An important complexity is Sharp-P (denoted as #P) [18]. We can also define the class
#P using polynomial time verifiers. Let {0, 1}* be the infinite set of binary strings, a function
f:{0,1}* — N is in #P if there exists a polynomial time verifier M such that for every

x € {0,1}*,
flx) =y : M(z,y) = “yes}|
where |- - - | denotes the cardinality set function [2]. #P-complete is another complexity class.

A problem is # P-complete if and only if it is in # P, and every problem in #P can be reduced
to it by a polynomial time counting reduction [14].

2.2 Logarithmic space verifiers

A logarithmic space Turing machine has a read-only input tape, a write-only output tape,
and read/write work tapes [17]. The work tapes may contain at most O(logn) symbols [17].
In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [14].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [14].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [17]. The work tapes must contain at most
O(logn) symbols [17]. A logarithmic space transducer M computes a function f: X* — ¥*,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [17]. We call f a logarithmic space computable function [17]. We say that
a language L; C {0,1}* is logarithmic space reducible to a language Lo C {0, 1}*, written
Ly <; Lo, if there exists a logarithmic space computable function f : {0,1}* — {0,1}* such
that for all z € {0,1}*:

x € Ly if and only if f(x) € Ls.

The logarithmic space reduction is used in the definition of the complete languages for the
classes L and NL [14].

We can give a certificate-based definition for NL [2]. The certificate-based definition of
N L assumes that a logarithmic space Turing machine has another separated read-only tape
[2]. On each step of the machine, the machine’s head on that tape can either stay in place or
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move to the right [2]. In particular, it cannot reread any bit to the left of where the head
currently is [2]. For that reason, this kind of special tape is called “read-once” [2].

» Definition 1. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N — N
such that for every x € {0,1}*:

e Ly < Iue {0,171 such that M(x,u) = “yes”

where by M (xz,u) we denote the computation of M where x is placed on its input tape, and
the certificate u is placed on its special read-once tape, and M uses at most O(log[x]) space
on its read/write tapes for every input x, where [...] is the bit-length function [2]. M is called
a logarithmic space verifier [2].

An interesting complexity class is Sharp-L (denoted as #L). #L has the same relation to
L as #P does to P [1]. We can define the class #L using logarithmic space verifiers as well.

» Definition 2. Let {0,1}* be the infinite set of binary strings, a function f:{0,1}* - N
is in #L if there exists a logarithmic space verifier M such that for every x € {0,1}*,

f(@) = {u: M(z,u) = “yes"}|
where |-+ -| denotes the cardinality set function [1].

The two-way Turing machines may move their head on the input tape into two-way (left
and right directions) while the one-way Turing machines are not allowed to move the head
on the input tape to the left [12]. Hartmanis and Mahaney have investigated the classes
1L and 1N L of languages recognizable by deterministic one-way logarithmic space Turing
machine and nondeterministic one-way logarithmic space Turing machine, respectively [12].

» Lemma 3. NL is closed under nondeterministic logarithmic space reductions to every
language in INL.

Proof. Suppose, we have two languages Ly and Lo € 1N L, such that there is a nondetermin-
istic logarithmic space Turing machine M which makes a reduction from x € L; into
M(x) € L. Besides, we assume there is a nondeterministic one-way logarithmic space
Turing machine M’ which decides L. Hence, we only need to prove that M'(M(x)) is a
nondeterministic logarithmic space Turing machine. The solution to this problem is simple:
We do not explicitly store the output result of M in the work tapes of M’. Instead, whenever
M’ needs to move the head on the input tape (this tape will be the output tape of M), then
we continue the computation of M on input z long enough for it to produce the new output
symbol; this is the symbol that will be the next scanned symbol on the input tape of M’.
If M’ only needs to read currently from the work tapes, then we just pause the computation
of M on the input z and continue the computation of M’ until this needs to move to the
right on the input tape. We can always continue the simulation, because M’ never moves
the head on the input tape to the left. We only accept when the machine M enters in the
halting state and M’ enters in the accepting state otherwise we reject. It is clear that this
simulation indeed computes M'(M(z)) in a nondeterministic logarithmic space. In this way,
we obtain x € Ly if and only if M'(M(z)) = “yes” which is a clear evidence that L, is in
NL. |

We can give an equivalent definition for N L, but this time the output is a string which
belongs to a language in 1N L.
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» Definition 4. A language Ly is in N L if there exists another nonempty language Ly € INL
and a deterministic logarithmic space Turing machine M with an additional special read-once
input tape polynomial p : N — N such that for every x € {0,1}*:

ze Ly e Jue {0,130 such that M(x,u) =y, where y € Lo

and by M (x,u) =y we denote the computation of M where x is placed on its input tape, and
y is the remaining string in the output tape on M after the halting state, and the certificate u
is placed on its special read-once tape, and M uses at most O(log[z]) space on its read/write
tapes for every input x, where [...] is the bit-length function [2]. We call M a one-way
logarithmic space verifier. This definition is still valid, because of Lemma 3.

According to the previous definition, we can redefine #L as follows:

» Definition 5. Let {0, 1}* be the infinite set of binary strings, a function f:{0,1}* — N s
in #L if there exists another nonempty language Lo € 1IN L, and a nondeterministic one-way
logarithmic space Turing machine M’ which decides Lo, and a one-way logarithmic space
verifier M such that for every x € {0,1}*,

f(x) = {(u,p) : M(z,u) =y, where y € Ly and p is an accepting path of M’ (y)}|

and |- - -| denotes the cardinality set function. This definition is still valid under the result of
Lemma 3.
3 Results

» Definition 6. Given a Boolean formula ¢, the density of states n(E) counts the number of
truth assignments that leave exactly E clauses unsatisfied in ¢ [8]. The weighted density of
states m(E) is equal to E x n(E). The sum of the weighted densities of states of a Boolean
formula in 3CNF with m clauses is equal to > p_om(E). The lowest value of E with a
non-zero density (i.e. ming{E|n(E) > 0}) is the solution of the corresponding MAX-SAT
problem [8]. The minimum lowest value with a non-zero density from the two formulas ¢
and ¢o is equal to the minimum value between Ey and Eo, where E; is the lowest value with
a non-zero density of ¢; fori € {1,2}.

We define a new problem:

» Definition 7. EXACTLY-THRICE

INSTANCE: A unary string 09 and a collection of binary strings, such that each element
in the collection represents a power number in base 2 with a bit-length lesser than or equal to
q. The collection of numbers is represented by an array N.

QUESTION: Is there an element repeated exactly thrice in N ?

» Theorem 8. EXACTLY-THRICE € 1INL.

Proof. Given an instance (09, N) of EXACTLY-THRICE, then we can read its elements
from left to right on the input tape, verify that every element in the collection is a binary
string, and finally check whether every element in N has a bit-length lesser than or equal
to ¢. In addition, we can nondeterministically pick a binary integer d between 1 and ¢ and
accept in case of there exists the number 29! exactly thrice in N.

We can make all this computation in a nondeterministic one-way using logarithmic space.
Certainly, the verification of the membership of 2¢=! in N could be done in logarithmic
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ALGORITHM 1: ONE-WAY-ALGO
Data: (07, N) where (07, N) is an instance of EXACTLY-THRICE
Result: A nondeterministic acceptance or rejection in one-way logarithmic space

// Get the length of the unary string 07 as a binary string

q <— length(09);

// Generate nondeterministically an arbitrary integer between 1 and ¢

d <— random(1, q);

t+— 0;

// Initial position in N

i — 1;

while N[i] # undefined do

s <+— 0

// NJi][j] represents the j'" digit of the string in NTi]

for j«<— 1tog+1do

if j =q¢+1 then

if N[i][j] # undefined then
// There exists an element with bit-length greater than ¢
return “no”;

end

nd

Ise if (j =1AN[][j]# 1)V (j > 1ANI[|[j] =1)V N[][j] ¢ {0, 1, undefined} then

// The element NJ[i] is not a binary string

o 0

return “no”;
nd
Ise if N[i][j] = undefined then
// Break the current for loop statement
break;
nd
else
// Store the current position of digit N[i][j] in N[
s+— s+ 1;
end

o 0

0]

end

if s=dAt<4then

// The element N[i] is equal to 27!
te—t+1;

end

i +— 1+ 1;

end

if ¢t =3 then

// The element 29! appears exactly thrice in N

“ ”,
return “yes”;

end
else

return “no”;
end
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space, since it is trivial to check whether a binary string represents the power 24!, Besides,
we can store a logarithmic amount of symbols, because of d has an exponential more succinct
representation in relation to the unary string 09 [14]. Moreover, the variables that we could
use for the iteration of the elements in N have a logarithmic space in relation to the length
of the instance (07, N).

We never need to move to the left on the input tape for the acceptance or rejection of
the elements in EXACTLY-THRICE in a nondeterministic logarithmic space. We describe
this nondeterministic one-way logarithmic space computation in the Algorithm 1. In this
algorithm, we assume a value does not exist in the array N into the cell of some position
i when N[i] = undefined. To sum up, we actually prove that EXACTLY-THRICE is in
1INL. |

Let’s consider a counting problem:

» Definition 9. #CLAUSES-3UNSAT

INSTANCE: Two natural numbers n, m, and a Boolean formula ¢ in 3CNF of n variables
and m clauses. The clauses are represented by an array C, such that C represents a set of
m set elements, where C[i] = S; if and only if S; is exactly the set of literals into a clause c;
in ¢ for 1 <i < m. Besides, each variable in ¢ is represented by a unique integer between 1
and n. In addition, a negative or positive integer represents a negated or non-negated literal,

respectively.
ANSWER: The sum of the weighted densities of states of the Boolean formula ¢.

» Theorem 10. #CLAUSES-3UNSAT € FP.

Proof. We are going to show there is a deterministic Turing machine M, where:
#CLAUSES-3UNSAT = {w : M(w,u) = y,3 u such that y € EXACTLY-THRICFE}

when M runs in logarithmic space in the length of w, u is placed on the special read-
once tape of M, and w is polynomially bounded by w. Given an instance (n,m,C) of
#CLAUSES-8UNSAT, we firstly check whether this instance has an appropriate represent-
ation according to the constraints introduced in the Definition 9. The constraints for the
Definition 9 are the following ones:

The array C' must contain exactly m sets and,

each variable must be represented by a unique integer between 1 and n and,
there are no two equals sets inside of C' and finally,

every set element must contain exactly three distinct literals.

ol A\

All these requirements are verified in the logarithmic space Algorithm 2, where this
subroutine decides whether the instance has an appropriate representation according to the
Definition 9. After that verification, we use a certificate as an array A, such that this consists
in an array of n different integer numbers in ascending absolute value order. We read at once
the elements of the array A and we reject whether this is not an appropriate certificate: That
is, when the absolute value of the numbers are not sorted in ascending order, or the array
A does not contain exactly n elements, or the array A contains a number that its absolute
value is not between 1 and n, since every variable is represented by an integer between 1 and
n in C.

While we read each element z of the array A, then we copy the binary numbers 27! that
represent the sets C[j] which contain the literal = just creating another instance (09, N) of
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ALGORITHM 2: CHECK-ALGO
Data: (n,m,C) where (n,m,C) is an instance of #CLAUSES-3UNSAT
Result: A logarithmic space subroutine

if n<1vm<1then

// n or m is not a natural number

return “no”;

end

for i<+ 1tom+1do

if (i <m+ 1A C[i] = undefined) V (i = m + 1 A C[i] # undefined) then
// C does not contain exactly m sets
return “no”;

end

end

for i < 1 ton do

t<+— 0;

foreach j < 1 to m; C[j] = {«,y, 2} do

// abs(...) denotes the absolute value operation

if abs(x) < 1Vabs(y) <1V abs(z) <1Vabs(z) >nVabs(y) >nVabs(z) > n then
// C does not contain exactly n variables from 1 to n

return “no”;

end

if t=0A (i =abs(z) Vi=abs(y) Vi=abs(z)) then

// Store the existence of the variable ¢ in C
t+— 1;

end

end
if t =0 then
// C does not contain the variable i

return “no”;

end

end

for i+ 1tom—1do

for j < i+1tomdo

// N denotes the intersection set operation

if C[i] N C[j] = C[i] then

// The array C' is not exactly a “set” of set elements
return “no”;

end

// |---| denotes the cardinality set function

if |C[i]| + |C[j]| # 6 then

// Ci] or C[j] does not contain exactly three elements

return “no”;

end

end

end
// The instance (n,m,C) is appropriate for #CLAUSES-3UNSAT
return “yes”;
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ALGORITHM 3: VERIFIER-ALGO
Data: (n,m,C, A) where (n,m,C) is an instance of # CLAUSES-8UNSAT and A is a
certificate
Result: A one-way logarithmic space verifier
if CHECK-ALGO(n,m,C) = “no” then
// (n,m,C) is not an appropriate instance of #CLAUSES-3UNSAT
return “no”;

end
else
‘ output 0™;
end
// Minimum current variable during the iteration of the array A
z +— 0;
fori+ 1ton+1do

if it =n+1 then
if A[i] # undefined then
// The array A contains more than n elements
return “no”;
end
end
else if A[i] = undefined V abs(A[i]) < 1V abs(A[i]) > nV abs(Ali]) < z then
// The certificate A is not appropriate
return “no”;
end
else
// abs(...) denotes the absolute value operation
x +— abs(A[i]);
y «— Alil;
for j < 1 tom do
if y € C[j] then
// Output the number 2/~! when the set C[j] contains the literal y
output , 1;
if j —1 >0 then
‘ output 0°71;
end
end
end
end

end
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EXACTLY-THRICE, where the value of ¢ is equal to m. Since the array A does not contain
repeated elements, then we could correspond each certificate A to a truth assignment for
¢ with a representation of all the variables in ¢, such that the literals in A are false. We
know a set C[j] that represents a clause is false if and only if the three literals in C[é] are
false. Therefore, the evaluation as false into the literals of the array A corresponds to a
unsatisfying truth assignment in ¢ if and only if we write some number 2/~! thrice to the
output tape, where 2/=! represents a set C[j] for some 1 < j < m.

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A.
Indeed, the variables that we could use for the iteration of the elements in A and C have a
logarithmic space in relation to the length of the instance (n,m,C). Hence, we only need
to iterate from the elements of the array A to verify whether the array is an appropriate
certificate and write to the output tape the representation as a power of two of the sets in C'
that contain the literals in A. This logarithmic space verification will be the Algorithm 3.
We assume whether a value does not exist in the arrays A or C' into the cell of some position
t when A[i] = undefined or C[i] = undefined, respectively.

The Algorithm 3 is a one-way logarithmic space verifier, since this never moves the head on
the special read-once tape to the left, where it is placed the certificate A. Moreover, for every
unsatisfying truth assignment represented by the array A, then the output of this one-way
logarithmic space verifier will always belong to the language EXACTLY-THRICE, where we
know that EXACTLY-THRICE € 1NL as a consequence of Theorem 8. In addition, every
appropriate certificate A is always polynomially bounded by the instance (n, m,C).

Consequently, we demonstrate that # CLAUSES-3UNSAT belongs to the complexity class
#L under the Definition 5. Certainly, every truth assignment in ¢ corresponds to a single
certificate in our one-way logarithmic space verifier. In addition, the number of accepting
paths in the Algorithm 1 for the generated instance (09, N) of EXACTLY-THRICE is exactly
the number of unsatisfied clauses for a single truth assignment.

The number of accepting paths in the Algorithm 1 for a single instance is equal to the
number of different powers of two that exist exactly thrice in the array N. Actually, this
corresponds to the number of unsatisfied clauses for the truth assignment that represents
the certificate A. We know that #L is contained in the class FP [1], [4], [2]. As result, #L
remains in the class F'P under the Definition 5 as a consequence of Lemma 3. In conclusion,
we show that #CLAUSES-3UNSAT is indeed in FP. <

Let’s consider an interesting problem:

» Definition 11. SELECTOR-3SAT

INSTANCE: Two Boolean formulas ¢1 and ¢ in 3CNF with n variables and m clauses,
where every clause from ¢1 and ¢o can be unsatisfied for some truth assignment. The clauses
in the Boolean formula ¢; is represented by a set S;, such that S; represents a set of m set
elements, where S; ; € S; if and only if S; ; is exactly the set of literals into a clause c; in
¢j for 1 <i < m and j € {1,2}. Besides, each variable from the formulas ¢1 and ¢s is
represented by a unique integer between 1 and n within the sets Sy and Ss, respectively. In
addition, a negative or positive integer represents a negated or non-negated literal, respectively.

ANSWER: The formula that has the minimum lowest value with a non-zero density.

» Theorem 12. SELECTOR-3SAT € FP.

Proof. Consider the Algorithm 4, where POLY-ALGO is a polynomial time algorithm for
#CLAUSES-8UNSAT. Indeed, POLY-ALGO converts a set of clauses S in an appropriate
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ALGORITHM 4: SELECTOR-ALGO

Data: (S1, S2) where (S, S2) represents two Boolean formulas in 3CNF with n variables and
m clauses

Result: A polynomial time algorithm

if (S1,52) is not an appropriate instance of SELECTOR-8SAT then
return “no”;

end

else if POLY-ALGO(S1) < POLY-ALGO(S2) then
‘ return Si;

end

else
‘ return Ss;

end

instance of #CLAUSES-3UNSAT and solve it. We state that the Algorithm 4 solves
SELECTOR-3SAT. Certainly, given two Boolean formulas ¢; and ¢ in 3SCNF with n
variables and m clauses, then they comply that the one which has the minimum lowest value
with a non-zero density contains the minimum sum of the weighted densities of states, when
every clause from the formulas ¢; and ¢- can be unsatisfied for some truth assignment.

Consequently, the formula which has the minimum lowest value with a non-zero density
contains the truth assignment that satisfies the largest number of clauses from the truth
assignments of the Boolean formulas ¢; and ¢5. Indeed, the truth assignment that satisfies
the largest number of clauses of every Boolean formula ¢; for j € {1,2} complies that
contains the smallest amount of unsatisfied clauses from all the truth assignments in ¢;.
In addition, the truth assignment that satisfies the largest number of clauses in a Boolean
formula ¢; for j € {1,2} directly affects to the number of unsatisfied clauses within the other
truth assignments in ¢;. Actually, if the truth assignment that satisfies the largest number
of clauses in a Boolean formula ¢; contains less unsatisfied clauses than the truth assignment
that satisfies the largest number of clauses in another Boolean formula ¢, then the other
truth assignments in ¢; contain less unsatisfied clauses than the other truth assignments in
ok, where ¢; and ¢y contain the same amount of clauses and variables and every clause in
¢; and ¢ can be unsatisfied for some truth assignment.

However, the Boolean formula that contains less unsatisfied clauses from all the truth
assignments complies that this has the minimum sum of the weighted densities of states.
Certainly, if n(E) > 0 for some Boolean formula ¢; and n(E) = 0 for another Boolean
formula ¢y, then there are more chances that the other values n(E’) in ¢; are greater than
the values of n(E’) in ¢, as much as E’ is close to E and the values of n(E’) in ¢; are lesser
than the values of n(E’) in ¢, when E’ is less close to E, where the tuple of ¢; and ¢y
represents an instance of SELECTOR-3SAT: Note that, as much as E' and n(E’) increase
their values, then m(E’) increases its value as well, where this happens exactly when E’
is less close to E. In general, as much as m(E’) increases its value, then the sum of the
weighted densities of states increases its value in the same way. Hence, the sum of the
weighted densities of states in ¢; must be lesser than the sum of the weighted densities of
states in ¢. The Algorithm 4 is computable in polynomial time due to Theorem 10. In this
way, we show that SELECTOR-3SAT is in FP. <

» Theorem 13. P = NP.

Proof. The combinatorial optimization problem SELECTOR-3SAT could be used for a
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possible selector of 3S AT [16]. We claim that given two Boolean formulas ¢ and ¢ in 3CNF
that represents an instance of SELECTOR-3SAT, such that this tuple of formulas consists in
a pair of a satisfiable and an unsatisfiable formula, then the problem SELECTOR-3SAT can
always select the satisfiable formula. Certainly, we could extend this to use it for every pair of
Boolean formulas ¢ and ¢9 in 3C'N F' with not necessarily the same amount of variables and
clauses. For example, we could modify every pair of Boolean formulas ¢, and ¢5 in 3SCNF
into another tuple of Boolean formulas ¢} and ¢4 in 3C NF that represents an instance of
SELECTOR-3SAT, such that ¢; is satisfiable if and only if ¢} is satisfiable for ¢ € {1,2}. In
this way, we would prove that P = NP as a consequence of Theorem 12. |
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