Pre prints.org

Article Not peer-reviewed version

Note for the P versus NP Problem

Frank Vega :
Posted Date: 14 March 2024
doi: 10.20944/preprints201908.0037v10

Keywords: Complexity classes; boolean formula; graph; completeness; polynomial time

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints201908.0037.v10

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Note for the P versus NP Problem

Frank Vega
Groups Plus Tours Inc., 9611 Fontainebleau Blvd, Miami, FL 33172, USA; vega.frank@gmail.com

Abstract: P versus NP is considered as one of the most fundamental open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? It was
essentially mentioned in 1955 from a letter written by John Nash to the United States National Security
Agency. However, a precise statement of the P versus NP problem was introduced independently
by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity class is NP-complete. It is well-known that P is equal to NP under
the assumption of the existence of a polynomial time algorithm for some NP-complete. We show that
the Monotone Weighted Xor 2-satisfiability problem (MWX2SAT) is NP-complete and P at the same
time. Certainly, we make a polynomial time reduction from every directed graph and positive integer
k in the K-CLOSURE problem to an instance of MWX2SAT. In this way, we show that MWX2SAT
is also an NP-complete problem. Moreover, we create and implement a polynomial time algorithm
which decides the instances of MWX2SAT. Consequently, we prove that P = NP.

Keywords: complexity classes; boolean formula; graph; completeness; polynomial time

MSC: 68Q15; 68Q17; 68Q25

1. Introduction

P versus NP is one of the most important and challenging problems in computer science [1].
It asks whether every problem whose solution can be quickly verified can also be quickly solved.
The informal term “quickly” here refers to the existence of an algorithm that can solve the task in
polynomial time [1]. The general class of problems for which such an algorithm exists is called P or
“class P” [1].

Another class of problems called NP, which stands for “nondeterministic polynomial time”, is
defined by the property that if an input to a problem is a solution, then it can be quickly verified [1].
The P versus NP problem asks whether P equals NP. If it turns out that P # NP, which is widely
believed to be the case, it would mean that there are problems in NP that are harder to compute than
to verify [1]. This would have profound implications for various fields, including cryptography and
artificial intelligence [2].

Solving the P versus NP problem is considered to be one of the greatest challenges in computer
science [1]. A solution would have a profound impact on our understanding of computation and
could lead to the development of new algorithms and techniques that could solve many of the world’s
most pressing problems [1]. The problem is so difficult that it is considered to be one of the seven
Millennium Prize Problems, which are a set of seven unsolved problems that have been offered a 1
million prize for a correct solution [1].

2. Materials and Methods

NP-complete problems are a class of computational problems that are at the heart of many
important and challenging problems in computer science. They are defined by the property that they
can be quickly verified, but there is no known efficient algorithm to solve them. This means that
finding a solution to an NP-complete problem can be extremely time-consuming, even for relatively
small inputs. In computational complexity theory, a problem is considered N P-complete if it meets the
following two criteria:

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints201908.0037.v10

2 of 5

1. Membership in NP: A solution to an NP-complete problem can be verified in polynomial time.
This means that there is an algorithm that can quickly check whether a proposed solution is
correct [3].

2. Reduction to NP-complete problems: Any problem in NP can be reduced to an NP-complete
problem in polynomial time. This means that any NP-problem can be transformed into an
NP-complete problem by making a small number of changes [3].

If it were possible to find an efficient algorithm for solving any one NP-complete problem, then this
algorithm could be used to solve all NP problems in polynomial time. This would have a profound
impact on many fields, including cryptography, artificial intelligence, and operations research [2]. Here
are some examples of NP-complete problems:

¢ Boolean satisfiability problem (SAT): Given a Boolean formula, determine whether there is an
assignment of truth values to the variables that makes the formula true [4].

e K-CLOSURE problem: Given a directed graph G = (V, A) (V is the set of vertices and A is the
set of edges) and positive integer k, determine whether there is a set V' of at most k vertices such
that for all (u,v) € A either u € V' or v ¢ V' (see reference [Queyranne, 1976] from the Johnson
and Garey book) [4]. Note that in this problem the statement “either u € V' or v ¢ V'” does mean
the same as: (u € V' orv € V) or (u ¢ V' or v ¢ V') since the logical implication of the word
“Either” indicates that at least one of the following statements must be true, but not necessarily
both.

These are just a few examples of the many N P-complete problems that have been studied and have
a close relation with our current result. On the one hand, a vertex cover (sometimes called a node
cover) of a graph G is a subset of its vertices, denoted by V’, such that every edge in G has at least one
endpoint in V’. On the other hand, an independent set V' is a subset of vertices in a graph G where no
two vertices in the set are connected by an edge.

Definition 1. Vertex Cover and Independent Set

INSTANCE: An undirected graph G = (V, E) and a positive integer k.

QUESTION: Is there set V' of at most k vertices such that V' is both a vertex cover and an independent set
in G?

REMARKS: This problem can be easily solved in polynomial time [4].

In this work, we show there is an NP-complete problem that can be solved in polynomial time
using the previous problem. Consequently, we prove that P is equal to NP.

3. Results

Formally, an instance of Boolean satisfiability problem (SAT) is a Boolean formula ¢ which is
composed of:

1. Boolean variables: x1,x3,...,Xy;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as
A(AND), V(OR), —(NOT), = (implication), < (if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. A satisfying
truth assignment is a truth assignment that causes ¢ to be evaluated as true. A Boolean formula with a
satisfying truth assignment is satisfiable. The problem SAT asks whether a given Boolean formula is
satisfiable [4].

We define a CNF Boolean formula using the following terms: A literal in a Boolean formula is an
occurrence of a variable or its negation [3]. A Boolean formula is in conjunctive normal form, or CNF,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints201908.0037.v10

30f5

if it is expressed as an AND of clauses, each of which is the OR of one or more literals [3]. A Boolean
formula is in 2-conjunctive normal form or 2CNF, if each clause has exactly two distinct literals [3].
For example, the Boolean formula:

(x1V — x1) A (x3Vx2) A (— 11V — x3)

is in 2CNF. The first of its three clauses is (x1V — x7), which contains the two literals x; and — x;.
We define the following problem:

Definition 2. Monotone Weighted Xor 2-satisfiability problem (MWX2SAT)

INSTANCE: An n-variable 2CNF formula with monotone clauses (meaning the variables are never
negated) using logic operators @ (instead of using the operator V) and a positive integer k.

QUESTION: Is there exists a satisfying truth assignment in which at most k of the variables are true?

The following is key Lemma.
Lemma 1. MWX2SAT € NP-complete.

Proof. For any given instance G = (V, A) of the K-CLOSURE problem, one can construct an equivalent
MWX2SAT problem with a variable for each vertex of a graph and two variables for each edge of
a graph. Each edge (u,v) of the graph may be represented by the 2CNF clauses (1 @ xyp) A (Xyp ®
v) A (Xou B Xuw) where xy, and x,, are two new variables such that for a possible satisfying truth
assignment, either both variables u and v are true and belong to a closure V' or both variables u and v
are false and belong to V — V’. By definition, the k-vertex closure cannot have any outgoing edges
pointing to vertices outside the closure. Therefore, no edge can exist where one vertex belongs to
the solution and the other does not. Both endpoints of any edge must either be inside the closure or
outside it. Then the satisfying instances of the resulting 2CNF formula using logic operators & encode
solutions to the K-CLOSURE problem, and there is a satisfying truth assignment with at most k 4 |A|
true variables if and only if there is a closure with at most k vertices where | .. .| is the cardinality set
function. Therefore, like K-CLOSURE, MW X2SAT is NP-complete. O

This is the main insight.
Theorem 1. MW X2SAT € P.

Proof. There is a connection between finding a satisfying truth assignment in MW X2SAT with at most
k true variables and finding a set of at most k vertices that is both a vertex cover and an independent
set in a specific graph construction.

Here’s a breakdown of the equivalence:

1. Graph Construction:

Each vertex in the original graph represents a variable in the MW X2SAT formula.
Edges are created between variables based on the structure of the 2CNF clauses: If two

variables appear in a clause (e.g., (x ©y)), then an edge is drawn between the corresponding
vertices in the graph.

2. MWX2SAT and the Graph:

* A truth assignment in MWX2SAT where at most k variables are true directly translates to
a set of at most k vertices in the constructed graph where true variables correspond to the

vertices included in the set.
¢ The properties of MWX2SAT clauses ensure that:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints201908.0037.v10

4 0of5

- Vertex Cover: The chosen vertices cover all the edges (due to the structure of the clauses

and the way edges are formed). This satisfies the vertex cover condition.
— Independent Set: The chosen vertices don’t have any edges connecting them (because

the variables are connected in the graph, and only one variable from each clause can be
true). This satisfies the independent set condition.

Therefore, finding a satisfying truth assignment with at most k true variables in MW X2S AT is indeed
equivalent to finding a set of at most k vertices that fulfills both vertex cover and independent set
requirements in the corresponding graph. However, we know the problem of finding a set of at most k
vertices that is both a vertex cover and an independent set can be easily solved in polynomial time [4].
Consequently, the instances of the problem MW X2SAT can be solved in polynomial time as well. [

This is the main theorem.
Theorem 2. There is a quadratic polynomial time algorithm for the problem MW X2SAT.
Proof. Suppose we have the following sequence of variables in a given instance of MW X2SAT:
X1,+ .o r Xne

For each variable x; in the 2CNF formula, we define the functions f and g as,

* f(x;) is the number of variables x; such that either (x; V x;) or (x; V x;) belongs to the 2CNF
formula whenever j > i;

* g(x;) is the number of variables x; such that either (x; V x;) or (x; V x;) belongs to the 2CNF
formula whenever j < i.

We define a state as a quadruple (i,s, 7, t) of integers. This state represents the fact that,
“the subset of variables x1,...,x;

with s true variables
where —m <r<mand —m <t <m”,
where m is the amount of clauses into the 2CNF formula. Each state (i, s, r, t) has two next states:

1. (i+1,s+1,r+ f(xis1),t — g(xi11)), implying that x;;4 is included in the subset and it is
evaluated as true;

2. (i+1,s,r—g(xit1),t+ f(xi41)), implying that x;, 4 is included in the subset and it is evaluated
as false.

Starting from the initial state (0,0,0,0), it is possible to use any graph search algorithm (e.g.
Breadth-first search (BFS) [3]) to search any state (n,®,0,0) such that 0 < @ < k. Certainly, we
satisfy all the clauses if they contain exactly one true literal just adding 1 by the true literal from the left
most position (otherwise adding 1 by the false literal from the left most position) and subtracting 1 by
the false literal from the right most position (otherwise subtracting 1 by the true literal from the right
most position). The run-time of this algorithm is at most linear in the number of states. The number
of states is at bounded by n? - 4 - m? times and therefore, the whole time required is O((n - m)?). We
create our software programming implementation in Python for this algorithm [5]. This is placed into
a GitHub repository under my GitHub username “frankvegadelgado” [5]. The last commit was on
February 27th of 2024 with a SHA commit eec2ccb2bbab51e3efaf3ad7d722b948b88861ea9 [5]. [

References

1. Cook, S.A. The P versus NP Problem, Clay Mathematics Institute. https://www.claymath.org/wp-content/
uploads/2022/06/pvsnp.pdf, 2022. Accessed 1 March 2024.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints201908.0037.v10

50f5

2. Fortnow, L. The status of the P versus NP problem. Communications of the ACM 2009, 52, 78-86.
doi:10.1145/1562164.1562186.

3. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press, 2009.

4. Garey, M.R,; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1 ed.; San
Francisco: W. H. Freeman and Company, 1979.

5. Vega, F. ALMA | MWX2SAT Solver. https://github.com/frankvegadelgado/alma, 2024. Accessed 1 March
2024.

Short Biography of Authors

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist
who graduated in Computer Science in 2007. In May 2022, The Ramanujan
Journal accepted his mathematical article about the Riemann hypothesis. The
article “Robin’s criterion on divisibility” makes several significant contributions
to the field of number theory. It provides a proof of the Robin inequality for a
large class of integers, and it suggests new directions for research in the area of
analytic number theory.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

