

1 Article

2

Theoretical Determination of Size Effects in Zeolite- 3 Catalyzed Alcohol Dehydration

4 **Larissa Y. Kunz** ^{1,‡}, **Lintao Bu** ^{1,‡}, **Brandon C. Knott** ¹, **Cong Liu** ², **Mark R. Nimlos** ¹, **Rajeev S.**
5 **Assary** ², **Larry A. Curtiss** ², **David J. Robichaud** ¹ and **Seonah Kim** ^{1,*}6 ¹ National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, CO, 804017 ² Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439

8 * Correspondence: Seonah.Kim@nrel.gov; Tel.: +1-303-384-7323

9 [‡] L.Y. K. and L.B. contribute equally to this work.

10 **Abstract:** In the upgrading of biomass pyrolysis vapors to hydrocarbons, dehydration accomplishes
11 a primary objective of removing oxygen and acidic zeolites represent promising catalysts for
12 dehydration reaction. Here, we utilize density functional theory calculations to estimate adsorption
13 energetics and intrinsic kinetics of alcohol dehydration over H-ZSM-5, H-BEA, and H-AEL zeolites.
14 ONIOM calculations of adsorption energies were observed to be inconsistent when benchmarked
15 against QM/Hartree-Fock and periodic boundary condition calculations. However, reaction
16 coordinate calculations of adsorbed species and transition states were consistent across all levels
17 considered. Comparison of ethanol, *iso*-propanol (IPA), and *tert*-amyl alcohol (TAA) over these
18 three zeolites allowed for a detailed examination of how confinement impacts reaction mechanisms
19 and kinetics. TAA, seen to proceed via a carbocationic mechanism, was found to have the lowest
20 activation barrier, followed by IPA and then ethanol, both of which dehydrate via a concerted
21 mechanism. Barriers in H-BEA were consistently found to be lower than in H-ZSM-5 and H-AEL,
22 attributed to late transition states and either elevated strain or inaccurately estimating long-range
23 electrostatic interactions in H-AEL, respectively. Molecular dynamics simulations revealed that the
24 diffusivity of these three alcohols in H-ZSM-5 are significantly overestimated by Knudsen diffusion,
25 which will complicate experimental efforts to develop a kinetic model for catalytic fast pyrolysis.

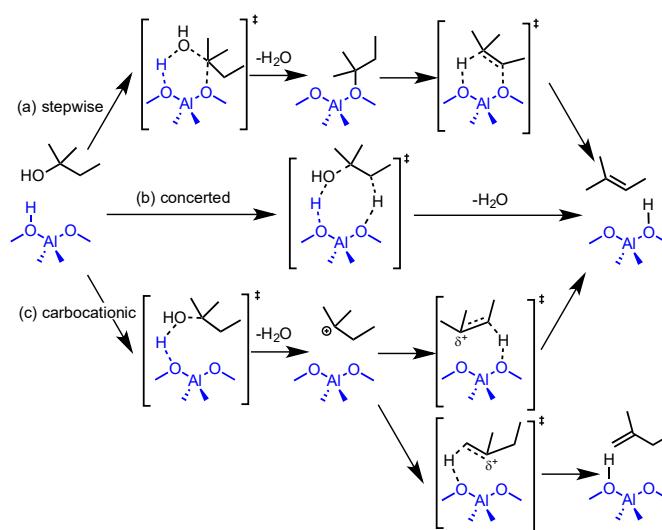
26 **Keywords:** biomass pyrolysis; alcohol dehydration; zeolite; DFT; ONIOM

27

28

1. Introduction

29 With its high carbon and hydrogen content, bio-oil derived from biomass pyrolysis presents a
30 viable alternative to petroleum as a nearly carbon-neutral precursor to liquid fuels with a high energy
31 density relative to raw biomass [1]. However, the high oxygenate content of bio-oil renders it
32 immiscible with conventional nonpolar fuels, and leads to fuel instability and corrosion issues [2-4].
33 These oxygenates come in a variety of forms, including aldehydes, ketones, carboxylic acids,
34 phenolics, and alcohols.


35 A fraction of the oxygen present in the pyrolysis vapors can be removed via de-oxygenation
36 reactions that extract oxygen primarily in the forms of water, carbon monoxide, and carbon dioxide
37 over zeolite catalysts (either *in situ*, contemporaneous with pyrolysis, or *ex situ*, in a downstream
38 upgrading reactor) [5]. For example, rice husk pyrolysis studies over an H-ZSM-5 catalyst have
39 demonstrated that water is formed predominantly at lower temperatures (400 to 500 °C) whereas
40 higher temperatures (500 to 600 °C) favor the formation of CO and CO₂ [6,7]. The dehydration
41 reactions at lower temperatures are preferable because they remove oxygen without removing
42 carbon, and carbon yield is highly correlated with fuel selling price [8]. Such dehydration reactions
43 are likely to be rate-limiting for a variety of reaction classes, including Diels-Alder cycloaddition and
44 carbon-carbon coupling reactions of carbonyls [9,10]. Hence an ability to control dehydration kinetics
45 within zeolite pores can be desirable.

46 To be able to tune the dehydration selectivity of a potential catalyst, the dehydration
 47 mechanisms for the various oxygenates must first be understood. These mechanisms and hence the
 48 product distributions are dependent on structural and electronic properties of the system; relevant
 49 structural properties include the zeolite pore and cavity size and shape, which determine the steric
 50 interactions between the substrate and active site. Jae *et al.*, for instance, observed a relatively high
 51 coke yield and low oxygenate yield when using catalysts with large pores (e.g. SSZ-55, Beta zeolite,
 52 Y zeolite) for the catalytic fast pyrolysis of glucose compared to small or medium pore-sized zeolites
 53 [11]. Theoretical calculations can help to elucidate reaction mechanisms proposed for oxygenate-
 54 zeolite pairings to explain such product distributions.

55 Alcohols are the simplest model substrates to allow investigation dehydration reaction barriers
 56 and associated reaction pathways. Greenhalf *et al.* demonstrated that alcohols can account for ~5-7%
 57 of pyrolysis oil using straw, perennial grasses, and hardwoods as feedstock [12]. Biomass-derived
 58 alcohols can undergo dehydration reactions to produce light olefins [13,14], which in turn can be
 59 converted into aromatic hydrocarbons over zeolite catalysts [15,16].

60 Numerous experimental and theoretical studies have been conducted on alcohol (especially
 61 ethanol) dehydration reactions to alkenes over zeolites and other acidic catalysts, reporting a wide
 62 variety of reaction barriers under various conditions [14-41]. Activity has been correlated to
 63 numerous catalyst properties, including number of Brønsted acid sites [31] and confinement effects
 64 [28], as well as reaction conditions [6]. Note that diethyl ether formation has also been observed
 65 during ethanol dehydration over various zeolites [27]; due to steric hindrances, however, the
 66 extension of either of the proposed mechanisms to larger alcohols like IPA or TAA should
 67 significantly reduce the rate of ether formation, for which reason ether formation mechanisms are not
 68 considered further in this study.

69 The preferred, concerted dehydration mechanism for ethanol to ethylene over H-ZSM-5 has
 70 been established via an exhaustive density functional theory (DFT) study by Kim *et al.* [22]; however,
 71 experimental evidence suggests that the dehydration of secondary and tertiary alcohols may follow
 72 different reaction pathways. In the dehydration of *tert*-butanol over H-ZSM-5, for instance, a *tert*-
 73 butyl cation intermediate has been identified via ^{13}C cross polarization magic angle spinning
 74 (CP/MAS) and ^2H solid state NMR, providing evidence for an ionic stepwise mechanism (shown in
 75 Figure 1 alongside stepwise and concerted mechanisms) [42]. Based on studies with isobutyl alcohol,
 76 however, Stepanov *et al.* proposed a mechanism proceeding via an isobutyl ether intermediate (i.e. a
 77 stepwise mechanism) [43,44]. Gayubo *et al.* reported that *iso*-alcohols dehydrate more quickly than
 78 primary alcohols [15], though the reason was not discussed. Comparative studies of dehydration
 79 activation energies and mechanisms across primary, secondary, and tertiary alcohols are lacking in
 80 the literature.

81

82 **Figure 1.** Posited (a) stepwise, (b) concerted and (c) carbocationic mechanisms for *tert*-amyl alcohol
 83 (TAA) dehydration over zeolite (e.g. H-ZSM-5).

84 Zeolite choice is also important in conducting such a comparative study because it can affect
 85 products formed, reaction mechanisms, and rates due to variations in electronic structure and sterics.
 86 H-ZSM-5 is widely used in the petrochemical industry [15] and is known for its shape-selectivity and
 87 high Brønsted acidity adjacent to isomorphous aluminum substitution sites [45]. H-ZSM-5 is a
 88 medium pore zeolite with 10-membered straight channels ($5.3 \times 5.6 \text{ \AA}$) and perpendicular sinusoidal
 89 channels ($5.1 \times 5.5 \text{ \AA}$). H-BEA zeolite, also widely used in industry, is a large pore zeolite containing
 90 three dimensional 12-membered channels, of which two are straight channels ($6.6 \times 6.7 \text{ \AA}$) and one is
 91 a sinusoidal channel ($5.6 \times 5.6 \text{ \AA}$) [46]. These structural differences have a demonstrated effect on
 92 catalyst function, e.g. reduced adsorption energy of H-BEA for compounds capable of diffusing
 93 through both zeolites [47]. H-AEL zeolite, which is not widely used industrially, contains a single,
 94 flatter, elliptical pore ($7.0 \times 4.1 \text{ \AA}$) with a smaller cavity size (maximum diameter of a sphere: 5.64 \AA)
 95 compared to H-ZSM-5 (6.36 \AA) and H-BEA (6.68 \AA) [48].

96 In this study, adsorption of ethanol (EtOH), *iso*-propanol (IPA), and *tert*-amyl alcohol (TAA) to
 97 H-ZSM-5, H-BEA, and H-AEL zeolites as well as reaction mechanisms and kinetics for the
 98 dehydration reactions of chosen alcohols over these zeolites are examined via DFT calculations.
 99 Additionally, diffusion of the chosen alcohols in H-ZSM-5 is also investigated using molecular
 100 dynamics simulations. Side-by-side comparison of these cases enables a detailed examination of how
 101 confinement impacts reaction mechanism and kinetics in a critical reaction class.

102 2. Results and Discussions

103 2.1. Adsorption energies

104 Since the adsorption of ethanol on H-ZSM-5 has previously been studied, we first benchmark
 105 our ONIOM approach by comparing the calculated adsorption enthalpy in this work with previously
 106 published studies, as summarized in Table 1. Note that the previous calculations on the adsorption
 107 enthalpies used the periodic DFT-D method and a cluster model. The adsorption enthalpy of ethanol
 108 in H-ZSM-5 calculated in this work with 18T sites incorporated in the QM region is $-23.9 \text{ kcal mol}^{-1}$,
 109 which is in good agreement with Alexopoulos's experimental measurement of $-21.3 \text{ kcal mol}^{-1}$ [49].
 110 Our result is also consistent with the series of calculations performed by Van der Mynsbrugge using
 111 M062X/6-31+G(d) and PBE/6-31+G(d) (with various dispersion corrections) and a large cluster model
 112 (46 T sites) as well as periodic functional calculations of H-ZSM-5. They reported values for the
 113 adsorption of ethanol on H-ZSM-5 at 400 K ranging from -23 to $-34 \text{ kcal mol}^{-1}$ [50].

114 **Table 1.** Adsorption enthalpies (kcal mol^{-1}) of ethanol in H-ZSM-5.

Expt. 400K[51]	Expt. 300K[49]	PBE-D QHA[49]	PBE-D HA[49]	PBE-D pbc[52]	M062X cluster[50]	This work ONIOM
-31.1	-21.3	-25.6	-30.1	-31.5	-25.8	-23.9

[49]Alexopoulos *et al.*

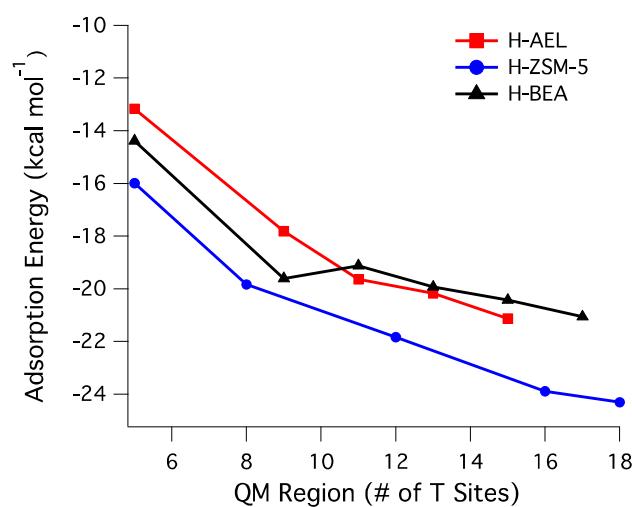
Expt. = Experimental results

[50]Van der Mynsbrugge *et al.*

PBE-D = PBE-Dispersion

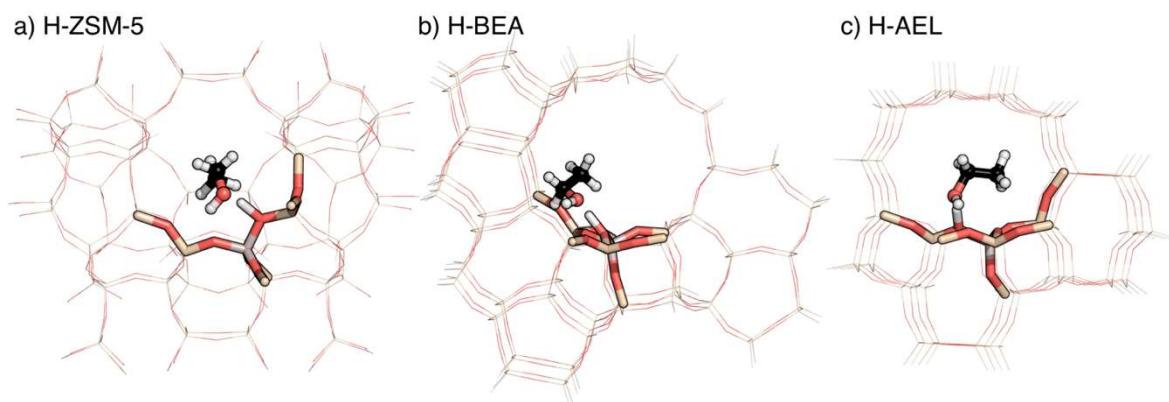
[51] Lee *et al.*

pbc = periodic boundary conditions


[52] Nguyen *et al.*

QHA = quasi-harmonic approximation

HA = harmonic approximation

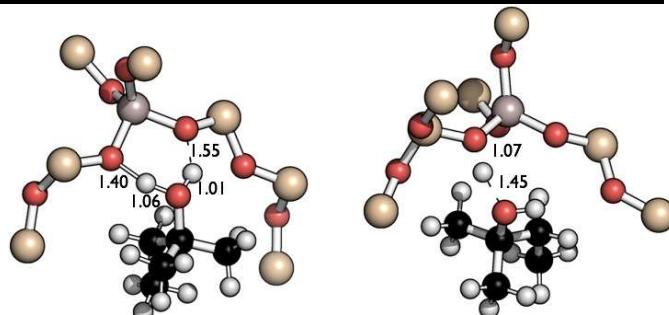

115 Since the accuracy of the thermal correction for adsorption enthalpy can be influenced by
 116 different treatments of the rigid rotor-harmonic oscillator approximation (RRHO) [53], the adsorption
 117 energies instead of adsorption enthalpies are reported hereafter in order to compare the ONIOM
 118 results with periodic-DFT calculations using VASP. The calculated adsorption energies of ethanol as
 119 a function of the size of the QM region using ONIOM (M06-2X/6-311G(d,p):PM6) are shown in Figure

120 2. Up to 18T models, no convergence was observed for any of the three zeolites, possibly because
 121 PM6 is used to calculate the interactions between the substrate and the zeolite lower level region in
 122 the adsorbed complex, but not in the reference state, i.e., the separated zeolite and substrate.
 123 Therefore, as more zeolite atoms are moved from the lower level region into the QM region, the
 124 electronic interactions between the newly added QM zeolite atoms and the substrate will be treated
 125 more accurately, resulting in a continuous change of the adsorption energy. Due to the long-range
 126 nature of these electronic interactions, we speculate that the adsorption energy calculation will not
 127 converge quickly, making the adsorption energy calculations using PM6 problematic. However, this
 128 should not affect the PES calculations using PM6: since PM6 is used to calculate the interactions
 129 between substrate and zeolite for both transition state and reactant complex, the error of PM6 should
 130 be cancelled out. Hereafter, the QM region was chosen to include a 9T model for H-AEL, an 8T model
 131 for H-ZSM-5, and a 9T model for H-BEA shown in Figure 3.

132

133 **Figure 2.** Calculated adsorption energies as a function of the size of the QM region using ONIOM
 134 (M06-2X/6-311G(d,p):PM6).

135

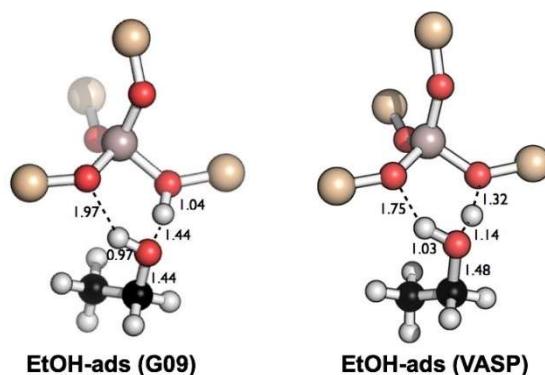

136 **Figure 3.** Systems studied for ethanol within (a) H-ZSM-5, (b) H-BEA, and (c) H-AEL. The ONIOM
 137 high level DFT region is shown in “sticks”; the semi-empirical low level is shown in wireframe; and
 138 ethanol is shown as “ball and sticks.” The zeolite models used for *iso*-propanol (IPA) and *tert*-amyl
 139 alcohol (TAA) were identical.

140 As shown in Table 2, the molecule size of TAA, $5.8 \times 6.7 \times 7.0 \text{ \AA}$, is comparable to the cavity
 141 diameter of 6.4 \AA in H-ZSM-5 (where cavity diameter is defined as the maximum diameter of a sphere
 142 that can be included in the zeolite) [54]. The adsorption strength of TAA in the straight channel of H-
 143 ZSM-5 was $11.4 \text{ kcal mol}^{-1}$ stronger than in the sinusoidal channel using the 8T model, indicating that
 144 TAA is large enough to be significantly impacted by steric effects. Hence the straight channel in H-

145 ZSM-5 is used instead of the sinusoidal channel in all subsequent calculations. Furthermore, this
 146 steric effect obstructs the formation of a stable 2-hydrogen-bond (2-HB) binding mode for TAA in the
 147 straight channels of H-ZSM-5, as shown in Figure 4.

148 **Table 2.** Measured molecule size of ethanol, IPA and TAA and zeolite cavity size. A description of
 149 the measurement on molecule size is provided in Figure S1.

	Molecule size (Å)	Cavity size (Å)[54]	
Ethanol	4.1×4.5×6.5	H-AEL	5.64
IPA	5.0×5.7×6.1	H-ZSM-5	6.36
TAA	5.8×6.7×7.0	H-BEA	6.68


150

151 **Figure 4.** Optimized geometries of TAA in HZSM-5 with sinusoidal (left) and straight (right) channels.

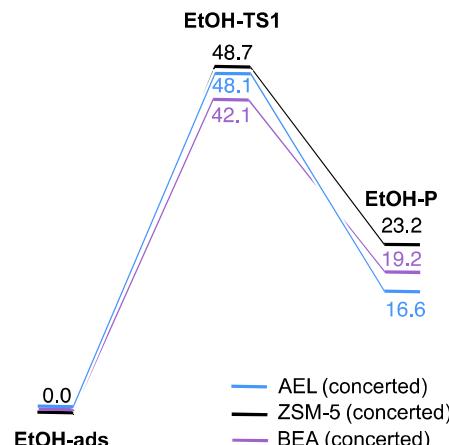
152 The calculated adsorption energies of EtOH, IPA, and TAA in H-AEL (9T model), H-ZSM-5 (8T
 153 model), and H-BEA (9T model) using ONIOM and VASP are shown in Table 3. The adsorption
 154 energies calculated for ethanol and IPA are relatively close between the two methods, but they differ
 155 significantly for TAA. Moreover, the ONIOM results suggest higher adsorption energies in H-BEA
 156 compared to H-ZSM-5 and H-AEL as well as lesser adsorption energy with increased branching,
 157 while the periodic results demonstrate no clear trend for the substrates in any of the three zeolites.
 158 The primary difference in the optimized adsorbed conformations resulting from these two methods
 159 is that the acidic proton transfers to the substrate in the periodic calculation (as shown in Figure 5),
 160 which might be explained by the failure of semi-empirical cluster models to effectively capture long-
 161 range electrostatic effects. Indeed, using the Hartree-Fock approximation (capturing exchange and
 162 electrostatic interactions without the correlation energy) in place of the semi-empirical PM6 method
 163 for the treatment of the lower-level bulk zeolite framework results in geometries of the adsorbed
 164 complex similar to those found with periodic boundary conditions in VASP (Figure S2) and
 165 adsorption energies that do not vary significantly from one another across the three alcohols in H-
 166 ZSM-5 and H-BEA.

167 **Table 3.** Calculated adsorption energies (kcal mol⁻¹) of alcohols in H-AEL, H-ZSM-5, and H-BEA
 168 using ONIOM (M06-2X/6-311G(d,p):PM6) and periodic (GGA_PBE and single-point PBE-D2)
 169 calculations.

Substrate	ONIOM			VASP		
	H-AEL	H-ZSM-5	H-BEA	H-AEL	H-ZSM-5	H-BEA
Ethanol	-17.8	-19.8	-19.6	-18.3	-21.0	-22.7
IPA	-16.3	-16.6	-18.1	-18.8	-14.2	-23.5
TAA	-6.1	-9.8	-16.0	-15.4	-17.5	-20.3

170

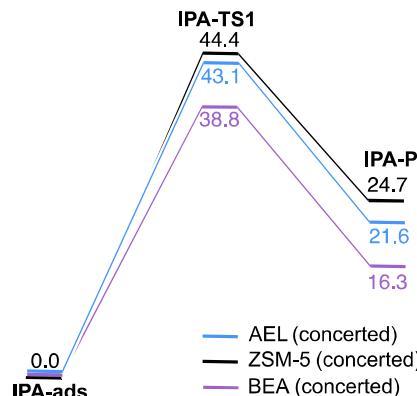
171 **Figure 5.** Optimized geometries (distances in Å) of adsorbed ethanol in H-BEA using ONIOM (M06-
172 2X/6-311G(d,p):PM6) in Gaussian 09 (G09) and periodic boundary conditions in VASP.


173 Previous studies have shown that increased van der Waal interactions increase adsorption
174 strength until steric effects begin to counter the added stability. Nguyen *et al.* studied the adsorption
175 of primary C1-C4 alcohols in H-ZSM-5 using a periodic DFT-D method and found that the adsorption
176 strength increases linearly by ~3.5 kcal mol⁻¹ per carbon atom due to increasing van der Waal stability
177 [52]. However, increased branching introduces steric hindrances, and adsorption strength begins to
178 decrease: e.g. butanol decreases in adsorption strength with increased branching: 1-BuOH > 2-BuOH
179 > *tert*-BuOH by ~3 kcal mol⁻¹ for the entire series [55]. The slightly decreasing trend in term of
180 adsorption strength from ethanol to TAA observed using ONIOM method presented in Table 3
181 suggests that the adsorption strength is impacted more heavily by the degree of branching than the
182 overall number of carbons. However, the periodic DFT-D results in Table 3 show comparable
183 adsorption energies for ethanol, IPA, and TAA in H-AEL and H-BEA, suggesting that the effects of
184 degree of branching and overall number of carbons on adsorption strength approximately balance
185 each other out; in the intermediate pore case, H-ZSM-5, no trend appears, which could be caused by
186 a greater sensitivity to the exact pore and substrate morphologies when pore and substrate are
187 comparably sized. The discrepancy between the ONIOM and periodic DFT-D results could be due to
188 the inaccurate treatment of the long-range interactions between the free substrate and zeolite in the
189 ONIOM approach. However, this should not affect the reaction coordinate calculations of adsorbed
190 species and transition states since PM6 calculated energetics then affect both reactants and products
191 equally.

192 2.2. Reaction Coordinate

193 Various potential conformations were considered for each structure (i.e. adsorbed reactant,
194 adsorbed product, transition state, or intermediate) along the reaction coordinate. For different
195 conformations with the acidic proton located at the same oxygen, free energy values for any given
196 structure differed by less than 3 kcal mol⁻¹ when using ONIOM (M06-2X/6-311G(d,p):PM6). However,
197 greater variation was observed for free – i.e. not adsorbed – products (depending on orientation
198 within the cavity), consistent with the uncertainty observed in benchmarking reactant adsorption
199 energies using PM6 against Hartree-Fock and periodic VASP calculations.

200 The energy for ethanol dehydration via a concerted mechanism in H-BEA is 6.6 kcal mol⁻¹
201 smaller than in H-ZSM-5 (Figure 6). Based on an exhaustive transition state search, Kim *et al.*
202 determined that the ethanol dehydration energy barriers in H-ZSM-5 indicate that the concerted
203 mechanism, proceeding through a late transition state, is preferable over the stepwise pathway [22].
204 Following such a concerted mechanism, the lower energy barrier for IPA (Figure 7) compared to
205 ethanol in H-ZSM-5 is consistent with what has previously been reported for linear and *iso*-alcohols
206 [15], suggesting that stability introduced by increased chain length is more significant than the added
207 sterics introduced by branching.

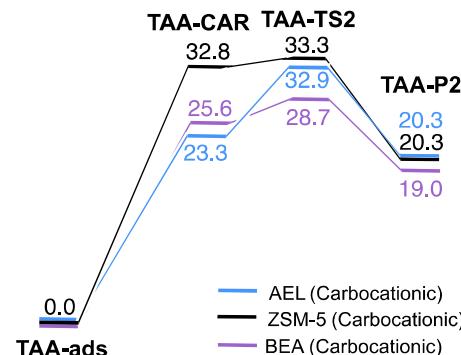

208

209

210 **Figure 6.** This Energy values, ΔE (kcal mol⁻¹), are reported along the concerted reaction pathway
 211 proposed for ethanol (EtOH) dehydration in H-ZSM-5,[22] H-BEA, and H-AEL. All values are
 212 calculated using ONIOM (M06-2X/6-311G(d,p):PM6). “EtOH-ads” refers to the ethanol substrate
 213 adsorbed at the chosen active site of the respective catalyst. The concerted pathway is consistently a
 214 comparable or lower-energy path than the stepwise mechanism.[22]

215 As shown in Figure S3, H-BEA proceeds through a later transition state than H-ZSM-5, with the
 216 proton transferred back to the zeolite 0.28 Å closer to its final Brønsted acid site position than in H-
 217 ZSM-5 in the case of ethanol. Given the slightly less stable adsorbed product in H-ZSM-5 relative to
 218 H-BEA, the comparable stability of the adsorbed reactants, and similar reaction paths with both
 219 catalysts (for ethanol and IPA individually), a smaller intrinsic ΔE^\ddagger in H-BEA than in H-ZSM-5 is
 220 consistent with the Hammond-Leffler postulate [56,57]. H-AEL has a similarly late transition state for
 221 both ethanol and IPA (see Figures S3 and S4) but instead activation barriers comparable to those in
 222 H-ZSM-5. This could be due to strain introduced by the straight channel in H-AEL or the greater
 223 significance of long-range electrostatic interactions, which are poorly treated by PM6, in the small H-
 224 AEL pores.

225


226 **Figure 7.** Energies (ΔE , kcal mol⁻¹) are depicted along the reaction coordinate for the dehydration of
 227 IPA, following the concerted mechanism types depicted in Kim *et al.*²² IPA-ads refers to IPA adsorbed
 228 at the active site of the relevant zeolite.

229 For both ethanol and IPA, concerted mechanism transition state intrinsic energies are lower in
 230 H-BEA than in H-AEL and H-ZSM-5. As this effect does not vary between the two alcohols, the effects
 231 of increased stabilizing electrostatic interactions (due to increased chain length) and decreased local
 232 mobility due to steric hindrances induced by branching appear to balance each other out, as was
 233 observed for the adsorption energies as well. Note that as the pore size decreases further, steric
 234 hindrances begin to dominate: in H-AEL, the presence of only one large channel (as opposed to
 235 perpendicular, intersecting channels) results in substrates being positioned lengthwise within the
 236 pore, restricting the number of conformations available to the substrate.

237 We evaluated the possibility that water molecules may relieve the ring strain in the more
 238 constrained, cyclic IPA transition states within the stepwise and concerted reaction schemes. For
 239 example, the addition of a water molecule to help shuttle around protons for the second transition
 240 state in the stepwise mechanism in H-AEL did expand the ring, but the shape of the channel
 241 combined with the presence of two more atoms in the ring resulted in the adsorbed carbon being
 242 moved further away from its adsorption site. The C-O adsorption distance was increased from an
 243 already long 2.6 Å to 2.8 Å, adding to the ionic character of the semi-adsorbed carbon atom and
 244 thereby countering the benefit of reduced ring strain. With these two opposing effects, the free energy
 245 was approximately unchanged between the two transition states.

246 Transition states consistent with the concerted and stepwise mechanisms in Figure 1 were not
 247 found for TAA. Cyclic transition states were significantly sterically hindered by the addition of a
 248 tertiary methyl group and the longer chain length. Previous studies have indicated the stabilization
 249 of carbocationic intermediates with increasing carbon number and increased branching [58].
 250 Stepanov *et al.* also observed such carbocation intermediate during the dehydration of other alcohols
 251 [42]. Therefore, we examined a stepwise mechanism with a carbocationic intermediate, as depicted
 252 in mechanism "c" of Figure 1. In contrast to the stepwise and alkoxide intermediate schemes, we
 253 successfully identified a carbocationic intermediate and associated transition states for the
 254 dehydration of TAA in all three zeolites. Energy values associated with this mechanism for TAA are
 255 shown in Figure 8. Ferguson *et al.* predicted that an ethyl carbocation intermediate does not exist at
 256 any relevant temperature, and an isopropyl carbocation only exists in small proportions at high
 257 temperatures, e.g., 0.14% at 500 °C; in contrast, a *tert*-butyl carbocationic intermediate is actually
 258 preferred (68.24% at 500 °C) over the alkoxide alternative at all temperatures due to growing steric
 259 effects as the carbon number and the degree of branching are increased. (The carbocation was not
 260 nearly as stable for the butyl and *sec*-butyl carbocations [59].) These conclusions of Ferguson *et al.*
 261 clearly extend to our results for TAA, though the discussions of adsorption energies and of the
 262 concerted mechanism above suggest that increasing carbon number serves to stabilize adsorbates,
 263 intermediates, and transition states rather than merely increase steric hindrances.

264

265

266 **Figure 8.** Energies (ΔE , kcal mol⁻¹) are depicted along the reaction coordinate for the dehydration of
 267 TAA through a carbocation intermediate (TAA-CAR) with negligible barrier to 2-methyl-2-butene
 268 (TAA-P2). TAA-ads refer to TAA adsorbed at the active site of the relevant zeolite.

269 Note that the thermodynamics of forming 2-methyl-1-butene from TAA (20.7 kcal mol⁻¹ in AEL)
 270 and 2-methyl-2-butene (20.3 kcal mol⁻¹ in AEL) are very similar. Consistent with this, a concerted
 271 mechanism transition state could be found for the formation of 2-methyl-1-butene (but not 2-methyl-
 272 2-butene) in H-AEL, which is attributed to slightly decreased steric hindrances; however the intrinsic
 273 barrier is comparable to that found for the carbocationic mechanism (32.9 kcal mol⁻¹ for 2-methyl-2-
 274 butene and 32.3 kcal mol⁻¹ for 2-methyl-1-butene), while 6.6 kcal mol⁻¹ lower barrier for 2-methyl-2-
 275 butene in H-ZSM-5. Calculations for the carbocationic mechanism indicate that the transition states
 276 for the two products are energetically similar, suggesting that sterics of the two products play a lesser
 277 role in this mechanism.

278 Jones *et al.* studied the confinement of transition states of methanol dehydration in several
 279 zeolites with various pore sizes and demonstrated that van der Waals stabilization of transition states
 280 is well correlated to the chemical reaction rates [60] consistent with studies of ethanol over various
 281 zeolites [28]. Herein, we assume confinement influences the transition states and the adsorbed
 282 reactant in a similar manner. As shown in Table 3, the calculated adsorption energies of TAA in H-
 283 AEL, H-ZSM-5, and H-BEA using periodic-DFT are -15.4, -17.5, and -20.3 kcal/mol, respectively,
 284 indicating the stabilization interactions (dispersion and electrostatic interactions) in H-BEA are
 285 stronger than in H-AEL and H-ZSM-5. Thus, the lower energy barrier for TAA dehydration observed
 286 in H-BEA might be due to the stronger stabilization interactions. As shown in Figure S5, since the
 287 transition state of TAA in H-BEA is surrounded by a larger void, the van der Waals stabilization of
 288 transition states should contribute less than H-AEL and H-ZSM5. However, the large void in H-BEA
 289 facilitates the formation of a stable 2-HB binding mode of TAA, which cannot be formed in the smaller
 290 pore of H-ZSM-5 due to steric effects. The more favorable electrostatic interactions overwhelm the
 291 dispersion interactions for TAA, resulting in H-BEA exhibiting stronger stabilization than H-ZSM-5.

292 In AEL, the substrate TAA is substantially surrounded by zeolite atoms along the 1-dimension
 293 channel, as shown in Figure S5, providing a unique opportunity for TAA to form an additional H-
 294 bond via a proximate oxygen atom that is not bonded to the Al atom. However, this tight fit may
 295 impose severe confinement on the transition state, resulting in alteration of its shape and geometry.
 296 As illustrated in Figure S6, the length of the longest principal axis of transition states of TAA increases
 297 gradually from 8.2 Å in H-BEA to 8.9 Å in H-ZSM-5 and 10.8 Å in H-AEL while the critical diameter
 298 (i.e., the length of the second-longest principal axis) decreases from 7.2 Å in H-BEA to 6.7 Å in H-
 299 ZSM-5 and 6.4 Å in H-AEL. The pore size decreases in the same order, indicating the transition states
 300 are gradually squeezed to accompany the decrease of pore size. The measured sizes of TAA transition
 301 states in H-AEL, H-ZSM-5, and H-BEA are summarized in Table 4. The severe confinement from the
 302 smaller zeolite pores can also introduce repulsion interactions, resulting in overall less stabilization
 303 compared to H-BEA, as supported by the difference between their adsorption energies. Thus, our
 304 results indicate that the stabilization effect involves a delicate balance among electrostatic, dispersion,
 305 and repulsion interactions between zeolite and substrates.

306
 307 **Table 4.** Measured size of transition states of TAA and zeolite cavity size.
 308

	TAA TS size (Å)	Cavity size (Å)
H-AEL	$5.2 \times 6.4 \times 10.8$	5.64
H-ZSM-5	$5.7 \times 6.7 \times 8.9$	6.36
H-BEA	$5.5 \times 7.2 \times 8.2$	6.68

309

310 **2.2. Molecular Diffusion**

311 In addition to absorption and kinetic considerations, molecular diffusion can play a significant
 312 role in zeolite-catalyzed conversion rates. Indeed, as the molecular size approaches the zeolite pore
 313 diameter, one would expect both the transmission function (i.e., the likelihood of the substrate
 314 entering the zeolite pore) as well as the diffusivity (the speed at which the substrate moves within
 315 the pore) to be drastically affected. To further complicate matters, standard engineering correlations
 316 (e.g., Knudsen diffusion) fail due to atomic interactions at these scales, vastly overestimating
 317 molecular diffusivity by several orders of magnitude [61,62].

318 Molecular dynamics (MD) simulations of diffusivities of ethanol, IPA and TAA in H-ZSM-5
 319 were performed to investigate mass transport using the LAMMPS program [63], which has been
 320 shown to work effectively for biomass pyrolysis products [64]. The detailed description of the method
 321 can be found in the SI. The calculated self-diffusion coefficients in H-ZSM-5 for ethanol, IPA, and
 322 TAA are 34, 4, and $0.021 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ at 300 °C, respectively, while the calculated Knudsen diffusion
 323 coefficients using a pore diameter of 5.0 Å are 855, 749, $618 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ at 300 °C, respectively. It

324 reveals that Knudsen diffusion at this temperature overpredicts the diffusivity by about an order of
325 magnitude for ethanol even more for the IPA and TAA. While simulations were not run at other
326 temperatures, it is expected that the relative diffusivities will remain approximately the same even
327 though the absolute value can change by order of magnitude. This assumption is supported by Bu *et*
328 *al.* [64], who investigated the change for a series of species (water, methanol, ethanol, glycolaldehyde)
329 between 27 to 427 °C.

330 The implication of these diffusivities can best be understood through the Weisz-Prater Criterion
331 (C_{WP}) parameter, an estimate of the influence of pore diffusion on kinetics in heterogeneous catalytic
332 reactions:

$$333 \quad C_{WP} = \frac{-r_{EtOH}\rho R^2}{D_e[EtOH]},$$

334 where r_{EtOH} , ρ , R , and D_e are the rate of ethanol decomposition, molecule density, molecule radius,
335 and effective diffusivity, respectively. $C_{WP} > 6$ indicates that kinetics are certainly controlled by
336 diffusion, while $C_{WP} < 0.3$ indicates that any mass transfer limitations are negligible. Experimental
337 kinetic results in the literature are typically reported to be in the regime where $C_{WP} < 0.3$, but this
338 evaluation is sometimes based on the Knudsen diffusion. Phung *et al.* [28], for instance, ensured that
339 their ethanol kinetic measurements had $C_{WP} < 0.1$; however, they used Knudsen diffusion, which we
340 have shown is at least an order of magnitude too generous. While it's conceivable to operate under
341 conditions where the observed kinetics for ethanol or IPA are not mass transport limited, it is unlikely
342 that intrinsic kinetics could be separated from mass transport limitations under such conditions for
343 TAA which is 2-3 orders of magnitude slower in term of the calculated self-diffusion coefficients in
344 H-ZSM-5. This has implications other biomass-derived species that are branched or otherwise
345 sterically hindered.

346 3. Materials and Methods

347 A unit cell was constructed for each zeolite, with each model containing the zeolite's primary
348 channel(s) at its center (Figure 2). Bonds at the edge of each cell were terminated with hydrosilane
349 groups (Si-H) for H-AEL and H-BEA and hydroxyl groups (Si-O-H) for H-ZSM-5 to be consistent
350 with previous literature [10,65]. In each case, Al was substituted at a single T-site. The choice of T-site
351 is still a debated topic in the literature and can be dependent on a variety of synthetic and structural
352 parameters [66]. In the current study, the choice of T-site was based on thermodynamic arguments
353 and consistent with existing literature. The T12 in H-ZSM-5 was chosen due to the site's preference
354 for aluminum substitution and subsequent protonation [67,68] as well as its maximization of
355 available space for substrate adsorption [50]. The thermodynamically favored site T7 (H-BEA) and
356 site T1 (H-AEL) were chosen for the other zeolites [69]. The H-ZSM-5 model consists of 319 atoms,
357 incorporating the straight channel (shown in Figure 2a) and the sinusoidal channel perpendicular to
358 it. The BEA model (352 atoms) was larger in order to capture the offset primary channels that are
359 perpendicular to each other (one of which is shown in Figure 2b). The H-AEL model (260 atoms),
360 shown in Figure 2c, only needed to capture its primary channel, as pore sizes in the perpendicular
361 directions are too small (~2 Å) to be relevant. One aluminum atom was embedded in each unit model
362 in place of a silicon atom, and a proton was bonded to an adjacent oxygen atom to balance the charge,
363 thus creating a Brønsted acid site. With only one active site per unit model, the Si/Al ratios in H-ZSM-
364 5, H-BEA, and H-AEL were 75, 105, and 75 respectively. Note this is a reasonable approximation of
365 catalytic fast pyrolysis experiments, where the Si/Al ratio is typically in the range of 50-60.

366 ONIOM calculations were performed in Gaussian 09 [70], treating the active site with a high
367 level of theory and the surrounding bulk zeolite with a lower level (Figure 3). We first investigate the
368 effect of the size of the high level region on the calculated adsorption energy of an ethanol molecule
369 in H-AEL, H-ZSM-5, and H-BEA (Figure 2). Various finite-size models varying from 5T to 18T models
370 have been examined in the benchmark study to identify the optimal size. Subsequently, an 8T model
371 for H-ZSM-5 and 9T models for H-BEA and H-AEL were constructed with fixed (rather than periodic)
372 boundary conditions for further calculations. The substrate and the chosen finite-size portion around
373 the active site (the quantum mechanical (QM) region) are treated with the M06-2X functional, a
374 hybrid functional recommended by Zhao and Truhlar for main group thermochemistry and non-

375 covalent interactions with improved potential energy surface (PES) approximations for isomerization
376 reactions and van der Waal dispersion interactions [71-73]; the 6-311g(d,p) basis set was employed
377 for geometric optimization, frequency, and energy calculations.

378 The remainder of each model (the bulk of the zeolite framework, named the molecular
379 mechanical, or lower level region) was treated with the semi-empirical PM6 method, reported as
380 having hydrogen-bonding corrections and being accurate in predicting heats of formation of organic
381 molecules (average unsigned error of 4.4 kcal mol⁻¹) [74]. The atoms in the lower level region were
382 frozen in place such that while the mobile higher level region responded to electric effects from the
383 surrounding framework, the framework remained rigid.

384 Transition states for the posited mechanisms were found with model redundant optimization
385 and frequency calculations, followed by saddle-point optimizations based on the Berry algorithm.
386 The validity of the final transition states was confirmed with frequency and intrinsic reaction
387 coordinate (IRC) calculations.

388 Previously, we performed an exhaustive search for optimized adsorbed species; the energy
389 differences were small (~5 kcal mol⁻¹) in comparison with the reaction barriers [22]. Consequently, we
390 perform only a limited search with a handful of conformations in the present work.

391 For these adsorption calculations, unless otherwise noted, alcohol molecules were oriented in a
392 2-HB mode. Consistent with the results of Nguyen *et al.*, ethanol and IPA were placed along the
393 sinusoidal channel in H-ZSM-5 [52], while TAA lay along the straight channel due to steric
394 hindrances [55]. BEA and AEL only have one type of channel (straight) and the molecules were
395 oriented accordingly.

396 In addition to the ONIOM calculations, periodic DFT calculations were carried out for the
397 adsorption energies of the different alcohol molecules in H-ZSM-5, H-BEA, and H-AEL to confirm
398 adsorption geometries and energies. The aluminum and acidic sites were kept identical with the
399 ONIOM model. The unit cells of H-ZSM-5, H-BEA, and H-AEL contained 290, 194, and 242 atoms,
400 respectively. The periodic calculations were performed using the PBE-D2 method [75,76] with a plane
401 wave basis set implemented in the Vienna Ab initio Simulation Package (VASP, version 5.3.5) [77-
402 80]. The energy cutoff of 400 eV was used, and the Γ -point and a $2 \times 2 \times 1$ k-point mesh were used to
403 sample the Brillouin zones for the gas phase molecules and zeolite systems, respectively. Geometry
404 calculations were carried out using the GGA_PBE methods, and single-point PBE-D2 calculations
405 were carried out on the optimized geometries to account for the dispersion effect.

406 4. Conclusions

407 Catalytic fast pyrolysis is a promising technology that has received much interest in the past
408 decade. However, scale up of this technology will be hindered given the lack of chemical kinetic
409 models in the open literature. In this study, we investigated three aspects of chemical kinetics –
410 adsorption on the catalytic site, activation energies, and mass transport – as they pertain to the
411 dehydration of ethanol, IPA, and TAA over a series of shape-selective zeolite catalysts.

412 Adsorption energies are a key component to compare calculated intrinsic kinetics with
413 experimentally-derived apparent kinetics. However, the current study has shown that adsorption
414 energies can be difficult to calculate accurately due to the long-range dispersion forces inherent to
415 zeolites. For ethanol and IPA the magnitude of adsorption energies were captured relatively well
416 when compared to periodic functional calculations. However, trends with increased substrate
417 branching were inconsistent (Table 3). For TAA where confinement effects play a larger role, absolute
418 energetics were inconsistent between the methods employed. This is largely true for the broader
419 literature as well, as depicted for ethanol in which the calculated absorption energies varied by almost
420 10 kcal mol⁻¹ between methodologies (Table 1).

421 To better understand confinement effects in zeolite catalysis, we investigated the dehydration of
422 ethanol, IPA, and TAA in H-ZSM-5, H-BEA, and H-AEL via concerted, stepwise, and carbocationic
423 mechanisms. In all three zeolites, DFT calculations reveal that the preferred concerted pathway for
424 ethanol and IPA cannot be found for TAA, where a carbocationic pathway is favored instead.
425 Activation energies were seen to be lower for IPA than ethanol, indicative of the stability added by

426 the increased chain length despite steric hindrances introduced by branching, and even lower for
427 TAA, indicative of the stability of the tertiary carbocation intermediate. Activation barriers were seen
428 to be consistently (albeit slightly) lower in H-BEA compared to H-ZSM-5, which was attributed to a
429 later transition state in the case of the concerted mechanism; while high activation barriers in H-AEL
430 might be attributed to increased strain, a disparity between transition state geometries and energetics
431 suggests that these small pore calculations might be more heavily impacted by poor treatment of
432 long-range electrostatic interactions with PM6.

433 ONIOM calculations using PM6 for the MM region were found to converge poorly with
434 increasing size of the QM region when benchmarked against QM/Hartree-Fock as well as periodic
435 VASP calculations. Future side-by-side comparisons targeting various reaction classes with of a range
436 of substrates and zeolites will reveal the structure-function links necessary to optimize process
437 conditions in zeolite-catalyzed upgrading reactions.

438 Finally, mass transport can be the most critical parameter when considering experimentally
439 determined kinetics; particularly when zeolites are involved due to the relative size of the substrates
440 and nanopores. Our MD simulations demonstrated that the diffusivity of these three alcohols can
441 vary by over 3 orders of magnitude, which will significantly complicate endeavors to develop an
442 accurate chemical kinetic model of the catalytic fast pyrolysis process. Any attempt to develop kinetic
443 models will require high fidelity computational components to effectively decouple intrinsic rate
444 information from mass transport.

445 **Supplementary Materials:** Figure S1: The measured size of ethanol, IPA, and TAA; Figure S2: Optimized
446 geometries of adsorbed ethanol in H-BEA using ONIOM (M06-2X/6-31G(d,p):HF/3-21G) in G09; Figure S3:
447 Optimized geometries of transition states of ethanol in H-AEL, H-ZSM-5 and H-BEA; Figure S4: Optimized
448 geometries of transition states of IPA in H-AEL, H-ZSM-5 and H-BEA; Figure S5. Transition states of TAA in H-
449 AEL, H-ZSM-5 and H-BEA; Figure S6: The measured size of transition states of TAA in H-AEL, H-ZSM-5 and
450 H-BEA.

451 **Author Contributions:** conceptualization, D.J.R. and S.K.; methodology, L.Y.K., L.B., B.C.K., C.L., M.R.N.,
452 R.S.A., L.A.C., D.J.R., and S.K.; formal analysis, L.Y.K., L.B., C.L., R.S.A., D.J.R., and S.K.; investigation, L.Y.K.,
453 L.B., C.L., R.S.A., D.J.R., and S.K.; visualization, L.Y.K., L.B., B.C.K., and S.K.; writing—original draft preparation,
454 L.Y.K. and S.K.; writing—review and editing, L.Y.K., L.B., B.C.K., C.L., M.R.N., R.S.A., D.J.R., and S.K.

455 **Acknowledgement:** This work was conducted as part of the Computational Chemistry and Physics Consortium
456 (CCPC) supported by the U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) Contract
457 No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Computer time was provided by
458 the Texas Advanced Computing Center under the National Science Foundation Extreme Science and
459 Engineering Discovery Environment Grant MCB-090159 and by the National Renewable Energy Laboratory
460 Computational Sciences Center. The authors would like to thank Robin Cywar to give us the motivation of the
461 project.

462 **Conflicts of Interest:** The authors declare no conflict of interest.

463 References

1. McKendry, P. Energy production from biomass (part 1): overview of biomass. *Bioresource Technol.* **2002**, *83*, 37-46, doi:[http://dx.doi.org/10.1016/S0960-8524\(01\)00118-3](http://dx.doi.org/10.1016/S0960-8524(01)00118-3).
2. Oasmaa, A.; Koponen, P. *Physical characterisation of biomass-based pyrolysis liquids*; Espoo: 1997.
3. Oasmaa, A.; Peacocke, C. *A guide to physical property characterisation of biomass-derived fast pyrolysis liquids*; Technical Research Centre of Finland Espoo: 2001.
4. Oasmaa, A.; Peacocke, C. Properties and fuel use of biomass-derived fast pyrolysis liquids. *VTT Publications: Finland* **2010**, *731*, 79.
5. Ruddy, D.A.; Schaidle, J.A.; Ferrell Iii, J.R.; Wang, J.; Moens, L.; Hensley, J.E. Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis": catalyst development through the study of model compounds. *Green Chem.* **2014**, *16*, 454-490, doi:10.1039/C3GC41354C.
6. Triantafyllidis, C.S.; Evmiridis, N.P. Dealuminated H-Y Zeolites: Influence of the Number and Type of

- 475 Acid Sites on the Catalytic Activity for Isopropanol Dehydration *Ind. Eng. Chem. Res.* **2000**, *39*, 3233-3240.
- 476 7. Turek, W.; Haber, J.; Krowiak, A. Dehydration of isopropyl alcohol used as an indicator of the type and
477 strength of catalyst acid centres. *Appl. Surf. Sci.* **2005**, *252*, 823-827, doi:Doi 10.1016/J.Apsusc.2005.02.059.
- 478 8. Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L.J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.;
479 Lukas, J.L. *Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels.*
480 *Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors*; NREL
481 (National Renewable Energy Laboratory (NREL), Golden, CO (United States)): 2015.
- 482 9. Liu, C.; Evans, T.J.; Cheng, L.; Nimlos, M.R.; Mukarakate, C.; Robichaud, D.J.; Assary, R.S.; Curtiss, L.A.
483 Catalytic upgrading of biomass-derived compounds via C-C coupling reactions: Computational and
484 experimental studies of furan and acetaldehyde reactions in HZSM-5. *J. Phys. Chem. C* **2015**, *119*, 24025-
485 24035, doi:10.1021/acs.jpcc.5b08141.
- 486 10. Kim, S.; Evans, T.J.; Mukarakate, C.; Bu, L.; Beckham, G.T.; Nimlos, M.R.; Paton, R.S.; Robichaud, D.J.
487 Furan Production from Glycoaldehyde over HZSM-5. *ACS Sustain. Chem. Eng.* **2016**, *4*, 2615-2623,
488 doi:10.1021/acssuschemeng.6b00101.
- 489 11. Jae, J.; Tompsett, G.A.; Foster, A.J.; Hammond, K.D.; Auerbach, S.M.; Lobo, R.F.; Huber, G.W.
490 Investigation into the shape selectivity of zeolite catalysts for biomass conversion. *J. Catal.* **2011**, *279*,
491 257-268, doi:http://dx.doi.org/10.1016/j.jcat.2011.01.019.
- 492 12. Greenhalf, C.E.; Nowakowski, D.J.; Harms, A.B.; Titiloye, J.O.; Bridgwater, A.V. A comparative study
493 of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. *Fuel* **2013**, *108*, 216-230,
494 doi:Doi 10.1016/J.Fuel.2013.01.075.
- 495 13. Bokade, V.V.; Yadav, G.D. Heteropolyacid supported on montmorillonite catalyst for dehydration of
496 dilute bio-ethanol. *Appl. Clay Sci.* **2011**, *53*, 263-271, doi:Doi 10.1016/J.Clay.2011.03.006.
- 497 14. Fan, D.; Dai, D.J.; Wu, H.S. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial
498 Considerations. *Materials* **2013**, *6*, 101-115, doi:Doi 10.3390/Ma6010101.
- 499 15. Gayubo, A.G.; Aguayo, A.T.; Atutxa, A.; Aguado, R.; Bilbao, J. Transformation of oxygenate
500 components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. *Ind. Eng. Chem. Res.*
501 **2004**, *43*, 2610-2618, doi:10.1021/ie030791o.
- 502 16. Johansson, R.; Hruby, S.L.; Rass-Hansen, J.; Christensen, C.H. The Hydrocarbon Pool in Ethanol-to-
503 Gasoline over HZSM-5 Catalysts. *Catal. Lett.* **2009**, *127*, 1-6, doi:Doi 10.1007/S10562-008-9711-2.
- 504 17. Bun, S.; Nishiyama, S.; Tsuruya, S.; Masai, M. ETHANOL CONVERSION OVER ION-EXCHANGED
505 ZSM-5 ZEOLITES. *Appl. Catal.* **1990**, *59*, 13-29, doi:10.1016/s0166-9834(00)82184-3.
- 506 18. Calsavara, V.; Baesso, M.L.; Camargo Fernandes-Machado, N.R. Transformation of ethanol into
507 hydrocarbons on ZSM-5 zeolites modified with iron in different ways. *Fuel* **2008**, *87*, 1628-1636,
508 doi:10.1016/j.fuel.2007.08.006.
- 509 19. Chen, Y.; Wu, Y.; Tao, L.; Dai, B.; Yang, M.; Chen, Z.; Zhu, X. Dehydration reaction of bio-ethanol to
510 ethylene over modified SAPO catalysts. *J. Ind. Eng. Chem.* **2010**, *16*, 717-722,
511 doi:10.1016/j.jiec.2010.07.013.
- 512 20. Dumrongsakda, P.; Ruangpornvisuti, V. Theoretical Investigation of Ethanol Conversion to Ethylene
513 over H-ZSM-5 and Transition Metals-Exchanged ZSM-5. *Catal. Lett.* **2012**, *142*, 143-149,
514 doi:10.1007/s10562-011-0737-5.
- 515 21. Inaba, M.; Murata, K.; Takahara, I. Effect of Fe-loading and reaction temperature on the production of
516 olefins from ethanol by Fe/H-ZSM-5 zeolite catalysts. *React. Kinet. Catal. L.* **2009**, *97*, 19-26,
517 doi:10.1007/s11144-009-0002-8.

- 518 22. Kim, S.; Robichaud, D.J.; Beckham, G.T.; Paton, R.S.; Nimlos, M.R. Ethanol Dehydration in HZSM-5
519 Studied by Density Functional Theory: Evidence for a Concerted Process. *J. Phys. Chem. A* **2015**, *119*,
520 3604-3614, doi:10.1021/jp513024z.
- 521 23. Madeira, F.F.; Gnepp, N.S.; Magnoux, P.; Maury, S.; Cadran, N. Ethanol transformation over HFAU,
522 HBEA and HMFI zeolites presenting similar Bronsted acidity. *Appl. Catal. A-Gen.* **2009**, *367*, 39-46,
523 doi:10.1016/j.apcata.2009.07.033.
- 524 24. Maihom, T.; Khongpracha, P.; Sirijaraensre, J.; Limtrakul, J. Mechanistic Studies on the Transformation
525 of Ethanol into Ethene over Fe-ZSM-5 Zeolite. *Chem. Phys. Chem.* **2013**, *14*, 101-107,
526 doi:10.1002/cphc.201200786.
- 527 25. Mao, R.L.; Levesque, P.; McLaughlin, G.; Dao, L.H. Ethylene from ethanol over zeolite catalysts. *Appl.*
528 *Catal.* **1987**, *34*, 163-179.
- 529 26. Pan, Q.; Ramanathan, A.; Snavely, W.K.; Chaudhari, R.V.; Subramaniam, B. Intrinsic Kinetics of Ethanol
530 Dehydration Over Lewis Acidic Ordered Mesoporous Silicate, Zr-KIT-6. *Top. Catal.* **2014**, *57*, 1407-1411,
531 doi:10.1007/s11244-014-0311-7.
- 532 27. Phillips, C.B.; Datta, R. Production of ethylene from hydrous ethanol on H-ZSM-5 under mild
533 conditions. *Ind. Eng. Chem. Res.* **1997**, *36*, 4466-4475, doi:10.1021/ie9702542.
- 534 28. Phung, T.K.; Hernandez, L.P.; Lagazzo, A.; Busca, G. Dehydration of ethanol over zeolites, silica
535 alumina and alumina: Lewis acidity, Bronsted acidity and confinement effects. *Appl. Catal. A-Gen.* **2015**,
536 493, 77-89, doi:10.1016/j.apcata.2014.12.047.
- 537 29. Schulz, J.; Bandermann, F. CONVERSION OF ETHANOL OVER ZEOLITE H-ZSM-5. *Chem. Eng.*
538 *Techno.* **1994**, *17*, 179-186, doi:10.1002/ceat.270170306.
- 539 30. Sun, J.; Wang, Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. *ACS Catal.* **2014**, *4*,
540 1078-1090, doi:10.1021/cs4011343.
- 541 31. Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of ethanol into ethylene over solid acid
542 catalysts. *Catal. Lett.* **2005**, *105*, 249-252, doi:10.1007/s10562-005-8698-1.
- 543 32. Takahara, I.; Saito, M.; Matsuhashi, H.; Inaba, M.; Murata, K. Increase in the number of acid sites of a
544 H-ZSM5 zeolite during the dehydration of ethanol. *Catal. Lett.* **2007**, *113*, 82-85, doi:10.1007/s10562-007-
545 9025-9.
- 546 33. Tavan, Y.; Hosseini, S.H.; Ghavipour, M.; Nikou, M.R.K.; Shariati, A. From laboratory experiments to
547 simulation studies of methanol dehydration to produce dimethyl ether-Part I: Reaction kinetic study.
548 *Chem. Eng. Process.* **2013**, *73*, 144-150, doi:10.1016/j.cep.2013.06.006.
- 549 34. Tret'yakov, V.F.; Nhu, C.T.Q.; Tret'yakov, K.V.; Sil'chenkova, O.N.; Matyshak, V.A. Conversion of
550 ethanol on HZSM-5 modified zeolite, according to data from in situ spectrokinetic studies. *Russ. J. Phys.*
551 *Chem. A* **2013**, *87*, 941-944, doi:10.1134/s0036024413060307.
- 552 35. Zhang, M.; Yu, Y. Dehydration of Ethanol to Ethylene. *Ind. Eng. Chem. Res.* **2013**, *52*, 9505-9514,
553 doi:10.1021/ie401157c.
- 554 36. Zhang, X.; Wang, R.; Yang, X.; Zhang, F. Comparison of four catalysts in the catalytic dehydration of
555 ethanol to ethylene. *Micropor. Mesopor. Mat.* **2008**, *116*, 210-215, doi:10.1016/j.micromeso.2008.04.004.
- 556 37. Bond, G.C.; Frodsham, S.J.; Jubb, P.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Compensation effect in
557 isopropanol dehydration over heteropoly acid catalysts at a gas-solid interface. *J. Catal.* **2012**, *293*, 158-
558 164, doi:10.1016/j.jcat.2012.06.021.
- 559 38. Lopes, J.F.; Silva, J.C.M.; Cruz, M.T.M.; Carneiro, J.W.d.M.; De Almeida, W.B. DFT study of ethanol
560 dehydration catalysed by hematite. *RSC Adv.* **2016**, *6*, 40408-40417, doi:10.1039/C6RA08509A.

- 561 39. Roy, S.; Mpourmpakis, G.; Hong, D.-Y.; Vlachos, D.G.; Bhan, A.; Gorte, R.J. Mechanistic Study of
562 Alcohol Dehydration on γ -Al₂O₃. *ACS Catal.* **2012**, *2*, 1846-1853, doi:10.1021/cs300176d.
- 563 40. Zavelev, D.E.; Chistyakov, A.V.; Zhidomirov, G.M.; Gubanov, M.A.; Tsodikov, M.V.; Moiseev, I.I.
564 Mechanism of the reductive dehydration of ethanol into C3+ alkanes over the commercial alumina—
565 platinum catalyst AP-64. *Kinet. Catal.* **2016**, *57*, 95-103, doi:10.1134/s0023158416010134.
- 566 41. Alexopoulos, K.; John, M.; Van der Borght, K.; Galvita, V.; Reyniers, M.-F.; Marin, G.B. DFT-based
567 microkinetic modeling of ethanol dehydration in H-ZSM-5. *J. Catal.* **2016**, *339*, 173-185,
568 doi:<http://dx.doi.org/10.1016/j.jcat.2016.04.020>.
- 569 42. Stepanov, A.G.; Zamaraev, K.I.; Thomas, J.M. ¹³C CP/MAS and ²H NMR study of tert-butyl alcohol
570 dehydration on H-ZSM-5 zeolite. Evidence for the formation of tert-butyl cation and tert-butyl silyl
571 ether intermediates. *Catal. Lett.* **1992**, *13*, 407-422, doi:10.1007/bf00765044.
- 572 43. Stepanov, A.G.; Romannikov, V.N.; Zamaraev, K.I. ¹³C CP/MAS NMR study of isobutyl alcohol
573 dehydration on H-ZSM-5 zeolite. Evidence for the formation of stable isobutyl silyl ether intermediate.
574 *Catal. Lett.* **1992**, *13*, 395-405, doi:10.1007/bf00765043.
- 575 44. Stepanov, A.G.; Zamaraev, K.I. ¹³C solid state NMR evidence for the existence of isobutyl carbenium
576 ion in the reaction of isobutyl alcohol dehydration in H-ZSM-5 zeolite. *Catal. Lett.* **1993**, *19*, 153-158,
577 doi:10.1007/bf00771750.
- 578 45. Yuan, S.P.; Wang, J.G.; Li, Y.W.; Jiao, H. Brønsted Acidity of Isomorphously Substituted ZSM-5 by B,
579 Al, Ga, and Fe. Density Functional Investigations. *J. Phys. Chem. A* **2002**, *106*, 8167-8172,
580 doi:10.1021/jp025792t.
- 581 46. Trombetta, M.; Busca, G.; Storaro, L.; Lenarda, M.; Casagrande, M.; Zambon, A. Surface acidity
582 modifications induced by thermal treatments and acid leaching on microcrystalline H-BEA zeolite. A
583 FTIR, XRD and MAS-NMR study. *Phys. Chem. Chem. Phys.* **2000**, *2*, 3529-3537, doi:10.1039/B001916J.
- 584 47. Xu, B.; Sievers, C.; Hong, S.B.; Prins, R.; van Bokhoven, J.A. Catalytic activity of Brønsted acid sites in
585 zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. *J. Catal.*
586 **2006**, *244*, 163-168, doi:<http://dx.doi.org/10.1016/j.jcat.2006.08.022>.
- 587 48. Richardson, J.W., Jnr; Pluth, J.J.; Smith, J.V. Rietveld profile analysis of calcined AlPO₄-11 using pulsed
588 neutron powder diffraction. *Acta Crystall. B* **1988**, *44*, 367-373, doi:doi:10.1107/S0108768188003076.
- 589 49. Alexopoulos, K.; Lee, M.-S.; Liu, Y.; Zhi, Y.; Liu, Y.; Reyniers, M.-F.; Marin, G.B.; Glezakou, V.-A.;
590 Rousseau, R.; Lercher, J.A. Anharmonicity and Confinement in Zeolites: Structure, Spectroscopy, and
591 Adsorption Free Energy of Ethanol in H-ZSM-5. *J. Phys. Chem. C* **2016**, *120*, 7172-7182,
592 doi:10.1021/acs.jpcc.6b00923.
- 593 50. Van der Mynsbrugge, J.; Hemelsoet, K.; Vandichel, M.; Waroquier, M.; Van Speybroeck, V. Efficient
594 Approach for the Computational Study of Alcohol and Nitrile Adsorption in H-ZSM-5. *J. Phys. Chem. C*
595 **2012**, *116*, 5499-5508, doi:10.1021/jp2123828.
- 596 51. Lee, C.-C.; Gorte, R.J.; Farneth, W.E. Calorimetric Study of Alcohol and Nitrile Adsorption Complexes
597 in H-ZSM-5. *J. Phys. Chem. B* **1997**, *101*, 3811-3817.
- 598 52. Nguyen, C.M.; Reyniers, M.-F.; Marin, G.B. Theoretical study of the adsorption of C1-C4 primary
599 alcohols in H-ZSM-5. *Phys. Chem. Chem. Phys.* **2010**, *12*, 9481-9493, doi:10.1039/c000503g.
- 600 53. Li, Y.-P.; Gomes, J.; Mallikarjun Sharada, S.; Bell, A.T.; Head-Gordon, M. Improved Force-Field
601 Parameters for QM/MM Simulations of the Energies of Adsorption for Molecules in Zeolites and a Free
602 Rotor Correction to the Rigid Rotor Harmonic Oscillator Model for Adsorption Enthalpies. *J. Phys.*
603 *Chem. C* **2015**, *119*, 1840-1850, doi:10.1021/jp509921r.

- 604 54. Baerlocher, C.; McCusker, L.B. Database of Zeolite Structures: . Availabe online: <http://www.iza-structure.org/databases/>
- 605 55. Nguyen, C.M.; Reyniers, M.-F.; Marin, G.B. Theoretical Study of the Adsorption of the Butanol Isomers in H-ZSM-5. *J. Phys. Chem. C* **2011**, *115*, 8658-8669, doi:10.1021/jp111698b.
- 606 56. Hammond, G.S. A correlation of reaction rates. *Journal of the American Chemical Society* **1955**, *77*, 334-338.
- 607 57. Leffler, J.E. The enthalpy-entropy relationship and its implications for organic chemistry. *J. Org. Chem.* **1955**, *20*, 1202-1231.
- 608 58. Ferguson, G.A.; Cheng, L.; Bu, L.; Kim, S.; Robichaud, D.J.; Nimlos, M.R.; Curtiss, L.A.; Beckham, G.T. Carbocation Stability in H-ZSM5 at High Temperature. *J. Phys. Chem. A* **2015**, *119*, 11397-11405, doi:10.1021/acs.jpca.5b07025.
- 609 59. Ferguson, G.A.; Cheng, L.; Bu, L.; Kim, S.; Robichaud, D.J.; Nimlos, M.R.; Curtiss, L.A.; Beckham, G.T. Carbocation stability in H-ZSM5 at high temperature. *J. Phys. Chem. A* **2015**, *119*, 11397-11405.
- 610 60. Jones, A.J.; Zones, S.I.; Iglesia, E. Implications of transition state confinement within small voids for acid catalysis. *J. Phys. Chem. C* **2014**, *118*, 17787-17800.
- 611 61. Xiao, J.; Wei, J. Diffusion mechanism of hydrocarbons in zeolites-I. Theory. *Chem. Eng. Sci.* **1992**, *47*, 1123-1141, doi:10.1016/0009-2509(92)80236-6.
- 612 62. Bu, L.; Nimlos, M.R.; Robichaud, D.J.; Kim, S. Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite. *Catal. Today* **2018**, *312*, 73-81.
- 613 63. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. *J. Comput. Phys.* **1995**, *117*, 1-19.
- 614 64. Bu, L.; Nimlos, M.R.; Robichaud, D.J.; Kim, S. Diffusion of Biomass Pyrolysis Products in H-ZSM-5 by Molecular Dynamics Simulations. *J. Phys. Chem. C* **2017**, *121*, 500-510, doi:10.1021/acs.jpcc.6b10871.
- 615 65. Farberow, C.A.; Cheah, S.; Kim, S.; Miller, J.T.; Gallagher, J.R.; Hensley, J.E.; Schaidle, J.A.; Ruddy, D.A. Exploring low-temperature dehydrogenation at ionic Cu sites in beta zeolite to enable alkane recycle in dimethyl ether homologation. *ACS Catal.* **2017**, *7*, 3662-3667.
- 616 66. Knott, B.C.; Nimlos, C.T.; Robichaud, D.J.; Nimlos, M.R.; Kim, S.; Gounder, R. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. *ACS Catal.* **2017**, *8*, 770-784.
- 617 67. Cook, S.J.; Chakraborty, A.K.; Bell, A.T.; Theodorou, D.N. Structural and electronic features of a Broensted acid site in H-ZSM-5. *J. Phys. Chem.* **1993**, *97*, 6679-6685, doi:10.1021/j100127a018.
- 618 68. Lonsinger, S.R.; Chakraborty, A.K.; Theodorou, D.N.; Bell, A.T. The effects of local structural relaxation on aluminum siting within H-ZSM-5. *Catal. Lett.* **1991**, *11*, 209-217, doi:10.1007/bf00764087.
- 619 69. Vjunov, A.; Fulton, J.L.; Huthwelker, T.; Pin, S.; Mei, D.; Schenter, G.K.; Govind, N.; Camaioni, D.M.; Hu, J.Z.; Lercher, J.A. Quantitatively Probing the Al Distribution in Zeolites. *J. Am. Chem. Soc.* **2014**, *136*, 8296-8306, doi:10.1021/ja501361v.
- 620 70. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A., et al. *Gaussian 09, Revision D.01; Gaussian, Inc.*, Wallingford, CT, 2009.
- 621 71. Boekfa, B.; Choomwattana, S.; Khongpracha, P.; Limtrakul, J. Effects of the Zeolite Framework on the Adsorptions and Hydrogen-Exchange Reactions of Unsaturated Aliphatic, Aromatic, and Heterocyclic Compounds in ZSM-5 Zeolite: A Combination of Perturbation Theory (MP2) and a Newly Developed Density Functional Theory (M06-2X) in ONIOM Scheme. *Langmuir* **2009**, *25*, 12990-12999, doi:10.1021/la901841w.

- 647 72. Rayne, S.; Forest, K. Performance of the M062X density functional against the ISOL set of benchmark
648 isomerization energies for large organic molecules. *Nat. Preced.* **2010**.
- 649 73. Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry,
650 thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new
651 functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem.
652 Acc.* **2008**, *120*, 215-241, doi:10.1007/s00214-007-0310-x.
- 653 74. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO
654 approximations and application to 70 elements. *J. Mol. Model.* **2007**, *13*, 1173-1213, doi:10.1007/s00894-
655 007-0233-4.
- 656 75. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev.
657 Lett.* **1996**, *77*, 3865-3868.
- 658 76. Harl, J.; Schimka, L.; Kresse, G. Assessing the quality of the random phase approximation for lattice
659 constants and atomization energies of solids. *Phys. Rev. B* **2010**, *81*, 115126.
- 660 77. Kresse, G.; Furthmüller, J. Efficient iterative schemes for \textit{ab initio} total-energy calculations
661 using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169-11186.
- 662 78. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and
663 semiconductors using a plane-wave basis set. *Comput. Mat. Sci.* **1996**, *6*, 15-50,
664 doi:[http://dx.doi.org/10.1016/0927-0256\(96\)00008-0](http://dx.doi.org/10.1016/0927-0256(96)00008-0).
- 665 79. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **1993**, *47*, 558-561.
- 666 80. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-
667 semiconductor transition in germanium. *Phys. Rev. B* **1994**, *49*, 14251-14269.
- 668