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Abstract: This study proposes a new algorithm termed rain cell identification and tracking (RCIT) 8 
to identify and track rain cells from high resolution weather radar data. Previous algorithms have 9 
limitations when tracking non-consequent rain cells owing to their use of maximum correlation 10 
coefficient methods and their lack of an alternative way to handle the variation stages of rain cells 11 
during their life cycles. To address these deficiencies, various methods are implemented in the new 12 
algorithm. These include the particle image velocimetry (PIV) method for motion estimation and 13 
the rain cell matching rule to obtain the stage changes of rain cells. High resolution (5-min and 1-14 
km) radar reflectivity data from three rainy days over the German federal state North Rhine 15 
Westphalia (NRW) are used to evaluate the proposed algorithm. The performance of the new 16 
algorithm is compared with a radar reflectivity map and verified by two object-oriented methods: 17 
structure–amplitude–location (SAL) and geometric index. The verification results suggest that the 18 
performance of the new algorithm is good. Application of the RCIT algorithm to the selected cases 19 
shows that the inner structure of rainfall events in the experimental region present extreme value 20 
distributions, with most rainfall events having a short duration with less intensity. The new 21 
algorithm can effectively capture the stage changes of rain cells during their life cycles. The 22 
proposed algorithm can serve as the basis for further hydro-meteorological applications such as 23 
spatial and temporal analysis of rainfall events and short-term flood forecasting. 24 

Keywords: rain cell; tracking; PIV; feature-based verification 25 

1. Introduction 26 

Precipitation is a key process in Earth’s water circle. Acquiring explicit knowledge about its 27 
inner behavior is critical to assisting us in understanding its interaction with hydrological processes. 28 
Rainfall events are characterized by several elements, such as duration, intensity, velocity, and spatial 29 
and temporal variability (Elena et al. 2017). The variability of rainfall events can be defined as “the 30 
variability derived from having multiple spatially-distributed rainfall fields for a given point in time” 31 
(Peleg et al. 2017). In hydro-meteorological applications, rainfall always varies over its life cycle; this 32 
variation also differs between different types of event (e.g., convective and stratiform rainfall events). 33 
As a consequence, the responses of hydrology models are sensitive to this variation. Modeling rainfall 34 
events and analyzing their spatial and temporal information is necessary. 35 

For rainfall event monitoring, intensity and cumulative value are the two most common indexes 36 
and they are usually measured using a rain gage, which is the standard instrument for providing 37 
direct observations. Nevertheless, a rain gage cannot directly detect variability in rainfall events, it is 38 
also subject to errors owing to topography and wind effects. As a possible alternative, weather radar 39 
has played a major role in recent years owing to its high spatial and temporal resolution. This is 40 
advantageous in terms of (i) acquiring spatial and temporal patterns when modeling rainfall events 41 
and (ii) undertaking short-term rainfall forecasting at fine scales. Identifying and tracking rainfall 42 
events is a common task in radar-based meteorological and hydrological applications (Moseley et al. 43 
2013; Novo et al. 2014; Guinard et al. 2015; Yeung et al. 2015).  44 

Broadly speaking, the corresponding algorithms for radar-based rainfall event identification and 45 
tracking can be classified into pixel- and object-based approaches (Zahraei et al. 2013). The pixel-46 
based approaches are also referred to as advection field tracking. These are pattern matching 47 
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approaches for extracting motion vectors by searching for the maximum correlation coefficient of 48 
rain cells in two consecutive radar images. Pixel-based algorithms are highly effective when they are 49 
applied in convective rainfall nowcasting, which is usually found in frontal systems (Anna et al. 50 
2018). Algorithms of this kind are capable of distinguishing between large scale convective and 51 
stratiform rainfall, although they are not so effective for individual RCIT. Herein, a rain cell is defined 52 
as the closed contours over which rainfall intensity exceeds a given threshold during one rainfall 53 
event (Féral et al. 2006). Representative algorithms can be listed as follows: TREC (Rinenart and 54 
Garvey 1978), TITAN (Dixon and Wiener 1993), COTREC (Li et al.1995), and SWIRLS (Li et al. 2014). 55 
Object-based approaches (also termed cell tracking) include (i) a detecting algorithm for searching a 56 
discrete rain cell’s properties (e.g., centroid, area, echo-tops, and vertical-integrated) in consecutive 57 
radar images and (ii) a matching algorithm for tracking cell motion and shape changes (e.g., merging 58 
and splitting). The advantage of object-based approaches is in reflecting the dynamic of convective 59 
rainfall; they are suitable for convective rain storm analysis but not effective in straitiform rainfall 60 
identification. Representative algorithms can be listed as follows: SCOUT (Einfalt et al. 1990), SCIT 61 
(Johnson et al. 1998), Trace3D (Handwerker 2002), and PERsiann-ForeCAST (Zahrani et al. 2013). 62 

Despite the thorough application of these rain event identification and tracking algorithms, they 63 
have the following deficiencies. For pixel-based approaches, motion estimates are mostly based on 64 
the maximum correlation coefficient, which may yield non-continuous results when fast decay of 65 
rainfall occurs. For object-based approaches, motion estimates obtained from the rain cell center of 66 
mass may lack accuracy owing to the random center of mass displacement problem (Han et al., 2009). 67 
This problem occurs when the shape of rain cells changes rapidly between successive radar images. 68 
As a consequence of these motion estimate inaccuracies, these algorithms may also encounter 69 
difficulties when handling merging and splitting scenarios (Muñoz et al., 2018), whereas a rain cell 70 
can begin its life cycle by simply emerging at a location with no rain. It is also possible that a rain cell 71 
can become separated from a large single rain cell or that several smaller rain cells can merge into 72 
one (Moseley et al. 2013). For such reasons, a new rain cell identification and tracking algorithm 73 
(RCIT) is proposed in this work. The algorithm is developed by combining the advantages of pixel- 74 
and object-based approaches and is able to handle the problem of detecting the stage changes of rain 75 
cells.  76 

This paper is organized as follows. An introduction to the study area and radar data is given in 77 
Section 2. The RCIT algorithm is illustrated in Section 3. Section 4 presents structure, amplitude, and 78 
location (SAL) and geometric verification results and practical applications of the algorithm to North 79 
Rhine Westphalia (NRW) rainfall events. In Section 5, the main conclusions and further expectations 80 
of this work are given. 81 

2. Rain Cell Identification and Tracking Algorithm - RCIT 82 

The aim of the RCIT is to analyze rainfall events by fully utilizing the merits of weather radar. 83 
The inputs to the proposed algorithm are radar reflectivity maps and the outputs are the properties 84 
of rain cells such as area, intensity, and trajectory. The RCIT involves two modules: rain cell 85 
identification and tracking, as presented as in Figure 1.  86 
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 87 

Figure 1. Step illustration of rain cell identification and tracking algorithm. 88 

2.1. Rain Cell Identification Module 89 

Similar to the object-based algorithms, the rain cell identification module of the RCIT is based 90 
on discerning a connected domain above a given threshold. As presented in the left portion of Figure 91 
1, each selected radar reflectivity map in the Cartesian coordinates is initially filtered by the median 92 
filtering method (Anoraganingrum 1999) to remove noisy pixels (pixels with abnormally high 93 
reflectivity). Then, pixels above a given reflectivity threshold are assigned the value one, with the 94 
remainder assigned the value zero. A segmenting process is implemented to assemble and cluster 95 
pixels sharing the same reflectivity threshold into a connected area. In the segmenting process, the 96 
following rules suggested by Peleg and Morin (2012) are obeyed: (i) If the reflectivity of a rainy pixel 97 
is lower than a given threshold Rt, then it is set to null. (ii) For each rainy pixel and its eight neighbors, 98 
if more than five of them are null, then it is set to null. (iii) If the pixel is spurred, then it is set to null. 99 
Herein, spur pixels are those isolated pixels whose reflectivity is different to others along the 100 
horizontal and vertical directions in the labeled binary image. (iv) If the area of a connected region is 101 
smaller than 9 km2, then it is ignored. All the segmented regions are then labeled and fitted with an 102 
ellipse shape. Their properties are extracted and stored in a relational database. The extracted 103 
properties are as follows: 104 

i) Area [km2] - Sum value for the number of pixels contained in one rain cell. 105 

ii) Areal rainfall depth [mm] - Cumulative precipitation of one rain cell over a 5-minute interval. 106 
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iii) Maximum intensity [mm.h−1] - Peak intensity of one rain cell. 107 

iv) Areal mean rainfall depth [mm.km2] - Ratio of the areal rainfall depth and area. 108 

v) Eccentricity - Ratio of minor and major axes, which are acquired from the fitted eclipse. Used 109 
to describe the shape of one rain cell with a value range from 0 to 1. 110 

vi) Center of mass [km] - Center of mass of a rain cell, which is weighted by the reflectivity of rainy 111 
pixels. 112 

Property calculation: Areal rainfall depth, maximum intensity, and areal mean rainfall depth are 113 
based on the reflectivity (Z) and rain rate (R) converting function: Z = aRb.  114 

2.2. Rain Cell Tracking Module  115 

The rain cell tracking module is established based on a hybrid approach, as illustrated in the 116 
right portion of Figure 1. In the first procedure, motion vectors are estimated by implementing the 117 
particle image velocimetry (PIV). This is an optical method of flow visualization that is used to obtain 118 
instantaneous velocity measurements and related properties of fluids (Merzkirch 2001; Adrian 2005; 119 
Westerweel et al. 2013). It consists of a class of flow measuring mechanisms that are characterized by 120 
recording the displacement of small particles embedded in a region of fluid. Figure 2 shows a PIV 121 
application in motion vector estimation. In the first step, a window box of size r × r is initially defined, 122 
which divides radar images into several sub-blocks. In the second step, a searching distance, d =123 
2 × v୫ୟ୶ + 1, is defined, where vmax is the preset maximum velocity. The minimum quadric difference 124 
(MQD), as suggested by Gui and Merzkirch (1996), is employed in searching the optimal grid points 125 
at time t + ∆t, as in Equation (1): 126 

𝑀𝑄𝐷(Δ𝑥, Δ𝑦) = ∑ ∑ ห𝑅ଵ൫𝑋௜ , 𝑌௝൯ − 𝑅ଶ൫𝑋௜ + Δ𝑥, 𝑌௝ + Δ𝑦൯หே
௝ୀଵ

ே
௜ୀଵ         (1) 127 

where R1(Xi,Yj) and R2(Xi,Yj) are the reflectivity of grid points contained within the window boxes of 128 
radar images at time t and t+∆t, respectively; ∆x and ∆y (∆x,∆y ϵ d) are the locations of minimum 129 
reflectivity difference in the horizontal and vertical directions separately. The minimum reflectivity 130 
differences of grid points within the window boxes are reversed to simplify the calculation. In order 131 
to guarantee that the solitary peak locations can be calculated, ∆x and ∆y are corrected separately in 132 
the horizontal and vertical directions by fitting a second-order polynomial to the logarithm of the 133 
maximum reflectivity of the grid point and its three direct neighbors, as in Equation (2). In this way, 134 
the optimal grid points at time t + ∆t are identified, with their locations presented as (x + ∆x −

ୢାଵ

ଶ
, y +135 

∆y −
ୢାଵ

ଶ
). In the final step, the calculated motion vectors are smoothed by the median filter algorithm. 136 

∆𝑥 = 𝑥 −
௟௢௚ோ(௫ାଵ,௬)ି௟௢௚ோ(௫ିଵ,௬)

ଶ௟௢௚ோ(௫ାଵ,௬)ିସ௟௢௚ோ(௫,௬)ାଶ௟௢௚ (௫ିଵ,௬)
          (2a) 137 

∆𝑦 = 𝑦 −
௟௢௚ோ(௫,௬ାଵ)ି௟௢௚ோ(௫,௬ିଵ)

ଶ௟௢௚ோ(௫,௬ାଵ)ିସ௟௢௚ோ(௫,௬)ାଶ௟௢௚ (௫,௬ିଵ)
          (2b) 138 

In the second procedure, rain cells at time t and t + ∆t are identified. Finally, a child rain cell 139 
matching rule is applied for identifying the most-matched rain cells. The child rain cell matching 140 
scheme considers the stage changes of rain cells between successive radar images (e.g., merge, split, 141 
growth, and decay), using certain indexes for determination such as overlap, area diversification, 142 
distance, and angle difference of center of mass. Before introduction of the rain cluster matching rule, 143 
certain definitions were identified: (i) for two radar images at time t and t + ∆t, rain cells identified 144 
from radar images at t are termed parent cells and (ii) rain cells identified from radar images at t + ∆t 145 
are termed child cells. These definitions can be depicted as follows:  146 
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(1) A boundary box of a parent cell is defined, with a horizontal length of [10+max(posx), 147 
min(posx)−10] and vertical length of [10+max(posy), min(posy)−10], where posx and posy are 148 
Cartesian coordinates of pixels in the parent cell.  149 

(2) The number of child cells falling into the boundary box is determined and their 150 
properties, e.g., area, areal rainfall depth, max intensity, areal mean rainfall depth, and 151 
center of mass, are selected.  152 

(3) If only one child cell is searched in the boundary box and it overlaps with a parent 153 
cell, then it is the most-matched rain cell. If this child cell does not overlap with a parent cell 154 
and the distance and angle difference for the center of mass between it and the parent cell 155 
are less than 3 × mean (Vmotion_vector) and 3 × θmotion_vector, it is also the most-matched rain cell, 156 
where mean (Vmotion_vector) and θmotion_vector are the mean value of velocity and the prevailing 157 
direction of the motion vector, respectively.  158 

(4) If two or more child cells fall into the boundary box without overlapping a parent cell, 159 
the matching rule is changeless; however one extra condition is included, i.e., child cells 160 
whose areas have minimum absolute differences with the parent cell are the most-matched 161 
rain cells. 162 

 163 

Figure 2. Illustration of PIV application in rain cell motion estimation. Step one: window boxes with 164 
the area of r × r are defined (rectangular with red color); step two: for any grid point in the window 165 
box at a previous timepoint (red block), the MQD algorithm is applied to deduce the minimum 166 
reflectivity differences, and grid points with minimum value in the next window box are identified 167 
(blue blocks); step three: the solitary locations of reversed MQD value, ∆x and ∆y, are corrected by 168 
applying Equation (2). The locations of the optimal grid point at the next timepoint are calculated 169 
using the second polynomial function, and the global motion vectors are extracted and smoothed by 170 
the median filter method. 171 

3. Study Area and Data  172 
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The study area is the federal state of NRW (Figure 3). It is bordered by the German federal states 173 
of Lower Saxony to the north and north-east, Hessen to the east, and Rhineland–Palatinate to the 174 
south, and by the countries of Belgium to the south-west and the Netherlands to the west. NRW 175 
includes upland regions of North Eifel in the south and mountains of the Sauerland in the south-east. 176 
There are five rivers in this study area: Rhine, Ruhr, Ems, Lippe, and Weser. Two main types of 177 
landscape can be found in NRW, namely the North German lowlands, with elevations just a few 178 
meters above sea level, and the North German low mountain range, with elevations of up to 850 m. 179 
The lowland areas comprise the Rhine–Ruhr area, which is one of the largest metropolitan areas, with 180 
a population of approximately 10 million. The circulation pattern of NRW is mainly affected by the 181 
air mass from the Atlantic Ocean along the direction toward the mainland. When arriving at the 182 
southern high mountain regions, the air mass stops and rises; this leads to more cloudiness and 183 
precipitation. On the eastern side of the mountain regions, drier air masses result in less cloudiness 184 
and less precipitation. 185 

Radar data were obtained from the Essen radar deployed in Essen City, NRW. The Essen radar 186 
has been deployed over the study area and is a part of the radar network of the German weather 187 
service (DWD). The Essen radar is a dual-polarimetric C-band Doppler radar. It delivers radar 188 
volume scans (frequency: 800/1200 Hz, maximum range: 124 km) every 15 minutes for the Doppler 189 
velocity, together with intensity volume scans (frequency: 500 Hz, maximum range: 256 km) and 190 
precipitation scans (frequency: 600 Hz, maximum range: 150 km) every 5 minutes for the 191 
precipitation echo, with a high spatial resolution of 1 km in range and 1° in azimuth. For this study, 192 
the Essen radar provided precipitation scans with an elevation of 0.8° and a range of 128 km. The 193 
output reflectivity was selected with a plan position indicator (PPI) display type.  194 

As radar measures precipitation in an indirect manner, the quality of radar data must be 195 
carefully checked. The sources that affect the quality of the Essen radar data include ground clutter 196 
and speckle, beam blockage, and attenuation. The corresponding quality correction methods in this 197 
work follow Golz et al. (2006). After quality checking, an open source package “Wradlib” 198 
(Heistermann et al. 2013) was applied to project the raw radar image onto a 256 × 256 km2 Cartesian 199 
map with 1-km resolution. In total, 864 radar reflectivity images for three rainy days (May 26, 2007; 200 
July 19, 2008; and July 26, 2008), including some recorded convective rainfall events, were selected to 201 
evaluate the proposed algorithm. The daily rainfall distributions of these rainy days are shown in 202 
Figure 4.  203 
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 204 
Figure 3. Study area of North Rhine Westphalia (NRW) and its location in Germany. The main 205 
administrative cities are marked with red dots. 206 
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 207 

Figure 4. Daily rainfall distribution for selected rainy days. Radar reflectivity was converted into rain 208 
rate according to DWD standard Z–R relationship. 209 

4. Results Analysis and Discussion 210 

In the algorithm application process, the reflectivity threshold for rain cell identification was set 211 
to 19 dBZ, which was based on the classification of DWD presented by Weusthoff and Hauf (2008), 212 
as in Table 1. For the German weather radar system, two common Z–R relationships were used by 213 
Weusthoff and Hauf (2008): one was categorized for the RADOLAN product and the other uses 214 
constant a and b with values of 256 and 1.42, respectively. Although the DWD has stated that the 215 
categorized relationship statistically shows better results over long time periods, the standard 216 
relationship can be more compatible with local cases when a correction factor is added (Einfalt and 217 
Frerk 2012). Based on the above considerations, we applied the DWD standard Z–R relationship to 218 
radar reflectivity–rain rate conversion in the application cases. 219 

Table 1. Conversion of radar reflectivity to rain rates using Z–R relationship (a = 256, b = 1.42) with 220 
thresholds according to the classification of the DWD. 221 

Z [dBZ] R [mm.h−1] Rain Rate [mm.5 min−1] 
> 55 > 150 > 12.5 

46–55 35–150 2.92–12.5 
37–46 8.1–35 0.68–2.92 
28–37 1.9–8.1 0.16–0.68 
19–28 0.4–1.9 0.03–0.16 
7–19 0.06–0.4 0.005–0.03 
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4.1. Performance Assessment of RCIT Algorithm 222 

Grid-point related error measurement is problematic for the rain cell tracking algorithm. A 223 
classic example illustrating this problem is the well-known “Double Penalty” problem, in which 224 
prediction of a precipitation object at the correct size and structure might yield very poor verification 225 
scores. For example, one rain cell is displaced slightly in space but the categorical verification scores 226 
heavily penalize such a situation. In traditional verification methods, a displacement simply leads to 227 
a false alarm, and it is also very poorly rated owing to its large root mean squared error (Davis et al. 228 
2006). On the other hand, despite a great deal of effort in the statistical validation of grid-based 229 
rainfall estimated results, verification associated with the geometry patterns of rain cells has not been 230 
well researched or applied. 231 

As an alternative, feature-based verification methods have been built upon the idea of 232 
identifying rainfall events as “objects”. With this perspective, simulated and observed rainfalls are 233 
not compared directly at the same location; rather, objects of interest are extracted from simulated 234 
and observed data and then compared together so that verification statistics are obtained. A number 235 
of spatial verification methods have been proposed (Ebert 2008; Gilleland et al. 2009). In the present 236 
work two feature-based verification methods, SAL and geometric index, are implemented to verify 237 
the performance of the RCIT algorithm. A detailed introduction to the SAL and geometric index 238 
methods is presented in Appendix A. The data set for comparison was a simulated radar reflectivity 239 
map from the RCIT algorithm (termed sim_ref) and an observed radar reflectivity map (termed 240 
obs_ref). 241 

Figure 5 shows the SAL verification results, which are arranged based on the three selected rainy 242 
days. For each SAL plot presented in Figure 5, the vertical axis denotes the A component, the 243 
horizontal axis denoted the S component, the dots represent values of the S and A components, and 244 
the color scale of the dots denotes the L component. Median values of the SAL components are 245 
presented as dashed lines. It can be seen that all S and A values are concentrated close to zero, as are 246 
most L component values. Table 2 gives the S, A, and L index values for the geometric index objects 247 
from the sim_ref and obs_ref data sets. All values were again organized based on the three selected 248 
rainy days. It is evident that the index differences between the geometric index objects from the 249 
sim_ref and obs_ref data sets were less than 0.05. 250 

Table 2. Results of three geometric index components of geometric index verification objects for RCIT-251 
simulated radar reflectivity maps (sim) and observed radar reflectivity maps (obs). Values are sorted 252 
at 5, 50, and 75 percentile levels. 253 

Selected cases 
C index S index A index 

25% 50% 75% 25% 50% 75% 25% 50% 75% 

May 26, 2007 
obs 0.934 0.957 0.977 0.22 0.325 0.509 0.102 0.198 0.417 
sim 0.966 0.979 0.992 0.27 0.378 0.579 0.135 0.271 0.53 

July 19, 2008 
obs 0.847 0.895 0.938 0.143 0.217 0.29 0.031 0.071 0.118 
sim 0.907 0.943 0.969 0.154 0.233 0.297 0.043 0.086 0.134 

July 26, 2008 
obs 0.897 0.93 0.955 0.154 0.245 0.374 0.045 0.116 0.213 
sim 0.936 0.965 0.997 0.189 0.285 0.385 0.077 0.149 0.238 

The SAL verification results suggest that the shape of most SAL objects from the sim_ref data 254 
set was the same as that for SAL objects from the obs_ref data set (except for a few cases that were 255 
slightly large and flat). The converted rainfall volume for some SAL objects from the sim_ref data set 256 
was less than that from the obs_ref data set; the origin that the rain cell area threshold used in the 257 
RCIT algorithm was 9 km2, with rain cells less than this threshold ignored. However, the converted 258 
rainfall volume of most SAL objects from the sim_ref data set was close to that from the obs_ref data 259 
set. Location differences of SAL objects between the sim_ref and obs_ref data sets were not obvious. 260 
Geometric index verification results indicated that the geometric pattern of geometric index objects 261 
from the sim_ref data set was approximately the same as that for objects from the obs_ref data set 262 
(except for connectivity). Differences in the C index for geometric index objects from the two data 263 
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sets were obvious, which may have been because the median filter method applied in the RCIT 264 
algorithm smoothed abnormal pixels in the radar reflectivity map. In general, the RCIT algorithm 265 
performed well based on the two feature-based verification methods. 266 

 267 
Figure 5. Value distributions of the three SAL components. Dashed lines in the vertical and horizontal 268 
directions in each sub-figure represent the median values of the S and A components, respectively, 269 
and dot color represents the of L component value. Results are sorted by selected rain days: (a) May 270 
26, 2007; (b) July 19, 2008; (c) July 26, 2008. 271 

4.2. Application of RCIT Algorithm in Rainfall Event Analysis  272 

There were 10,346 rain cells identified from the radar reflectivity maps. Descriptive statistics of 273 
their properties are given in Table 3. It was found that a high standard deviation existed for the areas 274 
of these rain cells, with values ranging from 9 to 18,734 km2 (most were less than 38 km2). For areal 275 
rainfall depth, values ranged from 0.36 to 8861 mm and a high standard deviation again existed. For 276 
the maximum intensity property, a high standard deviation (34.08 mm.h−1) was also found; the 277 
median value was 2.83 mm.h−1 and the range of values was 0.48 to 397.75 mm.h−1. Areal mean rainfall 278 
depth was from 0.04 to 4.4 mm.km2. Eccentricity ranged from 0 to 1, with a median value over 0.5. 279 

Table 3. Descriptive statistics of rain cell properties. Indexes used for the statistics are minimum 280 
value, maximum value, standard deviation, and median value. 281 

Property 

Statistical properties 

Minimum 
value 

Maximum 
value 

Standard 
deviation 

Median 
value 

Area 9 18734 1391 38 

Areal rainfall depth 0.36 8861 559.9 4.4 

Max intensity 0.04 33.2 2.8 0.24 

Areal mean rainfall 
depth 

0.04 4.4 0.3 0.1 

Eccentricity 0 0.99 0.17 0.84 

 282 
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Inner structures of the selected events were described by statistically analyzing the physical and 283 
geometric properties of the rain cells. RCIT simulation results indicated that the properties (e.g., area, 284 
areal rainfall depth, max intensity, and areal mean rainfall depth) of the identified rain cells presented 285 
a wide range of values. The shape of the rain cells was somewhat elliptical, with a median value over 286 
0.5. Histograms of the log10-transformed rain cell properties are given as in Figure 6. To determine 287 
the best theoretical distributions describing the empirical distributions, a multi-goodness of fit testing 288 
(GOF) approach combined with the Akaike information criterion (AIC), the Bayesian information 289 
criterion (BIC), and the Kolmogorov–Smirnov (K–S) test methods was applied (see Appendix B). 290 
Figure 7 shows their fitted cumulative distributions. Empirical distributions of the log10-transformed 291 
properties (area, areal rainfall depth, maximum intensity, and areal mean rainfall depth) could be 292 
fitted with the generalized Pareto distribution (GPD) presented in Equation (6), and the extreme 293 
value distribution (EVD) was found to fit the eccentricity property shown in Equation (7). 294 

f(x|k, μ, α) = (
ଵ

஑
)(1 + k

(୶ିஜ)

஑
)ିଵି

భ

ౡ              (6) 295 

where k is the shape parameter, and μ and α are location and scale parameters, respectively. For 296 
μ < 0, k is above zero, and for μ < x < α, k is below zero. At the limit for k = 0, the GPD is the 297 
exponential distribution. 298 

f(x|k, μ, α) = (
ଵ

஑
)e(ି(ଵା୩

(౮షಔ)

ಉ
)

భ
ౡ)(ଵା୩

(౮షಔ)

ಉ
)

షభష
భ
ౡ            (7) 299 

for 1 + k
(୶ିμ)

α
, when k > 0, the generalized EVD is the Frchet distribution; k < 0 corresponds to the 300 

Weibull distribution; at the limit for k = 0, it is the Gumbel distribution. 301 
A total of 1,107 rain cell trajectories were exploited. Histograms of their duration and motion 302 

vectors are presented in Figure 8. All rain cells held a mean duration of 40 minutes. For all the 303 
identified rain cells, the median value of their life cycles was 15 minutes, with an average moving 304 
speed of 11.59 m.s−1. The moving directions of the rain cells were consistently toward the direction of 305 
motion observed in the radar images.  306 

 307 
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Figure 6. Histograms of log10-transformed rain cell properties: (a) area, (b) areal rainfall depth, (c) 308 
maximum intensity, (d) areal mean rainfall depth and property, (e) eccentricity for identified rain 309 
fields. 310 

 311 

Figure 7. Cumulative curves of fitted probability density functions for log10-transformed rain cell 312 
properties: (a) area, (b) areal rainfall depth, (c) maximum intensity, (d) areal mean rainfall depth and 313 
property, (e) eccentricity. 314 

 315 

Figure 8. (a) Histograms of rain cell duration for identified rain fields, (b) wind rose plot of rain cell 316 
motion estimation result. 317 

These results were in agreement with the study of Barnolas et al. (2010), in which the structures 318 
of heavy rainfall events recorded in Catalonia, Spain were analyzed. However, the results differed 319 
from those of Karklinsky and Morin (2006), in which the area of identified rain cells in southern Israel 320 
was better fitted to the log-normal distribution. Statistical analysis of the rain cell properties suggests 321 
that the inner structures of the selected rainy days can be expressed by the EVD. This suggests that 322 
most rainfall events had a limited covering area with less intensity and short duration; rainfall events 323 
with a long duration had a large covering area and high intensity.  324 
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During the life cycle of a rainfall event, the physical and geometrical features of rain cells 325 
continually change. Three common stages reflect these variations: cumulus, mature, and dissipating 326 
(Byers and Braham Jr 1948). In fact, the stage changes of rain cells are not only associated with its 327 
internal growth and decay but also with outer rain cells (e.g., merging or splitting). In this study, 328 
seven rain cell life stages were confirmed by the RCIT algorithm; their definitions can be listed as 329 
follows (Figure 9): 330 

a. Initial: A rain cell having no parent cell is termed an initial rain cell. 331 

b. Tracking: A rain cell with only one parent cell and having no interaction with other rain 332 
cells during its life cycle is termed a tracking rain cell. 333 

c. Merge: A rain cell with at least two parent cells is termed a merged rain cell. 334 

d. Split: A rain cell with only one parent cell but at least two child cells is termed a split rain 335 
cell. 336 

e. Dissipate: A rain cell with at least one parent cell but no child cells is termed a dissipate 337 
rain cell. 338 

f. 5-minute life cycle: A rain cell with a life cycle of only 5 minutes. 339 

g. Complex stage: A rain cell for which merging and splitting simultaneously exist during its 340 
life cycle is termed complex stage. 341 

The number of rain cells with different stages over their life cycles is summarized in Table 4. 342 
Rain cells with “5 minutes life cycle” and “tracking” stages were dominant. The “merging”, 343 
“splitting”, and “complex stage” cells occurred in isolated cases, indicating a stable inner structure 344 
of the identified cells. For the cases of July 19, 2008 and July 26, 2008, the number of rain cells in the 345 
“tracking” stage was even greater, indicating that the rainfall events occurring on these two days had 346 
long durations. The number of rain cells in the “merging” and “splitting” stages was greater in the 347 
July 26, 2008 case. This suggests that there were more convective rainfall events on that day since rain 348 
cells merge or split more frequently under such conditions.  349 

Table 4. Number of rain cells with different life stages, sorted by selected rain day. 350 

Stages May 26, 2007 July 19, 2008 July 26, 2008 

Initial 158 350 471 

Tracking 608 1270 1787 

Merge 7 6 39 

Split 1 2 5 

Dissipate 152 346 434 

5 minute life cycle 632 3148 929 

Complex stage 0 0 1 

 351 
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 352 

Figure 9. Stage definitions of rain cells: (a) initial, (b) tracking, (c) merging, (d) splitting, (e) 353 
dissipating. 354 

5. Conclusion and Outlook 355 

This study develops a new algorithm, RCIT, which utilizes the advantages of high resolution 356 
weather radar data. The proposed algorithm provides the following improvements: 357 

1. It uses the PIV method in rain cell motion estimation. Rain cell motion estimation by past 358 
algorithms is mainly based on the maximum correlation coefficient method, which may 359 
lead to nonconsecutive motion when the shape and volume of a rain cell change rapidly. 360 
The PIV method avoids this situation. 361 

2. A rain cell matching rule is proposed to discern the life cycle and stage change of rain cells. 362 
Past algorithms focus mainly on the tracking of rain cells without merging and splitting, 363 
when in fact rain cell stage variation is obvious over their life cycle, especially for 364 
convective rainfall events. The proposed rain cell matching rule implemented in the RCIT 365 
algorithm can easily and effectively discern the various stages of rain cells. 366 

Two feature-based verification methods, SAL and geometric index, were used to test the 367 
performance of the RCIT algorithm. It is shown that all verification indexes fall within in a reasonable 368 
error range, confirming the good performance of the RCIT algorithm. Practical applications of the 369 
RCIT algorithm in analyzing the inner structure of historical rainfall events that occurred in the NRW 370 
are presented. This is the first time that the use of such a RCIT algorithm to depict the inner structures 371 
of rainfall events in an urban region with a high population density has been presented. The results 372 
show that the properties of rain cells in this region presented an EVD, indicating that the selected 373 
rainfall events had a short duration with low intensity. Long duration events with high intensity are 374 
rarely found and the stage changes of rain cells vary between events.  375 

It should be noted that inputs for the proposed algorithm is not limited to radar data; other 2-D 376 
remote sensing data will also be used as the algorithm inputs, suggesting the versatility of the 377 
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proposed algorithm. In future application, it is intended that this algorithm will analyze the spatial–378 
temporal variation of rainfall in small regions; this will lead to the determination of rainfall inputs 379 
with proper spatial and temporal scales for hydro-meteorological applications. The proposed 380 
algorithm will also be applied to rainfall nowcasting, which will improve the foresight period of flash 381 
floods in mountainous and urban regions. In addition, the features of the rain cell output from this 382 
algorithm can be used in sensitivity analyses of urban runoff in relation to short-term rainfall events, 383 
which will improve flood forecasting precision in small–medium catchments.  384 
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APPENDIX A 390 

Structure–Amplitude–Location (SAL) and Geometric Index Verification Methods 391 

Two feature-based verification methods, structure–amplitude–location (SAL) and geometric 392 
index, were applied to evaluate the performance of the RCIT algorithm and nowcasting methods. In 393 
SAL, term structure denotes the similarity in the shapes of modeled and observed rain cells; its value 394 
range is from −2 to 2. Amplitude denotes the similarity in the total precipitation values of modeled 395 
and observed rain cells; its value range is from −2 to 2. Location denotes the similarity of the center 396 
of mass for the modeled and observed rain cells; its value varies from 0 to 2. The accuracy of 397 
nowcasting methods can be evaluated based on the value of the three SAL components and a perfect 398 
nowcasting is confirmed by S, A, and L values of 0. More details on the SAL method can be found in 399 
Wernli et al. (2008).  400 

Geometric index is a quantitative assessment method for the spatial patterns of rain cells 401 
(AghaKouchak et al. 2010). It compares the geometric features of modeled and observed rain cells via 402 
three indexes: 403 

 Connectivity index: This is defined to compare simulated rain cells with respect to a 404 
reference object (e.g., observed rain cells). Its value is calculated based on the number of 405 
rain cells (NC) and the total number of non-zero pixels or pixels above a given threshold 406 
(NP), as in Equation (8): 407 

𝐶௜௡ௗ௘௫ = 1 −
ே஼ିଵ

√ே௉ାே
                          (8) 408 

where Cindex is the connectivity index, NP is the number of rainy pixels above a given 409 
threshold, and NC is the number of rain cells. 410 

 Shape index: This index is introduced to quantitatively describe the shape discrepancy of 411 
rain cells, as in Equation (9): 412 

𝑆௜௡ௗ௘௫ = 1 −
௉೘೔೙

௉
                           (9) 413 

where Sindex is the single index, Pmin is the theoretical minimum perimeter, and P is the 414 
actual perimeter of the rain cell. 415 
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 Area index: This is defined to depict the dispersiveness between the modeled and 416 
observed rain cells. Its value is the ratio of the area of its convex hull (the boundary of the 417 
minimal convex set containing a finite set of points in the rain cell), as in Equation (10). 418 

𝐴௜௡ௗ௘௫ = 1 −
஺

஺಴೚೙ೡ೐ೣ
                         (10) 419 

where A is the area of the rain cell and AConvex is the area of the convex hull. 420 

APPENDIX B 421 

Goodness of fit testing for fitted distributions of rain cell properties 422 

The GOF test determines whether a data set is well fitted with a predefined distribution that 423 
gives the highest probability of producing the observed data. As such, a series of fit testing methods 424 
was developed, with the commonly applied tests as follows:  425 

 The K–S test is based on the empirical cumulative distribution function (ECDF). Given N 426 
ordered data points Y1, Y2, …., Yn, their ECDF is defined as:  427 

                      𝐸ே =
௡(௜)

ே
                                (11) 428 

where n(i) is the number of points less than Yi and Yj, which are ordered from the smallest 429 
to largest value. This is a step function that increases by 1/N at the value of each ordered 430 
data point. The K–S test was developed according to the following hypotheses: H0—the 431 
data follow a specified distribution; H1—the data do not follow the specified distribution.  432 

 AIC (Akaike, 1998) is based on the use of Kullback–Leible information as the discrepancy 433 
measure between the true distribution and the approximating distributions: Mi = 434 
gi(x,p1,p2,…,pn). The AIC for the ith candidate distribution can be computed as:  435 

                       𝐴𝐼𝐶 = −2 ∏(𝜃) + 2𝑝                  (12)  436 

where ∏(θ) stands for the maximum log-likelihood of the sample of the dataset, p is the 437 
parameter’s number of candidate distributions when the sample size n is small with 438 
respect to the number of the estimated parameter Pi. The smaller the value of AIC, the 439 
better fitting is the result for the candidate distribution. 440 

 BIC (Schwarz, 1978) serves as an asymptotic approximation to a transformation of the 441 
Bayesian posterior probability of a candidate model. It is based on the empirical log-442 
likelihood and does not require the specification of priors. BIC is defined as 443 

                   𝐵𝐼𝐶 = −2 ∏(𝜃) + ln (𝑛)𝑝                 (13)  444 

where the symbols are the same as those In Equation (12). A small value of BIC means 445 
that the candidate distribution fits well with the empirical distribution.  446 
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