A Fifteen Year Analysis of Rare Isolated Fallopian Tube Torsions in Adolescent Children: A Case Series

Cengiz Güneş, Abuzer Coskun

Cumhuriyet University Medical Faculty, Department of Pediatric Surgery, Sivas, Turkey
Sivas Numune Hospital, Department of Emergency, Sivas, Turkey

*Corresponding: Abuzer Coskun, MD, E-mail: dr.acoskun44@hotmail.com

Sivas Numune Hospital, Department of Emergency
Yesilyurt Mah. Sifa Street Sivas, Turkey
Telephone: + 90 444 44 58 Fax: + 90 346 223 95 30 Mobile: +90 532 157 79 12

ABSTRACT

Background: Isolated fallopian tube torsions presenting to the emergency department are a very rare cause of childhood acute abdominal pain. Since the diagnosis to be made in the early period is of importance in terms of affecting tubal damage and fertility, it was aimed to evaluate the cases in the light of literature.

Materials and Methods: This study included 10 patients under 18 years of age presented to the emergency department with abdominal pain between January 2003 and December 2018. The mean age was 14.5±1.43 years (range: 12-17 years). The demographic characteristics, surgical findings, and methods, concomitant pathology results of these patients were retrospectively evaluated.

Results: The reason for admitting to the emergency department of 10 patients included in the study was abdominal pain. The mean duration of hospital admission with pain was 4.97 days. The onset of pain was less than 24 hours in 7 patients (70%) and was more than 24 hours in three patients (30%). Of the patients, 9 (90%) had tenderness in the lower abdominal quadrant, 5 (5%) had the defense, and 3 (30%) had a rebound. Nausea, vomiting, and
leucocytosis were present in 50% of the cases. Right and left tubal involvement of the cases was equal. Seven (70%) of the isolated tubal torsions were accompanied by paraovarian cysts. Of the patients, 8 (80%) underwent open surgery and 2 (20%) underwent laparoscopic intervention. Detorsion was performed in 5 (50%) and salpingectomy was performed in 5 (50%) cases.

Conclusion: Isolated tubal torsion should be considered in children presenting with acute abdominal pain in early adolescence. Early diagnosis is important for the maintenance of fertility.

Keywords: emergency department acute abdominal pain; isolated fallopian tube torsion; detorsion; salpingectomy

1. Introduction

Isolated fallopian tube torsion (IFTT) is the rotation of the fallopian tube on its own axis without ovarian torsion. The incidence is estimated to be 1/1,500,000 women\(^1\). The etiology is uncertain. Anatomical abnormalities such as long mesosalpinx, hydro/hematosalpinx, tubal mass/neoplasm, adnexal mass (ovarian/paraovarian tumor), and physiological abnormalities such as abnormal peristalsis or periovulatory spasm, hemodynamic abnormalities such as venous congestion, Sellheim theory indicating sudden body position changes, trauma, pelvic inflammatory disease, pelvic adhesion, previous surgery/disease such as tubal ligation, and enlarged uterus/uterine mass may play a role in the etiology\(^2,3\). Specific symptoms, clinical findings, imaging, and laboratory characteristics could not be determined so far\(^4\). It is rarely diagnosed before surgery. Detorsion or salpingectomy is performed in the treatment.

The aim of this study was to present the results of 10 patients with IFTT in the light of literature and to contribute to the diagnosis and treatment.

2. Materials and Methods

Study design and population
Patients diagnosed with isolated fallopian tube torsion between January 2003 and December 2018 were retrospectively analyzed using the electronic medical record system. The study included girls aged between one month and 18 years and patients diagnosed with isolated fallopian tube torsion during operation. Patients under one month of age and above 18 years of age, and patients who had fallopian tube torsion with ovarian torsion were excluded from the study. The patients' age, characteristic and localization of abdominal pain, presence of nausea and vomiting, physical examination findings, preoperative laboratory and radiological imaging findings, affected side, surgical findings, method and procedure, presence of concomitant pathology and examination results were recorded.

3. Statistical Analysis

The data obtained from this study were collected from the hospital's electronic medical record system. They were then analyzed with the SPSS 15.0 software package. The descriptive statistics were shown as mean±standard deviation or median (minimum-maximum) for continuous variables and a number of cases and percentage (%) for nominal variables. Other data were analyzed using Microsoft Excel and simple descriptive statistics.

4. Results

The mean age of 10 patients included in the study was 14.5±1.43 (range: 12-17) years. The reason for admitting to the emergency department of the patients was abdominal pain. The mean duration between the onset of pain and hospital admission was 4.97 days (six hours-one months). Of the patients, five had abdominal pain in the left lower quadrant, two had in the right lower quadrant, one had in the lower quadrant, and two had in the whole abdomen. All but one of the sexually inactive patients were menstruating. Of the patients, five had nausea and three had vomiting. Two of the patients had nausea and non-bilious vomiting. The patients had no trauma, constipation, diarrhea, vaginal discharge, or dysmenorrhea.
complaint. Only one patient had dysuria. Of the patients, 90% (9) had lower quadrant tenderness, five had the defense, and three had a rebound on physical examination (Table I).

White blood cell (WBC) level was high (>11000/mm3) in 5 patients, while it was within the normal range (4000-11000/mm3) in 5 patients. The mean time to onset of symptoms was 8.4 days in the patients with a high WBC value, while it was found to be shorter in those with a WBC value within normal range with 0.95 days. Neutrophil dominance was detected in 70% of the patients. In the patients with relatively low lymphocyte percentage, platelet counts were within a normal range.

Urea, creatinine, amylase, aspartate transaminase, alanine aminotransferase, gamma glutamyl transferase, sodium, potassium and C-Reactive protein (CRP) values of all patients were normal. The values of three patients whose Alpha-fetoprotein (α-FP), β-Human Chorionic Gonadotropin (β-HCG), Cancer Antigen-125 (CA-125) were studied were found to be normal.

Direct abdominal X-ray and Doppler ultrasonography (US) were performed on all patients and magnetic resonance imaging (MRI) was performed on two patients. Direct abdominal X-rays of all patients were evaluated as normal. Paraovarian cyst/mass was detected in seven patients who had undergone the US, while two patients were evaluated as normal. Due to the presence of free fluid in the pelvic region of one patient, it was thought to be an ovarian cyst. Four patients were prediagnosed with ovarian torsion due to the absence or reduction of ovarian blood supply. Pelvic free fluid was identified in four patients and paraovarian cyst was detected in five patients. MRI was performed on one appendectomized patient with the diagnosis of paraovarian mass and this patient was diagnosed with IFTT preoperatively (Fig I).

Nine of the patients were operated on the day of admission. One patient was operated four days later due to non-healing pain, previous abdominal pain attacks and detection of
paraovarian solid mass on the US after her further examinations were performed. Of the patients, two were operated using the laparoscopic method, while eight underwent open surgical intervention. Torsioned tuba was equal on both sides. Five patients did not have any additional intervention because of normalization of blood supply after detorsion, while the other five patients underwent cystectomy /salpingectomy (Fig II). The pathological examination of the resected materials revealed changes of chronic salpingitis along with serosal cysts (Table II).

5. Discussion

Isolated fallopian tube torsion (IFTT) is one of the rare causes of acute abdominal pain in adolescent girls. In the literature, it is usually presented as case reports. In recent years, there are publications in the form of case series\(^5\)-\(^7\). Tubal torsion more frequently arises on the right side. The reason for this is that the mobility of the left tuba with the sigmoid colon is more restricted and right lower quadrant pains are diagnosed by opening the abdomen with suspicion of acute appendicitis\(^8\),\(^9\). In our study, it was present on both sides with the same frequency. It was also similar to the multicentre study by Bertozzi et al. which found an equal number on both sides\(^8\).

Paraovarian cyst/mass is blamed in the etiology of IFFT. Paraovarian cyst was detected in five of our cases. In addition, hydro/hematosalpinx was identified in one patient. There are studies that associate isolated fallopian tube torsion with some sports involving sudden body movements\(^10\),\(^11\). In our study, two patients were actively engaged in sports.

Lower abdominal pain is common in IFTT; however, lower abdominal pain is not specific to IFTT, and similar manifestations may also arise in other surgical pathologies causing acute abdomen\(^3\). All patients had a complaint of abdominal pain. Of the patients, eight had abdominal pain in the lower abdominal region, while two had abdominal pain in the whole abdomen. The onset of pain ranged from six hours to one month from admission and was
similar to the study by Harmon et al12. Whereas, the complaint of nausea and vomiting varied in the patients.

On physical examination, there is no specific examination finding suggestive of IFTT. Of the patients, nine had tenderness, five had the defense, and only three had a rebound. WBC was above the normal values in five patients, while it was within the normal range in other patients; however, seven patients had neutrophil dominance. The presence of neutrophil dominance in 70% of the patients was notable. Whereas, CRP was within the normal range in all of our patients. There was no specific laboratory finding of IFTT in our patients, and as stated by Bertozzi et al., the contribution of laboratory parameters to the diagnosis in IFTT patients was not clearly obvious6.

Preoperative diagnosis of isolated fallopian tube torsion is difficult since there is no pathognomonic imaging method, specific symptoms or characteristic laboratory findings13. The diagnosis is usually made during surgical intervention. In our series, one patient was preoperatively diagnosed, while other patients were diagnosed during surgery. The MRI of the patient diagnosed preoperatively revealed thickened fallopian tube walls, tubal rotation, hydro/hematosalpinx, which were evaluated in favor of IFTT. The preoperative diagnosis was ovarian torsion in four patients. Five patients were diagnosed with paraovarian cyst on USG. IFTT was identified on the side where these cysts were present during operation and torsioned fallopian tubes were removed by being evaluated to be necrotic. Paratubal cysts, called hydatid cysts of Morgagni, are very rarely neoplasia14. In the study, the cystic structures present in five patients were diagnosed with simple serosal cyst as a result of the pathological examination. In our patient preoperatively diagnosed with solid mass, the only cystic structure was found during the operation.

Pathologies such as appendicitis, ovarian torsion, ectopic pregnancy, pelvic inflammatory disease, the ruptured ovarian cyst should be considered in the differential diagnosis (9).
terms of preserving fertility, early diagnosis and early surgical intervention may be possible by preserving the fallopian tube, avoiding possible salpingectomy. Saving the fallopian tube is a rare condition due to the difficulty in early diagnosis. Mazouni et al. emphasized that duration from onset of pain to surgery longer than 10 hours increases the risk of tubal necrosis15. In our study, half of the patients did not have tissue loss because of the normalization of blood supply to the fallopian tube after detorsion. Of these patients, three were operated within the first 24 hours from the onset of their complaints, while the other two were operated after more than 24 hours.

Salpingectomy or detorsion is the preferred methods in surgical treatment. The necrotic appearance of the tubes is taken as a reference when deciding on salpingectomy; however, in recent studies, the observation of healthy cilia cells in the pathological examination of the removed tubes leads on to a discussion of maybe leaving the fallopian tubes in place as in ovarian torsion16. However, in such a case, it is recommended to follow up patients with USG until adulthood. However, no matter how necrotic it appears, the conservative treatment of fallopian tube does not affect morbidity. This reveals the need for future studies in terms of the functionality of fallopian tubes.

The most important limitation of the study is the retrospective and single-center design. Another important limitation is the small sample size and the selection of very rare cases. Moreover, the difficulty in accessing the records and radiological imaging and inability to obtain adequate information on the patients' medications used and personal history were the main limitations.

6. Conclusion

In this study, no specific clinical, physical examination or laboratory finding was identified when the results of 10 patients with IFTT were analyzed over a period of 15 years. IFTT is a cause of acute abdomen which should be kept in mind in patients presenting with
lower abdominal quadrant pain. Although USG is not very helpful in the diagnosis, the presence of paraovarian cystic masses in the affected area is an important parameter in terms of reminding IFTT. In terms of fertilization, preservation of fallopian tubes is possible with early surgical intervention. Although there are views on the preservation of necrotic fallopian tubes in recent times, there is no adequate information about the long-term results. Further studies are needed to be conducted in this respect.

References

Table I: Baseline characteristics, laboratory and clinic finding of study patients.

<table>
<thead>
<tr>
<th>Isolated fallopian tube torsion</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td></td>
</tr>
<tr>
<td>Age, mean±SD, yr</td>
<td>14.5±1.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory Finding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC, mg/dL</td>
<td>10.47±2.40</td>
</tr>
<tr>
<td>Neutrophils, %</td>
<td>76.9±7.58</td>
</tr>
<tr>
<td>Lymphocytes, %</td>
<td>18.1±5.94</td>
</tr>
<tr>
<td>BUN, mg/dL</td>
<td>16.24±8.19</td>
</tr>
<tr>
<td>Crea, mg/dL</td>
<td>0.73±0.24</td>
</tr>
<tr>
<td>ALT, mg/dL</td>
<td>17.21±7.23</td>
</tr>
<tr>
<td>AST, mg/dL</td>
<td>19.44±7.31</td>
</tr>
<tr>
<td>ALP, mg/dL</td>
<td>86.24±48.51</td>
</tr>
<tr>
<td>BS, mg/dL</td>
<td>94.11±18.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinic Finnding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Pain</td>
<td>10(100)</td>
</tr>
<tr>
<td>Time to start pain</td>
<td></td>
</tr>
</tbody>
</table>
Less than 24h 7(70)
More than 24h 3(30)

Shape of pain
- Colic 3(30)
- Continuous pain 7(70)

Nausea 5(50)
Vomiting 5(50)
Vaginal discharge 0(0)
Menarche 9(90)

Physical examination
- Abdominal tenderness 9(90)
- Abdominal defender 5(50)
- Abdominal rebound 3(30)

Imaging methods
- Direct abdominal radiography 10(100)
- US 10(100)
- MRI 2(20)
- Tumor Markers 2(20)
- Paraovarian cyst 7(70)
- Doppler current reduction / absence 3(30)

Surgical intervention method
- Open surgery 8(80)
- Laparoscopic 2(20)

Place of torsion
- Right 5(50)
- Left 5(50)

Operation performed
- Detorsion 5(50)
- Salpingectomy 5(50)

Table II: Characteristics of fallopian tube torsion cases

<table>
<thead>
<tr>
<th>Age</th>
<th>Localisation</th>
<th>RDUS</th>
<th>MRI</th>
<th>Preop Diagnosis</th>
<th>Postop Diagnosis</th>
<th>Accompanying Pathology</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lower left</td>
<td>Left paraovarian cyst Free liquid</td>
<td>None</td>
<td>Acute Abdomen</td>
<td>Left IFTT</td>
<td>None</td>
<td>Open Salpingectomy</td>
</tr>
<tr>
<td>2</td>
<td>Lower right</td>
<td>Normal</td>
<td>None</td>
<td>Acute Abdomen</td>
<td>Right IFTT</td>
<td>None</td>
<td>Open Detorsion, Cyst excision</td>
</tr>
<tr>
<td>3</td>
<td>Lower left</td>
<td>Right paraovarian mass Semi-solid cystic paraadnexial</td>
<td>None</td>
<td>Paraovarian mass</td>
<td>Right IFTT</td>
<td>Paratubal kist</td>
<td>Open Salpingectomy, Cyst excision</td>
</tr>
<tr>
<td>4</td>
<td>All Abdomen</td>
<td>Right paraovarian cyst Free liquid</td>
<td>None</td>
<td>Right ovarian torsion</td>
<td>Right IFTT</td>
<td>Paratubal kist</td>
<td>Open Salpingectomy, Cyst excision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>Lower left</td>
<td>Left paraovarian cyst</td>
<td>None</td>
<td>Left ovarian torsion</td>
<td>Left IFTT</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>Lower right</td>
<td>Right paraovarian cyst, Free liquid</td>
<td>None</td>
<td>Right ovarian torsion</td>
<td>Right IFTT</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>All Abdomen</td>
<td>Normal, Fallopian tube wall thickening, Hydrohematosalpinx</td>
<td>IFTT</td>
<td>Right IFTT</td>
<td>None</td>
<td>Open Salpenegetomy</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>Lower left</td>
<td>Free liquid</td>
<td>None</td>
<td>Ovarian cyst rupture</td>
<td>Left IFTT</td>
<td>Paratubal kist</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>Sub-dial</td>
<td>Left paraovarian cyst</td>
<td>None</td>
<td>Acute Abdomen</td>
<td>Left IFTT</td>
<td>Paratubal kist</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>Lower left</td>
<td>Left paraovarian cyst</td>
<td>None</td>
<td>Left ovarian torsion</td>
<td>Left IFTT</td>
<td>None</td>
</tr>
</tbody>
</table>

RDUS: Color Doppler Ultrasonography, MRI: Magnetic resonance imaging, IFTT: Isolated fallopian tube torsion LAP: lymphadenopathy

Figure I: Magnetic resonance image of a patient diagnosed with preoperative isolated fallopian tube torsion
MRI: T1A sections show blue arrow torsion, red arrow indicates hydrohematosalpinx

Figure II: Isolated fallopian tube torsion material caused by hydrohematosalpinx

Ethical Statement: All subjects gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of Project identification code: 2019-05/16-22/05/2019.
Author Contributions: Study conceptualization involved, C.G. and A.C; Methodology, A.C; Validation, C.G. and A.C; Formal analysis, C.G; Investigation, All authors.; Resources, C.G, and A.C; Data curation, C.G.; Writing—original draft preparation, C.G and A.C; Writing—review and editing, All authors; Visualization, C.G and A.C; Supervision, C.G and A.C; Project administration, C.G and B.K.; Funding acquisition, C.G.,

Funding: None declared.
Acknowledgments: None declared

Conflicts of Interest: None declared