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Abstract
In this study, based on our previous study, we examined the math-

ematical properties, especially the stability of the equilibrium for our
proposed mathematical model. By means of the results of the stabil-
ity in this study, we also used actual data representing transient booms
and resurgent booms, and conducted parameter estimation for our pro-
posed model using Bayesian inference. In addition, we conducted a
model fitting to five actual data. By this study, we reconfirmed that
we can express the resurgences or minute vibrations of actual data by
means of our proposed model.

1 Introduction
Booms emerge in many fields and are closely tied to our everyday life. For ex-
ample, a fashion in clothing, makeup, sports, a movie and food(we call “societal
booms”). These examples show that “interesting information” about the individ-
ual boom passed at a rapid rate to a large number of people in a short period of
time. Furthermore, in a sense, we can regard an infectious disease as a boom,
like influenza or SARS(we call “epidemiological booms”), which is infected by
viruses that are transmitted from person to person. In the above examples, it is
the most important things that both “interesting information” and “viruses” are
transmitted by some form of contact. Hence, we considered that a spread with
an interest in products, movie, food, etc resemble the transmission dynamics of
viruses in ways.

Studies on epidemiological booms that employed mathematical models were
founded on differential equations in the late 19th century, and mathematical mod-
eling using differential equations was developed by Kermack and McKendrick in
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the 1920s. This field of study gained attention among researchers owing to the
spread of emerging infectious diseases, such as AIDS in the 1980s, that posed
risks in developed countries. This research continues to progress ([2], [4], [10]).
On the other hand, there are many studies that researched societal booms from a
sociological or psychological perspective, but few were conducted from a mathe-
matical point of view ([1], [9], [13], [17], [19]). However, in recent years, compa-
nies have concentrated their marketing efforts on the development of hit products
that emphasize customer taste and trend analysis by using social networking ser-
vices (SNS) such as Twitter and Facebook.

In this study, we focus on societal booms and we develop research for it. Ishi
et al. [7] have derived a mathematical model for the ‘hit ’phenomenon in en-
tertainment within a society, which is presented as a stochastic process of human
dynamics interactions. Ishi et al. have performed calculations using their pro-
posed equation for many movies in the Japanese market. Moreover, Nakagiri and
Kurita [14] conducted one study that focused on societal booms. Nakagiri et al.
used a system of simultaneous linear differential equations to develop a math-
ematical model to describe problems in societal booms, and performed a model
fitting to actual data. The mathematical model proposed in this study is simple but
extremely versatile. Additionally, Ueda and Asahi [21] expanded on the model de-
veloped by Nakagiri et al. to conduct an analysis using actual data by constructing
and verifying a model of the changing interests among Twitter users. In [16], we
proposed the mathematical boom model developed by Nakagiri et al. in consider-
ation of the SIR model [9], which is a leading idea to describe biological booms
such as viral infections, and the Diffusion of Innovation theory [19] proposed by
sociologist E.M. Rogers. In this study, we examine the stability of the equilibrium
of our proposed model in [16]. Moreover, using actual booms data we evaluate
the parameters and examine the fit of our proposed model.

This study is divided into six parts. In Section 2, we explain the ideas at
the core of our proposed mathematical model for Societal Booms, which was
proposed in our previous study. In Section 3, we investigate the stability of the
equilibrium point to our proposed model and derive the sufficient condition for
parameters of our proposed model. In Section 4, we explain the Bayesian infer-
ence method, which was used to estimate the parameters of our proposed model,
and discusses the numerical exploration of the posterior state space by the MCMC
method. Moreover, we introduce the coefficient of determination that forms the
standard for the fit. In Section 5, we evaluate the parameters of our proposed
model and examine fitting our proposed model to actual data, using five actual
data for societal booms.
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2 Mathematical Model
In this section, we explain a mathematical model for societal booms which was
derived in [16].

2.1 Three key points to derive our proposed model
Here, we explain the three key points which were discussed to derive our mathe-
matical model.

The first point is the contact. Infectious disease epidemics such as influenza
are thought to occur when a virus invades and infects a healthy person’s body from
contact with an infected person. In our proposed model, we define “interesting
information” to be a “virus” , which is transmitted from people in an on-boom
state to those whom the boom has not reached yet (pre-boom). Thus, our proposed
model incorporates the perspective of the contact, which was not considered in
[14].

The second point is the time delay. The Diffusion of Innovation theory, devel-
oped by E.M. Rogers, separates consumers into five categories based on the speed
at which people are likely to adopt innovation (innovators, early adopters, early
majority, late majority, and laggards). Based on this theory, we think that time
lags exist in the adoption of booms by people in a social system, and thus devel-
oped a model that considers the effects of a time delay. Hutchinson [6] suggested
the following logistic equation with time delay τ . This equation shows that the
solution does not fluctuate monotonously but exhibits complex behavior such as
oscillatory behavior depending on the magnitude of the time delay:

dx(t)

dt
= αx(t)

(
1− x(t− τ)

K

)
(α,K > 0) (2.1)

Furthermore, the biologist R.M. May [11] regarded (2.1) as a mathematical model
that expresses the temporal changes of the herbivorous animal population x(t),
and asserted that the biological definition of a time delay was “the time required
for the regeneration of plants that is suitable for animals to eat”. Additionally,
May received acclaim for fitting results from an experiment on the Australian
sheep blowfly (Lucilia cuprina) conducted by Nicholson [15]. Based on these
experimental results, we regarded the definition of a time delay for societal booms
as “the time required for a boom adopter associated with contact and resurgence
to pick up a boom and take action”, and incorporated the concept of the time delay
into the derivation of a mathematical model.

The last point is the existence of influencer and “Sakura1”. In the current
landscape, companies actively employ influencer and “Sakura” in their marketing

1“Sakura” are people who were compelled to boom state.
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strategies. Our proposed model expresses their presence by depicting a resurgence
caused by opinion leaders and forced changes in the number of people.

As described above, our proposed model is a natural extension of the boom
model developed in [14] and is derived from the above three perspectives. We
expect that the model will be able to capture various types of boom data.

2.2 Mathematical model for societal booms
In [16], we proposed a new mathematical model to explain societal booms based
on the background described above. Here, according to [16] we derive the math-
ematical model for societal booms.

First, we assume the state of the boom participants at any given time to be one
of the following:

• State 1【pre-boom】：Condition where there is a potential to adopt a boom

• State 2【on-boom】： Condition where the boom is captured

• State 3【rooted boom】： Condition where the boom is retained

• State 4【unrooted boom】： Condition where the boom did not take off

Furthermore, at a given time t, we assume the number of boom participants in
each state to be y1(t), y2(t), y3(t), and y4(t) respectively, for States 1 − 4. Then
we represent the changes of a customer’s state by using the following equations:

dy1(t)

dt
= −αy1(t)y2(t− τ1)− δy1(t) + εy2(t− τ2)− ζ

dy2(t)

dt
= αy1(t)y2(t− τ1)− (β + γ)y2(t) + δy1(t)

dy3(t)

dt
= βy2(t)− εy2(t− τ2) + ζ

dy4(t)

dt
= γy2(t)

(2.2)

Here, the variables α, β, γ, δ, ε, ζ and τ1, τ2 in (2.2) respectively represent the rate
of transmission (“infection”) of the boom among people in a pre-boom state per
unit time, rate of retention among people in an on-boom state, rate of people who
quit the boom, adoption rate of the boom by people in a pre-boom state, rate of
resurgence from rooted boom to pre-rooted state, and the production rate of people
in an rooted boom state. τ1 and τ2 are parameters that show the time delay, and
τ1 < τ2. Here, α > 0, β + γ > 0, δ > 0. In particular, αy2(t − τ1) is called as
infectivity and is an important indicator that characterizes the boom model.
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From (3.5), (3.6) or (3.7), (3.8), we have

(β + γ)δA2 + (1− ετ2)B
2

AB
> 0.

This is contradiction shows that every λ has negative real part. Hence every
solution of Esq. (2.2) tends to zero exponentially as t → ∞.

4 Bayesian approach for estimating parameters
When using the mathematical model based on a differential equation for vari-
ous phenomena, it creates a problem of how to estimate parameters of its model.
In particular, when it is difficult to analytically obtain the solution of a differen-
tial equation which becomes the maximum likelihood estimated value, we must
provide a maximum likelihood estimation method which allows processing for
digitally obtaining a maximum likelihood estimated value from a likelihood func-
tion. In this section, we describe a Bayesian inference approach for estimating
parameters in a mathematical ODE model.

Recently, the Bayesian inference approach has been greatly extended through
the development of analytical techniques such as MCMC (see [8]). The underly-
ing concept of Bayesian inference approach is Bayes’ theorem, which relates the
parameters θ and the observed data Y as follows:

f(θ|Y ) =
f(Y |θ)f(θ)

f(Y )
. (4.1)

(4.1) states that the posterior probability density function(PPDF) f(θ|Y ) for pa-
rameter θ is proportional to the product of the likelihood function f(Y |θ) and the
prior density function f(θ).

Here, let us define m−dimensional vectors Y, Fθ and E as follows :

Y = (Y1, Y2, · · · , Ym) = (Y (t1), Y (t2), · · · , Y (tm))

Fθ = (F θ
1 , F

θ
2 , · · · , F θ

m)

= (yθ2(t1) + yθ3(t1), y
θ
2(t2) + yθ3(t2), · · · , yθ2(tm) + yθ3(tm))

E = (ε1, ε2, · · · , εm)

where tj(j = 1, · · · ,m) are the measurement points, F θ
j = yθ2(tj)+ yθ3(tj) are the

solution of proposed model (2.2) for the unknown parameters θ. Moreover, εj is
the noise, assumed as white Gaussian noise as follows:

εj ∼ i.i.d. N(0,Σ2
θ)

where the i.i.d. means every residual is independent and identically distributed.
They all have the same distribution, which is defined right afterward.
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Then we seek the parameters θ̄, which assumedly represent the true value of
θ, such that

Y = Fθ + E. (4.2)

Then the likelihood function f(Y|θ) is then given as

f(Y|θ) = exp

{
−(Y − Fθ)T (Y − Fθ)

2Σ2
ε

}
. (4.3)

The prior density function is simply assumed as f(θ) = U[−θ0,θ0], where U[−θ0,θ0]is
a uniform distribution with the parameter θ0 which is a sufficiently large positive
constant. Eventually the PPDF of the parameters θ can be written as follows:

f(θ|Y) ∝ exp

{
−(Y − Fθ)T (Y − Fθ)

2Σ2
ε

}
. (4.4)

Here, the standard derivation Σε is known and can be regarded as a regularization
parameter.

4.1 MCMC methods
In Bayesian inference approach, the complicated and intractable probabilistic mod-
els can be estimated by numerical sampling methods such as MCMC, which has
been widely applied in recent years. The details of MCMC methods are given in
Robert and Casella [18].

Monte Carlo simulation generates pseudo–random numbers for exploring pos-
terior distributions. In the MCMC algorithm, the pseudo–random number is a
Markov chain. The MCMC algorithm exploits the property of a Markov chain to
generate pseudo–random numbers from a posterior distribution, even for a com-
plicated model. It first constructs an ergodic Markov chain with a stationary distri-
bution equaling the target distribution. By iterating the Markov chain transitions
from suitable initial value, it eventually obtains the target distribution.

In this paper, we employs a typical MCMC algorithm called the Metropolis–
Hastings (M–H) algorithm (see Metropolis et al. [13]; Hastings [5]). The M–H
(Algorithm ??) given below builds its Markov chain by accepting or rejecting
samples extracted from a proposed distribution. This algorithm is generally used
in Bayesian inference approach (cf. [8]).

M–H Algorithm

• Step1：Generate θ′ ∼ q(·|θk) = N(θk, σ
2
θ) (the normal distribution) with a

given stander derivation σ > 0 for given θk.

• Step2：Calculate the choice α(θ′, θk) = min {1, f(θ′|Y )/f(θk|Y )}.
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we observe that it is able to largely replicate the subsequent curves including the
leveling-off and decrease rapidly towards the end of the period after two small
peaks. In addition, the coefficient of determination, which is the measure of how
well a model explains the data, shows a high value at R2 = 0.9688; this reveals
that the proposed model has a high degree of fitness. On the other hand, we
observe that fitting to two small peaks in the middle of the period is not good.

5.3.2 “Ten-nensui (Pure Water)”

Suntory “Ten-nensui” is best-selling mineral water which made with water from
renowned water resources in Japan, including the Minami-Alps. All Suntory Ten-
nensui products are made from “soft water”, clear in color, and beloved for their
refreshing taste2.

In this study, we used Twitter data from before and after the product launch
on 4/17/2019 to test the effectiveness of the “GREEN TEA CAMPAIGN” which
is the new product of “Ten-nensui (Pure water)” with respect to the fit proposed
model to actual data. The actual data in Figure 4 show a decline after the first

Figure 4: Fitting to “Tennensui” Pure-
Water data

Figure 5: Various parameter values

peak. After that, it has a small second peak once more, but it decreases again.
Similar to the other examples, the proposed model shows a high degree of fit to
the first peak. In addition, we observe that the graph from the proposed model is
able to well reconstruct the processes of declining and even expresses the small
decline that occurs from 4/18/2019 to 4/21/2019. The high degree of accuracy in
the fitness is evident from the large coefficient of determination, R2 = 0.9612. On

2https://www.suntory.com/brands/suntorytennensui/
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the other hand, we observe that the graph from the proposed model can’t express
well the second peak in the middle of the period.

5.3.3 Honkirin Beer

Honkirin Beer is a Happoshu (low-malt) beer that was introduced on March 13,
2018. In a cost-conscious environment, Honkirin Beer became the biggest hit
among new beer releases in FY 2018 owing to its high quality and low price.
According to the brewer Kirin, Honkirin Beer underwent a product renewal in
mid-January 2019 for an even more refined authentic taste. As a result, the product
logged a record sales volume in February (1.12 million cases), second only to its
release in March 2018 (1.17 million cases).

Here, too, we used Twitter data from before and after the product launch on
4/22/2019 to test the effectiveness of the Honkirin Beer campaign with respect
to the fit of the proposed model to actual data. The actual data in Figure 6 show

Figure 6: Fitting to Honkirin Beer data

Figure 7: Various parameter values

a decline after the first peak slowly with one peak and one bottom on April 26
and 28 2019. Similar to the other examples, the graph from the proposed model
shows a high degree of fit to the first peak. In addition, we observe that it is
able to fit the subsequent curves to the actual data except for two specific points.
The high degree of accuracy in the fitness is evident from the large coefficient
of determination, R2 = 0.9365. On the other hand, we observe that the graph
from the proposed model isn’t able to express well two specific points. Future
challenges include improvements to these points.
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