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11 Abstract: Condition monitoring of bearings is an open issue. The use of the stator current to monitor
12 induction motors has been validated as a very advantageous and practical way to detect several
13 types of faults. Nevertheless, for bearing faults the use of vibrations or sound generally offers better
14 results in the accuracy of the detection although with some disadvantages related to the sensors
15 used for monitoring. To improve the performance of bearing monitoring, it is proposed to take
16 advantage of more information available in the current spectra, beyond the usually employed,
17 incorporating the amplitude of a significant number of sidebands around the first eleven harmonics,
18 growing exponentially the number of fault signatures. This is especially interesting for inverter-fed
19 motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform
20 the fault diagnosis. To overcome this problem, and still exploit all the useful information available
21 in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine
22 learning to solve the overfitting issue when the problem has much more variables than examples to
23 classify. A case study with a motor is shown to prove the validity of the proposal.
24 Keywords: condition monitoring, bearings, machine learning, current spectra.
25

26 1. Introduction

27 Induction motors are a fundamental part of many production processes due to their inherent
28 robustness, low cost and reliability, among other advantages. However, they are not fault-free, with
29  bearings being the component that accounts for the greatest percentage of total failures [1].

30 The signals that are most frequently used for bearing fault detection are vibration and acoustic
31  noise [2]. However, the use of the stator current to monitor the motor provides some practical
32 advantages related to the simplicity and non-invasive characteristics of the sensors. These advantages
33 are especially relevant in industrial facilities where some motors can run simultaneously [3,4]. The
34 use of current has proven its effectiveness in detecting faults such as broken bars and eccentricity [2],
35 but in the case of faulty bearings, it faces technical difficulties that hinder its successful
36  implementation. Mainly, the low energy of the vibrations associated to the fault, which makes it
37  difficult to distinguish in the current spectrum the frequency components related to the fault that
38 may be buried in the noise [1,5,6]. Besides, for inverter-fed motors the noise is higher and there are
39  other harmonics present in the spectrum which complicates even more the detection of the faulty
40  related components [7]. Consistently, in [8] denoising techniques are applied to highlight the faulty
41  components in the current spectrum. Other advanced spectral techniques have also been proposed
42 such as wavelets [9,10], Short-Time Fourier Transform [11], Gabor spectrogram [11] Hilbert-Huang
43  Transform [12], Empirical Mode Decomposition [13] MUSIC [13,14], space vector angular fluctuation
44 method [15]. These techniques have the drawback of a high computational cost.
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45 The first stage related to the detection of the fault provides with some fault signatures that will
46  feed the second stage of the process, the diagnosis. A wide variety of algorithms has been proposed
47  todiagnose faulty bearings such as Artificial Neural Networks [16,17], Support Vector Machines [12],
48  [18,19], K-nearest neighbors [20,21], supervised fuzzy-neighborhood density-based clustering [22],
49  random forest [23], bagging, boosting and stacking methods [24], Common Vector Approach [25],
50  Decision Trees [26,27]. Maximum margin classification [28], Bayes classifier [29], Euclidean Distance
51  Minimization [30] and Bayesian inference [31]. The aforementioned algorithms were mostly applied
52 making use of the known fault signatures related to bearing faults, limited to just a few signatures
53 (usually just the sideband around the main harmonic, as it will be shown in Section 2). However, for
54 challenging cases this is a restricted use of the information available in the spectra. In the case of
55 inverter-fed motors, it can be used the information related to sidebands around the harmonics
56  introduced by the supply [3]. In [32] it is shown how the effects of different types of bearing faults
57  are spread over the spectrum, being for some cases more notorious for the 3« and 7t harmonics and,
58  in other cases, for high frequency odd harmonics; besides, these effects are different depending on
59  the operating characteristics of the motor. In [33] the cases of excessive and defective lubrication are
60  analyzed showing how these situations produce changes in the amplitudes of different sidebands
61  around different harmonics, showing also a variation depending on the load.

62 Consequently, in this paper it is proposed to take advantage of the information available over
63  the spectrum, considering not only the main frequency but also different odd and even harmonics
64  (up to the 11t one) and including many more sidebands than is usual in literature. This way, instead
65  of using just a few signatures to feed the algorithm as is usual in literature, almost one thousand
66  signatures are used in this proposal.

67 The drawback of feeding the classifier with a high number of signatures is a clear risk of
68  overfitting. Overfittings arises when the model has learned the data too well, leading to a small error
69  in the training set (used to build the model) but poor prediction ability. Besides, overfitting is
70  intensified by the presence of noise in the data [34] and, precisely, dealing with motors fed from
71  inverters, a significant presence of noise is to be expected. A solution to minimize the overfitting
72 problem is to apply shrinkage techniques. These techniques perform shrinking the values of the
73 coefficients in the trained model. There are several versions of shrinkage techniques depending on
74 the degree of shrinkage of each coefficient. If some of them can be set to zero, then the method is
75  known as Lasso (Least Absolute Shrinkage and Selection Operator) and consequently the number of
76  signatures in the classifier is reduced, obtaining simpler models. If the value of the coefficients is
77  reduced, but all the signatures are included in the model, the method is known as Ridge Regression.
78  The technique known as Elastic Nets is a way of combining both Lasso and Ridge Regression.

79 To monitor correctly the state of the bearings and be really useful for maintenance purposes it is
80 it is essential to be able to distinguish between different states of deterioration and detect incipient
81  faults before they develop into critical ones. With this purpose, it has been simulated in the laboratory
82  a progressive deterioration of an induction motor bearing via the contamination of the lubrication
83  introducing particles of silicon carbide in the bearing grease. This process tries to emulate conditions
84  wusually present in the industry that produces bearing wear related to the use, to inadequate
85  lubrication or to the proper contamination of the grease in open ball bearings.

86 In this paper, it is proposed the use of a large number of fault signatures obtained from the
87  current spectra to monitor bearing failures. A case study is presented where five states of
88  deterioration of the bearing are considered giving rise to a problem of multiclassification. The
89  improved in the performance of different classifiers when using such fault signatures is shown by
90  comparing with the performance with the usual signatures used in these studies. Then, to deal with
91  the problem of overfitting, shrinkage techniques are applied, comparing the performance of Lasso,
92  Ridge Regression and Elastic Nets, proving their validity to diagnose bearing failures.

93 2. Fault Signatures

94 When a bearing defect appears, a radial motion between rotor and stator will occur modifying
95  the airgap of the motor thus changing the airgap field. These modifications in the airgap can be
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96 interpreted as a combination of bidirectional rotating eccentricities [35], which implies that the defect
97 affects the stator current and, therefore, it is possible to monitor it in the current spectra. The radial
98  motion generates harmonics in the stator current at frequencies given by (1)

99 ﬁuult =| fl * nﬁ)l (1)
100  where fi is the main supply frequency, n is an entire number and f. is the vibration characteristic
101  frequency. f> depends on the type of bearing fault (outer or inner race, balls and train defect) with

102  expressions that are function of the geometry and composition of the bearing [7].

103 The fault frequencies given by (1) are the result of taking into account the deviations in the main
104  component of the airgap field. When the motor is fed by a power converter, the harmonics level is
105  increased and so is the noise level, hampering the detection of the fault signatures. Nevertheless, the
106  presence of these harmonics can be used to increase the available information also considering the
107  deviations produced in the fields as a consequence of these harmonics. Even when the motor is
108  directly fed from the line, since the supply is hardly ever perfectly sinusoidal, the number of fault
109  signatures can be increased too considering the harmonic introduced by the supply. Therefore, (1)
110  can be generalized by (2) where k is the order of the current harmonic.

111 fimar =1k fr£n fol (2)
112 Considering (2), the number of fault signatures can be increased, resulting in a smaller or larger
113 number of variables depending on the value of k and n. In [7,32] the first sideband around the 5t and
114 7% harmonics is employed. In this paper, it is proposed to use a larger number of signatures,
115  considering more harmonics, and other sidebands in addition to the first one as well. In the case study
116 of Section 4, the first eleven current harmonics are used to feed the classifier, considering the first
117  eleven sidebands around those harmonics. As each sideband is composed of two values, there are
118 242 signatures for each characteristic bearing fault frequency, resulting in 968 signatures. Table 1
119  summarizes the information regarding the proposed fault signatures and the comparison with the
120  traditional approach.

121 Table 1. Bearing fault signatures considered in the traditional and in the proposed approach.
Traditional approach Proposed approach
Bearing fault frequencies BPFO, BPFI, FTF; BSF BPFO, BPFI, FTF; BSF
Harmonics considered 1 1,2, ...,11
Sidebands around harmonic 1 1,2, ...,11
Number of fault signatures 8 968
122

123 3. Diagnosis

124 The next step after selecting the candidate fault signatures is to choose and train the classifier.
125 Many classification algorithms are available, with a wide variety of them already proposed to
126  perform diagnosis tasks in induction motors. With the purpose of analyzing the improvement in the
127  performance of the classifier when using the fault signatures presented in the previous section, the
128  Matlab 2019a Classification learner App has been used. In this app there are available different types
129  of classifiers: Decision trees, discriminant analysis, logistic regression classifiers, Naive Bayes
130  classifiers, support vector machines, nearest neighbor classifiers and ensemble classifiers. In each
131  group, there are several classifiers available. Using these classifiers, it has been proved (as shown in
132 the results section) the huge increase in performance of all the classifiers when using the 968 fault
133 signatures instead of the usual 8 signatures.

134 However, when using such high number of signatures, and with a reduced number of tests, the
135  risk of overfitting is certain. Shrinkage techniques allow to make use of all the predictors but
136  shrinking the coefficients towards zero, hence, reducing variance [36]. If applied in linear models
137  (which has the advantage in terms of interpretability of the model), it performs as follows: let xi be
138  the m predictors (or fault signatures in the context of condition monitoring) and v: the response for
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139  the n cases of the problem. A linear model tries to estimate the m+1 coefficients (b,.., bu). Using least
140  squares fitting approach, bi are selected to minimize (a).

2
141 ?:1(}’1' — by — Z}n:l bjxij) 3)
m _p2
j=19%
143 penalty. Its influence depends on the value of A, which is a tuning parameter that increases or

142 To perform the shrinkage, a second term is added to (a), 1} which acts as shrinkage
144 decreases the penalty. For higher values of A, the penalty grows and the coefficient estimated will
145  tend to zero, which implies that the estimation is somehow penalized, sacrificing some of the
146  performance on the training set but with the aim of improving its predictive capacity with future
147  observations. The penalty applies to all the coefficients but the intercept, b, since this term is just an
148  estimation of the mean when the predictors are zero [36].

149 This way of applying the penalty so performing the shrinkage on the estimated coefficients is
150  known asRidge Regression. It has the disadvantage that the shrinkage is applied to all the coefficients
151  butnone of them are set to zero, so all the predictors are included in the solution, which for problems
152  with a large number of predictors (as in the problem dealt in this paper) leads to lose the
153  interpretability of the model. A way of tackling this problem is to change the penalty term into
154 AX7L, |b; |, or in statistical terms, to change an 2 penalty for an I one [36]. The use of an linorm has
155  the inconvenience of turning the function to minimize into non-differentiable, although there are
156  available methods to proceed with the minimization, such as proximal gradient ones [37]. This way
157  of considering the penalty gives rise to the method known as Lasso. As opposed to Ridge Regression,
158  with Lasso, some variables are canceled, so performing as variable selection, depending the number
159  of the variables to be selected on the value of A (as A grows, less variables are selected).

160 Lasso was first applied to linear regressions and lately is receiving much attention being
161  proposed to regularize a wide variety of statistical models [38]. In accordance to Occam’s razor
162  principle, simpler models are preferable, as long as they predict well the training data, since they are
163  more likely to generalize well to unseen data [39]. With this principle in mind, Logistic Regression
164  has been chosen as base model in which to apply the shrinkage technique. Logistic regression is
165  adapted to classification problems since has a discrete outcome. It is based on the logistic function
166  given by (4) which is suitable to be used in classification since its outcome can be inferred as a
167  probability since runs between 0 and 1, and its elongated S-shape offers the advantage that the same
168 additional input influences less the outcome for values near zero or one [40,41]. For binary
169 classification, a threshold value of 0.5 is defined to assign the outcome to one class or the other, which
170  in condition monitoring would be healthy or faulty. When the aim is to distinguish among different
171  states of failure there are several classes into which the outcome can be classified. This
172 multiclassification is performed via the one-versus-all approach as represented in the flow chart in
173  Figure 1. This way, several binary classifiers are trained (as many as classes), where each classifier
174 confronts one class against the rest. Finally, the outcome is assigned to the class where the probability
175  ishighest.

176 f)=0+e™? 4)

177
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Binary classification.
One condition (positive class) is
tested against the others (negative
class)
Determination of probability that
the example belongs to the positive
class
Other class is selected
as positive
All the classes
have been tested?
The example is classified in the
class with the highest probability
178
179 Figure 1. Methodology for multiclass classification.
180  4.Results
181 4.1 Test Bench
182 The tested induction motor is a two pole pair squirrel cage motor, star connected, with a rated

183  power of 0.75 kW at 400 V and a rated current of 1.9 A at a rated speed of 1395 RPM. The tests were
184  performed at two levels load, low (almost no load) and high (rated speed) using a magnetic powder
185  brake. The data were collect using a DAC PCI-6250 M model (16 analogue inputs - 16-bit 1 MS/s) of
186  National Instruments and Hall effect sensors of LEM. The sampling frequency was 25 kHz with a
187  sampling time of 10 s (steady state).

188 For different supply conditions were considered (Table 2). The first one (S1) represents the motor
189  directly fed from a 400 V utility supply. Supply S2 is the motor fed by an inverter (ABB) at 50 Hz and
190  with a switching frequency of 4 kHz. For S3, the operating frequency was changed to 25 Hz, and for
191  S4 the switching frequency was established at 5 kHz).

192 Table 2. Supplies tested.
Su'p'ply. Power source Operating Switching
Identification frequency frequency
S1 utility 50 Hz -
52 Power converter 50 Hz 4 kHz
S3 Power converter 25Hz 4 kHz
S4 Power converter 50 Hz 5 kHz
193
194 To initiate the tests, a new SKF Explorer 6004 bearing was used, performing the corresponding

195  tests to represent the healthy condition. Then, to provoke the progressive wear of the bearing, the
196  lubricant grease was contaminated using silicon carbide, a ceramic material with high resistance to
197  erosion, corrosion and high thermal cycling. This process was established to simulate industrial
198  environment conditions that lead to the degradation of the bearing such as inadequate lubrication,
199  overloads or lubricant contamination (especially relevant to open bearings). During this process, five
200  condition states were defined according to the degradation of the bearing, as summarized in Table 3.
201  After assembling the new bearing, 20 tests per supply were run corresponding to the healthy state
202  (C1). Then, the bearing was first contaminated and the motor run unloaded for 12 hours to lead the
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bearing to the “incipient fault” condition (C2). In this condition, 15 tests were performed for each
supply. The process of running the motor unloaded and contaminating the grease was repeated
giving way to “intermediate fault” condition (C3), with 15 tests per supply, “developed fault” with
10 tests (C4) and “complete breakdown” (C5) with 10 tests for each supply. Figure 2 presents pictures
of the bearing in each of the conditions, showing the evolution of the fault along the tests.

(b)

(e)
(d)

Figure 2. Evolution of the bearing along the tests: (a) healthy state, (b) incipient fault, (c) intermediate

fault (d) developed fault (e) complete breakdown.

Table 3. Bearing conditions tested.

Number of tests per

Condition Evolution of the fault
supply
C1 healthy state 20
c2 incipient fault 15
C3 intermediate fault 15
C4 developed fault 10
C5 complete breakdown 10

4.2. Classification with 968 fault signatures

In order to show the improvement in the classification when using the whole of the fault
signatures as proposed in Section 2, next the results obtained using the Matlab 2019a Classification
learner App are presented. 5-fold cross validation was used. Table 4 summarizes the results obtained
with the App with the accuracy for the classification in each of the five bearing conditions at low and
high load. All the algorithms included in the App have been tested showing the one that has the best
performance for each tested case (depending on the load and the supply) and its accuracy. The same
procedure has been applied feeding the algorithms with eight inputs, following the traditional
procedure of considering just the first sideband around the vibration characteristics frequencies,
according to (2).

d0i:10.20944/preprints201907.0309.v1
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225 Table 4. Comparison between the traditional (8 fault signatures) and proposed approach (968 fault
226 signatures) with the algorithms included in the Matlab 2019a Classification learner App.
Supply Best accuracy Best algorithm  Best accuracy  Best algorithm
el Load 968 fault 968 fault 8 fault 8 fault
Identification . . . .
signatures signatures signatures signatures
S1 Low 95.7 % KNN! 40 % SVM2
High 92.9 % SVM2 40 % SVM2
52 Low 88.6 % SVM2 32.9 % BT>
High 98.6 % SVM2 44.3 % BT>
53 Low 81.4 % BT 41.4 % SVM2
High 97.1 % LD# 60 % KNN!
54 Low 85.7 % LD# 41.4 % SVM2
High 98.6 % BT° 42.9 % SVM?
227 1 Fine KNN, 2Quadratic Support Vector Machines, *Gaussian Naive Bayes, ‘Linear Discriminant, Bagged Tress
228
229 According to the results shown in Table 4, it is very clear that the use of the fault signatures

230  related to a bigger number of sidebands around more harmonics outperforms the use of just eight
231  fault signatures. The huge improvement in the performance is observable in the all the cases, for the
232 different supplies, operating frequencies, switching frequencies and loads. The results are in general
233 better for high load since the energy associated to the harmonics is higher. It is also remarkable that
234  there is a variety of selected algorithms, being Support Vector Machines the most repeated although,
235  in some cases, Gaussian Naive Bayes, Linear Discriminant, Fine KNN and Bagged Trees perform
236  better. This discrepancy adds difficulty to the selection of a classifier valid for all the operating
237  conditions. An algorithm that performs well for all the cases would be desirable. Besides, as it was
238  stated earlier, the use of a big number of signatures (much bigger than the number of tests) may lead
239  to overfitting, losing the trained algorithms the ability to generalize when classifying new
240  observations. To take into account this situation, shrinkage is applied as explained in Section 3.

241  4.3. Classification with 968 fault signatures applying shrinkage

242 Previous section has shown that the classification improves hugely when more information
243 available in the spectra is considered. In this section, shrinkage methods are applied with the double
244 purpose of selecting an algorithm with good performance independently of the operating conditions
245  and of avoiding the problem of overfitting (prone to appear due to the high number of fault
246  signatures, much higher than the number of tests). As explained in Section 3, two different types of
247  shrinkage methods are considered: Ridge regression where all the inputs are considered in the
248  classification, and Lasso that performs variable selection (considering a higher or lower number of
249  inputs in the classification depending on the value of the penalty parameter). A third method is
250 included in the comparison, Elastic nets, which can be considered as a mixture between Lasso and
251  Ridge regression.

252 To build the algorithms and measure their performance, the data sets for each case study are
253  divided into two different sets, the training set consisting of 70% of the cases and the test set with the
254 other 30% of the data. Table 5 shows the performance, measured in terms of accuracy, for the three
255  shrinkage methods, for each supply and load. It can be observed that the results are very good for all
256  the cases, although with some differences in the performance among the cases analyzed, as it also
257  happened for the algorithms considered in the previous section. The three shrinkage methods
258  perform well, although in general, Lasso obtains the best accuracy, therefore, if a single method were
259 to be selected, Lasso would be the candidate. In this selection it has also been taken into account that,
260  since Lasso eliminates variables from the classifier, the model obtained gains in interpretability and
261  computational cost. For that reason, next, a deeper analysis on the performance of Lasso is presented,
262  taking especially into consideration the influence of the penalty parameter, since the number of
263  variables selected (and, consequently, the characteristics of the model) depend on this parameter.
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264 Table 5. Comparison of Accuracy (%) obtained using different methods of shrinkage with 968 fault
265 signatures.
Su‘p‘p ly' Load Lasso Elastic Nets Rldge‘
Identification Regression
S1 Low 100 100 100
High 90.48 90.48 85.71
52 Low 95.24 90.48 80.95
High 95.24 100 100
S3 Low 80.95 76.19 76.19
High 90.48 95.24 95.24
54 Low 90.48 80.95 85.71
High 100 95.24 85.71
266
267 As it was stated in Section 3, the main way in which Lasso avoids overfitting is by feature

268  selection, which is controlled by adjusting the regularization parameter A. The bigger A, more
269  parameters bj in (3) will be zero, that is, the corresponding predictors will not be considered when
270  designing the classifier. Therefore, if a high value of A is chosen, it is much less likely to result in
271  overfitting, besides, the computational cost is highly reduced. The drawback is that, if less predictors
272 are considered, the performance of the classifier will be reduced. Therefore, a trade-off must be
273  reached to select the best value for the regularization parameter to obtain a good classifier
274  performance with less computational cost. The selection of the value of the regularization parameter
275  has been performed considering the train set. No additional validation set has been considered since
276  the number of tests per case study is low and this would have led to training, validating and test sets
277  with very few data in each one. Figure 3 shows the evolution of the accuracy depending on the
278  regularization parameter and Table 6 shows the selected value for each supply and load condition.
279  The value chosen for the classifier is the highest one that achieves the best accuracy for that supply
280  andload, since for smaller values of A the computational cost would be higher. If a unique value were
281  to be chosen for all the supplies, 0.05 could be selected when operating at high load and 0.02 at low
282  load. If the common value of 0.02 were to be chosen, the performance of the algorithm in this case
283  would decreased around 5%, although the computational cost would decreased.

100 7

20

a0

7O

60

accuracy (%)

50

40

30

20 L L L L L L L
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

284 lambda

285 Figure 3. Performance of Lasso classifier depending on the value of the regularization parameter fir
286 different supplies (51-56) and loads (HL: high load, LL: low load).

287
288
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Table 6. Regularization parameter selected for different supplies and level of load.

S1 High 0.02
Low 0.05
S2 High 0.0003
Low 0.02
S3 High 0.01
Low 0.01
54 High 0.005
Low 0.005

So far, accuracy has been used to measure the performance of the classifier. Obviously, from an
algorithmic point of view, it is important to classify all the states correctly, and therefore to achieve
the highest possible accuracy. However, from a condition monitoring point of view, some
misclassifications are more relevant than others, being especially relevant to predict the first and fifth
states correctly, that is, the healthy and completely faulty conditions. With this purpose, Tables 7-10
show the confusion matrices resulting from applying Lasso classifier for the four supplies and two
load conditions. It can be observed how for the healthy state, for 48 instances (there are six true
healthy states in each of the eight cases) only one case (S3, low load) is misclassified. And even if this
case can be considered as a false negative, this instance is classified as an incipient fault, not as a more
developed one. In the same way, for the 24 complete faulty cases (three for each of the eight cases)
only one is misclassified (again, S3 at low load), being predicted as an intermediate fault. Finally, it
is relevant to point out that for all the 168 cases to classify, 13 are not correctly classify but just four
of them are classify more than one class away from the true class.

Table 7. Confusion matrices for supply S1 applying lasso classifier.

Low Load High Load
Predicted class Predicted class
Cl1 C2 (C3 C4 C5 C1 C2 C3 C4 C5
True c1 6 0 0 0 0 6 0 0 0 0
class C2 0 5 0 0 0 0 3 0 0 1
C3 0 0 4 0 0 0 1 4 0 0
C4 0 0 0 3 0 0 0 0 3 0
C5 0 0 0 0 3 0 0 0 0 3
Table 8. Confusion matrices for supply S2 applying lasso classifier.
Low Load High Load
Predicted class Predicted class
Cl C2 C3 C4 C5 Cl1 C2 C3 C4 C5
e € 6 0 0 0 0 6 0 0 0 0
cdass €2 1 3 0 0 O 0 3 0 0 1
G 0 0 5 0 0 0 1 4 0 O
G 0 0 0 3 O 0 0 © 3 0
G 0 0 0O 0 3 0O 0 O 0 3

d0i:10.20944/preprints201907.0309.v1
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308 Table 9. Confusion matrices for supply S3 applying lasso classifier.
Low Load High Load
Predicted class Predicted class
Cl C2 C3 C4 G5 Cl C2 (C3 C4 G5
e € 5 1 0 0 0 6 0 0 0 0
cdass €2 0 4 0 0 0 0 4 0 0 0
G 0 0 3 1 1 1 1 3 0 0
C 0 0 0 3 0 0 0 0 3 0
G0 0 0 1 2 0 0 0 0 3
309
310 Table 10. Confusion matrices for supply S4 applying lasso classifier.
Low Load High Load
Predicted class Predicted class
Cl C2 C3 C4 G5 Cl C2 (C3 C4 G5
we € 6 0 0 0 0 6 0 0 0 0
cdass €2 0 4 0 0 0 0 4 0 0 0
G 0 0 4 0 1 0 0 5 0 0
¢ 0 0 1 2 0 0 0 0 3 0
G0 0 0 0 3 0 0 0 0 3
311
312 5. Discussion
313 A procedure for the diagnosis of induction motor bearings has been presented. The main

314  purpose of the proposal is to maintain the good performance of existing methods that use vibrations
315  orsound as inputs but using the stator current. So far, the monitoring of the current has not achieved
316  asgood performance as the use of the other variables mentioned, but since has some clear advantages
317  related to the necessary sensors it is advisable to have a procedure that allows to use the current. To
318  achieve this goal it has been proposed to take advantage of more information that can be extracted
319  from the spectra beyond what is commonly used, but with no extra computational cost.

320 It has been shown that the use of much more information greatly improved the performance of
321  the diagnosis, which has been proved by means of 24 classifiers (available in the Matlab Classification
322 learner app). However, it must be taken into account that detection and diagnosis are interlinked.
323  There is no use in expecting a good diagnosis performance if the fault signatures obtained during the
324 detection process are of a bad quality. Conversely, although there were high informative fault
325  signatures, if the diagnosis stage is bad designed, the whole process will suffer. Besides, the chosen
326  algorithm must be in accordance with the available variables. Therefore, it has been selected a type
327  of classifier that can perform well with the particular conditions of the problem, where there are much
328  more fault signatures that cases to classify. Shrinkage methods have been chose since they allow to
329  perform in those condition avoiding the problem of overfitting.

330 Three shrinkage methods have been compared, Lasso, Ridge regression and Elastic nets and all
331  of them have proved to achieve a very good performance in the cases analyzed. Although all three
332 meet the expectations, Lasso has been chosen to analyze its results in greater depth since this method
333  selects variables, providing simpler and more interpretable models. For the analysis of the
334  performance of Lasso, the confusion matrices for eight different scenarios have been provided and
335  analyzed. Although from an algorithmic point of view, it is important to classify all the states
336  correctly, from a maintenance perspective, it is especially relevant the presence of false positives or
337  false negatives concerning the healthy and complete fault conditions. That is, some misclassifications
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338  are more relevant than others are. For example, wrong predictions between conditions corresponding
339  to intermediate and incipient faults are not likely to have important repercussions but, on the
340  contrary, a misclassification between states healthy and complete fault will surely have further
341  implications. It has been shown that the predictions obtained with the proposed method matches the
342  expectations form a condition monitoring perspective.

343 Author Contributions: Conceptualization, Oscar Duque-Perez, Daniel Morinigo-Sotelo and Wagner Fontes
344 Godoy; Data curation, Wagner Fontes Godoy; Methodology, Oscar Duque-Perez; Software, Carlos Del Pozo-
345 Gallego; Validation, Daniel Morinigo-Sotelo; Writing — original draft, Oscar Duque-Perez; Writing — review &
346 editing, Daniel Morinigo-Sotelo.
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