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Abstract: Condition monitoring of bearings is an open issue. The use of the stator current to monitor 11 
induction motors has been validated as a very advantageous and practical way to detect several 12 
types of faults. Nevertheless, for bearing faults the use of vibrations or sound generally offers better 13 
results in the accuracy of the detection although with some disadvantages related to the sensors 14 
used for monitoring. To improve the performance of bearing monitoring, it is proposed to take 15 
advantage of more information available in the current spectra, beyond the usually employed, 16 
incorporating the amplitude of a significant number of sidebands around the first eleven harmonics, 17 
growing exponentially the number of fault signatures. This is especially interesting for inverter-fed 18 
motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform 19 
the fault diagnosis. To overcome this problem, and still exploit all the useful information available 20 
in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine 21 
learning to solve the overfitting issue when the problem has much more variables than examples to 22 
classify. A case study with a motor is shown to prove the validity of the proposal. 23 

Keywords: condition monitoring, bearings, machine learning, current spectra. 24 
 25 

1. Introduction 26 

Induction motors are a fundamental part of many production processes due to their inherent 27 
robustness, low cost and reliability, among other advantages. However, they are not fault-free, with 28 
bearings being the component that accounts for the greatest percentage of total failures [1]. 29 

The signals that are most frequently used for bearing fault detection are vibration and acoustic 30 
noise [2]. However, the use of the stator current to monitor the motor provides some practical 31 
advantages related to the simplicity and non-invasive characteristics of the sensors. These advantages 32 
are especially relevant in industrial facilities where some motors can run simultaneously [3,4]. The 33 
use of current has proven its effectiveness in detecting faults such as broken bars and eccentricity [2], 34 
but in the case of faulty bearings, it faces technical difficulties that hinder its successful 35 
implementation. Mainly, the low energy of the vibrations associated to the fault, which makes it 36 
difficult to distinguish in the current spectrum the frequency components related to the fault that 37 
may be buried in the noise [1,5,6]. Besides, for inverter-fed motors the noise is higher and there are 38 
other harmonics present in the spectrum which complicates even more the detection of the faulty 39 
related components [7]. Consistently, in [8] denoising techniques are applied to highlight the faulty 40 
components in the current spectrum. Other advanced spectral techniques have also been proposed 41 
such as wavelets [9,10], Short-Time Fourier Transform [11], Gabor spectrogram [11] Hilbert-Huang 42 
Transform [12], Empirical Mode Decomposition [13] MUSIC [13,14], space vector angular fluctuation 43 
method [15]. These techniques have the drawback of a high computational cost. 44 
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The first stage related to the detection of the fault provides with some fault signatures that will 45 
feed the second stage of the process, the diagnosis. A wide variety of algorithms has been proposed 46 
to diagnose faulty bearings such as Artificial Neural Networks [16,17], Support Vector Machines [12], 47 
[18,19], K-nearest neighbors [20,21], supervised fuzzy-neighborhood density-based clustering [22], 48 
random forest [23], bagging, boosting and stacking methods [24], Common Vector Approach [25], 49 
Decision Trees [26,27]. Maximum margin classification [28], Bayes classifier [29], Euclidean Distance 50 
Minimization [30] and Bayesian inference [31]. The aforementioned algorithms were mostly applied 51 
making use of the known fault signatures related to bearing faults, limited to just a few signatures 52 
(usually just the sideband around the main harmonic, as it will be shown in Section 2). However, for 53 
challenging cases this is a restricted use of the information available in the spectra. In the case of 54 
inverter-fed motors, it can be used the information related to sidebands around the harmonics 55 
introduced by the supply [3]. In [32] it is shown how the effects of different types of bearing faults 56 
are spread over the spectrum, being for some cases more notorious for the 3rd and 7th harmonics and, 57 
in other cases, for high frequency odd harmonics; besides, these effects are different depending on 58 
the operating characteristics of the motor. In [33] the cases of excessive and defective lubrication are 59 
analyzed showing how these situations produce changes in the amplitudes of different sidebands 60 
around different harmonics, showing also a variation depending on the load. 61 

Consequently, in this paper it is proposed to take advantage of the information available over 62 
the spectrum, considering not only the main frequency but also different odd and even harmonics 63 
(up to the 11th one) and including many more sidebands than is usual in literature. This way, instead 64 
of using just a few signatures to feed the algorithm as is usual in literature, almost one thousand 65 
signatures are used in this proposal. 66 

The drawback of feeding the classifier with a high number of signatures is a clear risk of 67 
overfitting. Overfittings arises when the model has learned the data too well, leading to a small error 68 
in the training set (used to build the model) but poor prediction ability. Besides, overfitting is 69 
intensified by the presence of noise in the data [34] and, precisely, dealing with motors fed from 70 
inverters, a significant presence of noise is to be expected. A solution to minimize the overfitting 71 
problem is to apply shrinkage techniques. These techniques perform shrinking the values of the 72 
coefficients in the trained model. There are several versions of shrinkage techniques depending on 73 
the degree of shrinkage of each coefficient. If some of them can be set to zero, then the method is 74 
known as Lasso (Least Absolute Shrinkage and Selection Operator) and consequently the number of 75 
signatures in the classifier is reduced, obtaining simpler models. If the value of the coefficients is 76 
reduced, but all the signatures are included in the model, the method is known as Ridge Regression. 77 
The technique known as Elastic Nets is a way of combining both Lasso and Ridge Regression. 78 

To monitor correctly the state of the bearings and be really useful for maintenance purposes it is 79 
it is essential to be able to distinguish between different states of deterioration and detect incipient 80 
faults before they develop into critical ones. With this purpose, it has been simulated in the laboratory 81 
a progressive deterioration of an induction motor bearing via the contamination of the lubrication 82 
introducing particles of silicon carbide in the bearing grease. This process tries to emulate conditions 83 
usually present in the industry that produces bearing wear related to the use, to inadequate 84 
lubrication or to the proper contamination of the grease in open ball bearings. 85 

In this paper, it is proposed the use of a large number of fault signatures obtained from the 86 
current spectra to monitor bearing failures. A case study is presented where five states of 87 
deterioration of the bearing are considered giving rise to a problem of multiclassification. The 88 
improved in the performance of different classifiers when using such fault signatures is shown by 89 
comparing with the performance with the usual signatures used in these studies. Then, to deal with 90 
the problem of overfitting, shrinkage techniques are applied, comparing the performance of Lasso, 91 
Ridge Regression and Elastic Nets, proving their validity to diagnose bearing failures.  92 

2. Fault Signatures  93 

When a bearing defect appears, a radial motion between rotor and stator will occur modifying 94 
the airgap of the motor thus changing the airgap field. These modifications in the airgap can be 95 
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interpreted as a combination of bidirectional rotating eccentricities [35], which implies that the defect 96 
affects the stator current and, therefore, it is possible to monitor it in the current spectra. The radial 97 
motion generates harmonics in the stator current at frequencies given by (1)  98 

ffault = | f1 ± n fv|         (1) 99 

where f1 is the main supply frequency, n is an entire number and fv is the vibration characteristic 100 

frequency. fv depends on the type of bearing fault (outer or inner race, balls and train defect) with 101 

expressions that are function of the geometry and composition of the bearing [7]. 102 

The fault frequencies given by (1) are the result of taking into account the deviations in the main 103 
component of the airgap field. When the motor is fed by a power converter, the harmonics level is 104 
increased and so is the noise level, hampering the detection of the fault signatures. Nevertheless, the 105 
presence of these harmonics can be used to increase the available information also considering the 106 
deviations produced in the fields as a consequence of these harmonics. Even when the motor is 107 
directly fed from the line, since the supply is hardly ever perfectly sinusoidal, the number of fault 108 
signatures can be increased too considering the harmonic introduced by the supply. Therefore, (1) 109 
can be generalized by (2) where k is the order of the current harmonic.  110 

ffault = |k f1 ± n fv|         (2) 111 

Considering (2), the number of fault signatures can be increased, resulting in a smaller or larger 112 
number of variables depending on the value of k and n. In [7,32] the first sideband around the 5th and 113 
7th harmonics is employed. In this paper, it is proposed to use a larger number of signatures, 114 
considering more harmonics, and other sidebands in addition to the first one as well. In the case study 115 
of Section 4, the first eleven current harmonics are used to feed the classifier, considering the first 116 
eleven sidebands around those harmonics. As each sideband is composed of two values, there are 117 
242 signatures for each characteristic bearing fault frequency, resulting in 968 signatures. Table 1 118 
summarizes the information regarding the proposed fault signatures and the comparison with the 119 
traditional approach. 120 

Table 1. Bearing fault signatures considered in the traditional and in the proposed approach. 121 

 Traditional approach Proposed approach 

Bearing fault frequencies BPFO, BPFI, FTF; BSF BPFO, BPFI, FTF; BSF 

Harmonics considered 1 1, 2, …, 11 

Sidebands around harmonic 1 1, 2, …, 11 

Number of fault signatures 8 968 

 122 

3. Diagnosis 123 

The next step after selecting the candidate fault signatures is to choose and train the classifier. 124 
Many classification algorithms are available, with a wide variety of them already proposed to 125 
perform diagnosis tasks in induction motors. With the purpose of analyzing the improvement in the 126 
performance of the classifier when using the fault signatures presented in the previous section, the 127 
Matlab 2019a Classification learner App has been used. In this app there are available different types 128 
of classifiers: Decision trees, discriminant analysis, logistic regression classifiers, Naïve Bayes 129 
classifiers, support vector machines, nearest neighbor classifiers and ensemble classifiers. In each 130 
group, there are several classifiers available. Using these classifiers, it has been proved (as shown in 131 
the results section) the huge increase in performance of all the classifiers when using the 968 fault 132 
signatures instead of the usual 8 signatures. 133 

However, when using such high number of signatures, and with a reduced number of tests, the 134 
risk of overfitting is certain. Shrinkage techniques allow to make use of all the predictors but 135 
shrinking the coefficients towards zero, hence, reducing variance [36]. If applied in linear models 136 
(which has the advantage in terms of interpretability of the model), it performs as follows: let xi be 137 
the m predictors (or fault signatures in the context of condition monitoring) and yi the response for 138 
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the n cases of the problem. A linear model tries to estimate the m+1 coefficients (b0,.., bm). Using least 139 
squares fitting approach, bi are selected to minimize (a). 140 

∑ (𝑦𝑖 − 𝑏0 −∑ 𝑏𝑗𝑥𝑖𝑗
𝑚
𝑗=1 )

2𝑛
𝑖=1          (3) 141 

To perform the shrinkage, a second term is added to (a), 𝜆∑ 𝑏𝑗
2𝑚

𝑗=1 , which acts as shrinkage 142 

penalty. Its influence depends on the value of λ, which is a tuning parameter that increases or 143 
decreases the penalty. For higher values of λ, the penalty grows and the coefficient estimated will 144 
tend to zero, which implies that the estimation is somehow penalized, sacrificing some of the 145 
performance on the training set but with the aim of improving its predictive capacity with future 146 
observations. The penalty applies to all the coefficients but the intercept, b0, since this term is just an 147 
estimation of the mean when the predictors are zero [36].  148 

This way of applying the penalty so performing the shrinkage on the estimated coefficients is 149 
known as Ridge Regression. It has the disadvantage that the shrinkage is applied to all the coefficients 150 
but none of them are set to zero, so all the predictors are included in the solution, which for problems 151 
with a large number of predictors (as in the problem dealt in this paper) leads to lose the 152 
interpretability of the model. A way of tackling this problem is to change the penalty term into 153 
𝜆∑ |𝑏𝑗

𝑚
𝑗=1 |, or in statistical terms, to change an l2 penalty for an l1 one [36]. The use of an l1 norm has 154 

the inconvenience of turning the function to minimize into non-differentiable, although there are 155 
available methods to proceed with the minimization, such as proximal gradient ones [37]. This way 156 
of considering the penalty gives rise to the method known as Lasso. As opposed to Ridge Regression, 157 
with Lasso, some variables are canceled, so performing as variable selection, depending the number 158 
of the variables to be selected on the value of λ (as λ grows, less variables are selected).  159 

Lasso was first applied to linear regressions and lately is receiving much attention being 160 
proposed to regularize a wide variety of statistical models [38]. In accordance to Occam’s razor 161 
principle, simpler models are preferable, as long as they predict well the training data, since they are 162 
more likely to generalize well to unseen data [39]. With this principle in mind, Logistic Regression 163 
has been chosen as base model in which to apply the shrinkage technique. Logistic regression is 164 
adapted to classification problems since has a discrete outcome. It is based on the logistic function 165 
given by (4) which is suitable to be used in classification since its outcome can be inferred as a 166 
probability since runs between 0 and 1, and its elongated S-shape offers the advantage that the same 167 
additional input influences less the outcome for values near zero or one [40,41]. For binary 168 
classification, a threshold value of 0.5 is defined to assign the outcome to one class or the other, which 169 
in condition monitoring would be healthy or faulty. When the aim is to distinguish among different 170 
states of failure there are several classes into which the outcome can be classified. This 171 
multiclassification is performed via the one-versus-all approach as represented in the flow chart in 172 
Figure 1. This way, several binary classifiers are trained (as many as classes), where each classifier 173 
confronts one class against the rest. Finally, the outcome is assigned to the class where the probability 174 
is highest. 175 

𝑓(𝑥) = (1 + 𝑒−𝑥)−1          (4) 176 

 177 
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 178 

Figure 1.  Methodology for multiclass classification. 179 

4. Results 180 

4.1 Test Bench 181 

The tested induction motor is a two pole pair squirrel cage motor, star connected, with a rated 182 
power of 0.75 kW at 400 V and a rated current of 1.9 A at a rated speed of 1395 RPM. The tests were 183 
performed at two levels load, low (almost no load) and high (rated speed) using a magnetic powder 184 
brake. The data were collect using a DAC PCI-6250 M model (16 analogue inputs - 16-bit 1 MS/s) of 185 
National Instruments and Hall effect sensors of LEM. The sampling frequency was 25 kHz with a 186 
sampling time of 10 s (steady state). 187 

For different supply conditions were considered (Table 2). The first one (S1) represents the motor 188 
directly fed from a 400 V utility supply. Supply S2 is the motor fed by an inverter (ABB) at 50 Hz and 189 
with a switching frequency of 4 kHz. For S3, the operating frequency was changed to 25 Hz, and for 190 
S4 the switching frequency was established at 5 kHz). 191 

Table 2. Supplies tested. 192 

Supply 

Identification 
Power source 

Operating 

frequency 

Switching 

frequency 

S1 utility 50 Hz - 

S2 Power converter 50 Hz 4 kHz 

S3 Power converter 25 Hz 4 kHz 

S4 Power converter 50 Hz 5 kHz 

. 193 

To initiate the tests, a new SKF Explorer 6004 bearing was used, performing the corresponding 194 
tests to represent the healthy condition. Then, to provoke the progressive wear of the bearing, the 195 
lubricant grease was contaminated using silicon carbide, a ceramic material with high resistance to 196 
erosion, corrosion and high thermal cycling. This process was established to simulate industrial 197 
environment conditions that lead to the degradation of the bearing such as inadequate lubrication, 198 
overloads or lubricant contamination (especially relevant to open bearings). During this process, five 199 
condition states were defined according to the degradation of the bearing, as summarized in Table 3. 200 
After assembling the new bearing, 20 tests per supply were run corresponding to the healthy state 201 
(C1). Then, the bearing was first contaminated and the motor run unloaded for 12 hours to lead the 202 

Binary classification. 

One condition (positive class) is 
tested against the others (negative 

class)

Determination of probability that 
the example belongs to the positive 

class

All the classes 
have been tested?

The example is classified in the 
class with the highest probability

Other class is selected 

 as positive 
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bearing to the “incipient fault” condition (C2). In this condition, 15 tests were performed for each 203 
supply. The process of running the motor unloaded and contaminating the grease was repeated 204 
giving way to “intermediate fault” condition (C3), with 15 tests per supply, “developed fault” with 205 
10 tests (C4) and “complete breakdown” (C5) with 10 tests for each supply. Figure 2 presents pictures 206 
of the bearing in each of the conditions, showing the evolution of the fault along the tests. 207 

 208 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

Figure 2. Evolution of the bearing along the tests: (a) healthy state, (b) incipient fault, (c) intermediate 209 
fault (d) developed fault (e) complete breakdown. 210 

 211 

Table 3. Bearing conditions tested. 212 

Condition Evolution of the fault 
Number of tests per 

supply 

C1 healthy state 20 

C2 incipient fault 15 

C3 intermediate fault 15 

C4 developed fault 10 

C5 complete breakdown 10 

 213 

4.2. Classification with 968 fault signatures 214 

In order to show the improvement in the classification when using the whole of the fault 215 
signatures as proposed in Section 2, next the results obtained using the Matlab 2019a Classification 216 
learner App are presented. 5-fold cross validation was used. Table 4 summarizes the results obtained 217 
with the App with the accuracy for the classification in each of the five bearing conditions at low and 218 
high load. All the algorithms included in the App have been tested showing the one that has the best 219 
performance for each tested case (depending on the load and the supply) and its accuracy. The same 220 
procedure has been applied feeding the algorithms with eight inputs, following the traditional 221 
procedure of considering just the first sideband around the vibration characteristics frequencies, 222 
according to (2). 223 

 224 
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Table 4. Comparison between the traditional (8 fault signatures) and proposed approach (968 fault 225 
signatures) with the algorithms included in the Matlab 2019a Classification learner App. 226 

Supply 

Identification 
Load 

Best accuracy 

968 fault 

signatures 

Best algorithm 

968 fault 

signatures 

Best accuracy 

8 fault 

signatures 

Best algorithm 

8 fault 

signatures 

S1 Low 95.7 % KNN1 40 % SVM2 

 High 92.9 % SVM2 40 % SVM2 

S2 Low 88.6 % SVM2 32.9 % BT5 

 High 98.6 % SVM2 44.3 % BT5 

S3 Low 81.4 % BT5 41.4 % SVM2 

 High 97.1 % LD4 60 % KNN1 

S4 Low 85.7 % LD4 41.4 % SVM2 

 High 98.6 % BT5 42.9 % SVM2 
1 Fine KNN, 2Quadratic Support Vector Machines, 3Gaussian Naive Bayes, 4Linear Discriminant, 5Bagged Tress 227 

 228 
According to the results shown in Table 4, it is very clear that the use of the fault signatures 229 

related to a bigger number of sidebands around more harmonics outperforms the use of just eight 230 
fault signatures. The huge improvement in the performance is observable in the all the cases, for the 231 
different supplies, operating frequencies, switching frequencies and loads. The results are in general 232 
better for high load since the energy associated to the harmonics is higher. It is also remarkable that 233 
there is a variety of selected algorithms, being Support Vector Machines the most repeated although, 234 
in some cases, Gaussian Naive Bayes, Linear Discriminant, Fine KNN and Bagged Trees perform 235 
better. This discrepancy adds difficulty to the selection of a classifier valid for all the operating 236 
conditions. An algorithm that performs well for all the cases would be desirable. Besides, as it was 237 
stated earlier, the use of a big number of signatures (much bigger than the number of tests) may lead 238 
to overfitting, losing the trained algorithms the ability to generalize when classifying new 239 
observations. To take into account this situation, shrinkage is applied as explained in Section 3. 240 

4.3. Classification with 968 fault signatures applying shrinkage  241 

Previous section has shown that the classification improves hugely when more information 242 
available in the spectra is considered. In this section, shrinkage methods are applied with the double 243 
purpose of selecting an algorithm with good performance independently of the operating conditions 244 
and of avoiding the problem of overfitting (prone to appear due to the high number of fault 245 
signatures, much higher than the number of tests). As explained in Section 3, two different types of 246 
shrinkage methods are considered: Ridge regression where all the inputs are considered in the 247 
classification, and Lasso that performs variable selection (considering a higher or lower number of 248 
inputs in the classification depending on the value of the penalty parameter). A third method is 249 
included in the comparison, Elastic nets, which can be considered as a mixture between Lasso and 250 
Ridge regression. 251 

To build the algorithms and measure their performance, the data sets for each case study are 252 
divided into two different sets, the training set consisting of 70% of the cases and the test set with the 253 
other 30% of the data. Table 5 shows the performance, measured in terms of accuracy, for the three 254 
shrinkage methods, for each supply and load. It can be observed that the results are very good for all 255 
the cases, although with some differences in the performance among the cases analyzed, as it also 256 
happened for the algorithms considered in the previous section. The three shrinkage methods 257 
perform well, although in general, Lasso obtains the best accuracy, therefore, if a single method were 258 
to be selected, Lasso would be the candidate. In this selection it has also been taken into account that, 259 
since Lasso eliminates variables from the classifier, the model obtained gains in interpretability and 260 
computational cost. For that reason, next, a deeper analysis on the performance of Lasso is presented, 261 
taking especially into consideration the influence of the penalty parameter, since the number of 262 
variables selected (and, consequently, the characteristics of the model) depend on this parameter. 263 
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Table 5. Comparison of Accuracy (%) obtained using different methods of shrinkage with 968 fault 264 
signatures. 265 

Supply 

Identification 
Load Lasso Elastic Nets 

Ridge 

Regression 

S1 Low 100 100 100 

 High 90.48 90.48 85.71 

S2 Low 95.24 90.48 80.95 

 High 95.24 100 100 

S3 Low 80.95 76.19 76.19 

 High 90.48 95.24 95.24 

S4 Low 90.48 80.95 85.71 

 High 100 95.24 85.71 

 266 
As it was stated in Section 3, the main way in which Lasso avoids overfitting is by feature 267 

selection, which is controlled by adjusting the regularization parameter λ. The bigger λ, more 268 
parameters bj in (3) will be zero, that is, the corresponding predictors will not be considered when 269 
designing the classifier. Therefore, if a high value of λ is chosen, it is much less likely to result in 270 
overfitting, besides, the computational cost is highly reduced. The drawback is that, if less predictors 271 
are considered, the performance of the classifier will be reduced. Therefore, a trade-off must be 272 
reached to select the best value for the regularization parameter to obtain a good classifier 273 
performance with less computational cost. The selection of the value of the regularization parameter 274 
has been performed considering the train set. No additional validation set has been considered since 275 
the number of tests per case study is low and this would have led to training, validating and test sets 276 
with very few data in each one. Figure 3 shows the evolution of the accuracy depending on the 277 
regularization parameter and Table 6 shows the selected value for each supply and load condition. 278 
The value chosen for the classifier is the highest one that achieves the best accuracy for that supply 279 
and load, since for smaller values of λ the computational cost would be higher. If a unique value were 280 
to be chosen for all the supplies, 0.05 could be selected when operating at high load and 0.02 at low 281 
load. If the common value of 0.02 were to be chosen, the performance of the algorithm in this case 282 
would decreased around 5%, although the computational cost would decreased.  283 

 284 

Figure 3. Performance of Lasso classifier depending on the value of the regularization parameter fir 285 
different supplies (S1-S6) and loads (HL: high load, LL: low load). 286 

 287 

 288 
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Table 6. Regularization parameter selected for different supplies and level of load. 289 

Supply  Load 
Regularization 

parameter 

S1 High 0.02 

 Low 0.05 

S2 High 0.0003 

 Low 0.02 

S3 High 0.01 

 Low 0.01 

S4 High 0.005 

 Low 0.005 

 290 
So far, accuracy has been used to measure the performance of the classifier. Obviously, from an 291 

algorithmic point of view, it is important to classify all the states correctly, and therefore to achieve 292 
the highest possible accuracy. However, from a condition monitoring point of view, some 293 
misclassifications are more relevant than others, being especially relevant to predict the first and fifth 294 
states correctly, that is, the healthy and completely faulty conditions. With this purpose, Tables 7-10 295 
show the confusion matrices resulting from applying Lasso classifier for the four supplies and two 296 
load conditions. It can be observed how for the healthy state, for 48 instances (there are six true 297 
healthy states in each of the eight cases) only one case (S3, low load) is misclassified. And even if this 298 
case can be considered as a false negative, this instance is classified as an incipient fault, not as a more 299 
developed one. In the same way, for the 24 complete faulty cases (three for each of the eight cases) 300 
only one is misclassified (again, S3 at low load), being predicted as an intermediate fault. Finally, it 301 
is relevant to point out that for all the 168 cases to classify, 13 are not correctly classify but just four 302 
of them are classify more than one class away from the true class. 303 

Table 7. Confusion matrices for supply S1 applying lasso classifier. 304 

True 

class 

Low Load  High Load 

Predicted class  Predicted class 

 C1 C2 C3 C4 C5  C1 C2 C3 C4 C5 

C1 6 0 0 0 0  6 0 0 0 0 

C2 0 5 0 0 0  0 3 0 0 1 

C3 0 0 4 0 0  0 1 4 0 0 

C4 0 0 0 3 0  0 0 0 3 0 

C5 0 0 0 0 3  0 0 0 0 3 

 305 

Table 8. Confusion matrices for supply S2 applying lasso classifier. 306 

True 

class 

Low Load  High Load 

Predicted class  Predicted class 

 C1 C2 C3 C4 C5  C1 C2 C3 C4 C5 

C1 6 0 0 0 0  6 0 0 0 0 

C2 1 3 0 0 0  0 3 0 0 1 

C3 0 0 5 0 0  0 1 4 0 0 

C4 0 0 0 3 0  0 0 0 3 0 

C5 0 0 0 0 3  0 0 0 0 3 

 307 
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Table 9. Confusion matrices for supply S3 applying lasso classifier. 308 

True 

class 

Low Load  High Load 

Predicted class  Predicted class 

 C1 C2 C3 C4 C5  C1 C2 C3 C4 C5 

C1 5 1 0 0 0  6 0 0 0 0 

C2 0 4 0 0 0  0 4 0 0 0 

C3 0 0 3 1 1  1 1 3 0 0 

C4 0 0 0 3 0  0 0 0 3 0 

C5 0 0 0 1 2  0 0 0 0 3 

 309 

Table 10. Confusion matrices for supply S4 applying lasso classifier. 310 

rue 

class 

Low Load  High Load 

Predicted class  Predicted class 

 C1 C2 C3 C4 C5  C1 C2 C3 C4 C5 

C1 6 0 0 0 0  6 0 0 0 0 

C2 0 4 0 0 0  0 4 0 0 0 

C3 0 0 4 0 1  0 0 5 0 0 

C4 0 0 1 2 0  0 0 0 3 0 

C5 0 0 0 0 3  0 0 0 0 3 

 311 

5. Discussion 312 

A procedure for the diagnosis of induction motor bearings has been presented. The main 313 
purpose of the proposal is to maintain the good performance of existing methods that use vibrations 314 
or sound as inputs but using the stator current. So far, the monitoring of the current has not achieved 315 
as good performance as the use of the other variables mentioned, but since has some clear advantages 316 
related to the necessary sensors it is advisable to have a procedure that allows to use the current. To 317 
achieve this goal it has been proposed to take advantage of more information that can be extracted 318 
from the spectra beyond what is commonly used, but with no extra computational cost.  319 

It has been shown that the use of much more information greatly improved the performance of 320 
the diagnosis, which has been proved by means of 24 classifiers (available in the Matlab Classification 321 
learner app). However, it must be taken into account that detection and diagnosis are interlinked. 322 
There is no use in expecting a good diagnosis performance if the fault signatures obtained during the 323 
detection process are of a bad quality. Conversely, although there were high informative fault 324 
signatures, if the diagnosis stage is bad designed, the whole process will suffer. Besides, the chosen 325 
algorithm must be in accordance with the available variables. Therefore, it has been selected a type 326 
of classifier that can perform well with the particular conditions of the problem, where there are much 327 
more fault signatures that cases to classify. Shrinkage methods have been chose since they allow to 328 
perform in those condition avoiding the problem of overfitting. 329 

Three shrinkage methods have been compared, Lasso, Ridge regression and Elastic nets and all 330 
of them have proved to achieve a very good performance in the cases analyzed. Although all three 331 
meet the expectations, Lasso has been chosen to analyze its results in greater depth since this method 332 
selects variables, providing simpler and more interpretable models. For the analysis of the 333 
performance of Lasso, the confusion matrices for eight different scenarios have been provided and 334 
analyzed. Although from an algorithmic point of view, it is important to classify all the states 335 
correctly, from a maintenance perspective, it is especially relevant the presence of false positives or 336 
false negatives concerning the healthy and complete fault conditions. That is, some misclassifications 337 
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are more relevant than others are. For example, wrong predictions between conditions corresponding 338 
to intermediate and incipient faults are not likely to have important repercussions but, on the 339 
contrary, a misclassification between states healthy and complete fault will surely have further 340 
implications. It has been shown that the predictions obtained with the proposed method matches the 341 
expectations form a condition monitoring perspective. 342 

Author Contributions: Conceptualization, Oscar Duque-Perez, Daniel Morinigo-Sotelo and Wagner Fontes 343 
Godoy; Data curation, Wagner Fontes Godoy; Methodology, Oscar Duque-Perez; Software, Carlos Del Pozo-344 
Gallego; Validation, Daniel Morinigo-Sotelo; Writing – original draft, Oscar Duque-Perez; Writing – review & 345 
editing, Daniel Morinigo-Sotelo. 346 
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