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Abstract: Commercial sleep devices and mobile-phone applications for scoring sleep are gaining 10 

ground.  In order to provide reliable information about the quantity and/or quality of sleep, their 11 

performance needs to be assessed against the current gold-standard, i.e. polysomnography (PSG; 12 

measuring brain, eye and muscle activity). We here assessed some commercially available sleep 13 

trackers, namely; a commercial activity tracker: Mi band (Xiaomi, BJ, CHN), a scientific actigraph: 14 

Motionwatch 8 (CamNTech, CB, UK), and a much used sleep application: Sleep Cycle (Northcube, 15 

GOT, SE). We recorded 27 nights in healthy sleepers using PSG and these devices. Surprisingly, all 16 

devices had very poor agreement with the gold standard. Sleep parameter comparisons revealed 17 

that specifically the Mi band and the sleep cycle application had difficulties in detecting wake 18 

periods which negatively affected the total sleep time and sleep efficiency estimations. However, all 19 

3 devices were good in detecting the most basic parameter, the actual time in bed. In summary, our 20 

results suggest that, to-date; available sleep trackers do not provide meaningful sleep analysis but 21 

may be interesting for simply tracking times in bed. A much closer interaction with the scientific 22 

field seems necessary if reliable information shall be derived from such devices in the future. 23 

Keywords: Wrist-worn devices; Sleep trackers; Activity trackers; Sleep classification; 24 

Polysomnography. 25 

 26 

1. Introduction 27 

Our knowledge about the structure and function of sleep is derived mainly from recordings that 28 

are done in sleep laboratories. In these recordings physiological activity is measured using 29 

polysomnography (PSG), which requires a combination of electroencephalography (EEG), 30 

electrooculography (EOG) and electromyography (EMG) data. Although these recordings 31 

contribute widely to our constantly expanding knowledge about sleep, their major drawback is that 32 

they do not mimic the habitual sleeping environment at home. The effect of the laboratory setup on 33 

sleep has been repeatedly addressed and several studies have highlighted differences in sleep 34 

parameters between at-home and laboratory sleep recordings. For instance, Portier and colleagues 35 

[1] compared several sleep parameters between a night of sleep in the laboratory versus a night of 36 

sleep at-home. Specifically, the authors reported a significant reduction in the amount of total sleep 37 
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time (TST) and time in bed (TiB) as well as the deterioration of the subjective experience of sleepers 38 

on the quality of their sleep in the laboratory as compared to at-home sleep. In a similar vein, 39 

home-based PSG recording showed higher sleep efficiency (SE) values than hospital-based PSG for 40 

the same participants [2]. These findings suggest that in-laboratory sleep does not accurately reflect 41 

habitual sleep (at-home sleep) and consequently might introduce some bias in the diagnosis of some 42 

sleep disorders. Indeed, it has been shown that home-based PSG recordings show better dissociation 43 

between healthy sleepers and insomnia sufferers than in laboratory settings [3]. Therefore, it is a 44 

priority in the field of sleep research and sleep medicine to develop better tools that can accurately 45 

and reliably measure sleep at home and in a vast amount of the general population.  46 

Already in the last years we have witnessed a vast increase in the available consumer devices, i.e. 47 

sleep devices and mobile phone applications, which aim to assess and ultimately improve sleep. 48 

These devices might be of potential help to overcome the bias induced by the laboratory setting as 49 

they are supposed to assess sleep outside the laboratory with minimal effort for the end-user. 50 

However, it is essential to scientifically test and compare these devices against the “gold-standard” 51 

to ensure that such devices and applications do not provide random feedback to the naïve end-user 52 

and potentially backfire with “unintended effects on sleep beliefs and behaviors” [4]. Only the 53 

adherence of such devices and applications to the gold standard ensures reliability and validity and 54 

ethically justifies these new methods advertised by the industry.  55 

The aim of this study was therefore to assess the performance of some of these readily used 56 

consumer devices which claim to monitor sleep and provide reliable information about sleep quality 57 

and sleep architecture night-by-night. Specifically we assessed sleep data from 2 devices: 1) a 58 

commercial activity tracker, the Mi band (v2, Xiaomi, BJ, CHN), 2) a scientific actigraph watch, 59 

Motionwatch 8 (CamNTech, CB, UK) as well as one readily used mobile phone application: the Sleep 60 

Cycle App (v3.0.1.2511-release; Northcube, GOT, SE). We compared the full set of sleep measures 61 

from these 3 platforms against our PSG gold standard and relied on semi-automatic sleep staging 62 

using the SOMNOlyzer 24X7 solution [5,6]. 63 

2. Materials and Methods 64 

Study sample: For the study we recruited 19 healthy participants (13 females, mean age: 29±13. 65 

Range: 19-64 years). Participants arrived at the sleep laboratory of the University of Salzburg at 9pm. 66 

They were instructed about the procedure and the purpose of the experiment. After signing the 67 

consent forms they were given the Mi band (MB) and the MotionWatch (MW). After we confirmed 68 

that both the MB and the MW were recording we started with the PSG preparation. Before turning 69 

lights off and starting the PSG recording we started the Sleep Cycle application (SC) and placed the 70 

device next to the subject. Participants went to bed at around 11 pm and stayed in bed (TIB, time in 71 

bed) for approximately 8h (452.29 ± 81.78 min). Two of these participants had to be excluded from 72 

our analyses due to technical problems with the PSG recordings. Additionally, we recorded 8 73 

ambulatory “home” PSG nights using an ambulatory EEG device together with the MB device and 74 

the SC application after the participants visited the lab for electrode placement; therefore, we had a 75 

total of 27 nights of PSG recordings. Due to other problems with some of the devices and 76 

applications we finally analyzed 21 nights for the MB, and 12 nights for the MW and the SC.  77 
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EEG Data Acquisition: For the nights spent in the laboratory, brain activity was recorded using 78 

high-density-EEG with a 256-electrode GSN HydroCel Geodesic Sensor Net (Electrical 478 79 

Geodesics Inc., Eugene, Oregon, USA) and a Net Amps 400 amplifier. Additionally, we recorded 80 

electrocardiography (ECG), electromyography (EMG) and electrooculography (EOG) using bipolar 81 

electrodes. Ambulatory PSG was recorded using a 16-channel EEG, bipolar EMG and EOG using the 82 

AlphaEEG amplifier and NeuroSpeed software (Alpha Trace Medical Systems, Vienna, Austria). 83 

Sleep Scoring: Our PSG was analyzed for sleep stages using the computer-assisted sleep 84 

classification system Somnolyer 24x7 as developed by the SIESTA group (The SIESTA Group 85 

Schlafanalyse GmbH., Vienna, Austria; [5,6]) and was following the revised standard criteria 86 

described by the American Association for Sleep Medicine (AASM, [7]). The derived sleep features 87 

and sleep stages serve as gold-standard for the rest of the analyses. Sleep staging for the SC 88 

application was realized via a simple image processing of the figures generated by the application; 89 

basically we discretized the SC illustrations into 3 sleep-wake states as suggested by the application 90 

in wake, light sleep and deep sleep (cf. Suppl. Material and Supplementary Figure S1 for more 91 

details). 92 

Statistical analysis: The following five main sleep parameters were evaluated: i) sleep onset 93 

latency (SOL), ii) sleep efficiency (SE), iii) wake after sleep onset (WASO), iv) total sleep time (TST), 94 

and v) time in bed (TiB). SOL was defined as the difference between the start of the recording and 95 

the time when the participant actually fell asleep (i.e. the 1st N1 or “light sleep” epoch). SE (%) was 96 

defined as: (TST / TIB)*100. Importantly, measurements from all the devices were accurately 97 

synchronized to the start of the PSG recording. Correlations were computed non-parametrically 98 

using spearman correlations. For the MB device measurements we needed to calculate SOL, SE, and 99 

TST (as described above) manually and used WASO values as provided by the device. For the SC, 100 

we manually calculated SOL, SE, TST, and WASO (as described above) and used the time points 101 

provided by the application to calculate TiB. For the MW measurements, the sensitivity threshold 102 

was set to 20 activity counts and adjusted the lights off and lights on times according to sleep diaries 103 

as usually done for scientific actigraph measurements. SOL, SE, TST, WASO and TiB values are then 104 

used as provided by the MotionWare software (v1.1.20, empire Software GmbH, Cologne, 105 

Germany). 106 

 Bland-Altman plots were used to quantify the agreement between the PSG gold standard and 107 

the three consumer devices. The measured bias is defined as the mean of the difference between the 108 

two-paired measurements. That is, the further this value is from zero, i.e. the line of equality 109 

(difference = 0), the higher the error in the measurement. Spearman-correlations are used to illustrate 110 

systematic linear biases of the devices, and are reported at p<.01 (corrected for the 5 dependent sleep 111 

variables analyzed). 112 

Epoch-wise comparison of sleep stages: For analyzing the epoch-by-epoch agreement of the 113 

gold-standard with the three consumer devices we always synchronized the recording start with the 114 

start of the PSG recording. In case one device started recording after the other (for example, PSG 115 

after SC or vice versa) we simply discarded the earlier epochs and started the analysis from the first 116 

epoch which was scored by both. As mentioned above we used the graphs provided by the MB 117 
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device and the SC application in order to divide sleep/waking into awake, light and deep sleep and 118 

in 30s epochs. For the PSG gold standard light sleep was defined as stages N1 and N2 while Deep 119 

sleep is defined as N3 stages. Importantly, we excluded PSG epochs which were scored as stage 120 

REM according to the AASM from the analysis as all 3 devices and applications provide no 121 

information about REM (or “dreaming”) sleep. We report two main parameters for the epoch-wise 122 

agreement; sensitivity and positive predictive value (PPV). Sensitivity (in %) estimates the 123 

epoch-by-epoch agreement between the MB and SC with the gold standard by measuring the % of 124 

correct classifications (according to the PSG standard) per sleep stage (that is, for example labelling 125 

79% of all light sleep detections by the PSG as “light sleep”). The positive predictive value (PPV), on 126 

the other hand, is the probability that the assigned state (by the device or app) is indeed that specific 127 

state in the gold standard (that is, for example only 41% of assigned “light sleep” epochs are actually 128 

light sleep epochs and no other sleep states). Cohen’s Kappa (K) was used to assess the pairwise 129 

agreement between the devices. Epoch-wise analysis was computed in SPSS software (IBM Corp. 130 

Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Cohen’s 131 

Kappa scores between 0.21–0.40 is often considered as fair, 0.41–0.60 as moderate, and 0.61–0.80 as 132 

substantial agreement according to Landis and Koch (1977, [7]). 133 

3. Results 134 

The mean values of the key features of sleep across all participants according to the PSG gold 135 

standard were 434.58 ± 95.83 minutes for the TiB, 370.12 ± 104.43 minutes for the TST, 84.08 ± 136 

13.22% for the SE, 25.98 ± 19.35 minutes for the SOL and 39.08 ± 38.43 minutes for WASO. As a first 137 

analysis we simply checked whether the mean sleep values per participant and night correlate 138 

between the gold standard and the devices. For TiB we found good agreement, that is significant 139 

positive associations, of the gold standard values with the 3 consumer devices (MB: r= 0.72, 140 

p=0.0002; SC: r= 0.67, p=0.02; MW: r= 0.77, p=0.03). For TST we only found one moderately positive 141 

association for the MB device (r= 0.49, p= 0.02), while MW was the only device that showed a 142 

significant positive correlation for WASO time (r= 0.78, p= 0.02) (see supplementary figures S2-5). 143 

This low agreement is already surprising given that these are the simple associations of the mean 144 

values per subject, e.g., whether people taking longer to fall asleep in the case of SOL measurements 145 

(according to the PSG gold standard) also tend to fall asleep later according to the output of one of 146 

the consumer devices. 147 

3.1. Bland Altman plots: 148 

We used the Bland and Altman analysis to visualize the degree of agreement between the PSG gold 149 

standard and each of the 3 aforementioned devices/applications (cf. Figures 1-3). The most global 150 

key features of sleep, namely TIB and TST are depicted in Figure 1. Looking at the mean difference, 151 

there is only a slight bias towards over- or underestimating TIB (MB: 11.1±59.96 min, MW: 11.96 ± 152 

38.48 min & SC: -5.17 ± 57.57min). However, the 95% confidence interval also indicates that for 153 

single cases the devices may still over- or underestimate TIB by an hour or more (cf. Figure 1.A). 154 

Mean TST is systematically overestimated by the MB by more than an hour (69.64 ± 67.43 min), and 155 

underestimated by the SC application by more than two hours on average (-139.67 ± 85.87 min) 156 

(Figure 1.B).  157 
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 158 

Figure 1. Bland Altman plots show the agreement of the MB, the MW and the SC with the PSG 159 

in measuring (A) TiB but not (B) TST. The blue horizontal line represents the mean difference 160 

between the two measurements and the shaded blue area represents the 95% CI of the mean 161 

difference. Black horizontal lines mark the 1.96SD from the mean and the grey shadings 162 

represent their 95%CI. The black dashed line is the line of equality (difference=0). TiB: time in 163 

bed, TST: total sleep time, MB: Mi Band, MW: MotionWatch and SC: sleep cycle application.   164 
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All 3 tested devices/applications showed inaccuracies in estimating SE, with the scientific MW 165 

giving the best results and no systematic over- or underestimation of SE (Figure 2). The mean 166 

differences indicate that the MB systematically overestimated SE (13.25%) whereas the SC 167 

application systematically underestimated (22.63%) SE. Interestingly, spearman correlations 168 

indicated that the MB linearly shows greater errors the worse the real PSG gold standard SE was, 169 

that is the MB has a strong bias towards quantifying SE better than it is. 170 
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Figure 2.  Bland Altman plots show that the PSG gold standard with the (A) MB, the (B) MW 171 

and (C) the SC in measuring sleep efficiency (SE). The blue horizontal line represents the mean 172 

difference between the two measurements and the shaded blue area represents the 95%-CI of the 173 

mean difference. Black horizontal lines mark the 1.96SD from the mean and the grey shadings 174 

represent their 95%CI. The black dashed line is the line of equality (difference=0) and the red 175 

dashed line represents the spearman-correlation between the difference and the average of the 176 

two measurements. SE: Sleep Efficiency, MB: mi band, MW: MotionWatch and SC: sleep cycle    177 

 178 

Moreover, we observed a systematic error in the estimation of the WASO time by the MB and the SC 179 

but not the MW (Figure 3.A). While the MB device underestimates WASO (-33.57±42.84 min) the SC 180 

App overestimates WASO systematically (61.10 ± 49.90 min). In addition there is a linear trend in the 181 

data showing that the MB underestimates WASO time the more the longer actual WASO time gets. 182 

The mean difference of the 3 devices/applications to the gold standard is closer to zero for SOL, 183 

however it is to be noted that here also the range of possible values is much more limited (36.18 ± 184 

38.37 min for the gold standard). Only the MB shows a linear trend with stronger underestimation of 185 

SOL the longer SOL actually was (in the gold standard) (Figure 3.B). 186 

3.1. Epoch-wise agreement per sleep stage 187 

Table 1 shows the overall and stage-wise agreement between the 30s-epochs scored by our PSG gold 188 

standard and both the MB device and the SC application. Note that the MW is disregarded in this 189 

respect as standard MW outputs do not provide (or claim to allow) sleep staging classifications. The 190 

overall agreement over all epochs from all subjects (16350 epochs for the MB, 11243 epochs for the 191 

MW and 9504 epochs for the SC) between the gold standard PSG  scoring and the MB was relatively 192 

low (53.31% , k=0.14) and even lower for the SC device (46.34%, k=0.18). Table 1 also illustrates that 193 

the highest level of agreement for the MB was in determining light sleep (sensitivity = 70.6% and 194 

PPV = 57.8%) and the lowest sensitivity for the MB was for detecting wakefulness (sensitivity = 5.5%; 195 

PPV= 62.8%). Conversely, however, SC had moderate sensitivity in identifying awake epochs 196 

(sensitivity= 55.6%) and an unacceptable PPV value of 24.3%, meaning that only 24.3% of wake 197 

classified epochs are indeed wake according to the PSG gold-standard. On the other hand, SC had 198 

low sensitivity in detecting light sleep (40.9%) yet when it classified light sleep this was the true state 199 

in 61.2% of the cases (i.e., PPV= 61.2%). Moreover, for “deep sleep” classification we found very poor 200 

performance for the MB (sensitivity= 47.2%, PPV= 43.6%) and poor performance for the SC App 201 

(sensitivity= 52.0%, PPV= 53.0%).  202 

Given this poor performance in correctly classifying sleep stages we then investigated the ability 203 

of these devices and the SC application to simply differentiate between sleep (light sleep, deep sleep 204 

or REM) and wakefulness and included the scientific MW device (whose software anyways only 205 

provides wake and sleep classes). Here we then found good overall agreement for the MB and the 206 

MW (>80%, cf. Table 2), and rather poor overall agreement for the SC App (65.9%). Kappa pairwise 207 

agreement indicates a “fair” agreement for the MW but poor agreements for the other two 208 

devices/apps. Specifically, the output shows that the MB and MW devices on the arm wrist are very 209 

good when only “sleep” detection is needed (MB: sensitivity= 99.5%, PPV= 86.8%; MW: sensitivity= 210 

92.9%, PPV= 88.2%). Severe difficulties remain in assigning stage wake in all three devices/apps and 211 

therefore a proper estimation of overall sleep efficiency or sleep quality remains non feasible.  212 
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 213 

Figure 3. Bland-Altman plots of the SOL and WASO measurements showing differences between the 214 

PSG gold standard and the MB, the MW and the SC. The blue horizontal line represents the mean 215 

difference between the two measurements and the shaded blue area represents the 95%-CI of the 216 
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mean difference. Black horizontal lines mark the 1.96SD from the mean and the grey shadings 217 

represent their 95% CI. The black dashed line is the line of equality (difference=0) and the red dashed 218 

line represents the spearman-correlation between the difference and the average of the two 219 

measurements. SOL: Sleep onset latency, WASO: wake after sleep onset. MB: Mi band, MW: 220 

MotionWatch and SC: sleep cycle application. 221 

 222 

Although the SC application is as good as the wrist band devices in assigning “sleep” to an 223 

epoch, that is then the app is correct in 91.3% of these cases, it still misses a third of all sleep 224 

epochs (sensitivity= 67.4%). Importantly, however, in the case of the MB and the SC, OA 225 

increases while Kappa scores dropped when we pooled all sleep stages in one stage which 226 

likely indicates serious bias in the scoring algorithms of the MB device and the SC app. 227 

Table 1. Percentages of agreement table for 3 stages sleep scoring (Awake/ Light sleep/ Deep sleep) between the 228 

gold standard (PSG) and the scoring of the MB and the SC.   229 

 

     PSG gold standard 

WAKE LIGHT SLEEP DEEP SLEEP 

 

MiBand (MB) staging 

 

        Wake 

          % Sensitivity 

          % PPV 

 

         Light sleep 

          % Sensitivity 

          % PPV 

 

         Deep Sleep 

          % Sensitivity 

          % PPV 

 

 

 

 

 

5.5 

62.8 

 

 

79.2 

18.9 

 

 

15.3 

7.5 

 

 

 

 

0.1 

4.7 

 

 

70.6 

57.8 

 

 

29.3 

48.9 

 

 

 

 

1.5 

32.6 

 

 

51.3 

23.2 

 

 

47.2 

43.6 

 

Sleep Cycle (SC) staging 

 

        Wake 

          % Sensitivity 

          % PPV 

 

         Light sleep 

          % Sensitivity 

          % PPV 

 

 

 

 

55.6 

24.3 

 

 

36.4 

14.4 

 

 

 

 

37.0 

61.1 

 

 

40.9 

61.2 

 

 

 

 

16.9 

14.7 

 

 

31.1 

24.4 
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         Deep Sleep 

          % Sensitivity 

          % PPV 

 

 

 

 

8.0 

4.1 

 

 

 

22.1 

42.8 

 

 

 

52.0 

53.0 

Devices/applications OA (%) 

 

K 

 

 

mi-band 

MB 

 

 

 

53.31 

 

 

0.14 

 

Sleep Cycle 

SC 

 

 

46.34 

 

0.18 

The agreement is demonstrated by the means of the sensitivity (%) as well as the positive predictive value 230 

(PPV). The percentage of the overall agreement (% OA) as well as the Cohen’s Kappa coefficient (K) is reported 231 

for each device. 232 

Table 2. Percentages of agreement table for 3 stages sleep scoring (Awake/ Asleep) between the gold standard 233 

(PSG) and the scoring of the MB and the SC.   234 

 

PSG gold standard 

WAKE SLEEP 

Mi Band (MB) staging 

        Wake 

          % Sensitivity 

          % PPV 

 

         Sleep 

          % Sensitivity 

          % PPV 

 

 

 

 

5.5 

62.8 

 

 

94.5 

13.2 

 

 

0.5 

37.2 

 

 

99.5 

86.8 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2019                   doi:10.20944/preprints201907.0303.v1

Peer-reviewed version available at Sensors 2019, 19, 4160; doi:10.3390/s19194160

https://doi.org/10.20944/preprints201907.0303.v1
https://doi.org/10.3390/s19194160


 11 of 14 

 

Sleep Cycle (SC) staging 

 

        Wake 

          % Sensitivity 

          % PPV 

 

         Sleep 

          % Sensitivity 

          % PPV 

 

 

 

55.6 

19.9 

 

 

44.4 

8.7 

 

 

 

 

32.6 

80.1 

 

 

67.4 

91.3 

 

 

MotionWatch (MW) staging 

 

        Wake 

          % Sensitivity 

          % PPV 

 

         Sleep 

          % Sensitivity 

          % PPV 

 

 

 

 

 

37.5 

47.8 

 

 

62.5 

11.5 

 

 

 

 

7.8 

52.2 

 

 

92.9 

88.5 

Device/Application OA (%) K 

Mi Band 

MB 

 

86.54 0.08 

Sleep Cycle 

SC 

 

65.90 0.13 

MotionWatch 

MW 83.42 0.33 

4. Discussion 235 

In the present study we evaluated the ability of 2 readily used consumer devices and one 236 

application for detecting true wake and sleep epochs at night. We acquired data from a commercial 237 

activity tracker, the Xiaomi Mi Band v2 (Xiaomi, Beijing, China), 2) a scientific actigraph, the 238 

CamNTech Motionwatch 8 (CamNTech, Cambridge, UK) and a readily used mobile phone 239 

application for sleep assessment, the  Sleep Cycle App (v3.0.1.2511-release; Northcube, Gutenberg, 240 

Sweden). We then compared these consumer devices to our PSG gold standard which was 241 

simultaneously recorded. Overall, we revealed that these devices have an alarmingly low accuracy 242 
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in scoring sleep in three categories (that is, wake, light and deep sleep) with overall agreements 243 

between 46.34% for the SC application and 53.02% for the wrist worn MB. If we tested only for the 244 

correct classification in two classes, that is wake and sleep, the devices of course performed better 245 

with an overall agreement of 65.90% for the SC, 84.69% for the MB and 81.33% for the scientific MW 246 

device. Kappa coefficients however indicate only poor agreement with the PSG gold standard for 247 

the MB and the SC (0.172 and 0.186 respectively) indicating serious bias in the scoring algorithms of 248 

the MB device and the SC app.  249 

We showed that all devices and applications had high accuracy in estimating the most global 250 

sleep parameter, namely TiB. This makes these devices a helpful tool for objectively measuring the 251 

time spent in bed at home rather than relying solely on subjective measures such as daily sleep 252 

diaries. Especially in the case of the MW we need to note that we adjusted the start and the end of 253 

the recordings to the PSG gold standard (as usually done using additional sleep diaries) which 254 

might overestimate the fidelity of the MW device in measuring TiB. Nevertheless, our MW results 255 

are consistent with those reported in previous literature [8,9]. 256 

Only for TiB correlational analysis also showed significant positive correlations between the 257 

gold standard and all 3 sleep trackers. This raises the question of whether the faulty estimation of 258 

values such as TST, SE, WASO or SOL are due to a priori knowledge of these sleep trackers of the 259 

amount of time the average person actually sleeps or needs to fall asleep. If such information is 260 

included in the algorithms and outputs of the consumer devices, this would explain why the largest 261 

errors occur primarily for “non-average” sleep profiles and nights. However, to date this argument 262 

remains speculative as all tested devices do not allow raw data access or are black boxes when it 263 

comes to their staging algorithms. Similarly, when comparing the agreement between the MB and 264 

SC with the PSG gold standard for 3 sleep-wake classes (light sleep, deep sleep, and wake) as 265 

compared to 2 classes (sleep vs. wake) we found the expected increase in the OA yet a drop in the 266 

Kappa scores. Especially for the MB, looking at the sensitivity scores we observed extremely low 267 

sensitivity in detecting wakefulness (5.5%) and a very high sensitivity in detecting sleep (99.5%). 268 

That is, by assigning “sleep” to basically every epoch the device also cannot miss sleep epochs, yet 269 

it of course strongly overestimates sleep and has a vast amount of false alarms for stage “sleep”. 270 

Although the MB was the least sensitive between all the 3 devices and applications, it had the 271 

highest precision in scoring wakefulness (PPV: 62.8% for the MB, 47.8% for the MW and 24.3% for 272 

the SC). That is, the MB does not score awakenings from sleep unless they are almost unmistakable. 273 

This indicates a strong bias of the MB algorithm (as observed in the very low kappa values: 0.08; 274 

[10]), which again raises the question if such a biased output can be of any benefit to the end-user.  275 

Regarding the other key parameters evaluated, our results raise serious doubts whether such 276 

consumer devices and applications can to-date provide any reliable information about sleep-related 277 

health issues. Especially the revealed misjudgment in estimating key features of sleep such as SE, 278 

SOL and WASO are worrisome as they are important diagnostic criteria for quantifying clinically 279 

relevant bad sleep and sleep disorders such as insomnia [11]. On the contrary, by providing such 280 

inaccurate information these consumer devices might even run risk to contribute to worse sleep and 281 

life quality as end-users may be concerned by the sometimes negative output highlighting bad 282 

nights of sleep [4].  283 

Comparing the devices and SC app, our results suggest that wrist worn devices (MB and MW) 284 

tend to have better a performance than mobile phone applications (SC) in measuring the key 285 
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features of sleep. This might be attributed to the fact that these devices have direct contact with the 286 

body and hence are more accurate in capturing changes in physiological activity that accompanies 287 

sleep of an individual and are therefore also more resilient to the environmental factors such as 288 

noise or movement from the bed partner, child, pet or loud neighbors.  289 

One very important drawback of the sleep trackers not mentioned yet is their inability to 290 

provide any information about REM or “dreaming” sleep.  Due to an inherent absence of needed 291 

measurements for quantifying REM sleep (that is, most importantly eye movements via EOG and 292 

brain activity via EEG) the devices on the market today cannot provide the full spectrum of sleep 293 

even if the algorithms and sensors would be considerably improved. The incorporation of 294 

additional sensors such as an eye or brain electrode might add substantially to the ability of these 295 

devices to track and score sleep more accurately and in the long-run similar to a professional 296 

polysomnography in the sleep laboratory.  297 

An inherent limitation of our evaluation study is that most of our analysis need to build upon 298 

the simple (graphical) outputs of the devices in form of plots provided for the end-user. For the 299 

tested MB device and SC app there is no way to access the raw data. We therefore needed to come 300 

up with a way to quantify the data and extract information that can be analyzed statistically (for 301 

details see suppl. material). The MW device is a scientific device out of the price range of the usual 302 

consumer and allows raw data access. Interestingly this device is likely the most accurate device 303 

tested and yet its software only provides two outputs, sleep and wake classes, as it does not claim 304 

to be able to classify sleep more fine-grained than that (as compared to consumer devices including 305 

the MB and SC). 306 

In summary, the currently available consumer devices for sleep tracking do not provide reliable 307 

information about one’s sleep. However, devices of that kind could be very promising tools for 308 

tracking sleep outside the laboratory in the future given that they adhere more to the scientific 309 

standards of sleep staging and analysis. Moreover, by refining their algorithms or even adding 310 

sensors these devices might be able to reliably monitor and classify sleep across its full range from 311 

wakefulness to light sleep, deep sleep, and “REM” dreaming sleep. 312 
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