Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2019 d0i:10.20944/preprints201907.0289.v1

Review

Omega 3 fatty acids and neurodegenerative diseases: new
evidence in clinical trials

Rossella Avallone *, Giovanni Vitale ! and Marco Bertolotti 2

1 Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy;
rossella.avallone@unimore.it (R.A.); giovanni.vitale@unimore.it (G.V.)

2 Division of Geriatric Medicine, Department of Biomedical, Metabolic and Neural Sciences, and Center for
Gerontological Evaluation and Research, Modena and Reggio Emilia University, 41126 Modena, Italy;
marco.bertolotti@unimore.it (M.B.)

* Correspondence: rossella.avallone@unimore.it; Tel.: +39-059-2055720 (R.A.)

Abstract: A nutritional approach could be a promising strategy to prevent or slow the progression of
neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, since there is no effective therapy
for these diseases so far. The beneficial effects of omega-3 fatty acids are now well established by a plethora
of studies through their involvement in multiple biochemical functions, including synthesis of
antinflammatory mediators, cell membrane fluidity, intracellular signalling and gene expression.

This systematic review will consider epidemiological studies and clinical trials that assessed the impact of
supplementation or dietary intake of omega-3 polyunsaturated fatty acids on neurodegenerative diseases
such as Parkinson’s and Alzheimer’s diseases. Indeed, treatment with omega-3 fatty acids, being safe and
well tolerated, represent a valuable and biologically plausible tool in the management of
neurodegenerative diseases in their early stages.
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1. Introduction

Several cerebral functions are determined by some nutrients, such as omega-3 polyunsaturated fatty acids
(PUFAs), which are key membrane components involved in the proper neuronal functions through a range
of potential mechanisms including increase of new synapse formation [1], effects on synaptic function,
integrity and neurochemistry, and synaptic plasticity [2-5]. On the whole, this contributes to neuroplasticity,
which it is associated with the enhancement of cognitive activity [6].

There is accumulating scientific evidence on the possible efficacy of PUFAs supplementation in
neurodegenerative disorders [7,8], such as Parkinson’s (PD) and Alzheimer’s disease (AD) [9-13]. Although
dietary recommendations are far from being a treatment for PD or AD, they may be able to alleviate some of
the symptoms or slow the cognitive and physical decline.

The present study systematically reviews the effects of omega-3 polyunsaturated fatty acids’
supplementation on cognitive function in patients with Parkinson’s or Alzheimer’s disease.

The main classes of PUFAs belong to the omega-3 one, which comprises a-linolenic acid (ALA, 18:3 -3),
eicosapentaenoic acid (EPA, 20:5 ©-3) and docosahexaenoic acid (DHA, 22:6 ®-3) and to the omega-6 one,
which comprises linoleic acid (LA, 18:2 ®-6) and arachidonic acid (ARA, 20:4 »-6) [14]. DHA and ARA are
the most important PUFAs in the brain [15]; in particular, DHA constitutes over 90% of the ©-3 PUFAs and
10%—20% of total lipids in the brain [16]. It is mainly incorporated in phosphatidylethanolamine,
phosphatidylserine and in smaller amounts in phosphatidylcholine [17] at synaptic terminals, mitochondria
and endoplasmic reticula. Indeed, DHA in able to modulate cellular characteristics and physiological
processes including membrane fluidity, lipid raft function, neurotransmitter release, transmembrane
receptor function, gene expression, signal transduction, myelination, neuroinflammation, neuronal
differentiation and growth [18,19].

DHA results from ALA, while ARA from LA by desaturation and elongation of the carbon chain [20] (Figure
1). Humans can synthesize saturated and monounsaturated fatty acids (MUFAs), but they are not able to
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synthesize ALA and LA due to the deficiency of the conversion enzyme o-3-desaturase [21]. LA and ALA
request the same conversion enzymes, consequently there is competitive inhibition between the two
substrates. Delta-6-desaturase promotes the conversion of omega-3 fatty acids into omega-6 fatty acids;
however an increased LA intake may shift the balance towards the conversion of omega-6 PUFA thus
inhibiting the conversion of ALA to DHA [22].

Esterified DHA in food, is released by the intestinal lipases in free nonesterified form (DHA-FFA) in the
small intestine and, after intestinal and hepatic metabolism, it can be found esterified in triglycerides and in
phosphotidylcholine or as DHA-FFA bound to low density lipoprotein and albumin [23]. These various
forms are dissociated at the blood-brain barrier (BBB) level through both active and passive processes which
are mediated by endothelial lipases, fatty acid binding proteins (FABPs), and apolipoprotein E (ApoE) [24-
27], whereas unesterified DHA easly passes the BBB [28]. Within the central nervous system, DHA is
transported primarily via FABPs [25,26] and ApoE produced by astrocytes [27]. DHA is incorporated into
membrane phospholipids mainly in the stereospecifically numbered-2 position through the action of
coenzyme A [29]. However, through hydrolysis reactions catalysed by phospholipase, DHA can be released
from membrane phospholipids. Both synthesis and hydrolysis represent mechanisms aimed at responding
to dynamic cellular events and challenges during development and aging [14].

DHA, EPA and ARA are also important for the production of eicosanoids (prostaglandins, thromboxanes,
leukotrienes) and, therefore, for their involvement in inflammation [20]. Metabolism of most eicosanoids
implies the release of fatty acids esterified into phospholipids, by phospholipase A2 enzymes (PLA2).
Consequently, increased levels of free fatty acids and lipid mediator biosynthesis take place particularly after
inflammatory cell activation. The most frequently involved PLA2s in the cellular production of bioactive
lipids are: the cytosolic calcium-dependent PLA2 (cPLA?2), the cytosolic calcium-independent PLA2 (iPLA2)
and the secretory PLA2 (sPLA2) [30]. Among them, cPLA2, shows a substrate specificity for phospholipids
containing AA. cPLA2, however, can also hydrolyze phospholipids containing EPA, but the low abundance
of this fatty acid allows cPLA2 to release AA in specific conditions [31]. Prostaglandins, leukotrienes and
thromboxanes regulate inflammatory modulation and they are metabolized by cyclooxygenase (COX) and 5-
lipoxygenase (5-LOX) [32]. ARA is the precursor for the 2-series of prostaglandins and thromboxanes and
the 4-series of leukotrienes. EPA is a precursor for the 3-series of prostaglandins and thromboxanes and the
5-series of leukotrienes [22]. As a result, ARA shows typical proinflammatory properties opposed to EPA
that, in particular, produces anti-inflammatory effects [22]. Furthermore, 5-LOX is responsible for the
generation of anti-inflammatory eicosanoids such as the D-series resolvins, protectins and maresins, which
are derived from DHA and the E-series resolvins from EPA [33,34] (Figure 1).

Human metabolic studies show a limited conversion of ALA to DHA, typically below 5% in adult males [35-
38.]Women have a greater efficiency of conversion than men [39] and this may be important for foetal
supply during pregnancy. Women demonstrated lower omega -3 fatty acid intake than men considering the
same age categories [40]. Furthermore, in addition to the limited conversion, there is also an age-related
decrease in delta-6-desaturase activity, which is higher in women. These studies suggest that a supply of
preformed EPA and DHA may be the best way to ensure adequate intake especially in ageing. Indeed, the
shift in modern diets towards reduced omega-3 PUFA intake increases omega-6 PUFA consumption and if
combined with less physical activity has a detrimental impact on development and aging, especially with
regard to cognitive function [14].

Current guidelines are in the range of 250 to 500 mg EPA plus DHA per day [41]. However, most people do
not consume enough omega-3 PUFAs, as indicated by average modern daily dietary DHA intakes that are
closer to 100 mg per day; the optimal dietary omega-6 to omega-3 PUFA ratio is 2:1 and below, while the
current Western diet is typically in the range of 10:1 to 25:1 [14].

The DHA dosage for achieving a significant response is another issue that requires further studies. For
instance, in order to achieve 2 g/die of DHA [42], a daily meal of 135 g of Atlantic salmon may be required
(Table 1). Therefore, it would be difficult to achieve such high DHA intakes without supplements [7].
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Table 1. Amount of ALA, EPA and DHA.

Food ALA EPA DHA
g/portion g/portion g/portion

Baked beans, canned, vegetarian 0.07

Black walnuts 0.76

Bread, whole wheat 0.04

Canola oil 1.28

Chia seeds 5.06

Chicken, breast, roasted, 0.01 0.02
Cod, Pacific, cooked* 0.04 0.10
Edamame, frozen, prepared 0.28

Egg, cooked 0.03
English walnuts 2.57

Flaxseed oil 7.26

Flaxseed, whole 2.35

Ground beef, 85% lean, cooked** 0.04

Herring, Atlantic, cooked* 0.77 0.94
Kidney beans, canned 0.10

Lobster, cooked* 0.04 0.10 0.07
Mackerel, Atlantic, cooked* 0.43 0.59
Mayonnaise 0.74

Milk, low-fat (1%) 0.01

Opysters, eastern, wild, cooked, 0.14 0.30 0.23
Refried beans, canned, vegetarian 0.21

Salmon, Atlantic, farmed, cooked 0.59 1.24
Salmon, Atlantic, wild, cooked 0.35 1.22
Salmon, pink, canned, drained* 0.04 0.28 0.63
Sardines, canned in tomato sauce, drained* 0.45 0.74
Scallops, cooked* 0.06 0.09
Sea bass, cooked * 0.18 0.47
Shrimp, cooked* 0.12 0.12
Soybean oil 0.92

Tilapia, cooked* 0.04 0.11
Trout, rainbow, wild, cooked 0.40 0.44
Tuna, light, canned in water, drained* 0.02 0.17
Tuna, yellowfin, cooked* 0.01 0.09

*Except as noted, the USDA database does not specify whether fish are farmed or wild caught. **The United States
Department of Agriculture Food Composition Databases does not specify whether beef is grass fed or grain fed. Data
from Office of Dietary Supplements, National Institute of Health (NIH) [43,44].

2. Parkinson’s Disease

Parkinson’s disease is a progressive neurodegenerative disorder characterized by loss of dopaminergic
neurons in the substantia nigra, pars compacta. A pathological hallmark of the disease is also the presence of
Lewy bodies, which are intracellular inclusions enriched in the protein a-synuclein.

The common symptoms include tremor, rigidity, bradykinesia and postural insecurity, with dementia and
depression observed in the advanced stages of the disease [30]. In a significant number of cases, depression
appeared before the expression of Parkinson's classic symptoms, even previous to any evidence of motor
impairment. Moreover, a recent study observed that people diagnosed with depression are three fold more
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inclined to develop PD [45]. One-third of PD patients suffer depression that may lead to worse health
outcomes and to a decreased quality of life. Anxiety, apathy and anhedonia further complicate PD outcomes
[30].

Although the aetiology is currently unknown, there are a number of putative risk factors (e.g. exposure to
environmental toxins) [46] and the pathogenic mechanisms include mitochondrial dysfunction,
neuroinflammation and oxidative stress [47]. However, numerous studies support that a diet rich in PUFAs
or supplementation with food products containing EPA and DHA could alleviate some of the patients'
symptoms. The main scales used to evaluate PD symptoms are summarized in Table 2.

Table 2. Summary of main scales used for assessment of Parkinson’s and Alzheimer’s Disease ([48] with modifications).

Main scales Description
It measures the functional ability to perform activities of daily life. ADL assess basic
Activities of Daily Living living skills such as bathing and eating, whereas IADL measure more complex tasks
ADCS-ADL; ADCS-IADL such as using the telephone or preparing meals. A higher ADL or IADL score
indicates a worsening functionality.
Alzheimer’s Disease Assessment Is a sensitive and reliable method for the assessment of cognitive function in
Scale-Cognitive Subscale dementias. It consists of a psychometric scale of 11 items, and scores range from 0
(ADAS-Cog) (no impairment) to 70 (very severe impairment).
Beck Depression Inventory It is a 21-question multiple-choice self-report inventory, one of the most widely
(BDI) used psychometric tests for measuring the severity of depression.

Brief Assessment Schedule

It is a brief test for screening depression, requiring minimal training to administer.
Depression Cards (BASDEC) & aep d & J

Bristol’s Activities of Daily Living It is specifically designed for individuals with mild dementia living in the
Scale (BADLS) community for completion by caregivers.

It is a global measure that assesses memory, orientation, judgment, and other

Clinical Dementia Ratin,
& features. Is based on caregiver interview. Classifies dementia into questionable,

(CDR) mild, moderate, and severe.
Clinical Global Impression Scale It measures of symptom severity, treatment response and the efficacy of treatments
(CGI) in treatment studies of patients with mental disorders.
Clinician Interview-Based It is a global measure capable of detecting changes in cognition, functionality, and
Impression of Change, plus carer behavior, thus assessing dementia’s severity and progression. Requires separate
interview (CIBIC-Plus) interviews with patients and caregivers.

Diagnostic and Statistical Manual
of Mental Disorders, fourth
edition (DSM-1V)

Is the handbook used by health care professionals in the United States and much of
the world as the authoritative guide to the diagnosis of mental disorders.

Is the most widely used clinician-administered depression assessment scale. The

Hamilton Depression Rating Scale . ) . . . .
original version contains 17 items pertaining to symptoms of depression

(FIDRS) experienced over the past week.
Hoehn and Yahr scale It is a commonly used system for describing how the symptoms of PD progress.
Hopkins Verbal Learning Test— It is a brief verbal learning and memory test ideal in situations calling for repeated
Revised (HVLT-R) neuropsychological examinations.
It evaluates cognitive function in the areas of orientation, memory, attention,
Mini-Mental State Examination calculation, language, and visual construction. It is widely translated and used in
(MMSE) clinical practice. Patients score between 0 and 30 points, and cutoffs of 23/24 have
typically been used to show significant cognitive impairment.
Montgomery—Asberg Depression Is a ten-item diagnostic questionnaire which psychiatrists use to measure the
Rating Scale (MADRS) severity of depressive episodes in patients with mood disorders.

It assesses dementia-related behavioral symptoms. The NPI originally examined 10
sub-domains of behavioral functioning: delusions, hallucinations,
agitation/aggression, dysphoria, anxiety, euphoria, apathy, disinhibition,

Neuropsychiatric Inventory
(NPI)
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irritability/lability, and aberrant motor activity.

Neuropsychological test battery ~ This scale assesses changes in cognitive function and is seen as a promising method

(NTB) for mild AD. NTB has shown to be able to detect changes in memory performance.
Unified Parki 's Di
n;{zingasrcz:?g;]);;e)ase It evaluates of motor impairment and disability of patients with PD.

2.1. The role of omega-3 polyunsaturated fatty acids in PD: observational studies

The first major prospective study concerning environmental, life-style, and physical precursors of clinical
Parkinson's disease is the Honolulu-Asia Aging Study [49], which started in 1965 and included a cohort of
8,006 Japanese-American men, during a 30-year follow-up. Among the dietary factors showing an inverse
association with PD, the polyunsaturated fats [49] were included (Table 3).

Table 3. Prospective observational studies assessing the impact of omega-3 fatty acids supplementation in PD patients.

N° Population Type and dose Exposure Results References
Patients characteristic supplementation period
PD Food frequency
8006 Honolulu-Asia questionnaire 30 years PUFAs appeared protective. [49]
Aging Study
PD Semiquantitative food Intakes of PUFAs were
5289 Rotterdam Study frequency 6 years significantly associated with a [50]
The Netherland questionnaire lower risk of PD.
PD
Health High intakes of fruit,
ea
. Semiquantitative food vegetables, whole grains,
Professionals Follow- )
131.368 Up Stud dth frequency 16 years legumes, poultry, and fish was [51]
and the
P Y questionnaire associated with a lower risk of
Nurses’ Health Study
PD.
USA
Consumption of omega-3
PD Self-administered diet
249 CACIMSEreC €I Gyears  PUFA, ALA, EPA, DHA were [52]
Japan history questionnaire

not associated with PD.

In The Rotterdam Study the intakes of total fats, MUFAs and PUFAs were significantly associated with a
lower risk of PD, by means of energy-adjusted intake of fat and fatty acids [50].

The Health Professionals Follow-Up Study (1986-2002) and the Nurses” Health Study (1984-2000), including
131.368 men and women, evaluated the associations between dietary patterns and risk of PD. The main
components analysis identified two dietary patterns: prudent and Western. The prudent dietary pattern,
characterized by high intakes of fruit, vegetables and fish, was inversely associated with PD risk, but the
Western pattern was not [51].

However a case-control study, which examined the relationship between dietary intake of individual fatty
acids and the risk of PD in Japan, including 249 cases within 6 years of onset of PD, demonstrated that intake
of omega-3 polyunsaturated fatty acids were not associated with PD. Higher consumption of ARA and
cholesterol, instead, may be related to an increased risk of PD [52].

In summary we can conclude that prospective observational studies showed an association between a diet
rich in polyunsaturated omega-3 fatty acids with a lower risk of PD.

2.2. The role of omega-3 polyunsaturated fatty acids in PD: randomized, double-blind, placebo-controlled clinical trials

Randomized, double-blind, placebo-controlled clinical trials involving PD are few for several reasons: poor
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patient adherence to diet therapy, duration of dietary treatment, control of clinical parameters and
evaluation of these same parameters. When the pathology occurs, already 70% of neurons are compromised;
thus thinking that only a dietary treatment can restore brain functions is really an utopia. However, dietary
treatments with omega-3 fatty acids may have advantages in reducing inflammation and, consequently,
depressive symptoms.

Indeed, treatment for 6 months with 800 mg/day DHA and 290 mg/day EPA from fish oil, demonstrated, in
the DHA treated patients, a reduction of 50% in the Hamilton Rating Scale for Depression (HDRS) total score
if compared with the placebo group which took corn oil. DHA integration reduced the depressive symptoms
[63]. However, treatment had no statistically significant effect on rate of change on either Unified
Parkinson’s Disease Rating Scale (UPDRS) or Hoehn-Yahr Scale score [53] (Table 4).

Table 4. Clinical trials assessing the impact of omega-3 fatty acids supplementation in PD patients.

N° Population Type and dose Exposure Results References
Patients characteristics supplementation period
Treatment had no statistically
800 mg/die DHA + significant effect on rate of change on
54 PD 290 mg/die EPA 6 months either UPDRS or Hoehn-Yahr Scale (53]
Italy from fish oil score. In DHA-treated patients the
Placebo: corn oil HDRS score was reduced
by at least 50%.
. 480 mg/die DHA + Treatment had no statistically
PD and Major ] L
Depression 720 mg/die EPA significant effect on rate of change on
31 (DSM-IV) from fish oil + 3 months Hoehn-Yahr Scale score, but a [45]
Brazil tocopherol significant decrease in MADRS and
Placebo: mineral oil CGlI scores.
1000 mg omega-3
fatty acids from
60 PD ﬂaxsee.d Oﬂ. 3 months Treatment had favorable effects on [54]
Iran +400 IU vitamin E UPDRS score.

Placebo:
not specified

Another double-blind, placebo-controlled study analyzed the effect of fish oil supplementation in
parkinsonian patients with depression measured using Montgomery—Asberg Rating Scale (MADRS), the
Clinical Global Impressions Scale (CGI) and Beck Depression Inventory (BDI) [45]. After 3 months, the
supplementation of 4 capsules of omega-3 from fish oil (each capsule containing 180 mg EPA, 120 mg DHA
and tocopherol) showed a significant decrease in MADRS and CGI-Depression scores while there was no
difference among treated and control groups in BDI [45]. Moreover, Parkinson's symptoms, measured by
Hoehn and Yahr scale, did not show significant variation during the 3 months of supplementation in all
groups observed [45].

A randomized double-blind placebo-controlled clinical trial, conducted in 60 patients with PD, receiving
either 1000 mg omega-3 fatty acids from flaxseed oil plus 400 IU vitamin E supplements or placebo for 3
months, showed that the dietetic supplementation in people with PD improved UPDRS compared with the
placebo [54].

The published papers give an important indication on the use of omega-3 supplements especially for
depression in PD; however, the number of patients recruited is small and also the type of supplement varies.
It is widely demonstrated that the effective dose is 1 g/day of DHA. Animal or algal sources ensure a correct
intake of DHA, while plant sources are often ineffective, since only 10% of ALA is metabolised to DHA.
Despite this, the supplementation of omega 3 from linseed oil and vitamins E had favorable effects not only

6


https://doi.org/10.20944/preprints201907.0289.v1
https://doi.org/10.3390/ijms20174256

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2019 d0i:10.20944/preprints201907.0289.v1

on UPDRS but also on high-sensitivity C-reactive protein (hs-CRP), total antioxidant capacity (TAC),
glutathione and markers of insulin metabolism [54]. Furthermore, the 3-6 month treatment is a relatively
short period considering that we deal with dietary intervention in a pathology where the main symptoms
are already evident [45,53,54].

3. Alzheimer’s Disease

Alzheimer’s Disease is a neurodegenerative disorder that accounts for the majority of cases of dementia,
affecting over 35 million people worldwide. Some of the more usual clinical features include cognitive
impairment, memory loss, language disorders, sudden changes of mood and behavior, and disorientation in
time and space, hindering the patient’s ability to perform normal daily activities. The neurodegenerative
process observed in AD is usually present in patients’ brain before the appearance of the first symptoms [55].
AD key features are the presence of neurofibrillary tangles and senile plaques and neuronal loss, resulting in
cerebral atrophy.

Neurofibrillary tangles are composed of abnormal tau protein aggregates. Under normal conditions, tau
protein contributes to the cytoskeleton structure by interacting with tubulin in order to stabilise the
microtubule network. However, it may suffer different post-transcriptional modifications, such as truncation
or hyperphosphorylation. Although the reasons that motivate these modifications remain elusive, there is
compelling evidence that this hyperphosphorylated form is prone to aggregate, leading to the formation of
neurofibrillary tangles that constitute toxic intracellular accumulations, mainly located in the hippocampus.
Moreover, tau protein malfunction produces cytoskeleton destabilisation due to microtubule collapse,
prompting synaptic failure that results in a loss of communication, thus contributing to AD-mediated
neurodegeneration.

Since mitochondrial transport depends on its interactions with microtubules, this process is hindered upon
tau hyperphosphorylation, causing energy deficits in presynaptic areas that may lead to synaptic disruption.
Senile plaques consist of extracellular deposits of B-amyloid peptide (AP), originating from amyloid
precursor protein (APP) degradation. Such deposits cause inflammation and neuronal death. APP is a
transmembrane protein present in neurons, which can be processed following two different routes: the
amyloidogenic and the non-amyloidogenic pathways, both mediated by secretases: B- and y-secretases take
part in the first one, while a- and y-secretases in the second one (Figure 2) [55]. In the non-amyloidogenic
route, APP is sequentially cleaved by a-secretase and y -secretase, giving rise to truncated peptides, ABi7-o2
(Figure 2). In the amyloidogenic route, on the other hand, the sequential cleavage is carried out by B-
secretase and y-secretase, leading to whole-length AP peptides, responsible for the formation of the plaques.
Both routes yield an amino-terminal fragment (APPsa for the non-amyloidogenic route and APPsf for the
amyloidogenic route) and a carboxy-terminal one (C83 and C99, respectively). The action of y-secretase
generates the APP intracellular domain (AICD), which participates in the cellular signalling. Depending on
the point where y-secretase performs the cut in the amyloidogenic route, the whole-length AP peptide would
have a different dimension, with AB140 and ABi-42 being the dominant fragments in the brain (Figure 2) [55].
It has been shown that DHA increases the non-amyloidogenic processing resulting in an elevated o-secreted
APP level by an increase in ADAM17 protein levels, caused by upregulated gene expression and decreased
protein degradation. Additionally, DHA attenuates amyloidogenic processing affecting both - and y-
secretase activity by independent mechanisms [56].

3.1. The role of omega-3 polyunsaturated fatty acids in AD: observational studies

The strongest support for a causal association between low fish and/or low DHA intake in AD comes from
prospective epidemiological studies conducted in the Netherlands, USA and France. Of the 7 prospective
studies that have been published, most show that higher intake of fish or omega-3 PUFA decreases the risk
of AD (Table 5) [57].
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Table 5. Prospective observational studies assessing the impact of omega-3 fatty acids supplementation in AD patients.

N° Population Type and dose Exposure Results References
Patients characteristic supplementation period
Fish consumption, an important
AD 37 Semiquantitative source of omega 3 PUFA, was
5386 Rotterdam Study food frequency 2.1 years inversely related to incident [58]
The Netherland questionnaire dementia in particular to
Alzheimer's disease.
AD 131 Dietary intake of omega 3 PUFA
815 Chicago Heal'th Food f’reque.ncy 3.9 years and weakly con'sumption of fish' [59]
and Aging Project questionnaire may reduce the risk of Alzheimer's
USA disease.
AD 190
Cardiovascular Consumption of fatty fish more than
233 I'{?alth Food f’reque'ncy 5.4 years twice per'wee.zk V?Ias associate?d w%th [60]
Cognition Study questionnaire a reduction in risk of Alzheimer's
(CHCS) disease by 41%.
USA
AD .
. Lo Plasma DHA level was associated
not reported Semlquantltatlve . o L
. with a significant 47% reduction in
488 The Framingham food frequency 9.1 years . . [61]
. . the risk of developing all-cause
Heart Study questionnaire .
dementia.
USA
Frequent consumption of fruits and
AD 183 vegetables, fish, and omega 3 rich
8085 Three-City cohort Food f.requefwy 3.48 years oils rr'lay decrease .the ris.k of [62]
study questionnaire dementia and Alzheimer disease,
France especially among ApoE &4
noncarriers.
In this cohort with a moderate
Rotterdam Study Semiquantitative consumption ?f fish and ome.ga—S
5395 The Netherland food frequency 9.6 years PUFAs these dietary factors did not [63]
e Netherlan
questionnaire appear to be associated with long-
term dementia risk
AD Semi titati
emiquantitative
93 Rush Memory . dq f 45 High adherence to all three diets [64]
ood frequenc .5 years
and Aging Project . 4 . Y ¥ may reduce AD risk.
USA questionnaire

The Rotterdam Study was the first to report that fish intake was inversely related to incident dementia in
particular to Alzheimer's disease [58]. The data are confirmed by subsequent studies where the consumption
of omega 3 [59] or fatty fish [60] or adherence to a diet rich in fruit, vegetables, fish and oils rich in omega 3
[62,64], is associated with a reduction in AD risk. Only a study published by Devore et al. [63] showed that a
moderate consumption of fish and omega 3 PUFAs, do not appear to be associated with long-term dementia
risk.

3.2. The role of omega-3 polyunsaturated fatty acids in AD: randomized, double-blind, placebo-controlled clinical trials

The first randomized clinical trial controlled by placebo (OmegAD Study) that evaluated omega-3 fatty
acids’ impact in AD was published in 2006 [65] (Table 6).


https://doi.org/10.20944/preprints201907.0289.v1
https://doi.org/10.3390/ijms20174256

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2019

doi:10.20944/preprints201907.0289.v1

Table 6. Clinical trials assessing the impact of omega-3 fatty acids supplementation in AD patients.

N° Population Type and dose Exposure Results References
Patients characteristic supplementation period
1720 mg/die DHA® Thére was no significant statistical
. difference after 6 or 12 months
600 mg/die EPA ]
AD (DSM-1V) Placeb 1 treatment between groups in
acebo:
204 MMSE 15-30 , MMSE, ADAS-cog, CDR. A [65]
4000 mg corn oil months . g .
OmegAD Study Both eroups: subgroup with very mild cognitive
& ) P N dysfunction showed a reduction in
+16 mg/die Vit.E .
decline rate.
Supplementation with omega-3 did
1720 mg/die DHA+ not result in marked effects on
AD (DSM-IV) 600 ;g/dli)e EPA , ne?ropsyc'};)ilatric s')tr'mpt(;;nstexcept
: T i iti n
204 MMSE 15-30 acebo . o po'ss e positive effects o (6]
4000 mg corn oil months depressive symptoms (assessed by
OmegAD Study . .
Both groups: MADRS) in non-APOEe4 carriers
+16 mg Vit.E and agitation symptoms (assessed
by NPI) in APOEeg4 carriers.
720 mg/die DHA+ Treated group did not show an
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MMSE>20 control drink tolerability and ease of use.
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Freund-Levi et al. [65] assessed omega-3 fatty acids’ supplementation in 204 subjects with mild to moderate
AD. The treated group received omega-3 fatty acids in the daily dosages of 1720 mg DHA and 600 mg EPA
and the placebo group received 4000 mg of corn oil (containing 2400 mg LA) for 6 months, followed by
additional 6 months of omega-3 fatty acids’ supplementation for both groups. Medication for AD treatment
was allowed. As a result, there was no significant statistical difference after a 6 - or 12-month treatment
between groups in Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog), Mini-Mental
State Examination (MMSE) and Clinical Dementia Rating (CDR). In a subgroup with very mild AD
(MMSE>27 and CDR 0.5-1), there was a significant reduction in decline rate between intervention and
placebo groups in the first 6 months.

In a second paper published in 2008, Freund-Levi et al. [66], using the same sample from 2006, showed that
supplementation with omega-3 in patients with mild to moderate AD did not result in marked effects on
neuropsychiatric symptoms except from possible positive effects on depression (assessed by MADRS) in
non-APOEe4 carriers and agitation symptoms (assessed by Neuropsychiatric Inventory, NPI) in APOEe4
carriers. The mechanism of action of omega-3 in the brain in relation to behavior is not fully understood. In
rats, it has been shown that an increased intake of both EPA and DHA, whereas a combination of the two
omega-3 PUFAs inhibit protein kinase C (PKC) activity after subchronic exposition in cell cultures. Well
established mood stabilizers such as lithium and valproic acid are known to inhibit PKC activity. Thus,
inhibition of PKC may also represent a potential mode of action of omega-3 in bipolar disorders. Other
possible mechanisms could be that omega-3 fatty acids affect neurotransmitter levels and membrane fluidity
also by decreasing production of pro inflammatory eicosanoids that might be elevated in depression [66].
Chiu et al. [67] studied 46 subjects with mild to moderate AD or mild cognitive impairment (DSM-IV: MMSE
10-26, CDR-score 1-2). During 6 months, intervention group received 720 mg/die DHA and 1080 mg/die
EPA, while placebo group received olive oil. Medication for AD treatment was not allowed. There was no
significant statistical difference in MMSE, ADAS-cog and HDRS between the two groups. The negative
results of cognitive assessments support the previous studies by Freund-Levi et al. [65,66], and all of the
studies showed there might be a positive effect of omega-3 fatty acids only in subgroups with mild cognitive
deficits. A significant improvement was observed in Clinician Interview-Based Impression of Change, plus
carer interview (CIBIC-plus) in the intervention group compared to placebo group. This might be accounted
for the cognitive and behavioral components rather than the functional one. It has been suggested that
omega-3 fatty acids may have beneficial effects on mood, although this is an unlikely explanation for these
findings because of the stringent exclusion of people with significant depression and the lack of association
with HDRS score. The relative improvement of general clinical conditions might have resulted from
amelioration in other areas of health, such as cardiovascular or immunological systems on which beneficial
effects of omega 3 PUFAs have been reported [67]. In a subgroup, participants with mild cognitive
impairment (MMSE>27 e CDR 0.5-1) but not with AD, showed a significant additional delay in ADAS-cog
decline compared to placebo group.

Quinn et al. [68] assessed 402 subjects with mild to moderate AD. The intervention group received DHA
2000 mg/die from seaweed and the placebo group received corn or soy oil for 18 months. Medication for AD
treatment was allowed. Supplementation with DHA compared with placebo did not slow the rate of
cognitive and functional decline in patients with mild to moderate Alzheimer’s disease (no beneficial effect
on rate of change on MMSE, ADAS-cog, CDR, ADS-ADL and NPI).

Sheltens et al. [69] assessed 225 subjects with mild AD. The intervention group received DHA 1700 mg/die
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and EPA 600 mg/die from a medical food named Souvenaid and the placebo group received a control drink
for 6 months. Significant improvement in the delayed verbal recall task was noted in the supplemented
group compared with control. ADAS-cog and other outcome scores (CIBIC-plus, NPI, ADCS-ADL)
remained unchanged.

The same authors published a study [70] where the same above-mentioned population was divided into two
subgroups: patients with ‘low’ baseline ADAS-cog scores (<25.0) and patients with ‘high” baseline ADAS-cog
scores (>25.0). Repeated measures models were used to determine the relationship between ADAS-cog score
and intervention. Baseline ADAS-cog significantly influenced the effect of Souvenaid intervention on ADAS-
cog outcome. A higher intake of the medical food was also associated with greater cognitive benefit.

Based on these results, two double-blind, randomized controlled clinical trials were designed. The Souvenir
II study examined the effect of longer treatment duration (6 months) with Souvenaid as compared with
control product on memory performance in drug-naive mild AD [81]. Neuropsychological Test Battery
(NTB) memory domain increased in active group.

Since the ADAS-cog may be more sensitive to change in moderate AD and since Souvenaid had not been
tested in moderate AD patients already taking AD medications, a novel S-Connect study was designed. In
this double-blind, parallel, randomized, controlled clinical study, the efficacy and tolerability of Souvenaid
was investigated in 527 persons with mild to moderate AD taking stable doses of Souvenaid [72]. Cognitive
performance as assessed by ADAS-cog showed decline over time in both control and active study groups,
with no significant difference between study groups themselves. Intake of Souvenaid did not slow cognitive
decline in persons treated for mild to moderate AD.

Faxen-Irving et al., as a part of a previously published study on a DHA rich supplementation to subjects
with AD [65], explored the effects of transthyretin on plasma and CSF. Since plasma transthyretin correlated
with MMSE and inversely with ADAS-Cog, these authors suggest a potential mechanism for probable
positive effects of omega 3 on cognition.

Shinto et al. [74] studied 39 subjects with probable AD in a randomized placebo-controlled pilot with three
arms. Two groups received omega 3 fatty acids” supplementation, one only omega-3 fatty acids (DHA 675
mg/die and EPA 975 mg/die), and the other with the addition of alpha lipoic acid (600 mg/die); placebo
group received soy oil. The intervention lasted 12 months and medication for AD was allowed. There were
no differences in ADAS-cog and ADL between placebo and omega-3 fatty acids or between placebo and
omega-3 fatty acids + alpha lipoic acid. In MMSE, the mean alteration between placebo group and
intervention group with only omega-3 fatty acids was not significant, whereas the difference between
placebo and omega-3 fatty acids + alpha lipoic acid was significant. The mean alteration in IADL (Table 2)
was significant between placebo group and omega-3 fatty acids’ group and between placebo and omega-3
fatty acids + alpha lipoic acid.

In a secondary analysis of the Souvenir II study [75], results suggest that Souvenaid preserves the
organisation of brain networks in patients with mild AD within 6 months, hypothetically counteracting the
progressive network disruption over time in AD. These results strengthen the hypothesis that Souvenaid
affects synaptic integrity and function.

Phillips et al. [76] assessed omega-3 fatty acids’ supplementation in 19 subjects with AD. The intervention
group received daily omega-3 fatty acids in the dosages of 625 mg DHA and 600 mg EPA and the placebo
group received olive oil for 4 months. The daily supplementation was associated with none or only
negligible benefits on mood and cognition assessed by MMSE, the Hopkins Verbal Learning Test-Revised
(HVLT-R), Brief Assessment Schedule Depression Cards (BASDEC) and Bristol’s Activities of Daily Living
Scale (BADLS).

Data obtained in the OmegAD study [66,82]were collected to examine the relationship of plasma omega-3
levels to cognitive scores (using ADAS-cog and the MMSE) [83]. The daily supplementation stabilizes the
cognitive performance of AD subjects assessed by ADAS-cog and MMSE scores.

Also from the OmegAD study a decrease was observed in resolvin D1 (RvD1) and lipoxin A4 (LXA4)
production from peripheral blood mononuclear cells of AD patients who did not receive omega-3
supplementation but not in cells of AD subjects under omega-3 intake [78].
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Recent systematic meta-analysis did not show any significant benefits of omega-3 fatty acids
supplementation in the treatment of mild to moderate AD, even if the treatment did not raise any substantial
safety issues [13]. In fact studies concerning the tolerability, safety and effect size of Souvenaid demonstrated
that the use of medical food for up to 12 months was well tolerated, with a favorable safety profile and high
adherence of intake [79,84]. Moreover the efficacy of omega-3 supplementation seems to be influenced by the
baseline levels of plasma total homocysteine, suggesting that adequate B vitamin status is required to obtain
beneficial effects of omega-3 on cognitive performance in moderate AD [80].

5. Materials and Methods

The authors searched PubMed, Web of Science and Scopus articles using a combination of “omega-3 fatty
acids,”, “Parkinson’s Disease, “Alzheimer’s Disease”, “clinical trials” as keywords. Inclusion criteria
consisted in original intervention studies, controlled by placebo, that assessed omega-3 polyunsaturated
fatty acids impact on cognitive function in humans with PD or AD, until May 2019, without limitation for
the initial date of publication. We searched for interventions using omega-3 polyunsaturated fatty acids as
supplementation (in capsules, or in any other form than in food itself) or as increased dietary intake
(throughout food sources, such as fish or fish oils). We first applied eligibility criteria in titles’ analysis,
followed by abstracts’ analysis and full texts’ reading. Search, selection, and information extraction were
performed independently by two reviewers. In order to favor reliability, data were collected independently
in a table including number of patients, population characteristics, type and dose of supplementation,
exposure period, results and references. The authors prepared references using Zotero as bibliography
software.

6. Conclusions

Neurodegenerative conditions, such as Parkinson’s disease and Alzheimer’s disease, represent a challenging
issue in clinical medicine, and their burden is expected to increase dramatically in the forthcoming decades.
At the present time no etiological treatment is routinely available and medical therapy is mainly
symptomatic; the adoption of a nutritional approach would be highly recommendable.

Omega-3 fatty acids represent an interesting biological potential, in view of their anti-inflammatory and
metabolic properties, in the management of these diseases.

Indeed, the evidence deriving from prospective observational studies is encouraging, both for Parkinson’s
and Alzheimer’s disease. The adoption of a dietary regimen enriched in omega-3 fatty acids rather
consistently associates with a reduced risk of either condition. On the other hand, randomized trials have
provided conflicting results, and many of them have failed to document a definite protective effect. This was
confirmed by most reviews and meta-analyses performed so far.

The inconsistency between observational and randomized studies is not unusual in clinical research,
particularly when considering treatment with dietary supplements or integrators. A number of reasons may
account for this finding. Firstly, in controlled trials dietary supplementation is usually carried out over a
relatively limited time span, compared with the life-long exposure of real-life observational studies.
Furthermore, and possibly more importantly, the variations in dietary patterns might reflect the adoption of
a healthier lifestyle, in adjunct to the contribution provided by the single nutrient supplementation. This was
postulated, for instance, when investigating the protective effects of the Mediterranean diet on cognitive
performances. In the present context, intake of higher amounts of foods containing omega-3 fatty acids
might associate with a reduced intake of other nutrients, such as meat.

Finally, the possibility of different individual responses to the dietary intervention must be considered. As
mentioned in this review, the protective effects exerted by omega-3 fatty acids is likely to be modulated by
patient-related factors, some of which may have a significant genetic component and may therefore be
unmodifiable, and unpredictable with routine clinical and biochemical evaluation.

At any rate, treatment with omega-3 fatty acids was generally reported to be safe and well tolerated. In our
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opinion, they may indeed represent a valuable and biologically plausible tool in the management of
neurodegenerative diseases. Of course, supplementation needs to be a part of a global lifestyle intervention,
and has to take place in the early stages of the disease, when a benefit may be detected. Hopefully, in a near
future the adoption of personalized treatment strategies, aimed to predict individual responses, will help to
optimize the effectiveness of such intervention, in order to face the progressive rise of these devastating
conditions.
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Abbreviations

5-LOX 5-lipoxygenase

AD Alzheimer’s disease

ADAS-Cog Alzheimer’s Disease Assessment Scale-Cognitive Subscale
ADCS Activities of Daily Living Scales

ALA o-linolenic acid

ApoE apolipoprotein E

APP amyloid precursor protein

ARA arachidonic acid

AB amyloid beta peptide

BADLS Bristol’s Activities of Daily Living Scale

BASDEC Brief Assessment Schedule Depression Cards
BBB blood-brain barrier

BDI Beck Depression Inventory Scale

CDR Clinical Dementia Rating Scale

CGI Clinical Global Impression Scale

CIBIC-Plus Clinician Interview-Based Impression of Change, plus carer interview
COX cyclooxygenase

cPLA2 cytosolic calcium-dependent phospholipase A2
CSF cerebrospinal fluid

DHA docosahexaenoic acid

DHA-FFA free nonesterified form docosahexaenoic acid
DSM-1V Diagnostic and Statistical Manual of Mental Disorders, fourth edition
EPA eicosapentaenoic acid

FABPs fatty acid binding proteins

HDRS Hamilton Depression Rating Scale

hs-CRP C-reactive protein

HVLT-R Hopkins Verbal Learning Test—Revised

iPLA2 cytosolic calcium-independent phospholipase A2
LA linoleic acid

LXA4 lipoxin A4

MADRS Montgomery—Asberg Depression Rating Scale
MMSE Mini-Mental State Examination

MUFAs monounsaturated fatty acids

NPI Neuropsychiatric Inventory

NTB Neuropsychological test battery
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Parkinson’s disease

protein kinase C

phospholipase A2

omega-3 polyunsaturated fatty acids
secretory phospholipase A2

resolvin D1

total antioxidant capacity

Unified Parkinson's Disease Rating Scale
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Figure 1. Endogenous synthesis of omega-3 polyunsaturated fatty acids and their involvement in inflammation. 15-LOX:
15-Lipoxygenase; 5-LOX: 5-Lipoxygenase; 12/15-LOX: 12/15 Lipoxygenase; CYP-450: Cytochrome P450.
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a Nonamyloidogenic pathway b Amyloidogenic pathway
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Figure 2. Amyloid precursor protein (APP) processing pathways. The non-amyloidogenic pathway (a) occurs upon
sequential cleavage by a- and y-secretases (non-pathological situation). The amyloidogenic pathway route (b) occurs
when cleavage is carried out sequentially by B- and - y secretases (pathological situation). Letters a, B, and y represent
each type of secretase. APP: amyloid precursor protein; APPsa: soluble a-APP; APPsP: soluble B-APP. Omega-3
polyunsaturated fatty acids, proposed to inhibit APP processing, are shown in orange dashed lines.
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