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Abstract: With a data revolution underway for some time, there is an increasing demand for
formal privacy protection mechanisms that are not so destructive. Hereof microaggregation is a
popular high-utility approach designed to satisfy the popular k-anonymity criteria while applying
low distortion to data. However, standard performance metrics are commonly based on mean square
error, which will hardly capture the utility degradation related to a specific application domain of
data. In this work, we evaluate the performance of k-anonymous microaggregation in terms of the
loss in classification accuracy of the machine learned models built from perturbed data. Systematic
experimentation is carried out on four microaggregation algorithms that are tested over four data sets.
The empirical utility of the resulting microaggregated data is assessed using the learning algorithm
that obtains the highest accuracy from original data. Validation tests are performed on a test set of
non perturbed data. The results confirm k-anonymous microaggregation as a high-utility privacy
mechanism in this context and distortion based on mean squared error as a poor predictor of practical
utility. Finally, we corroborate the beneficial effects for empirical utility of exploiting the statistical
properties of data when constructing privacy preserving algorithms.
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1. Introduction

In the current era of information, vast amounts of data and exploitation mechanisms are more and
more available; thus, more utility can be mined from data through data-analytics technologies. The
potential benefits of these technologies are countless in several fields such as healthcare, advertising,
and even industrial engineering, [1–3]. Said benefits entail important economic profits, so giant tech
companies are leveraging data as core assets [4] that are disclosed (exploited, shared or even sold) to
maximize profit.

Since this data commonly refers to individuals (personal data), the abundance of details collected
about them and the growing sophistication of machine-learning analytics raise serious privacy concerns.
Even if identifying attributes such as full names are suppressed, other, apparently innocuous, personal
attributes, so-called quasi-identifiers, could still be used to re-identify an individual. If a sensitive
attribute (gender, health status, income) were disclosed, re-identification would enable an attacker to
associate an individual with such attribute, violating her privacy.

Given this privacy risk, to prevent re-identification, (user) data needs to be processed before being
disclosed, which implies data distortion. In this regard, statistical disclosure control (SDC) offers an
interesting approach to protect individual privacy while preserving some of the data utility.

SDC is usually implemented over microdata, a tabulated data representation where the attributes
of several individuals are organized in records or rows, one for each individual. The purpose behind
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SDC is perturbing quasi-identifier attributes such that data subjects cannot be singled out. Since
re-identification is not possible, the values of sensitive attributes can be safely disclosed.

To enable SDC, different privacy models are available. Whereas a minimum protection level is
guaranteed through a privacy parameter, the resulting utility of perturbed data may vary according to
the implemented model. Some of such models are k-anonymity [5,6] and ε-differential privacy [7].

Since the criteria posed by privacy models are invariably met by perturbing quasi-identifiers to
anonymize data, there is an impact on the data in terms of loss in utility [8]. However, said utility
loss may vary according to the strategy followed by the privacy mechanism, even when the privacy
parameter is already met. If the resulting data utility does not meet the requirements of the application
domain (e.g., health) a different privacy parameter or mechanism should be used. Some of these
mechanisms include microaggregation, suppression, generalization and noise addition.

The impact of these mechanisms on data (i.e., on the utility of data after anonymization) is
commonly measured using standard, but merely syntactical, metrics, such as the mean-squared error
(MSE). However, to capture the practical utility of anonymized data, other metrics related to the
application domain might be more relevant, e.g., accuracy or F-measure, if data is used as input for
classification in machine learning tasks. Assessing the impact of privacy mechanisms by using these
metrics would help unveil the strategies that best preserve utility, but also whether or not standard
metrics faithfully predict such practical utility.

1.1. Contribution and plan of the paper

In the context of SDC, we focus on k-anonymous microaggregation (aggregating numerical microdata
to meet k-anonymity), which, as illustrated in Figure 1, is a high-utility privacy approach that is
pertinent, e.g, for health applications. Other models such as differential privacy may pose stricter
protection criteria, thus potentially implying greater costs in terms of data utility, so are beyond the
scope of this work.

microaggregation

k-anonymity
    l-diversity
    t-closeness

differential privacy noise addition
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 VMDAV
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 MDAV with SD
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Figure 1. Since we focus on high-utility SDC, our work here is devoted to k-anonymous
microaggregation algorithms.

On the other hand, also depicted in Figure 1, k-anonymous microaggregation is implemented through
different mechanisms, e.g., MDAV, VMDAV, Mondrian and MDAV with preservation of statistical
dependence. Accordingly, we assess several microaggregation algorithms in terms of the practical
utility of anonymized data. We employ non standard, but empirical utility metrics taken from machine
learning, which is currently a very common application domain of data. By systematically testing
these algorithms in this context, we are able to evidence the moderate impact of microaggregation on
the utility of data.

Furthermore, this evaluation enables us to compare different microaggregation algorithms in
terms of their capability to preserve empirically measured utility. Since these algorithms are not
usually designed to explicitly preserve the internal macrotrends within data (practical utility), we aim
at identifying the parameters likely helping to this aim. In fact, we find out that efforts to preserve
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the statistical dependence within quasi-identifiers and confidential attributes (such as in MDAV with
statistical dependence) may effectively attenuate the impact of microaggregation on the utility of
data. In this sense, we extend the study performed in [12] by assessing not only MDAV but also
other microaggregation algorithms, particularly one explicitly designed to preserve the statistical
information within the data.

Finally, for all these microaggregation algorithms, we assess the capability of a standard distortion
metric to predict the empirical utility of anonymized data. Although these metrics are usually
oriented to rather measure the syntactical distortion of quasi-identifiers, even disregarding the
semantic contribution of confidential attributes, some efforts have being done to consider the statistical
dependence of all the data when applying k-anonymous microaggregation.

The remainder of this paper is organized as follows. Section 2 reviews the background on
k-anonymous microaggregation, presents the state of the art in algorithms for SDC, particularly
those evaluated here, and explores previous work evaluating the impact on data utility caused by
anonymization. Next, Section 3 describes the methodology followed to evaluate such impact. Section
4 shows the experimental results obtained for a variety of microaggregation algorithms, data sets and
machine-learning algorithms. Lastly, a brief discussion is presented in 5 and conclusions are drawn in
Section 6.

2. Background and state of the art on k-anonymous microaggregation

2.1. Background on microaggregation

When microdata data is to be disclosed to a not fully trusted party, suppressing identifiers (full names,
identity numbers) is a first step to protect user privacy. But the combination of other commonly
demographic attributes could still individuate data subjects; these attributes are called quasi-identifiers.
Thus, quasi-identifiers are regularly the object of privacy protection mechanisms. Finally, confidential
attributes, i.e., sensitive information about individuals is usually disclosed without modification since
these mechanisms already protect the identity of data owners.

k-Anonymous microaggregation operates over quasi-identifiers by dividing a microdata set in
cells such that every cell contains at least k user records (aggregation). To protect privacy, the records of
each cell are replaced by a representative record (reconstruction), thus enforcing k-anonymity. Figure 2
depicts this process where after identifiers are suppressed from a microdata set, quasi-identifiers are
microaggregated in 3-anonymous cells while confidential attributes are left untouched.

 

Patient Sex Age Hgt
cm BMI ♥/min SpO2

%
Heart 

desease

Loise Lane F 32 175 21.8 81 97 Yes

Peter Parker M 34 170 19.8 112 99 Yes

Irena Dubrovna F 33 180 22.9 105 90 No

Bruce Wayne M 43 175 21.9 55 100 No

Laura Kinney F 47 180 30.3 92 93 Yes

Clark Kent M 45 185 23.4 78 98 No

Identifiers Quasi-identifiers Confidential attributes

Patient Sex Age Hgt
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BMI ♥/min SpO2
%

Heart 
desease

Loise Lane 0.67 33 170 21.5 81 97 Yes

Peter Parker 0.67 33 170 21.5 112 99 Yes

Irena Dubrovna 0.67 33 170 21.5 105 90 No

Bruce Wayne 0.33 45 180 25.2 55 100 No

Laura Kinney 0.33 45 180 25.2 92 93 Yes

Clark Kent 0.33 45 180 25.2 78 98 No
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Figure 2. Toy example of k-anonymous micoraggregation. After suppressing identifiers, the records
are clustered in groups of size k (microcells). Then, the quasi-identifiers in each micro cell are
replaced a representative tuple (e.g., a centroid). Finally, microaggregated quasi-identifiers and original
confidential attributes are published.

As illustrated in Figure 2, a representative tuple for each aggregated cell was obtained by
averaging their numerical data and was used for reconstruction. However, other reconstruction
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mechanisms can be used depending on the microaggregation algorithm, e.g., replacing values with
intervals, directly suppressing attribute values, or even suppressing entire records from microdata.

To give some intuition, if numerical quasi-identifiers could be drawn as points in the Euclidean
space, k-anonymous microaggregation could be seen as a mechanism to partition such points in cells
of size of at least k. Then, each cell would be represented by a point or interval within such cell so its
shape will depend on the implementation chosen. We depict such intuition in Figure 3.

 𝑥

𝑥
Quasi-identifier
𝑥 𝑥 , 𝑥 𝑞 𝑗 𝑞

Perturbed
quasi-identifier 

(centroid)

Aggregated 
microcell

𝑥 ,𝑥 𝑥 𝑞

Figure 3. Intuition regarding k-anonymous microaggregation. The two-dimensional quasi-identifiers
of a microdata set are depicted as points in an Euclidean space. Microaggregation partitions such points
by building k-anonymous microcells to then replace each tuple with the centroid of the corresponding
microcell.

2.2. Microaggregation algorithms

Next we briefly describe some well-known microaggregation algorithms with the aim of introducing
the strategies followed to group and reconstruct microcells. This will provide with some feedback
for the evaluation performed in this work that focuses on unveiling the utility preserving capabilities
of k-anonymous microaggregation, but particularly on showing that some efforts to preserve the
statistical dependence within data would help to increase said empirical utility.

MDAV (maximum distance to average vector algorithm) is the de facto standard for
microaggregation of numerical microdata [9]. By systematically finding the furthest k-anonymous
cells within the data set, MDAV replaces each record by the centroid (average) of its corresponding
cell. It evolved from the multivariate fixed-size microaggregation method and was proposed in [10].
MDAV provides an excellent heuristic method for multivariate microaggregation [11] in terms of
utility, measured both syntactically [11] and empirically [12], and in terms of computation complexity.
Figure 4 presents a generic version of MDAV taken from [13]. Note that MDAV generates cells of fixed
size k and potentially a cell with size 2k− 1.

A. Rodríguez-Hoyos et al.: Does k-Anonymous Microaggregation Affect Machine-Learned Macrotrends?

Algorithm 1 MDAV “generic”, functionally equivalent to Algorithm 5.1 in [15]

function MDAV
input k, (xj)

n
j=1 .Anonymity parameter k, quasi-ID portion (xj)

n
j=1 of a data set of n records

output q .Assignment function from records to microcells j 7→ q(j)

1: while 2k points or more in the data set remain to be assigned to microcells do
2: find the centroid (average) C of those remaining points
3: find the furthest point P from the centroid C, and the furthest point Q from P
4: select and group the k− 1 nearest points to P , along with P itself, into a microcell, and do the same with the k− 1

nearest points to Q
5: remove the two microcells just formed from the data set
6: if there are k to 2k − 1 points left then
7: form a microcell with those and finish
8: else .At most k − 1 points left, not enough for a new microcell
9: adjoin any remaining points to the last microcell .Typically nearest microcell

TABLE 1. Summary of Related Contributions

Reference
Anonymization

algorithm

Type of
attributes

used
Application domain Max size of

data sets Max value of k Main focus

Inan et al,
2009 [21] DataFly Hybrid Classification 5,000 128 Comparing classifiers on

anonymized data

LeFevre et al,
2006 [25] Mondrian, TDS Hybrid Classification 49,657 1,000 Algorithms to anonymize data

while preserving utility

Chaudhuri
and
Monteleoni,
2008 [6]

Differential
Privacy Numeric Classification N/A N/A Improving ML algorithm to work

with anonymized data

Lin and Chen,
2010 [31] DataFly Numeric Classification 270-49,990 128 Improving ML algorithm to work

with anonymized data

Kisilevich et
al, 2010 [23]

kACTUS, TDS,
TDR, Mondrian,

kADET
Hybrid Classification 42,244 1,000

Building an algorithm to protect
privacy in classification tasks
(comparing accuracy with others)

Jaffer et al,
2014 [22] Mondrian Hybrid Classification 1,000 50

Building an algorithm to protect
privacy in classification tasks
(comparing accuracy with others)

Malle et al,
2016 [33] SaNGreeA Hybrid Classification 42,244 19

Showing the destructive effect of an
anonymization algorithm on
classification tasks

Gursoy et al,
2017 [19] k-Map Hybrid Classification 42,244 5

Evaluating an anonymization
algorithm based on differential
privacy

Brickell and
V Shmatikov,
2008 [4]

Mondrian Hybrid Classification 42,244 1,000
A methodology to measure the
tradeoff between loss of privacy
and gain of utility

introduced to) anonymized data, just to compare the perfor-
mance of adapted classifiers or anonymization mechanisms.
One of these works is [45], where the effects of four
microaggregation algorithms on the estimation of a linear
regression is compared, when solely applied to simulated
data sets. Other works propose improvements on machine
learning algorithms and methodologies, to obtain higher
utility (classification accuracy) from anonymized data. This
is the case of [21], where the authors develop a method to
increase the level of utility obtained from support vector
machine (SVM) and k-nearest neighbor (kNN) machine
learning algorithms, when data are anonymized with the
DataFly algorithm. By feeding these algorithms with statis-
tics from original data, in addition to anonymized data,

greater utility ensues from the latter. In the same line, [6]
describes an adjustment to logistic regression that provides
differential privacy [18]. Furthermore, decision tree learning
methods are developed in [34] and [53] that enforce l-
diversity and differential privacy, respectively, as privacy
criteria and whose accuracy levels approach those of a non-
private decision tree. Using a different focus, [31] and [30]
address the privacy risk resulting from the release of SVM
and the anonymized data. Privacy preserving versions of
SVM are proposed and their classification accuracies are
used to compare them with the original SVM.

A great deal of research has also investigated adapta-
tions of anonymization algorithms that generate private data
of “higher quality”. In that context, the utility of anonymized
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Figure 4. MDAV “generic”, functionally equivalent to Algorithm 5.1 in [13].
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V-MDAV [11], follows a similar strategy to MDAV but enables the aggregation process to generate
variable-size cells. When k records are already aggregated, an extension step may include more records
to the cell being formed (up to a total 2k− 1) if they are “close enough” to this cell. The inclusion
decision is defined by a gain parameter γ that must be adjusted depending on the data set. It offers
less distortion for some data sets at a computational cost comparable to that of MDAV. The V-MDAV
algorithm is presente in [11].

Unlike traditional k-anonymous microaggregation (e.g., through MDAV) where only the values of
quasi-identifiers X are considered when building microcells, microaggregation with preservation of
statistical dependence (we will call it MDAV with SD) also includes confidential attributes [14] in the
partition design. Thus, if a confidential attribute Y has to be predicted, this approach would lead to a
more accurate prediction (e.g., classification) from perturbed quasi-identifiers X̂. To involve both types
of attributes, the authors propose designing a cell assignment function that minimizes a multiobjective
Lagrangian distortion function

D = (1− λ)DX + λDY
where DX is the traditional information loss term based on MSE, DY characterizes the degradation in
statistical dependence, captured through the non linear predictability of Y from X, and lambda controls
the tradeoff between these two optimization objectives.

Finally, Mondrian [15] is a greedy algorithm that recursively partitions a microdata set in regions
of at least k records, where a dimension (attribute) and a value about which to partition have to
be heuristically chosen in each iteration. This is a microaggregation algorithm in the sense that it
partitions a microdata set in variable-size cells, satisfying the k-anonymity criteria. The values of the
quasi-identifiers for each cell are reconstructed as non-overlapping intervals in which such values are
contained. Intuitively, such partitions are defined as hyperrectangles in the multidimensional space of
quasi-identifiers.

k-Anonymous microaggregation is hardly infallible in terms of privacy, particularly because
only quasi-identifiers are processed. The statistical characteristics of published confidential attributes,
along with additional information an attacker might obtain, could give rise to similarity, skewness or
background-knowledge attacks [16–18]. Thus, several refinements have been proposed to k-anonymity,
all of them requiring a less homogeneous distribution of confidential in each k-anonymous microcell.
To start, p-sensitive [19,20], requires that each microcell contains at least p different values of each
confidential attribute. Going a little further, l-diversity proposes that each microcell has at least l
well-represented confidential values.

In general, the implementations of microaggregation have been oriented to reduce the inherent
information loss [21–23] due to perturbation, which commonly derives in more sophisticated and
significantly costlier implementations in terms of computational time [24].

2.3. Utility of microaggregated data

The resulting utility of anonymized data is commonly measured inversely as the distortion applied,
which is quantified through the MSE when dealing with numerical attributes. However, there are
other metrics, such as accuracy, that have derived from the application domain of data, e.g., machine
learning used to exploit the statistical properties of information. Evidently, the more strict the privacy
criteria enforced, the less accurate the resulting (e.g., classification) models obtained from perturbed
data.

Classification accuracy and other machine learning metrics have been used in previous work
to assess the utility of perturbed data. However, the authors have concentrated on algorithms such
as Incognito, Mondrian and DataFly. Moreover, these evaluations use to assess the performance of
classifiers specifically adapted to operate on anonymized data [7,25–29], commonly using simulated
data sets [30]. A lot of research has also investigated modifications ofanonymization algorithms to
produce private data of “higher quality”. In that context, the utility of anonymized data is evaluated
in terms of classification accuracy of machine learning models [31], [32], and [33]. In [12], a systematic
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evaluation is certainly done to determine the impact of k-anonymous microaggregation on machine
learned macrotrends, but only the generic version of the MDAV algorithm is tested.

A lot of considerations should be taken into account when assessing the resulting utility
of anonymized data.; for example, the variety of anonymization algorithms, that could even be
proprietary [34] or non-standard [35]. Other elements that may affect the evaluation include the
different application domains of data and the specific characteristics of the data tested. Finally,
consider that, in practice, complying with multiple privacy criteria might render the anonymized data
useless [36]. Thus, since our target application is that of data release for general statistical analysis
with a focus on data utility, the restrictions imposed by differential privacy [37] and other criteria are
beyond the scope of this work.

Last but not least, we would like to stress that our review of the state of the art in this section
has been conducted from a strictly technological perspective. Legal and socioeconomic aspects are
covered, for instance, in [38,39].

3. Methodology of evaluation

3.1. Evaluation context

Our evaluation scenario considers a microdata set whose quasi-identifiers are correlated with its
corresponding confidential attribute. Moreover, this information has to be publicly released for
research purposes, so k-anonymous microaggregation is applied over quasi-identifiers to protect the
privacy of data subjects. This is the standard attack model of the SDC literature [40].

Accordingly, anonymized quasi-identifiers (here also input samples) would be published along
with untouched confidential attributes (also output labels) to feed a machine learning classifier, which
is the enabler of the selected application domain of data. The resulting models would allow external
data analysts to build predictive models on different testing data. Intuitively, the quality of the
statistical trends embedded in the resulting anonymized data would be undermined with respect to
those in the original data.

Although k-anonymous microaggregation is known to offer interesting benefits in terms of
distortion and classification accuracy [12], additional variations exist, some even incorporating utility
improvements [14], have not been assessed in this context.

3.2. Privacy and utility metrics

As expected, the privacy metric we use is k-anonymity since microaggregation algorithms aim at
guaranteeing such criteria. Thus, higher values of k, implying larger anonymous microcells, will offer
more privacy but, at some point, less utility.

On the other hand, we assume binary classification as the application domain of data, so our
utility metric is the accuracy of the classification model built from anonymized data, as performed
in [31,33,35]. Basically, accuracy quantifies the rate of correctly classified samples in a test set. Besides,
we also use a complementary machine learning metric, F-measure, to confirm our results in the next
sections.

3.3. Scenario setup

As can be grasped from the sections above, our experimental setup builds on the algorithms for privacy
protection and utility exploitation, the data sets used to assess the impact of anonymization, and the
steps taken to get the results.

Being MDAV the de facto microaggregation algorithm, we extend the study performed in [12] by
assessing not only MDAV but also V-MDAV [11] and MDAV with SD [14]. As explained in Section
2.2, both of them aim at increasing the data utility preserved, measured from the distortion applied
by these two variants of MDAV. While V-MDAV proposes building larger microcells, when possible,
to favor forming more compacted clusters, MDAV with SD builds microcells capturing the statistical
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dependence between quasi-identifiers and confidential attributes. Moreover, Mondrian [15] is also
considered in our setup to corroborate the performance of microaggregation algorithms, no matter the
strategy used to build k-anonymous microcells. Some of the implementation details of these algorithms
and further references are included in Section 2.

To measure the utility of microaggregated data, we use the machine learning algorithms that
obtain the best performance, in terms of classification accuracy, from each of our data sets. Since the
intrinsic nature of the data sets might vary, we experimentally determine the best performer by testing
a series of algorithms such as boosted trees, logistic regression, Support Vector Machine, and k-nearest
neighbor on the original data. This way we more rigorously adapt our evaluation to the specific utility
context.

The data where microaggregation algorithms are assessed includes both real and synthetic data
sets. Essentially, we look for data sets meeting two main requirements: include demographic attributes
and evidence a correlation between the quasi-identifiers and a confidential attribute. We briefly
describe their characteristics in Table 1. The first is the “Adult” data set [41], which is a standard when
assessing microaggregation algorithms. We also tested the “Breast Cancer Wisconsin” data set [42]
and the “Heart disease” data set [43] that contain medical data extensively used to evaluate binary
classification tasks. Finally, we created an elementary synthetic data set with three attributes mimicking
two quasi-identifiers and a binary confidential attribute; to do it, two groups of two-dimensional
quasi-identifiers are generated following two different, but overlapping, normal distributions.

We employ Matlab 2018B to implement the aforementioned microaggregation algorithms [11,13,
14], except for Mondrian, as well as to deploy the evaluation of perturbed data sets, and to process
and plot results. Said evaluation implies loading data, building machine learning models over it, and
applying such models over new data to measure classification accuracy, F-measure, and distortion. The
implementation of Mondrian is written in Python and was taken from [44]. Since the reconstruction
method applied by Mondrian returns intervals instead of single values for each microaggregated
attribute, we adapt this reconstruction such that the multidimensional hyperrectangles (microcells)
are replaced by their corresponding centroids. The exploratory analysis to define the best suitable
classification algorithm for each data set is performed with the Classification Learner application
included in Matlab 2018B and then the model training and evaluation are automatized using specific
embedded functions for each algorithm.

3.4. Methodology

Next we describe the experimental methodology we use to assess the performance of microaggregation
algorithms in terms of the resulting empirical utility of perturbed data. Figure 5 synthesizes the main
elements of such procedure.

First, the original data set is preprocessed through three steps. To start, since MDAV based
algorithms only works with numerical data, any categorical values for quasi-identifiers are represented
numerically (e.g., the values female and male for sex are replaced with 1 and 0). Moreover, for
validation purposes explained in the next paragraphs, we split each data set in two sets: a training set
and a test set such that the former’s size is 3/4 of the data set. Afterwards, each column of the training
set, involving only quasi-identifiers, are normalized such that each column has zero mean and unit
variance. Note that normalization is useful to avoid the harmful impact on microaggregation resulting
from attributes having different ranges.

Once normalized, the microaggregation algorithm is fed with the training set for data perturbation.
Only in the case of MDAV with SD confidential attributes are also considered since this algorithm
exploits the statistical dependence between quasi-identifiers and confidential attributes. We use
progressively increasing values of k to then measure the utility degradation of data due to k-anonymous
microaggregation. Besides de generic privacy criteria k, other parameters are configured for some
algorithms.
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Table 1. Description of the Data sets Used to Evaluate the Impact of k-Anonymous microaggregation

Data set
# of

records

# of
attributes
used as

quasi-identifiers

list of quasi-identifiers used

confidential
attribute (output
of the data set in

ML terms)

Adult [41] 45,222 15 Age, education-num, marital-status, sex,
capital-gain, hours-per-week

Salary
(>50K?)

Breast Cancer
Wisconsin [42] 699 9

clump thickness, uniformity of cell size,
uniformity of cell shape, marginal
adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal
nucleoli, mitoses

class
(benign/malignant)

Heart Disease
[43] 303 13

age, sex, chest pain type, trestbps,
serum cholestoral, fasting blood sugar,
resting electrocardiographic results,
maximum heart rate achieved, exercise
induced angina, ST depression induced
by exercise, the slope of the peak
exercise ST segment, number of major
vessels (0-3) colored by flourosopy, thal

diagnosis of heart
disease

Synthetic 1000 2 x1, x2 y

Preprocessing

microggregation

utility 
extraction

Evaluation

original data set

training set test set

microaggregated 
quasi-identifiers

classification 
model

Figure 5. Experimental methodology followed to assess k-anonymous microaggregation algorithms in
terms of the empirical utility preserved.
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(a) Accuracy degradation (b) F-measure degradation

Figure 6. Degradation of the empirical utility of the microaggregated “Adult” data set.

V-MDAV requires a gain parameter γ that we set in 0.9 as set in [11]. Additionally, MDAV with
SD can be tuned by a λ parameter that regulates the tradeoff between distortion of quasi-identifiers
and distortion of confidential attributes; we test different values of λ from 0 to 1 in order to get those
showing the highest utility (maximum utility trace).

Once quasi-identifiers are perturbed, we implement the utility extraction phase. For this, we build
a classification model using the microaggregated version of each data set as input. The algorithms
showing the best performance in terms of utility are boosting trees and logistic regression, and the
specific functions implemented in Matlab 2018b are used for training using 5-fold cross validation.
Finally, each resulting classification model is evaluated over the test set originally extracted during the
preprocessing phase; then accuracy and F-Measure are obtained. Namely, the machine-learned model
built from microaggregated data is tested on a different portion of original data. This scenario mimics
the (e.g., medical) context in which a researcher would use a machine learning model obtained from
anonymized shared data to predict a given condition from their own (non perturbed) data.

4. Experimental results

In this section, we present the results obtained from measuring the degradation of empirical
utility of microdata due to k-anonymous microaggregation. This implies assessing the accuracy of
machine learned models when trained over data microaggregated using an increasing value of k. Also
distortion as MSE is measured in these terms to validate its capability to estimate the practical utility
of data.

Said two main results are depicted in two groups of figures for each data set: one where accuracy
and F-measure are shown and another where distortion is drawn against accuracy to unveil their
potential correlation.

Our first experiment builds on the UCI Adult data set. In this particular case, we do not use the
entire data set of more than 45 thousand records, but only 10% of them, i.e., a random sample that
preserves the prevalence of the output (confidential) attribute. Suppressing potentially valuable data
might reduce even more the data utility after microaggregation, an effect that we are interested in
studying.

Accordingly, we illustrate in Figure 6 how empirical utility is affected when microaggregation is
applied over the UCI Adult data set. As expected, data perturbation eventually renders data useless,
as shown by the decreasing trend in accuracy as k gets higher values. Note that the lowest value
in accuracy does not reach zero since, in the worst case, when the data input (quasi-identifiers) is
completely perturbed, machine learned models predict based only on the prevalence of classes in the
output data.
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(a) Distortion measured for different values
of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 7. Distortion of the microaggregated “Adult” data set. The distortion corresponding to MDAV
with SD is measured according to the hybrid metric proposed in [14].

Despite this inevitable degradation in the long term, as stated in [12], microaggregated data shows
high levels of utility even up to k = 50. Namely, for such values of k, accuracy easily keeps greater
than 80% for any of the four microaggregation algorithms evaluated. Interestingly enough, in the case
of the UCI Adult data set, this means that said utility in terms of machine learning accuracy might be
kept even when vast amounts of data are suppressed.

Furthermore, from Figure 6a, utility is remarkably preserved by MDAV with SD. In fact, accuracy
do not drop below 80%, even for k = 1000. Similar encouraging results are obtained when measuring
F-measure 6b. Besides, we can see that the original MDAV is the second best performer in regards
to practical utility, at least up to k = 60. On the other hand, V-MDAV and Mondrian are the worst
performers, although for very few small values of k, V-MDAV gets the best results.

When plotting the evolution of distortion as k is progressively increased, while microaggregating
the Adult data set, Figure 7a confirms that MDAV with SD applies less distortion (as measured through
the combined metric proposed in [14]) than the other algorithms. Original MDAV repeats as the
second best performer, now in terms of MSE, but Mondrian and V-MDAV seem to introduce more
perturbation. In any case, distortion grows exponentially so, according to this metric, data would
render useless very quickly. In fact, when k = 50, MDAV and MDAV with SD would have injected
more than 20% of distortion while Mondrian and V-MDAV more than 40%.

The utility metric obtained empirically may not go hand in hand with a more syntactical measure
based on MSE. This is confirmed in Figure 7b where we plot accuracy vs data distortion. The scatter
plot shows that, although the distortion increases, e.g. up to 0.5, the corresponding accuracy keeps
more or less stable in 80% for all the microaggregation algorithms. This implies that distortion is not a
good predictor of the practical utility of microaggregated data, at least in the application domain here
studied.

As described in 3, the results aforementioned are corroborated in experiments with three more
data sets. When testing the Breast Cancer Wisconsin data set, the resilience of empirical data utility
manifests again when k-anonymous microaggregation is enforced. Once again, the benefits of MDAV
with SD are evident when outperforming the accuracy obtained by the rest of algorithms, as can be
seen in Figure 8. Beyond the clear superiority of MDAV with SD, it is not clear for this data set which
of the other algorithms performs the best in terms of accuracy.

Regarding the standard metric, note in Figure 9a that MDAV with SD also has the least distortion,
that Mondrian performs the worst, and that both MDAV and V-MDAV show a similar distortion
trend. As with the previous data set, the results of distortion hardly explain the practical utility of
microaggregated data because it can be seen in 9a that accuracy does not vary as significantly as MSE
when measuring the impact of microaggregation algorithms.
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(a) Accuracy degradation (b) F-measure degradation

Figure 8. Degradation of the empirical utility of the microaggregated “Breast Cancer Wisconsin” data
set.

(a) Distortion measured for different values
of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 9. Distortion of the microaggregated “Breast Cancer Wisconsin” data set. The distortion
corresponding to MDAV with SD is measured according to the hybrid metric proposed in [14].

(a) Accuracy degradation (b) F-measure degradation

Figure 10. Degradation of the empirical utility of the microaggregated “Heart Disease” data set.
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(a) Distortion measured for different values
of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 11. Distortion of the microaggregated “Heart Disease” data set. The distortion corresponding to
MDAV with SD is measured according to the hybrid metric proposed in [14].

(a) Accuracy degradation (b) F-measure degradation

Figure 12. Degradation of the empirical utility of the microaggregated synthetic data set.

(a) Distortion measured for different values
of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 13. Distortion of the microaggregated synthetic data set. The distortion corresponding to MDAV
with SD is measured according to the hybrid metric proposed in [14].
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Figures 10, 11, 12, and 13 illustrates the results of assessing microaggregation algorithms over
the Heart Disease and synthetic data sets. For both of them, microaggregation, in general, performs
quite well in terms of practical utility (see Figures 10a and 12a) while distortion grows much faster (see
Figures 11a and 13a). In any case, the original MDAV exhibits anonymized data with lower distortion
and stable accuracy, only improved by its statistically dependent variant, MDAV with SD). Finally,
V-MDAV and Mondrian show interesting results on these data: while the former would spawn more
distortion than the latter, V-MDAV apparently preserves better the data utility when measured as
accuracy of the resulting machine learning model.

5. Discussion

Our systematic experimentation shows that k-Anonymous microaggregation has a benevolent, still
destructive, effect on microdata in terms of its empirical utility, which is measured as the accuracy of
learning models built from such data. Namely, while meeting a k-anonymity criteria, microaggregation
preserves data utility even for high values of k, which is consistent with the results obtained in [12],
where only MDAV is assessed.

This positive effect is attributed to the averaging operations to find a centroid that would be
denoising the data, making it more resistant to perturbation.

In addition, although said averaging, inherent to microaggregation, might be even convenient,
the distortion metric based on MSE would measure it as utility degradation. In this sense, MSE is a
pessimistic metric that, in general, is not able to predict the practical utility of microaggregated data
in this domain. As a matter of fact, not even the combined distortion metric proposed in [14] for
MDAV with SD is capable of estimating such practical utility, despite its great performance in terms of
accuracy.

The results obtained by MDAV with SD confirms that adapting privacy protection mechanisms to
the intrinsic statistical properties of microdata and to the specific application domain might open the
door to interesting improvements in utility preservation. This approach has not been addressed for
microaggregation algorithms and particularly for MDAV-based approaches, so there is an appealing
avenue for future work.

The “positive” impact of anonymization algorithms is indirectly reported by previous work that
accounts for, e.g., the reduced degradation of obfuscated data under certain conditions [33,45], and
the beneficial contribution to utility of some anonymization techniques [31] that may act as feature
selection mechanisms, particularly when the protection strategy is selectively tailored to the application
domain [35].

V-MDAV and Mondrian show, in general, a lower performance than the ones of MDAV and
MDAV with SD in terms of both distortion and accuracy. However, since the strategies of V-MDAV and
Mondrian operate on the internal distribution of the microdata set, such results could vary according
to the data set being microaggregated.

Beyond the promising results, it is worth noting that our approach has inevitably some limitations
that arise, essentially, from the bounded evaluation context we have defined . For instance, the
application domain, where utility is empirically measured, is binary classification. However, many
other domains may exist where utility is extracted differently.

Furthermore, a statistical dependence should exist between quasi-identifiers and confidential
attributes such that something can be learned and preserved when microaggregating. Evidently, if this
is not the case, another utility metric should be assessed.

Some avenues of future work could be addressed to complement this work. First, further fixes
could be designed to adapt existing microaggregation algorithms to better preserve data utility. Some
inspiration could certainly be taken from machine learning strategies. Additionally, this analysis
could be extended considering alternate contexts (or attacker scenarios), e.g., where more confidential
attributes are disclosed, or where a multi-class classification problem (more than two classes in the
confidential attribute) is involved.
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6. Conclusions

k-Anonymous microaggregation algorithms are able to preserve much of the data utility while
protecting the privacy of each subject in groups of k individuals. Their clustering and averaging
operations may contribute to filter, normalise, or consolidate the statistical information within
microdata, e.g., when exploiting data through machine learning applications. This is confirmed
in this paper through systematic experimentation with several microaggregation algorithms, data sets
and machine learning mechanisms.

Interestingly enough, further catching and processing such statistical properties of microdata
(e.g., the statistical dependence between quasi-identifiers and confidential attributes) when building
microaggregation algorithms cause an additional slowdown in the degradation of empirical utility.
This is clearly evidenced by MDAV with SD through our extensive tests.

Although Mondrian and V-MDAV consistently perform worse than MDAV and MDAV with SD,
the two former algorithms behave differently between each other in terms of accuracy and MSE-based
distortion. This would evidence the dependence of their performance on the internal distribution
of the data set, as claimed by their creators. Such dependency calls again our attention to the need
of considering the application domain of data (size, exploitation mechanisms, distribution of tuples)
when designing or adapting privacy protection.

These considerations pave the way for future work on improving the performance of
microaggregation algorithms. For instance, other anonymization algorithms could be assessed under
these conditions to test their behaviour when empirical utility is measured. Though, some of their
reconstruction techniques, e.g., using other than numerical representations for microaggregated data,
could complicate the measurement of utility when the application domain is machine learning, so
further assumptions or preprocessing should be done. Additionally, it is worth exploring adaptations
or novel contributions for privacy protection that exploit to the maximum the statistical properties of
all the information available within microdata. Intuitively, it seems that some of the strategies available
for machine learning could be used to preserve the utility of microaggregated data.
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MDAV Maximum distance to average vector
MDAV with SD MDAV with preservation of statistical dependence
V-MDAV Variable MDAV
MSE Mean squared error
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