

1 *Review*

2 **Recent Advances in Carbon Nanotubes for Nervous 3 Tissue Regeneration**

4 **Carlos Redondo-Gómez¹, Rocío Leandro-Mora², Daniela Blanch-Bermúdez², Christopher
5 Espinoza-Araya², David Hidalgo-Barrantes² and José Vega-Baudrit^{1,2,*}**

6 ¹ National Laboratory of Nanotechnology LANOTEC, 1174-1200, Pavas, San José, Costa Rica

7 ² Faculty of Exact and Natural Sciences, National University of Costa Rica, Heredia, Costa Rica

8 * Correspondence: jvegab@gmail.com; Tel.: +506-2519-5835

9 **Abstract:** Nanomedicine has allowed for emerging advances in imaging, diagnostics and
10 therapeutics. Regenerative Medicine has taken advantage of a number of nanomaterials for
11 reparation of diseased or damaged tissues in the nervous system involved in memory, cognition
12 and movement. Electrical, thermal, mechanical and biocompatibility aspects of carbon-based
13 nanomaterials (nanotubes, graphene, fullerenes and their derivatives) make them suitable
14 candidates to drive nerve tissue repair and stimulation. This review article focuses on recent
15 advances on the use of carbon nanotube (CNT)-based technologies on nerve tissue engineering;
16 outlining how neurons interact with the nanomaterials interface for promoting neuronal
17 differentiation, growth and network reconstruction for their possible use in therapies of
18 neurodegenerative pathologies and spinal cord injuries.

19 **Keywords:** carbon nanotubes; graphene; nanomaterials; nervous tissue; regeneration; neurons

20

21 **1. Introduction**

22 The emergent field of Nanomedicine proposes the application of precisely engineered
23 nanomaterials for the prevention, diagnosis and therapy of certain diseases, including neurological
24 pathologies [1]. These pathologies occur when basic units of the nervous system start to deteriorate.
25 In these nerve cells, alterations cause them to function abnormally, which results in demise of cell
26 functions. Initial symptoms of neuronal deterioration may include loss of coordination or the ability
27 to remember names, which may worsen over time if a large number of neurons deteriorate [2]. Due
28 to the complexity of the nervous system, recovering function of the injured nerves or repairing
29 damages caused by mental diseases is still a major challenge in the biomedical field.
30 Neurodegenerative diseases affect over 90,000 people every year, from which, spinal cord injuries
31 alone affect 10,000 people yearly. Alzheimer's and Parkinson's disease are the most common
32 neurological diseases and occur in 5 million and 1.2 million Americans, respectively [3]. Considering
33 the high amount of nerve repair procedures being currently conducted, as well as an increasing and
34 ageing world population, the numbers of patients in need of neural implants to improve the
35 regeneration of damaged tissue will only substantially increase over the years.

36 Neuroregeneration is the regrowth, restoration or repair of degenerated nerves and nervous
37 tissues, associated with the production of new axons, neurons, glia, myelin and synapses. The
38 nervous system is divided into the peripheral nervous system (PNS), which has the innate capability
39 for self-repair and regeneration, while the central nervous system (CNS) is unable to self-repair and
40 regenerate. Silicon-based materials are the most common for peripheral nerve implants; studied since
41 the 1960s they have been used as a model system giving fundamental insight on nerve tissue
42 regeneration.

43 Silicone has been implemented in the diagnosis, monitoring and continuous treatment of nerve
44 tissue damages [4]. These materials have been primarily used due to its biocompatibility, flexibility
45 and the wide availability in different dimensions. However, their low impermeability and general

46 inert properties do not actively prompt neural tissue regeneration and have led to research on
47 substitute materials [5]. Today, the treatment for damages in the CNS (i.e. spinal cord), consist on
48 physical therapy to help patients with limited mobility without a full regain and restoration of the
49 tissue and motor function [6].

50 Although still narrow, the application of nanotechnology and nanomaterials to neuroscience has
51 experienced an impressive growth over the past decades. With an increasing amount of studies
52 proposing scaffolds based on nanomaterial as strategies to regenerate nerve cells and tissues [7]. An
53 ideal scaffold for neural tissue application shall exhibit electrical activity to stimulate cell outgrowth,
54 biodegradability and bioactivity for growth factor delivery, interestingly, a number of nanomaterials
55 exhibit some of these properties and have proved relative long term success when implanted [8].

56 Carbon-based nanomaterials (CBNs) have shown great potential when interacting with neurons
57 and nerve tissues [9–11]. The discovery and manipulation of innovative nanomaterials, like fullerenes
58 and graphene, but especially carbon nanotubes (CNTs), are likely to have a major impact on
59 neuroregenerative techniques and in the biomedical applications in general. CNTs have shown to
60 interact with the nervous system promoting the neural development. Furthermore the outstanding
61 mechanical, thermal and conductive properties make CNTs very promising for other technological
62 fields as conductive composites and sensors [12]. This work intends to review some recent uses of
63 CNTs in nerve regeneration. We start providing an overview of nerve architectures and recent
64 progresses on carbon-based nanomaterials for regenerative therapies and neuron repair. We finish
65 the review with some closing remarks on biocompatibility and toxicity challenges of CNTs when
66 used as part of these therapies.

67 **2. Central and Peripheral Nerve Regeneration**

68 The human nervous system consists of the central nervous system (CNS) and the peripheral
69 nervous system (PNS), which at the same time is composed of two cell types, neurons and neuroglia.
70 Neurons are the brain's nerve cells that transmit information from electrical and chemical signals
71 throughout the nervous system, while neuroglia are the most numerous cells and their purpose is to
72 aid the function of neurons. Within these cells there are Schwann cells in the PNS and astrocytes and
73 oligodendrocytes in the CNS. Researchers have shown that functional and structural recovery of the
74 nerves depends on both, extrinsic and intrinsic factors [13].

75 *2.1. Peripheral Nervous System Repair*

76 The PNS consists of a complex collection of spinal nerves, brain nerves and neuron clusters
77 called ganglia. These cells interact with other tissues transmitting sensory messages to and from the
78 spinal cord [14]. The PNS has the ability of slowly regenerate on its own (axon growth 0.5– 1
79 mm/day), in case of small injuries nerve axons can regenerate by proliferating Schwann cells and
80 macrophages to remove cellular debris from the injury side. Schwann cells infiltrate in the injury to
81 stimulate and guide the new forming axon across the damaged nerve [15]. On the other hand, larger
82 injuries need to be surgically treated, commonly using an autologous nerve implants. While extrinsic
83 factors contemplate the environment at the injury site, intrinsic factors like the size of the injury and
84 the ability of the neurons to regenerate by the synthesis of growth factors influence PNS regeneration
85 [14–16]. In general, tissue engineering together with nanotechnology, aim to create innovative
86 materials to help accelerate the PNS recovery since the delay in tissue regrowth may lead to muscle
87 atrophy.

88
89
90

91 *2.2. Central Nervous System Repair*

92 The CNS includes the brain and the spinal cord, it is the responsible of interpreting and
93 conducting signals as well as providing stimulation to the PNS and from there to other tissues [17].
94 In contrast to the PNS, the CNS does not support full tissue regeneration, this leads to permanent loss

95 of functions that can cause several physical and cognitive complications. Many factors such as the
96 environment surrounding the CNS injuries and the neurons lack of regeneration capacity prevent
97 cells from regenerating. Axonal regrowth is constrained by supporting cells, like myelinating
98 oligodendrocytes, that create a growth inhibitor environment due to the formation of glial scar tissue
99 and the lack of Schwann cells to promote axonal growth [18]. Therefore the overall regeneration
100 strategies for CNS are to reactivate gliosis while promoting tissue regeneration, where nanomaterials
101 incorporated as part of current implants may help with [6].

102 3. Current Materials for Nerve Tissue Regeneration and Stimulation

103 Neurological implants' success in enhancing survival of damaged neurons, axons growth, and
104 neuronal synaptic signal transmission, is key to face the functional impairment that caused neuronal
105 loss or degeneration. Basically, any strategy developed to fix an injury on the CNS should focus on
106 regrowing injured axons, the plastic remodeling of neuronal circuitry and the construction of new
107 neurons [7].
108

109 Upgrades in material synthesis have allowed to develop artificial nerve conduits build of
110 absorbable synthetic materials. Materials like polyhydroxybutyrate (PHB), polylactic acid (PLA) or
111 polyglycolic acid (PGA) are being investigated as biodegradable-absorbable synthetic polymers for
112 neural cell growth and axon organization. In fact, absorbable synthetics (PLA and PGA), and
113 nonabsorbable synthetics like poly lactic-co-glycolic acid (PLGA), are already used for nerve
114 regeneration. These three polymers are mechanically fragile and lack regions suitable for further
115 chemical modification [19], in any case, they have been FDA approved for use in several neuron
116 repair devices.

117 3.1. Polycaprolactone (PCL)-based Materials

118 PCL has gained considerable interest in the field of nerve regeneration research. The main
119 features of this biodegradable polyester are its ease of manipulation and low processing costs. Its
120 high processability is given by the great solubility this substance has in many organic solvents and
121 that its crystalline nature enables easy formability at low temperatures. Neurolac® (Polyganics Inc.,
122 The Netherlands) is a PCL nerve conduit approved by the FDA [20].

123 Other PCL co-polymers like the biodegradable polycaprolactone fumarate (PCLF) have recently
124 allowed the fabrication of CNT composites [21]. These PCLF-CNT scaffolds not only exhibited
125 excellent suitability to culture neuroblastic PC-12 cells (that can easily differentiate into neuron-like
126 cells), but also allowed for good cell growth, differentiation, and electrical stimulation, which
127 reflected in a neurite extension and promoted cellular migration and intracellular connections, which
128 are all critical cellular behaviours for nerve regeneration [21].

129 3.2. Collagen-based Materials

130 Collagen comprises a large family of proteins with a wide range of biomedical uses including
131 peripheral nerve repair. When adequately purified collagen becomes weakly antigenic, exhibits a
132 smooth microgeometry and transmural permeability facilitate diffusion processes through collagen
133 matrices [22]. Collagen type I constitutes an essential structural component of the extra cellular matrix
134 and has been employed at fabricating nerve repair conduits. Of over a dozen nerve conduits currently
135 FDA approved three are made of collagen type I: NeuraGen; NeuroMatrix and NeuroFlex [22].

136 The first semi-permeable type I collagen nerve guidance conduit approved by the FDA was
137 NeuraGen® (Integra Life Sciences Corporation, Plainsboro, NJ, USA). A medical study on peripheral
138 nerve reconstruction reported the clinical experience of using this implant, in which patients tolerated
139 splinting and exercise without negative clinical repercussions. In another research, this conduit was
140 compared with direct suture repair, in patients with complete traumatic nerve injuries. Results
141 showed that patients who were treated with NeuraGen®, had less post-operative pain than those
142 treated with direct suture repair. The main conclusion was that nerve repair using the NeuraGen® is
143 a quite effective method of joining severed nerves [23]. As collagen-based nerve repair conduits still

144 lack good mechanical stability, the possibility to reinforce them with CNTs seems appealing, in fact,
145 this might improve their electrical conductivity, thus exhibiting good viability of neuronal cells as
146 has been demonstrated in similar biomaterials [24].

147 4. Carbon Nanomaterials for Nerve Tissue Regeneration

148 Nanosized materials and nanoscale technologies seem to challenge many traditional paradigms
149 in Materials Science. Since the discovery of CNTs by Sumio Iijima in 1991 scientific literature on the
150 physical and chemical properties of nanomaterials, especially carbon-based nanomaterials (CBNs),
151 has grown significantly and so has the use of CBNs in nerve regeneration applications (Figure 1).

152
153 **Figure 1.** Increasing trend of reports on carbon nanomaterials (grey) and carbon nanomaterials and
154 nerve regeneration (red). A Google Scholar search was performed on either “Carbon Nanomaterials”
155 or “Carbon Nanomaterials AND Nerve Regeneration” on the specified time period.

156 CBNs offer unequal advantages, like high electrical conductivity, high surface-volume ratio,
157 powerful mechanical strength and chemical stability [25]. CBNs are held in high esteem in the
158 biomedical materials community, and constant efforts have been made to integrate them into existing
159 materials and devices like cellular sensors, tissue scaffold reinforcements, and drug delivery systems
160 [26]. Fullerenes, graphene and carbon nanotubes (CNTs) are the most studied CBNs; they have
161 attracted significant attention regarding their unique optical, electronic, mechanical, thermal, and
162 chemical properties [27].

163 4.1. Fullerenes

164 Fullerenes are CBNs of great importance in biomedical research. Since their discovery in 1985 it
165 was evident that this polyaromatic, symmetrical, and hollow spherical cage C_{60} molecule was meant
166 to find a number of versatile applications in antiviral therapies [28], energy production, flat panel
167 displays, semiconductors, environmental technologies, cosmetics [29] and food industry [30]. C_{60} has
168 been recently used as an in vitro vehicle for therapeutic astrocyte delivery to neural lesions [31]. PCL
169 and C_{60} were electrospun into 200 nm diameter nanofibers that showed good cell attachment and
170 promising potential as drug delivery devices (Figure 2) [31].

171

172

173 **Figure 2.** (A) Representation of C₆₀ fullerene [32]. (B) SEM images of PCL-fullerene nanoscaffolds
 174 fabricated by electrospinning. (C-E) Immunocytochemical micrographs of astrocytes cultures on the
 175 scaffolds and labeled with anti-glial fibrillary acidic protein antibody (anti-GFAP, green) and Hoechst
 176 dyes (blue, scale bar: 50 μm). (F) Magnification images of cells pointed with an arrow in panel (C)
 177 (scale bar: 25 μm) [31].

178 *4.2 Graphene*

179 Graphene is a polycyclic aromatic molecule that is composed of a two-dimensional sheet of sp²
 180 bonded carbon atoms. This dimensional feature grants graphene and its derivative graphene oxide
 181 (GO) with high elasticity, conductivity, remarkable mechanical strength, rapid heterogeneous
 182 electron transfer and high surface area [33]. Graphene is considered a versatile building block for
 183 functional nanoelectronics, energy storage and production [34] as well as antibacterial [35],
 184 biosensing [36] and anticancer therapies [37].

185 Different amounts of layers grants the graphene with different properties, going from one-
 186 layered graphene to multilayered graphene structures [38], and interaction between these graphene-
 187 based nanomaterials and neurons have been recently explored [36]. In a recent study by Pampaloni
 188 et al it is shown that single-layer graphene (SLG) is able to tune astrocytes excitability and increases
 189 neuronal firing by altering membrane-associated functions in vitro. The authors hypothesise that
 190 graphene restricts the mobility of K⁺ ions in close proximity to the SLG surface, but only when SLG
 191 is deposited on electrically insulating substrates. In this fashion, graphene properties might affect
 192 neuronal information processing (Figure 3) [36].

193

194

195 **Figure 3.** (A) Molecular representation of graphene [39]. (B) AFM topography of single layer graphene
196 (SLG, scale bar: 5 μ m). (C) Scanning electron micrograph depicting hippocampal neuron morphology
197 cultred onto SLG (scale bar: 10 μ m). (D) Fluorescent microscopy images showing dissociated
198 hippocampal networks labelled with class III β -tubulin (for neurons) in red and GFAP (for astrocytes)
199 in green (scale bar: 100 μ m). (E) Sketch of the local amount of K⁺ depletion in the space between the
200 cell membrane and the SLG surface (membrane/surface cleft) due to graphene trapping as function
201 of cleft thickness. The light green region shows the extrapolated K⁺ depletion values (red line) within
202 the range of the estimated cleft dimensions (40–100 nm). See Reference [36] for more details.

203 4.3 Carbon Nanotubes (CNTs)

204 Carbon nanotubes (CNTs) are the most widely used in nerve regeneration CBN to date [22].
205 Different from other CBNs, CNTs exhibit tunable physical (length, diameter, single-walled SWCNTs
206 vs multiwalled MWCNTs, chirality) [40] and chemical properties (surface functionalization, high
207 electrochemical surface area) [26]. CNTs can be envisioned as cylinders made of rolled-up graphene
208 layers with diameters in nanometer scale (Figure 4). CNTs possess an extended conjugated sp² carbon
209 network that renders a π -electron system which extend over the nanostructure originates either
210 highly conducting CNTs or semiconducting ones, this also provide tunable band gaps compatible
211 with neural activity [10]. The following section addresses the specific use of CNTs in neural
212 regeneration and stimulation in deeper detail.

213

214

215

216

217

218

219 **Figure 4.** Representation of a single-walled carbon nanotube (SWCNT) and a multi-walled carbon
220 nanotube (MWCNT) [41].

221

222 **5. CNTs for Neural Regeneration and Stimulation**

223 CNTs are generating an attractive approach in the treatment of neural pathologies and nerve
224 tissue damaged. On top of their aforementioned capabilities, CNTs show morphological similarity to
225 neurites, small CNT bundles have dimensions similar to those of dendrites (the branched extensions
226 of neuron cells), enhancing possibilities for not only probing, repairing, stimulating or reconfiguring
227 neural networks [10] but gaining insights into basic mechanisms of neuronal functions [11]. Success
228 on the application of CNTs is strongly connected to the ability to control the interaction between them
229 and the neurons' changes in ionic conductance and synaptic transmission, this being a perk when
230 incorporated into electrodes and conductive probes [1,42]. In the following sections we provide a
231 comprehensive view of the use of CNTs in neural regeneration and stimulation.

232 *5.1. Improving CNTs Neurocompatibility*

233 CNTs are synthesized through a number of treatments that renders them positively or
234 negatively charged, and be further modified to incorporate various functional groups via covalent
235 [43] and non-covalent pathways [44].

236 Incorporation of hydrophilic polymers such as polyethylene glycol (PEG) increases CNT
237 solubility in aqueous solution, increasing their biocompatibility and facilitating the fabrication of
238 CNT-based medical materials and common use polymers such as poly-ethyleneimine (PEI) and poly-
239 L-ornithine (PLO) have been reported to promote neural attachment and subsequent neurite
240 outgrowth, these non-covalent functionalization examples represent a valuable resource when
241 manufacturing the coating for neural interface devices [45,46]. Use of CNTs decorated with these
242 poly-cations generally promotes neuron growth, this is most likely due to an enhanced electrostatic
243 interaction between the CNTs and the plasma membrane of neural cells that has a negative charge
244 [47]. Recent biofunctionalisation approaches [48] appear as promising alternatives for increasing
245 CNTs water solubility and further neuron growth stimulation and cell membrane incorporation.

246 *5.2. CNTs Application Strategies*

247 Literature reports on two possible strategies to control neural cell functions through
248 biofunctionalized CNTs. One is through the addition of soluble CNTs directly to neuronal cell culture
249 medium, and the other is by utilizing them for surface modification of supporting substrates such as
250 scaffolds. The first strategy requires a direct application of the CNTs to the nerve tissue allowing the
251 carbon structures to interact directly with nerve culture and to expand or disperse within the cells.

252 The second strategy employs CNTs as modifiers (either surface or bulk) of other materials to
253 enhance their neuro-functionality either as part of a multi composite scaffolds, implantable devices
254 cell guiding matrices, enhancing activity of other components such as the therapeutic drugs (small
255 molecules), proteins (neurotrophic factors or extracellular matrix (ECM) components), and nucleic
256 acids (siRNA, miRNA, pDNA, etc.) [45].

257 Properties like roughness, charge, polarity, and chemistry of CNT scaffolds, can alter the affinity
258 of neurons linked to CNT-containing surfaces. Direct interactions between neurites and CNTs act as
259 an exoskeleton, with more membrane/material tight junction formation. Greater surface area of CNT
260 significantly results in stronger charge injection capacity and lesser interfacial impedance as they help
261 in electrochemical coupling via electron transfer between CNTs and neurites [5,46,49,50].

262 *5.3. Neural Response Mechanisms to CNTs*

263 CNTs have demonstrated to play an important role mediating interactions between neurons and
264 their environment. When used as a scaffold CNTs act not only as a reservoir of adsorbed proteins,
265 but also play a dynamic role in boosting neuronal electrical performance. Observed discontinuous
266 and tight contacts between MWCNT or SWNT bundles and neuronal membranes favor the
267 hypothesis of a direct electrical coupling (Figure 5). The work of Cellot et al demonstrate that
268 meshwork of MWCNTs outside neurons is in intimate contact with a small area of the neuritic

269 membranes, this report constitutes the very first attempt at linking electrical phenomena in
 270 nanomaterials to neuron excitability [11].

271

272 **Figure 5.** Interaction between MWCNTs and neurons. (A) Transmission electron micrographs (TEM)
 273 sections of neurons grown on MWCNTs showing functional synaptic contacts (rectangular box). (B)
 274 Arrows indicate MWCNT-membrane contacts on this TEM sections from Panel (A). (C, D) High-
 275 magnification micrographs from a section consecutive to those of (B) illustrating how MWCNTs
 276 'pinch' neuronal membranes [11].

277 Hippocampal neurons cultured on MWCNTs were studied by Fabbro et al [51] demonstrating
 278 an increase in expression of paxillin, this membrane protein is involved in focal adhesions-mediated
 279 intracellular signaling pathways, demonstrating that electrophysiological cues provided by CNTs
 280 can be translated into specific neuronal signals. However, more detailed mechanistic studies between
 281 the neuronal tissue and CNTs interface are still required to engineer further applications of CBNs
 282 [5,50,52]. Some recent applications are presented in the following section.

283 5.4. Applications

284 CNTs have been incorporated in the design and manufacturing of a number of biomedical
 285 technologies. A number of comprehensive reviews on the use of CNTs for neuron regeneration can
 286 be found in literature [7,15,22,53]. This section aims to present recent examples of CNT-based
 287 materials used as scaffolds (hard printed or in the form of hydrogels) for neuron culture and conduits
 288 for nerve reconstruction.

289 5.4.1. 3D printing nanoconductive MWCNT scaffolds for nerve regeneration

290 Aminated MWCNTs have been recently been incorporated in a poly(ethylene glycol) diacrylate
 291 (PEGDA) matrix [54]. This report shows how CNTs can be easily incorporated in emerging 3D
 292 printing technologies to render scaffolds that supports differentiation and growth of neural cells
 293 while having microelectroporous characteristics, the manufacturing process is depicted in Figure 6.
 294

Figure 6. Representation of the manufacturing process of 3D-printing nanoconductive MWCNT-PEGDA scaffolds [54].

In this study on MWCNT-PEGDA scaffolds concentration of CNTs was evaluated, finding that proliferation at 0.02% of amine-containing MWCNT was the highest after four days of culture, whereas the highest proliferation of neural stem cells (NSCs) in all the concentration groups occurred in the 0.1% amine-containing MWCNT scaffolds. This proliferation was obtained until day seven, and the researchers believe that this delay was caused by the adaptation process of the NSCs to the substrate. Higher concentrations of MWCNTs in the printed scaffolds showed a higher positive charge which could promote a better development and greater nerve cell growth [54].

5.4.2. CNT-interfaced glass fiber scaffold for regeneration of transected sciatic nerve

Peripheral nerve injuries are common in clinical settings yet the possibility of the nerve to regenerate spontaneously will vary according to the severity of the injury, which will be limited if the injury is too severe. The study by Ahn et al addresses this issue by fabricating a phosphate glass microfibers (PGF) scaffold that incorporates aminated-CNT [55].

Figure 7. Functionality of a CNT-interfaced PGF scaffold used as nerve conduit. The aligned PGF bundle interfaced with CNTs for neurite outgrowth [55].

332 The researchers performed a surface coupling of aminated CNTs to aligned PGF bundles and
 333 used the resulting fibers as interfacing material for neuron physical guidance. In vivo cell guidance
 334 studies were performed after wrapping the CNT–PGF substrate around poly(l/d-lactic acid)
 335 (PLDLA) electrospun nanofibers. The nerve guidance device was made in the shape of a cylindrical
 336 tube (as shown in Figure 7) and tested in a rat sciatic injury model [55], exhibiting good neural
 337 interaction, cell viability and physicochemical integrity. Finally, the implant displays effectiveness in
 338 restoring motor functions, indicating that the muscle in the animal was functionally improved as a
 339 result of the CNT interfacing, as the scaffold-crossing axons reinnervated into the gastrocnemius
 340 muscles [55].

341 5.4.3. Polysaccharide/CNT hydrogel hybrid as neuronal growth substrates

342 Hydrogels are attracting much attention in biomedical applications given their molecular-scale
 343 control over mechanical and bioresponsive properties [56]. Most hydrogels still lack good mechanical
 344 strength and electrical conductivity, thus limiting their biomedical applications, but CNT hydrogels
 345 hybrids have emerged as candidates to overcome this. These composite hydrogels have rapidly
 346 gained attention in developing regenerative therapies for skeletal muscles, cardiac and neural cells
 347 [57].

348 A recent study by Wu et al explores the potential of chitin-based composite hydrogels
 349 incorporating MWCNT [58]. These hybrid hydrogels originated from a chitin/NaOH/urea aqueous
 350 solution blended with modified MWCNTs. Hydrogels bulk consisted on bundles of chitin nanofibers
 351 and carbon nanostructures that were stabilized through intermolecular forces like hydrogen bonding,
 352 electrostatic and hydrophobic interactions (Figure 8). The resulting hydrogels showed improvements
 353 in thermal stability, a better hemocompatibility, good mechanical properties, while slowing down
 354 biodegradability rates and the swelling ratio compared to control chitin hydrogels [58]. On top of
 355 these improvements, in vitro evaluation of Schwann cells was performed, resulting in a successful
 356 proliferation of the neuronal cells with little cytotoxicity and neurotoxicity, displaying a promising
 357 potential as neuronal growth substrates for peripheral nerve regeneration [58].

358

366 **Figure 8.** Schematic representation of the synthesis process of Chitin-MWCNT hydrogel hybrids [58].

367 5.4.4. Nerve Guide Conduits Based on Protein/CNT Composites

368 The study presented by Mottaghitalab et al introduced a clever nerve guide conduit (NGC)
 369 design that merged the mechanical advantages of the naturally occurring proteins silk fibroin (SF)
 370 and SWCNTs for use in nerve grafts. The resulting conduit showed stable chemical, physical and
 371 electroconductivity properties due to his uniformity, plus the addition of fibronectin contain
 372 nanofibers (FN) through a electrospinning process rendered an addition extracellular matrix
 373 guidance for neuron growth and migration (Figure 9). FN conferred the SF/SWNTs NGCs conduits
 374 bioactivity allowing the growth and adhesion of U373 cell lines. NGCs were studied in vivo,

375 implanted to 10 mm left sciatic nerve defects in rats, resulting in nerve regeneration in the proximal
 376 regions of the implants after five weeks. In both SF/SWNT and SF/SWNT/FN NGCs more myelinated
 377 axons were present as well as higher nerve conduction velocities, indicating a functional recovery for
 378 the injured nerves [59].
 379

380

381 **Figure 9.** (A) Schematic representation of rolling up protocol for nerve guide conduit (NGC)
 382 containing SF/SWNT/FN. (B) Implanted conduit in left sciatic nerve defects in a rat model after 5
 383 weeks implantation. (C) Cross sections of regenerated nerves taken from nerve conduits implanted
 384 in rats for 5 weeks [59].

385 6. Biocompatibility and Neurotoxicity of CNTs

386 CNTs show in general good compatibility *in vivo* with neuronal tissues. One of the main
 387 concerns when CNTs are applied in biomedicine is the possibility of generating accumulation-related
 388 adverse reactions in the tissues [60]. Collateral diseases have been reported in different studies due
 389 to the application of mostly non functionalised CNTs, such as cardiopulmonary diseases,
 390 inflammation and fibrosis, among others [61,62]. Among this reasons are the superficial load, the
 391 distribution of the functional groups of the nanotubes and the difference of rugosity, all these reasons
 392 can be enclosed within the methods of manufacture of these structures [62,63], which we describe in
 393 the following section.

394 6.1. CNTs Neurotoxicity Related to Manufacturing and Functionalisation

395 As previously mentioned, CNT can be manufactured by different methods (arc discharge,
 396 chemical vapor deposition, laser ablation of graphite among others) which generate a very wide
 397 spectrum of shape, length, chirality and impurities. Despite the fact that a number of studies highlight
 398 toxic effects in cells upon CNTs exposure, these adverse effects are largely due to heavy metal
 399 nanoparticles (Fe, Co, Ni, Y) produced during their synthesis [64].

400 Further functionalization steps tend to remove these metals and also to reduce CNTs' tendency
 401 to bundle, thus improving further biodistribution and lowering inflammatory responses [65–68].
 402 Table I shows some toxicity related effects as consequence of different CNTs solubilizing and
 403 functionalisation treatments in biological tissues with special emphasis on neuron related reports
 404 [64,69].

405 Additionally, the length and shape of CNTs also influence their toxicity, depending on these
 406 physical characteristics, their interaction mechanism can be altered and generate different
 407 immunological responses [70,71]. Several studies have shown a lower immune response as CNT
 408 decreases, since short CNT can cross cell membranes more easily, whereas longer CNTs remain in
 409 the extracellular space [72].

410

411
412**Table 1.** Toxicity study of various carbon nanotubes solubilisation and functionalisation
schemes of biological interest.

Small molecules as solubilizing agents	Toxicity	Reference
Tetrahydrofuran	Tumorigen, mutagen	[73]
Dichlorocarbene	Harmful	[73]
Anthracene	Possible tumor promoter	[74]
Pyrene	Carcinogenic, mutagenic	[75]
Zn-porphyrin	Unknown, likely safe	[76]
Phenylethyl alcohol	Topical irritant	[77]
<i>n</i> -octyl- β -d-glucoside	Unknown	[78]
<i>n</i> -decanoyl- <i>N</i> -methylglucamide	Unknown	[78]
Triaminopyrimidine	Unknown	[79]
Lysophosphatidylcholine	Unknown	[79]
Barbituric acid	Not pharmacologically active	[80]
Sodium cholate	Unknown	[78]
Taurine	Safe up to ~28.57 mg/mL	[81]
Thiolated organosilane	Unknown	[82]
Macromolecules as solubilizing agents	Toxicity	Reference
Chitosan	Mostly safe	[83]
Helical amylase	Unknown	[84]
Poly(phenyleneethynylene)	Possible antimicrobial properties	[85]
Poly(aminobenzene sulfonic acid)	Hazardous to blood, nervous system, liver	[86]
PAA	Severely irritating and corrosive	[87]
PEG	Acute oral and dermal	[86]
Sulfonated polyaniline	Unknown	[88]
Functionalisation approach	Toxicity	Reference
MWCNT-NH ₃ ⁺	Weak transient inflammatory response on glial cells	[89]
¹³ C enriched SWCNTs + Tween-80 1%	Moderate (mouse lungs and liver), biodistribution study	[90]
PEG-modified SWCNTs	Mostly safe (spinal chord injury)	[91]
[¹¹¹ In]DTPA-MWCNTs	Not determined (blood-brain barrier in vitro model)	[92]
PEG-Oligodeoxynucleotide (CpG)	Mostly safe (glioma tumor model)	[93]

413
414
415
416
417
418Abbreviations:

PEG: Polyethylene glycol

PAA: Poly(acrylic acid)

DTPA: diethylenetriaminepentaacetic acid.

419 6.2. Neuron Interaction Mechanisms

420 So far, it is understood that there are two possible mechanisms that CNTs can present to enter
 421 neurons or potential host cells: a. Active transport through endocytosis/phagocytosis and passive
 422 transport or simple diffusion (also known as nanopenetration) [69].

423 Both mechanisms are presented in Figure 8, where a. represents the absorption of CNTs using
 424 the deformation of the plasma membrane to form a vesicle that internalizes into the cytoplasm [94,95].
 425 Phagocytosis is a process similar to endocytosis but is characterized by its specialized exogenous
 426 material of greater size as bacteria or microorganisms. Both mechanisms are dependent on energy
 427 (ATP) and temperature [96,97].

428 Nanopenetration is a passive mechanism that allows the CNT to cross the membrane without
 429 the need to generate a vesicle, it can be compared with the simple diffusion that some substances of
 430 interest for the membrane present [98]. The results of several studies of both mechanisms suggest
 431 that they can generate different immune reactions, as they activate a number of transport routes at
 432 the same time and also DNA damage can be involved at some point [98].

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456 **Figure 8.** Graphic demonstration of endocytosis and nanopenetration [69].

457 A number of studies have tested how a number of small and macromolecules can travel across
 458 the blood-brain barrier (BBB) [99], in fact CNTs are no exception to this. When ¹³C-enriched SWCNTs
 459 were administered to mice it was found they accumulate in the animal's brain, but showing little no
 460 none acute toxicity while also accumulating in liver, lung and spleen, organs where CNTs persistence
 461 may lead to long-term toxicity effects [90].

462 MWCNTs are also able to cross the BBB as the work of Kafa et al demonstrated. In this study
 463 radiolabelled MWCNTs were intravenously administered to a murine model in order to study the
 464 molecular mechanism mediating CNTs crossing the BBB, finding that micropinocytosis is the
 465 prevalent internalization mechanism and therefore transcellular uptake is hypothesized as the
 466 primary mechanism behind the BBB crossing [92].

467 Gastrointestinal administration of SWCNTs can lead to accumulation across the BBB, it also
 468 known that SWCNTs tend to accumulate in neurons' lysosomes, Yang et al took advantage of these

469 observations to treat Alzheimer's disease model mice by delivering acetylcholine using the CNTs
470 [100]. This study based the release of cargo based on a pH change in neuron lysosomes, but it has
471 been demonstrated that CNTs can be enzymatically degraded by peroxidases in immune cells, glia
472 cells and the extracellular space as well [64], therefore, lessening concerns about their use in neuron
473 therapies.

474 **7. Concluding Remarks and Future Perspectives**

475 Several areas of biomedical engineering have also benefited greatly from CBNs in recent years
476 because incorporating CBNs is effective not only as injectable nanoscale devices but also as
477 components to enhance the function of existing biomaterials significantly.

478 Despite safety concerns over CBNs, many studies have reported the successful use of CBNs in
479 biological applications. In addition, several chemical modification strategies have been developed to
480 circumvent toxicity issues and to increase the biocompatibility and functionality of CBNs.

481
482
483

484 More studies should be carried out that relate both the shape, size and functional group with the
485 toxicity of the CNT, because the various studies present varied results related to their manufacturing
486 methods.

487 The characterization of the mechanisms of interaction of the CNT remains uncertain as it varies
488 depending on the physicochemical characteristics of the same, likewise these mechanisms can
489 generate a variety of immune responses of the cell causing high toxicity, which is why continue
490 studying these mechanisms and relating them to the appropriate physicochemical factors for each of
491 the cells of interest.

492
493
494
495
496

497 While these results are of great interest, there is a significant theoretical gap in terms of exactly
498 how neurons and CNTs interact which requires further in-depth experimentation, knowledge that
499 will be vital if these technologies are to be fully realized. Moving forward, an important goal is the
500 interface of CNTs with other electrically active cells such as other forms of cardiac, muscle, and
501 sensory receptor cells. It can be hoped that such advances will help muscular regeneration and
502 amelioration of impaired sensory input. [10]

503

504 Nevertheless, it should be noted that more systematic toxicology studies are needed to
505 determine the toxicity and pharmacokinetics of CBNs.

506 This paper has introduced several successful applications of CBNs in drug delivery, tissue
507 imaging, and scaffold reinforcement. With the popularity of CBNs as highly versatile and useful
508 nanomaterials, we expect to see continued use of CBNs in many facets of biomedical engineering.

509 In particular, there is great promise in applying the biocompatible and multifunctional nature
510 of CBNs to the areas that interconnect mechatronics and biology, such as microelectromechanical
511 systems ("MEMS") for biological sensors and actuators.⁴⁸

512 Furthermore, more recent studies suggest that CBNs may also be used to regulate cellular
513 behavior.^{49,50} Although research efforts have largely been focused on utilizing CNTs, other types of
514 CBNs; especially graphene, which has gained wide recognition in recent years; are expected to be
515 investigated extensively in the near future.

516
517
518

519 **Author Contributions:** Conceptualization, J.V.; investigation, R. L., D. B., C. E., D. H., C. R.; writing—original
520 draft preparation, R. L., D. B., C. E., D. H., C. R.; writing—review and editing, R. L., D. B., C. E., D. H., C. R.;
521 supervision, C.R., J.V.; funding acquisition, J.V.

522 **Funding:** This research was funded by LANOTEC-CeNAT.

523 **Conflicts of Interest:** The authors declare no conflict of interest.

524 **References**

- 525 1. Nunes, A.; Al-Jamal, K.; Nakajima, T.; Hariz, M.; Kostarelos, K. Application of carbon nanotubes in
526 neurology: Clinical perspectives and toxicological risks. *Arch. Toxicol.* **2012**, *86*, 1009–1020.
- 527 2. Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. *Nature*
528 **2006**, *443*, 780–786.
- 529 3. Ajetunmobi, A.; Prina-Mello, A.; Volkov, Y.; Corvin, A.; Tropea, D. Nanotechnologies for the study of
530 the central nervous system. *Prog. Neurobiol.* **2014**, *123*, 18–36.
- 531 4. Evans, G.R.D. Peripheral nerve injury: A review and approach to tissue engineered constructs. *Anat. Rec.*
532 **2001**, *263*, 396–404.
- 533 5. Pfister, L.A.; Papaloïzos, M.; Merkle, H.P.; Gander, B. Nerve conduits and growth factor delivery in
534 peripheral nerve repair. *J. Peripher. Nerv. Syst.* **2007**, *12*, 65–82.
- 535 6. Seil, J.T.; Webster, T.J. Electrically active nanomaterials as improved neural tissue regeneration scaffolds.
536 *Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology* **2010**, *2*, 635–647.
- 537 7. Fabbro, A.; Prato, M.; Ballerini, L. Carbon nanotubes in neuroregeneration and repair. *Adv. Drug Deliv.*
538 *Rev.* **2013**, *65*, 2034–2044.
- 539 8. Webster, T.J.; Waid, M.C.; McKenzie, J.L.; Price, R.L.; Ejiofor, J.U. Nano-biotechnology: carbon
540 nanofibres as improved neural and orthopaedic implants. *Nanotechnology* **2004**, *15*, 48–54.
- 541 9. Pampaloni, N.P.; Lottner, M.; Giugliano, M.; Matruglio, A.; D'Amico, F.; Prato, M.; Garrido, J.A.;
542 Ballerini, L.; Scaini, D. Single-layer graphene modulates neuronal communication and augments
543 membrane ion currents. *Nat. Nanotechnol.* **2018**, *13*, 755–764.
- 544 10. Serpell, C.J.; Kostarelos, K.; Davis, B.G. Can carbon nanotubes deliver on their promise in biology?
545 Harnessing unique properties for unparalleled applications. *ACS Cent. Sci.* **2016**, *2*, 190–200.
- 546 11. Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.;
547 Grandolfo, M.; Scaini, D.; et al. Carbon nanotubes might improve neuronal performance by favouring
548 electrical shortcuts. *Nat. Nanotechnol.* **2009**, *4*, 126–133.
- 549 12. Fabbro, A.; Bosi, S.; Ballerini, L.; Prato, M. Carbon Nanotubes: Artificial Nanomaterials to Engineer
550 Single Neurons and Neuronal Networks. *ACS Chem. Neurosci.* **2012**, *3*, 611–618.
- 551 13. Belkas, J.S.; Shoichet, M.S.; Midha, R. Peripheral nerve regeneration through guidance tubes. *Neurol. Res.*
552 **2004**, *26*, 151–160.
- 553 14. Zhang, N.; Yan, H.; Wen, X. Tissue-engineering approaches for axonal guidance. *Brain Res. Rev.* **2005**, *49*,
554 48–64.
- 555 15. Fraczek-Szczypta, A. Carbon nanomaterials for nerve tissue stimulation and regeneration. *Mater. Sci.*
556 *Eng. C* **2014**, *34*, 35–49.
- 557 16. Taylor, J.S.H.; Bampton, E.T.W. Factors secreted by Schwann cells stimulate the regeneration of neonatal
558 retinal ganglion cells. *J. Anat.* **2004**, *204*, 25–31.
- 559 17. Zhao, C.; Tan, A.; Pastorin, G.; Ho, H.K. Nanomaterial scaffolds for stem cell proliferation and
560 differentiation in tissue engineering. *Biotechnol. Adv.* **2013**, *31*, 654–668.
- 561 18. Liu, K.; Tedeschi, A.; Park, K.K.; He, Z. Neuronal Intrinsic Mechanisms of Axon Regeneration. *Annu.*

562 Rev. Neurosci. 2011, 34, 131–152.

563 19. Bazar, E. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. *Int. J.*
564 *Nanomedicine* **2010**, 839.

565 20. Perán, M.; García, M.; Lopez-Ruiz, E.; Jiménez, G.; Marchal, J. How Can Nanotechnology Help to Repair
566 the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration. *Materials (Basel.)*
567 **2013**, *6*, 1333–1359.

568 21. Zhou, Z.; Liu, X.; Wu, W.; Park, S.; Miller, A.L.; Terzic, A.; Lu, L. Effective nerve cell modulation by
569 electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. *Biomater. Sci.* **2018**,
570 *6*, 2375–2385.

571 22. Oprych, K.M.; Whitby, R.L.D.; Mikhalkovsky, S. V.; Tomlins, P.; Adu, J. Repairing Peripheral Nerves: Is
572 there a Role for Carbon Nanotubes? *Adv. Healthc. Mater.* **2016**, *5*, 1253–1271.

573 23. Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of Carbon
574 Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. *Environ. Sci. Technol.* **2005**,
575 *39*, 1378–1383.

576 24. MacDonald, R.A.; Voge, C.M.; Kariolis, M.; Stegemann, J.P. Carbon nanotubes increase the electrical
577 conductivity of fibroblast-seeded collagen hydrogels. *Acta Biomater.* **2008**, *4*, 1583–1592.

578 25. Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A.J.; Xie, H.; Moussy, F.; Milne, W.I. A Critical Review of Glucose
579 Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene. *Sensors* **2012**, *12*, 5996–
580 6022.

581 26. Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-Based Nanomaterials:
582 Multifunctional Materials for Biomedical Engineering. *ACS Nano* **2013**, *7*, 2891–2897.

583 27. Choudhary, N.; Hwang, S.; Choi, W. Carbon Nanomaterials: A Review. In *Handbook of Nanomaterials
584 Properties*; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp. 709–769.

585 28. Schinazi, R.F.; Sijbesma, R.; Srdanov, G.; Hill, C.L.; Wudl, F. Synthesis and virucidal activity of a water-
586 soluble, configurationally stable, derivatized C60 fullerene. *Antimicrob. Agents Chemother.* **1993**, *37*, 1707–
587 1710.

588 29. Chae, S.-R.; Watanabe, Y.; Wiesner, M.R. Comparative photochemical reactivity of spherical and tubular
589 fullerene nanoparticles in water under ultraviolet (UV) irradiation. *Water Res.* **2011**, *45*, 308–314.

590 30. Husen, A.; Siddiqi, K. Carbon and fullerene nanomaterials in plant system. *J. Nanobiotechnology* **2014**, *12*,
591 16.

592 31. Srikanth, M.; Asmatulu, R.; Cluff, K.; Yao, L. Material Characterization and Bioanalysis of Hybrid
593 Scaffolds of Carbon Nanomaterial and Polymer Nanofibers. *ACS Omega* **2019**, *4*, 5044–5051.

594 32. Nasri, A.; Boubaker, A.; Hafsi, B.; Khaldi, W.; Kalboussi, A. High-Sensitivity Sensor Using C 60 -Single
595 Molecule Transistor. *IEEE Sens. J.* **2018**, *18*, 248–254.

596 33. Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-based nanomaterials:
597 Multifunctional materials for biomedical engineering. *ACS Nano* **2013**, *7*, 2891–2897.

598 34. He, S.; Chen, W. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for
599 enhanced performance. *Nanoscale* **2015**, *7*, 6957–6990.

600 35. Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials.
601 *Nanomaterials* **2019**, *9*, 737.

602 36. Pampaloni, N.P.; Lottner, M.; Giugliano, M.; Matruglio, A.; D’Amico, F.; Prato, M.; Garrido, J.A.;
603 Ballerini, L.; Scaini, D. Single-layer graphene modulates neuronal communication and augments
604 membrane ion currents. *Nat. Nanotechnol.* **2018**, *13*, 755–764.

605 37. Liu, C.-C.; Zhao, J.-J.; Zhang, R.; Li, H.; Chen, B.; Zhang, L.-L.; Yang, H. Multifunctionalization of

606 graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs. *Am. J.*
607 *Transl. Res.* **2017**, *9*, 5197–5219.

608 38. Pumera, M. Graphene-based nanomaterials and their electrochemistry. *Chem. Soc. Rev.* **2010**, *39*, 4146.

609 39. Rusanov, A.I. Thermodynamics of graphene. *Surf. Sci. Rep.* **2014**, *69*, 296–324.

610 40. Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes
611 for polymer-based nanocomposites: A review. *Compos. Part A Appl. Sci. Manuf.* **2010**, *41*, 1345–1367.

612 41. Martins-Júnior, P.A.; Alcântara, C.E.; Resende, R.R.; Ferreira, A.J. Carbon Nanotubes. *J. Dent. Res.* **2013**,
613 *92*, 575–583.

614 42. Gupta, P.; Lahiri, D. Aligned carbon nanotube containing scaffolds for neural tissue regeneration. *Neural*
615 *Regen. Res.* **2016**, *11*, 1062.

616 43. Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: An updated review of
617 functionalized carbon nanotubes in electrochemical sensors. *Nanoscale* **2012**, *4*, 1948–1963.

618 44. Zhou, Y.; Fang, Y.; Ramasamy, R. Non-Covalent Functionalization of Carbon Nanotubes for
619 Electrochemical Biosensor Development. *Sensors* **2019**, *19*, 392.

620 45. Hwang, J.-Y.; Shin, U.S.; Jang, W.-C.; Hyun, J.K.; Wall, I.B.; Kim, H.-W. Biofunctionalized carbon
621 nanotubes in neural regeneration: a mini-review. *Nanoscale* **2013**, *5*, 487–497.

622 46. Matsumoto, K.; Sato, C.; Naka, Y.; Whitby, R.; Shimizu, N. Stimulation of neuronal neurite outgrowth
623 using functionalized carbon nanotubes. *Nanotechnology* **2010**, *21*, 115101.

624 47. Sucapane, A.; Cellot, G.; Prato, M.; Giugliano, M.; Parpura, V.; Ballerini, L. Interactions Between
625 Cultured Neurons and Carbon Nanotubes: A Nanoneuroscience Vignette. *J. Nanoneurosci.* **2009**, *1*, 10–
626 16.

627 48. Redondo-Gómez, C.; Orozco, F.; Soto-Tellini, V.; Michael Noeske, P.-L.; Corrales-Ureña, Y.R.; Vega-
628 Baudrit, J. Cholic acid covalently bound to multi-walled carbon nanotubes: Improvements on dispersion
629 stability. *Mater. Chem. Phys.* **2017**, *200*, 331–341.

630 49. Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto, G.; Prato, M.;
631 Ballerini, L. Carbon Nanotube Substrates Boost Neuronal Electrical Signaling. *Nano Lett.* **2005**, *5*, 1107–
632 1110.

633 50. Kam, N.W.S.; Jan, E.; Kotov, N.A. Electrical Stimulation of Neural Stem Cells Mediated by Humanized
634 Carbon Nanotube Composite Made with Extracellular Matrix Protein. *Nano Lett.* **2009**, *9*, 273–278.

635 51. Fabbro, A.; Sucapane, A.; Toma, F.M.; Calura, E.; Rizzetto, L.; Carrieri, C.; Roncaglia, P.; Martinelli, V.;
636 Scaini, D.; Masten, L.; et al. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential
637 Appearance in Immature Rat Spinal Neurons. *PLoS One* **2013**, *8*, e73621.

638 52. Tran, P.A.; Zhang, L.; Webster, T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine.
639 *Adv. Drug Deliv. Rev.* **2009**, *61*, 1097–1114.

640 53. Zhang, Y.; Bai, Y.; Yan, B. Functionalized carbon nanotubes for potential medicinal applications. *Drug*
641 *Discov. Today* **2010**, *15*, 428–435.

642 54. Lee, S.-J.; Zhu, W.; Nowicki, M.; Lee, G.; Heo, D.N.; Kim, J.; Zuo, Y.Y.; Zhang, L.G. 3D printing nano
643 conductive multi-walled carbon nanotube scaffolds for nerve regeneration. *J. Neural Eng.* **2018**, *15*,
644 016018.

645 55. Ahn, H.-S.; Hwang, J.-Y.; Kim, M.S.; Lee, J.-Y.; Kim, J.-W.; Kim, H.-S.; Shin, U.S.; Knowles, J.C.; Kim, H.-
646 W.; Hyun, J.K. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic
647 nerve. *Acta Biomater.* **2015**, *13*, 324–334.

648 56. Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. *Science (80-).* **2017**, 356.

649 57. Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y.K.; Ahmad, S.; Nair, M. Advances

650 in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. *Adv. Healthc. Mater.* **2018**,
651 7, 1701213.

652 58. Wu, S.; Duan, B.; Lu, A.; Wang, Y.; Ye, Q.; Zhang, L. Biocompatible chitin/carbon nanotubes composite
653 hydrogels as neuronal growth substrates. *Carbohydr. Polym.* **2017**, *174*, 830–840.

654 59. Mottaghitalab, F.; Farokhi, M.; Zaminy, A.; Kokabi, M.; Soleimani, M.; Mirahmadi, F.; Shokrgozar, M.A.;
655 Sadeghizadeh, M. A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin
656 Nanocomposite for Peripheral Nerve Regeneration. *PLoS One* **2013**, *8*, e74417.

657 60. Lam, C.; James, J.T.; McCluskey, R.; Arepalli, S.; Hunter, R.L. A Review of Carbon Nanotube Toxicity
658 and Assessment of Potential Occupational and Environmental Health Risks. *Crit. Rev. Toxicol.* **2006**, *36*,
659 189–217.

660 61. Chen, X.; Fang, J.; Cheng, Y.; Zheng, J.; Zhang, J.; Chen, T.; Ruan, B.H. Biomolecular interaction analysis
661 for carbon nanotubes and for biocompatibility prediction. *Anal. Biochem.* **2016**, *505*, 1–7.

662 62. Bardhan, N.M.; Ghosh, D.; Belcher, A.M. Carbon nanotubes as in vivo bacterial probes. *Nat. Commun.*
663 **2014**, *5*, 4918.

664 63. Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y.; Zhou, R.; Zhao, Y.; Chai, Z.; et al. Binding of
665 blood proteins to carbon nanotubes reduces cytotoxicity. *Proc. Natl. Acad. Sci.* **2011**, *108*, 16968–16973.

666 64. Baldrighi, M.; Trusel, M.; Tonini, R.; Giordani, S. Carbon Nanomaterials Interfacing with Neurons: An
667 In vivo Perspective. *Front. Neurosci.* **2016**, *10*.

668 65. Baldrighi, M.; Trusel, M.; Tonini, R.; Giordani, S. Carbon nanomaterials interfacing with neurons: An in
669 vivo perspective. *Front. Neurosci.* **2016**, *10*, 1–27.

670 66. Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J.-P.; Prato, M.;
671 Bianco, A.; Kostarelos, K. Binding and Condensation of Plasmid DNA onto Functionalized Carbon
672 Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. *J. Am. Chem. Soc.* **2005**,
673 *127*, 4388–4396.

674 67. Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K.
675 Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube
676 radiotracers. *Proc. Natl. Acad. Sci.* **2006**, *103*, 3357–3362.

677 68. Pagona, G.; Tagmatarchis, N. Carbon Nanotubes: Materials for Medicinal Chemistry and
678 Biotechnological Applications. *Curr. Med. Chem.* **2006**, *13*, 1789–1798.

679 69. Firme, C.P.; Bandaru, P.R. Toxicity issues in the application of carbon nanotubes to biological systems.
680 *Nanomedicine Nanotechnology, Biol. Med.* **2010**, *6*, 245–256.

681 70. Kostarelos, K. Rational design and engineering of delivery systems for therapeutics: biomedical
682 exercises in colloid and surface science. *Adv. Colloid Interface Sci.* **2003**, *106*, 147–168.

683 71. Nel, A. Toxic Potential of Materials at the Nanolevel. *Science* (80-.). **2006**, *311*, 622–627.

684 72. Sato, Y.; Yokoyama, A.; Shibata, K.; Akimoto, Y.; Ogino, S.; Nodasaka, Y.; Kohgo, T.; Tamura, K.;
685 Akasaka, T.; Uo, M.; et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against
686 human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. *Mol.*
687 *Biosyst.* **2005**, *1*, 176.

688 73. Hu, H.; Zhao, B.; Hamon, M.A.; Kamaras, K.; Itkis, M.E.; Haddon, R.C. Sidewall Functionalization of
689 Single-Walled Carbon Nanotubes by Addition of Dichlorocarbene. *J. Am. Chem. Soc.* **2003**, *125*, 14893–
690 14900.

691 74. Hedderman, T.G.; Keogh, S.M.; Chambers, G.; Byrne, H.J. In-Depth Study into the Interaction of Single
692 Walled carbon Nanotubes with Anthracene and p -Terphenyl. *J. Phys. Chem. B* **2006**, *110*, 3895–3901.

693 75. Guldi, D.M.; Rahman, G.M.A.; Jux, N.; Balbinot, D.; Hartnagel, U.; Tagmatarchis, N.; Prato, M.

694 Functional Single-Wall Carbon Nanotube Nanohybrids Associating SWNTs with Water-Soluble Enzyme
695 Model Systems. *J. Am. Chem. Soc.* **2005**, *127*, 9830–9838.

696 76. Cheng, F.; Adronov, A. Noncovalent Functionalization and Solubilization of Carbon Nanotubes by
697 Using a Conjugated Zn-Porphyrin Polymer. *Chem. - A Eur. J.* **2006**, *12*, 5053–5059.

698 77. Dumonteil, S.; Demortier, A.; Detriché, S.; Raes, C.; Fonseca, A.; Rühle, M.; Nagy, J.B. Dispersion of
699 carbon nanotubes using organic solvents. *J. Nanosci. Nanotechnol.* **2006**, *6*, 1315–8.

700 78. Ishibashi, A.; Nakashima, N. Individual Dissolution of Single-Walled Carbon Nanotubes in Aqueous
701 Solutions of Steroid or Sugar Compounds and Their Raman and Near-IR Spectral Properties. *Chem. - A
702 Eur. J.* **2006**, *12*, 7595–7602.

703 79. Roberts, A.P.; Mount, A.S.; Seda, B.; Souther, J.; Qiao, R.; Lin, S.; Ke, P.C.; Rao, A.M.; Klaine, S.J. In vivo
704 Biomodification of Lipid-Coated Carbon Nanotubes by *Daphnia magna*. *Environ. Sci. Technol.* **2007**, *41*,
705 3025–3029.

706 80. Ikeda, A.; Tanaka, Y.; Nobusawa, K.; Kikuchi, J. Solubilization of Single-Walled Carbon Nanotubes by
707 Supramolecular Complexes of Barbituric Acid and Triaminopyrimidines. *Langmuir* **2007**, *23*, 10913–
708 10915.

709 81. Wang, X.; Deng, X.Y.; Wang, H.F.; Liu, Y.F.; Wang, T.C.; Gu, Y.Q.; Jia, G. Bio-effects of water soluble
710 taurine multi-wall carbon nanotubes on lungs of mice. *Zhonghua Yu Fang Yi Xue Za Zhi* **2007**, *41*, 85–90.

711 82. Bottini, M.; Magrini, A.; Rosato, N.; Bergamaschi, A.; Mustelin, T. Dispersion of Pristine Single-walled
712 Carbon Nanotubes in Water by a Thiolated Organosilane: Application in Supramolecular
713 Nanoassemblies. *J. Phys. Chem. B* **2006**, *110*, 13685–13688.

714 83. Tkac, J.; Whittaker, J.W.; Ruzgas, T. The use of single walled carbon nanotubes dispersed in a chitosan
715 matrix for preparation of a galactose biosensor. *Biosens. Bioelectron.* **2007**, *22*, 1820–1824.

716 84. Kim, O.-K.; Je, J.; Baldwin, J.W.; Kooi, S.; Pehrsson, P.E.; Buckley, L.J. Solubilization of Single-Wall
717 Carbon Nanotubes by Supramolecular Encapsulation of Helical Amylose. *J. Am. Chem. Soc.* **2003**, *125*,
718 4426–4427.

719 85. Mao, J.; Liu, Q.; Lv, X.; Liu, Z.; Huang, Y.; Ma, Y.; Chen, Y.; Yin, S. A water-soluble hybrid material of
720 single-walled carbon nanotubes with an amphiphilic poly(phenyleneethynylene): preparation,
721 characterization, and photovoltaic properties. *J. Nanosci. Nanotechnol.* **2007**, *7*, 2709–18.

722 86. Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Haddon, R.C. Synthesis and Characterization of Water Soluble Single-
723 Walled Carbon Nanotube Graft Copolymers. *J. Am. Chem. Soc.* **2005**, *127*, 8197–8203.

724 87. Liu, A.; Watanabe, T.; Honma, I.; Wang, J.; Zhou, H. Effect of solution pH and ionic strength on the
725 stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its
726 application for NADH sensor. *Biosens. Bioelectron.* **2006**, *22*, 694–699.

727 88. Zhang, H.; Li, H.X.; Cheng, H.M. Water-Soluble Multiwalled Carbon Nanotubes Functionalized with
728 Sulfonated Polyaniline. *J. Phys. Chem. B* **2006**, *110*, 9095–9099.

729 89. Bardi, G.; Nunes, A.; Gherardini, L.; Bates, K.; Al-Jamal, K.T.; Gaillard, C.; Prato, M.; Bianco, A.;
730 Pizzorusso, T.; Kostarelos, K. Functionalized Carbon Nanotubes in the Brain: Cellular Internalization
731 and Neuroinflammatory Responses. *PLoS One* **2013**, *8*, e80964.

732 90. Yang, S.; Guo, W.; Lin, Y.; Deng, X.; Wang, H.; Sun, H.; Liu, Y.; Wang, X.; Wang, W.; Chen, M.; et al.
733 Biodistribution of Pristine Single-Walled Carbon Nanotubes In Vivo. *J. Phys. Chem. C* **2007**, *111*, 17761–
734 17764.

735 91. Roman, J.A.; Niedzielko, T.L.; Haddon, R.C.; Parpura, V.; Floyd, C.L. Single-Walled Carbon Nanotubes
736 Chemically Functionalized with Polyethylene Glycol Promote Tissue Repair in a Rat Model of Spinal
737 Cord Injury. *J. Neurotrauma* **2011**, *28*, 2349–2362.

738 92. Kafa, H.; Wang, J.T.-W.; Rubio, N.; Venner, K.; Anderson, G.; Pach, E.; Ballesteros, B.; Preston, J.E.;
739 Abbott, N.J.; Al-Jamal, K.T. The interaction of carbon nanotubes with an in vitro blood-brain barrier
740 model and mouse brain in vivo. *Biomaterials* **2015**, *53*, 437–452.

741 93. Zhao, D.; Alizadeh, D.; Zhang, L.; Liu, W.; Farrukh, O.; Manuel, E.; Diamond, D.J.; Badie, B. Carbon
742 nanotubes enhance CpG uptake and potentiate antglioma immunity. *Clin. Cancer Res.* **2011**, *17*, 771–782.

743 94. Marsh, M.; McMahon, H.T. The Structural Era of Endocytosis. *Science* (80-). **1999**, *285*, 215–220.

744 95. Doherty, G.J.; McMahon, H.T. Mechanisms of Endocytosis. *Annu. Rev. Biochem.* **2009**, *78*, 857–902.

745 96. Kam, N.W.S.; Liu, Z.; Dai, H. Carbon Nanotubes as Intracellular Transporters for Proteins and DNA: An
746 Investigation of the Uptake Mechanism and Pathway. *Angew. Chemie Int. Ed.* **2006**, *45*, 577–581.

747 97. Shi Kam, N.W.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotube Molecular Transporters: Internalization of
748 Carbon Nanotube–Protein Conjugates into Mammalian Cells. *J. Am. Chem. Soc.* **2004**, *126*, 6850–6851.

749 98. Pacurari, M.; Yin, X.J.; Zhao, J.; Ding, M.; Leonard, S.S.; Schwegler-Berry, D.; Ducatman, B.S.; Sbarra, D.;
750 Hoover, M.D.; Castranova, V.; et al. Raw Single-Wall Carbon Nanotubes Induce Oxidative Stress and
751 Activate MAPKs, AP-1, NF-κB, and Akt in Normal and Malignant Human Mesothelial Cells. *Environ.*
752 *Health Perspect.* **2008**, *116*, 1211–1217.

753 99. Daneman, R.; Prat, A. The Blood–Brain Barrier. *Cold Spring Harb. Perspect. Biol.* **2015**, *7*, a020412.

754 100. Yang, Z.; Zhang, Y.; Yang, Y.; Sun, L.; Han, D.; Li, H.; Wang, C. Pharmacological and toxicological target
755 organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease.
756 *Nanomedicine Nanotechnology, Biol. Med.* **2010**, *6*, 427–441.

757