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 7 

Abstract: Fragment-based drug discovery (FBDD) has become a major strategy to 8 

derive novel lead candidates for various therapeutic targets, as it promises efficient 9 

exploration of chemical space by employing fragment-sized (MW < 300) 10 

compounds.  One of the first challenges in implementing a FBDD approach is the 11 

design of a fragment library, and more specifically, the choice of its size and 12 

individual members.  A diverse set of fragments is required to maximise the 13 

chances of discovering novel hit compounds.  However, the exact diversity of a 14 

certain collection of fragments remains underdefined, which hinders direct 15 

comparisons among different selections of fragments.  Based on structural 16 

fingerprints, we herein introduced quantitative metrics for the structural diversity 17 

of fragment libraries.  Structures of commercially available fragments were 18 

retrieved from the ZINC database, from which libraries with sizes ranging from 19 

100 to 100,000 compounds were selected.  The selected libraries were evaluated 20 

and compared quantitatively, resulting in interesting size-diversity relationships.  21 

Our results demonstrated that while library size does matter for its diversity, there 22 

exists an optimal size for structural diversity.  It is also suggested that such 23 

quantitative measures can guide the design of diverse fragment libraries under 24 

different circumstances. 25 

Keywords: diversity; fragment-based drug discovery; library design; library size. 26 

 27 

1. Introduction 28 

Fragment-based drug discovery (FBDD) has been developed in the past twenty years as an 29 
approach to derive novel lead compounds for various therapeutic targets [1–4].  It features the use 30 
of fragment-sized compounds that mostly comply with the ‘Rule-of-3’ [5] for the identification of hits, 31 
which can be subsequently developed into potent lead compounds.  Compared to the more 32 
traditional high-throughput screening that employs drug-like compounds following the ‘Rule-of-5’ 33 
[6], the smaller sizes of fragments used in FBDD lead to more efficient sampling of the relevant 34 
chemical space and thus better chances of identifying novel hits [7].  The smaller sizes also result in 35 
higher ligand efficiency [8] and more efficient structural optimization of fragment hits [9].  With 36 
these advantages, FBDD has gained popularity in both academia and industry in recent years [10], 37 
and led to the discovery of three FDA-approved drugs [11–14]. 38 

The first and foremost step in FBDD is the design of a fragment library, as library compositions 39 
directly influence the outcome of FBDD projects.  One of the most frequently discussed topic for its 40 
design is the size of the fragment library, which has a substantial impact on the early stages as it 41 
affects the time and monetary costs in addition to the outcome of FBDD projects.  Interestingly, the 42 
majority of respondents in recent polls had up to 2000 compounds in their fragment libraries [15,16].  43 
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Besides an optimal library size, consideration is also given to the structural complexity, 44 
physicochemical profile, and shape profile of fragments [17].  However, the diversity of a fragment 45 
library should be the most critical factor, because it affects the sampling efficiency of the relevant 46 
chemical space as well as the novelty of potential hit compounds.  Of note, better diversity should 47 
decrease the screening hit rate, which appears to be high for many FBDD campaigns [4,18].  Hence, 48 
the size of a fragment library should be discussed in conjunction with its diversity. 49 

Diversity needs to be characterized by descriptors, which can be classified mostly into three 50 
categories.  The first are functional (performance) descriptors based on the bioactivities of 51 
compounds towards a panel of (functionally dissimilar) biological targets [19].  Although regarded 52 
as the most relevant category of diversity descriptors for drug discovery [20,21],  acquisition of 53 
bioactivity data can be very resource-demanding [22,23].  In addition to a lack of bioactivity data for 54 
fragment-sized compounds in the literature, their activities would also be difficult to detect and 55 
measure due to their weak affinities [7].  The second are physicochemical (property-based) 56 
descriptors, including common physicochemical properties such as molecular weight and 57 
hydrophobicity and even electronic properties [24].  The third are structural descriptors, among 58 
which molecular fingerprints (structural features) are routinely used to represent chemical structures.  59 
The extended-connectivity (radial) fingerprints [25] is effective at retrieving bioactive compounds 60 
[26], therefore it was chosen as the descriptor of diversity in our study. 61 

There are currently two major types of quantitative metrics for structural diversity [27].  The 62 
first type of metrics assess the similarity (and thus difference) between pairs of chemical structures.  63 
The most notable metric of this type is the Jaccard index [28], later referred to as the popular Tanimoto 64 
index (similarity) [29].  The second type of metrics calculates the coverage of the relevant chemical 65 
space by a library of compounds, and the most straightforward one is a ratio based on richness, 66 
defined as the number of unique fingerprints (structural features) [30].  In this work, we propose the 67 
adoption of a third type of metrics, i.e. a diversity index that takes into account not only the number 68 
of unique structural fingerprints but also their proportional abundances [31–33], for the quantitative 69 
measurement of diversity.  True diversity, or the effective number of structural features, is a 70 
commonly used metric of this type and can be defined by the following equation [33]: 71 

𝐷 =
1

∏ 𝑝
𝑖

𝑝𝑖𝑅
𝑖=1

 , (1) 

where 𝐷 stands for true diversity, 𝑅 is richness (the total number of fingerprints), and 𝑝𝑖  represents 72 
the proportional abundance of the 𝑖th fingerprint.  It can be deduced from equation (1) that, for the 73 
same richness, a library with a more even distribution of proportional abundances will have a larger 74 
true diversity than a library with a less even distribution.  These diversity indexes have been used 75 
in ecological studies for decades, yet they have not been applied to the measurement of diversity of 76 
fragment libraries to date.  Although there are other plot-based methods to illustrate diversity in 77 
more visually appealing ways, such as principle component analysis [34] and principal moments of 78 
inertia [35,36], these three quantitative metrics, i.e. Tanimoto similarity, number of fingerprints, and 79 
true diversity, are more suited for direct comparison of libraries with different sizes. 80 

To provide insights into how the library size affects the structural diversity, we herein compare 81 
fragment libraries of different sizes, selected from commercially available fragments, and 82 
demonstrate interesting size-diversity relationships.  Such relationships indicated the presence of an 83 
optimal library size for structural diversity.  We also extend this investigation to a more restrictive 84 
scenario, in which only fluorinated fragments are considered and consequentially similar size-85 
diversity relationships were observed.  Certain cost-effective sizes that capture significant 86 
proportions of the overall diversity available with very small portions of available fragments are also 87 
proposed.  Our results demonstrated that these quantitative metrics could assist in the design of 88 
fragment libraries under various circumstances. 89 

2. Results  90 

2.1. Library selection 91 
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To generate libraries for comparison, both diversity-based selections and random selections 92 
were performed from 227,787 commercially available fragments that had undergone filtering by the 93 
‘Rule-of-3’ criteria [5].  Libraries with sizes of 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, and 94 
100000 were selected.  Both diversity-based selections and random selections were performed, with 95 
the latter in triplicate.  To demonstrate that our approach can be applied to different circumstances, 96 
selections were also performed on a fluorinated subset of the 227,787 commercially available 97 
fragments, consisting of 47,708 fragments that has 1~3 fluorine atoms.  Such restriction on the 98 
number of fluorine atoms captured the majority of fluorinated fragments, which are commonly used 99 
for FBDD projects employing 19F NMR as the screening method [37,38].  Fluorinated libraries with 100 
sizes of 100, 200, 500, 1000, 2000, 5000, 10000, and 20000 were selected in similar fashions. 101 

2.2. Size-diversity relationship of regular fragment libraries 102 

To understand the relationship between the size of fragment libraries and their structural 103 
diversity, quantitative metrics were calculated for selected libraries (Figure 1).  As expected, 104 
fragments became more similar to each other as the library size increased, and the diversity-based 105 
selection did lead to more dissimilar fragments than random selections (Figure 1a).  Richness of 106 
fragment library also rose with its size, with diversity-based selections outperforming random 107 
selections (Figure 1b).  However, marginal richness, i.e. the additional number of unique 108 
fingerprints per additional fragment, was declining while library size grew (Figure 2a).  For 109 
diversity-based selections, the average efficiency of adding unique fingerprints from 2,000 fragments 110 
to 5,000 fragments, 13.4 fingerprints per compound, was less than half of that from nothing to 100 111 
fragments, 28.9 fingerprints per compound.  Similar trends were observed for randomly selected 112 
libraries, although the gap between diversity-based and random selections became smaller when 113 
library sizes grew excessively large, i.e. beyond 5,000 compounds.  Thus, it is more efficient to have 114 
relatively small library for richness and we estimated the number of fragments required to 115 
accomplish two arbitrary degrees of coverage, 5% and 10%, respectively (Table 1). 116 

 117 

 

Figure 1.  Structural diversity vs size of fragment libraries, with the former measured by: (a) Average 118 
of the similarity of each compound to its closest neighbour; (b) total number of unique fingerprints 119 
(richness); (c) true diversity calculated by equation (1).  Dash curves are generated from cubic spline 120 
fitting.  Metrics for random selections are average values of triplicates. 121 

 122 
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Figure 2.  Efficiency in adding diversity: (a) average number of unique fingerprints (richness) per 123 
compound; (b) average value of true diversity per compound.  Metrics for random selections are 124 
average values of triplicates. 125 

 126 

Table 1. Library sizes (diversity-based selection) required to achieve certain values of structural 127 
diversity. 128 

Structural diversity (value) Minimum size (ratio of total 227,787 fragments)1 

5% total richness2 (33,834) 1,715 (0.75%) 

10% total richness2 (67,669) 4,103 (1.80%) 

Overall true diversity (6,662.4) 2,052 (0.90%) 

Maximum true diversity1 (9097.6) 17,666 (7.76%) 
1 Values are estimated by cubic spline fitting with 99,901 segments. 129 

 2 Total richness (number of unique fingerprints) is 676,686. 130 

Surprisingly, values of true diversity exhibited different trends between diversity-based 131 
selections and random selections (Figure 1c).  While the latter showed a constantly rising movement, 132 
the former reached a maximum at about 18,000 fragments, representing less than 8% of the overall 133 
available fragments (Table 1), before starting to decline (Figure 1c).  In addition, marginal true 134 
diversity experienced a more drastic decline in comparison with the marginal richness (Figure 2).  135 
For diversity-based selections, the average efficiency of adding true diversity from 2,000 fragments 136 
to 5,000 fragments, 1.4 per compound, was an order of magnitude less that from nothing to 100 137 
fragments, 16.1 per compound.  Consistent with the decline of true diversity after the library size 138 
from diversity-based selections reached about 18,000, the marginal true diversity became negative 139 
after 20,000 compounds (Figure 2b).  More strikingly, only approximately 2,000 fragments, i.e. less 140 
than 1%, are required to attain the same level of true diversity as all the 227,787 fragments available 141 
for selection (Table 1). 142 

2.3. Size-diversity relationship of fluorinated fragment libraries 143 

Libraries selected from fluorinated fragments presented similar size-diversity relationships as 144 
those from regular fragments (Figures 3 and 4, Table 2).  Both similarity to the closest neighbor and 145 
richness illustrated growing trends (Figures 3a and 3b), whereas the true diversity for libraries subject 146 
to diversity-based selection also reached a maximum at about 7,500 fragments (Figure 3c and Table 147 
2).  Analogously, both marginal richness and marginal true diversity diminished with increasing 148 
library size, while the gap between diversity-based and random selections in efficiency became 149 
smaller for larger library sizes, i.e. beyond 500 compounds (Figure 4).  Nevertheless, it required 150 
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relatively more fluorinated fragments to achieve the same level of diversity than that for regular 151 
fragments.  About 3.4% of total fluorinated fragments were needed to attain 10% coverage (Table 2), 152 
much higher than that for regular fragments, about 1.8%.  Additionally, it took close to 15.7% of total 153 
fluorinated fragments to reach maximum true diversity, while for regular fragments only about 7.8% 154 
were required.  Further, 2.5% of total fluorinated fragments were required to achieve the same level 155 
of true diversity as all the 47,708 fluorinated fragments, whereas less than 1% of regular fragments 156 
were required.  These observations can be explained by the constant presence of fluorine atoms, and 157 
thus fluorine-containing fingerprints, in all fluorinated compounds.  Inevitably, there would be a 158 
larger overlap of fluorine-associated fingerprints among fluorinated compounds, rendering the 159 
distribution of proportional abundances for fingerprints less even and thereby a smaller value of true 160 
diversity calculated by equation (1).  Such a phenomenon can also be expected for other restrictive 161 
circumstances demanding the presence of certain functional groups and/or pharmacophores. 162 

 163 

 

Figure 3. Structural diversity vs size of fluorinated fragment libraries, with the former measured by: 164 
(a) Average of the similarity of each compound to its closest neighbour; (b) total number of unique 165 
fingerprints (richness); (c) true diversity calculated by equation (1).  Dash curves are generated from 166 
cubic spline fitting.  Metrics for random selections are average values of triplicates. 167 

 168 

 

Figure 4.  Efficiency in adding diversity: (a) average number of unique fingerprints (richness) per 169 
fluorinated compound; (b) average value of true diversity per fluorinated compound.  Metrics for 170 
random selections are average values of triplicates. 171 

 172 

 173 
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Table 2. Fluorinated library sizes (diversity-based selection) required to achieve certain values of 174 
structural diversity. 175 

Structural diversity (value) Minimum size (ratio of total 47,708 fluorinated fragments)1 

5% total richness2 (8,992) 675 (1.41%) 

10% total richness2 (17,983) 1,616 (3.39%) 

Overall true diversity (3,621.9) 1,203 (2.52%) 

Maximum true diversity1 (4485.5) 7,483 (15.69%) 
1 Values are estimated by cubic spline fitting with 19,901 segments. 176 

2 Total richness (number of unique fingerprints) is 179,833. 177 

 178 

3. Discussion 179 

The exact size-diversity relationships for fragment libraries are affected by several factors, 180 
including the fragments available for selection, the selection method, and the diversity metric.  181 
Using fluorinated fragments as an example, we have shown that similar size-diversity relationships 182 
are observed for this subset of available fragments.  Thus, we speculate that different but similar 183 
size-diversity relationships could be observed for a different set of fragments available for selection.  184 
This could be either more restrictive, such as a set of fragments from a certain vendor, or more 185 
inclusive, such as a virtual set of all theoretically possible fragments [39].  Moreover, we expect that 186 
a different selection method, such as a clustering method [40], would offer somewhat different 187 
results.  Yet it should be noted that clustering methods are much less efficient than the directed 188 
sphere exclusion method used in this study [41], which features good computational performance on 189 
large data sets and enabled our calculations to be carried out on a desktop computer.  Furthermore, 190 
our results illustrated that different diversity metrics could indeed show very different size-diversity 191 
relationships.  While both similarity and richness increased with the size of fragment library, the rate 192 
of increase experienced a more significant decline in the former than in the latter, resulting in larger 193 
curvatures of the fitted lines for similarity.  In contrast, the true diversity of libraries from diversity-194 
based selections started to decrease after a certain size, highlighting the uneven distribution of 195 
structural fingerprints as the library size grew excessively large. 196 

Not unexpectedly, our results showed that the marginal diversity diminishes while the library 197 
size increases, the extent and significance of which depends on the choice of diversity metrics.  This 198 
indicates that it is unnecessary and possibly counterproductive to play numbers game and build 199 
excessively large libraries, and that cost-effective sizes of fragment library exist for structural 200 
diversity.  For regular fragments selected from commercially readily available compounds, we 201 
propose a library size of ~ 2,000, corresponding to 0.9 % of total available fragments in this study.  202 
This size covers more than 5% of richness, approximates the true diversity of all available fragments, 203 
and (perhaps coincidentally) matches the most popular fragment library size [15,16].  For the 204 
fluorinated subset, a library size of ~1,200 achieves similar coverage of richness and true diversity.  205 
However, better selection methods may even reduce these proposed numbers. 206 

In addition to structural diversity, considerations should also be given to practical factors such 207 
as experimental solubility, (absence of) aggregation, and stability for fragment library design [17].  208 
These factors are essential for the success of FBDD campaigns, yet they are difficult to predict without 209 
experimental data.  Hence, it would be more pragmatic to slightly increase the library size in the 210 
initial in silico design and perform necessary quality checks after procurement of fragments. 211 

In summary, we have introduced quantitative metrics to evaluate the structural diversity of 212 
fragment libraries, investigated their size-diversity relationships, and demonstrated the existence of 213 
an optimal library size for structural diversity depending on specific situations.  Based on our 214 
results, we propose the use of relatively small library sizes and the application of these quantitative 215 
measures to the design of diverse fragment libraries under various circumstances. 216 
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4. Materials and Methods  217 

Structures of commercially-available, fragment-sized compounds were retrieved from the ZINC 218 
15 database [42] (https://zinc15.docking.org/tranches/home/) in SMILES format on 2 Jan 2019.  A 219 
subset was chosen with the following criteria: Anodyne for Reactivity; In-Stock for Purchasability; 220 
up to 300 Daltons for Molecular Weight; up to 3 for LogP.  These criteria resulted in 1,413,973 221 
compounds.  The Canvas program (Schrödinger, LLC) was used for subsequent calculations.  222 
Physicochemical properties were calculated by canvasMolDescriptors and compounds violating an 223 
adapted version of the ‘Rule-of-3’ [5], i.e. 100 ≤ MW ≤ 300, logP ≤ 3, number of rings ≤ 3, number of 224 
hydrogen bond donors (HBD) ≤ 3, number of hydrogen bond acceptors (HBA) ≤ 3, number of 225 
rotatable bonds (RB) ≤ 3, and polar surface area ≤ 60 Å 2 were removed.  HBD, HBA, and RB are 226 
custom defined according to a previous work [43].  Any compound with reactive groups was filtered 227 
by the ligfilter functionality and duplicate structures were eliminated by the uniquesmiles 228 
functionality.  Finally, 227,787 compounds were left for selection of fragment libraries. 229 

Radial fingerprints [25] were generated by canvasFPGen, with 64-bit precision (264) to avoid 230 
fingerprint collisions, Daylight invariant atom types [44], and three radial iterations.  Based on the 231 
these fingerprints, diversity-based selections were performed with canvasDBCS, using directed 232 
sphere exclusion method [41] and Tanimoto similarity [29].  An exclusion sphere size of 0.4 was used 233 
to select libraries with a maximum size of 100,000 compounds.  In parallel, random selections of 234 
fragment libraries as control were carried out in triplicate by the UNIX command shuf.  To quantify 235 
the diversity of selected libraries, three different metrics were calculated as follows: maximum 236 
Tanimoto similarity [29] was computed by canvasFPHist; total number of unique fingerprints [30] 237 
was counted by canvasFPBinary2CSV; and true diversity [33] was determined by the UNIX 238 
command awk using equation (1). 239 

For fluorinated fragments, the ligfilter functionality was used to filter the 227,787 compounds 240 
with a criterion of 1 ≤ number of fluorine atoms ≤ 3, and the resulting 47,708 fragments were subject 241 
to analogous calculations and selections with a maximum library size of 20,000 compounds. 242 

Prism 8 (GraphPad Software, Inc.) was employed to generate plots of the aforementioned three 243 
metrics against the size of selected libraries, and the cubic spline function was used to fit spine curves.  244 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, File S1: List of SMILES 245 
structures of all 227,787 fragments used in this study. 246 
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