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1. Introduction and Preliminaries

Recently, there have been so many studies of the sequences of numbers in the literature. On the other
hand, the matrix sequences have taken so much interest for different type of numbers. For matrix sequences
of generalized Horadam type numbers, see for example [2], [3], [5], [15], [16], [17], [18], [23], and for matrix
sequences of generalized Tribonacci type numbers, see for instance [1], [12], [13], [19], [20].

In this paper, the matrix sequences of Tetranacci and Tetranacci-Lucas numbers will be de
ned for the
rst time in the literature. Then, by giving the generating functions, the Binet formulas, and summation
formulas over these new matrix sequences, we will obtain some fundamental properties on Tetranacci and
Tetranacci-Lucas numbers. Also, we will present the relationship between these matrix sequences.

First, we give some background about Tetranacci and Tetranacci-Lucas numbers.

Tetranacci sequence {M,, },>0 (sequence A000078 in [11]) and Tetranacci-Lucas sequence {R,, }»>0 (se-

quence A073817 in [11]) are defined by the fourth-order recurrence relations

(11) M, :Mn—1+Mn—2+Mn—3+Mn—47 MO :OaMl = 17M2 = 15M3 =2
and
(12) R,=R, 1+Ry o+ R, 3+ R,_4, Ry=4,Ri=1,R;,=3,R3 =7
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2 YUKSEL SOYKAN
respectively. The sequences {M,,},>0 and {R,},>0 can be extended to negative subscripts by defining
M_, = _M—(n—l) - M—(n—2) - M—(n—3) + M—(n—4)

and
Rop=-R_(n-1) = B-(n-2) = B-(n-3) = Bo(n-q
for n = 1,2,3, ... respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.This sequence has
been studied by many authors and more detail can be found in the extensive literature dedicated to these
sequences, see for example [6], [8], [9], [10], [14], [21], [22].
Next, we present the first few values of the Tetranacci and Tetranacci-Lucas numbers with positive and
negative subscripts in the following Table 1:

Table 1. A few Tetranacci and Tetranacci-Lucas Numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
M, 0 1 1 2 4 8 15 29 56 108 208 401 773 1490
M_, 0 0 O 1 -1 0 0 2 =3 1 0 4 -8 )
R, 4 1 3 7 15 26 51 99 191 367 708 1365 2631 5071

rR, 4 -1 -1 -1 7 -6 -1 -1 15 -19 4 -1 31 =53

We can give some relations between {M,,} and {R,} as

(1.3) Ry, =—-M,y3+6Myq — M,

and

(1.4) R, = —Mpyo+5Myqq —2M,, — M,
and also

(1.5) R, =4My4+1 —3M,, —2M, 1 — M2
and

(1.6) R, =M, +2M,_1 +3M,_o+4M, _3

Moreover, we have

(L.7) 563M,, = 86R, 3 — 61R, 12 — 71R, 11 — 87TR,,
and

(1.8) 563M,, = 25R 49 + 15R, 11 — Ry, + 86R,,—1
and also

(1.9) 563M,, = 40R 1 + 24R,, + 111R,,_1 + 25R,,_2

Note that the last seven identities hold for all integers n.
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It is well known that for all integers n, usual Tetranaci and Tetranacci-Lucas numbers can be expressed
using Binet’s formulas

(1.10)

an+2 n+2
M, = B

,.yn+2 5n+2

@—B)a-—Na-0) B-aB-nB-9 (-a0-B0r-09) G-a6-F0-1
(see for example [6] or [24])

or
a—1 __ -1 y—1 o0—1 _,_
1.11 Mn: n—1 n—1 n—1 571 1
(1.11) fa—s® Tigos’ ti 3 50 — 8
(see for example [4])
and
(1.12) R,=a" + 8"+ + 4"

respectively, where «, 3, and § are the roots of the equation % — 2% — 22 — 2 — 1 = 0. Moreover,

o T
B = ;1 % ——\/——w2 —wl
o= }1—; \/——wz——wl
Y S

where

1/3 1/3
oL (65 f563) 7 (65 [563
T\ 12 54 108 54 108 '

Note that we have the following identities:

(1.13) at+fB4+y+s = 1,
(1.14) aft+ay+ad+py+6o+vy = -1,
(1.15) aBy+afd+ayd+By5 = 1,
(1.16) afByd = -—1.

The generating functions for the Tetranacci sequence {M,, }, >0 and Tetranacci-Lucas sequence { R, } >0

are

o T o 4 —3x — 222 — 23
(1.17) ZMnx :1—x—m2—m3—$4 and ZR"x :1—m—x2—x3—$4.

Note that the Binet form of a sequence satisfying (1.1) and (1.2) for non-negative integers is valid for all
integers m. This result of Howard and Saidak [7] is even true in the case of higher-order recurrence relations

as the following theorem shows.
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THEOREM 1.1. [7/Let {w,} be a sequence such that
{wp} = a1wp—1 + a2wp_2 + ... + apwp_g

for all integers n, with arbitrary initial conditions wq,wy, ..., wi_1. Assume that each a; and the initial

conditions are complex numbers. Write

(1.18) flz) = 2P —a P —asxt T — L — a1z — ap

— (@ - o) (o - 4o — ap)

with di +ds + ... +dp = k, and aq, as, ..., o distinct. Then
(a): For alln,

(1.19) Wp = Z N(nvm)(am)n

where

Tm—1

N(n,m) :Agm) +A§m)n+...+A£’,’,”j)n*m‘1 _ Z Aq(:ﬂnu
u=0

with each Agm) a constant determined by the initial conditions for {w,}. Here, equation (1.19) is
called the Binet form (or Binet formula) for {wy,}. We assume that f(0) # 0 so that {wy} can be
extended to negative integers n.

If the zeros of (1.18) are distinct, as they are in our examples, then
Wy = Al(al)” —+ AQ(O{Q)n —+ ...+ Ak(ak)".

(b): The Binet form for {wy} is valid for all integers n.

2. The Matrix Sequences of Tetranacci and Tetranacci-Lucas Numbers
In this section we define Tetranacci and Tetranacci-Lucas matrix sequences and investgate their prop-

erties.

DEFINITION 2.1. For any integer n > 0, the Tetranacci matriz (7,) and Tetranacci-Lucas matriz (R,)

are defined by
(2.1) My = Mpi+ Myo+ Myz+ My,
(22) Rn = Rp1+Ru2+Ru 3+ Rn—4;

respectively, with initial conditions

Mo

o o o —
(an) (en] = (e
o — o o
— [an} o (e

<

Il
o O — —
S = O —
— o o —
o (e (en] —

[ V]

I
(e = [N}
— o = [N}
(an) (en] = [N}
o O = —
= = [\S) =~
O = N =~
(a=) — [\ w
o — = [\
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and

1 2 3 4 3 4 5 1
4 -3 -2 -1 1 2 3 4

Ro = yRi= ,
-1 5 -2 -1 4 -3 -2 -1
-1 0 6 -1 -1 5 -2 -1
7 8 4 3 15 11 10 7
3 4 5 1 7T 8 4 3

RQ = )R?):
1 2 3 4 3 4 5 1
4 -3 -2 -1 1 2 3 4

The sequences {M,, },>0 and {R, }n>0 can be extended to negative subscripts by defining
M_py=-M_p—1) = M_(n_2) = M_(j_3) + M_(5_y)
and
Ron=="R_(n-1) = Re(n-2) = R(n-3) + R(n—y

for n =1,2,3, ... respectively. Therefore, recurrences (2.1) and (2.2) hold for all integers n.
The following theorem gives the nth general terms of the Tetranacci and Tetranacci-Lucas matrix se-

quences.

THEOREM 2.2. For any integer n > 0, we have the following formulas of the matriz sequences:

Mn+1 Mn + Mn—l + Mn—2 Mn + Mn—l Mn
(23> Mn _ Mn Mnfl + Mn72 + Mn73 Mnfl + Mn72 Mnfl

Mnfl Mn72 + Mnf?; + Mn74 Mn72 + Mnf?) Mn72

Mn—2 Mn—3 + Mn—4 + Mn—5 Mn—3 + Mn—4 Mn—3

RnJrl Rn + Rnfl + Rn72 Rn + Rnfl Rn

R, R,1+R,2+R,3 R, 1+Ry_2 R,_

(24) Rn _ 1 2 3 1 2 1

Rn—l Rn—2 + Rn—3 + Rn—4 Rn—2 + Rn—3 Rn—2

Rn72 Rn73 + Rn74 + Rn75 Rn73 + Rn74 Rn73

Proof. We prove (2.3) by strong mathematical induction on n. (2.4) can be proved similarly.

If n = 0 then we have

My, My+M_1+M_y My+M_1 M, 1000
My = My Moy+Moo+My Moa+Moy Moy | | 0100
My M_g+M_s+M_y M_y+M_5 M, 0010
M.y M_g+M_4+Ms M_g+M_4 M 000 1
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which is true and

My  My+My+M_y M +My, M, 111 1
M, - My My+M_y+Moy My+Mo My [ | 1000
My M_4+Mo+Ms M_1+Mo M, 0100
My M_oo+Ms+M.4 Mo+Ms M, 0010

which is true. Assume that the equality holds for n < k. For n = k + 1, using the fourth-order recurrence

relations (1.1), we have

Mpip1r = Mp+Mp_1+Mp_g+ Mj_3
Myyo  Mp_1+ Mg + Mg Myy1+ M, Mgy
M1 Mp_1+ My_2 + My, My_1 + My, My,
My Mg+ Mg_o+ My3 Mg1+ Mg_o Mg
My v Mg o+ My 3+ Mgy My o+ My 3 Mg o

Thus, by strong induction on n, this proves (2.3).

We now give the Binet formulas for the Tetranacci and Tetranacci-Lucas matrix sequences.

THEOREM 2.3. For every integer n, the Binet formulas of the Tetranacci and Tetranacci-Lucas matrix

sequences are given by

(2.5) M, = A"+ Bi1f" + Ciy" + D10",
(26) Rn = AQO&n + B25n + Cg’yn + Dgé"
where

4 = Mo+ a Ha+ DM; + ala — 1)Ms + aMs BlzM0+ﬁ*1(ﬁ+1)/\41+ﬁ(6—1)M2+,6M3
a(a—pB)(a—7)(a=9) ’ Bla—pB)(a—7)(a=9) ’

Mo+ (v + DMy +9(y = DMy +yMs Mo+ 60+ DMy +6(5 — 1) M + M
a §(a=p) (=) (a—4¢)

Ci = , D1
 Ro+ BB+ )R+ B(B— 1)Re + Ry

v(a—B)(@—7)(a—0d)
4 = Ro+aHa+1)R1 +ala—1)Re + aRs B, —
? ala—B)(a—7)(a—29) 2 Ba—B)(a—7)(a—20) ’

Ro+7 v+ 1DRi +v(y — D)R2 + 7R3 C Ro+0 M0+ 1Ry +6(0 — 1)Ra + R

¢ = (@ —B) (a—7) (a—9) P2 = 5(a—B)(a—7) (a—0)

Proof. We prove the theorem only for n > 0 because of Theorem 1.1. We prove (2.5). By the assumption,

the characteristic equation of (2.1) is 2% — 2% — 22 —x — 1 = 0 and the roots of it are «, 3,7 and 6. So it’s
general solution is given by

Mn = Ala” + Blﬂn + Cl’}/n + chsn
Using initial condition which is given in Definition 2.1, and also applying lineer algebra operations, we obtain
the matrices Ay, By, C1, D1 as desired. This gives the formula for M,,.

Similarly we have the formula (2.6).
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The well known Binet formulas for Tetranacci and Tetranacci-Lucas numbers are given in (1.10) and
(1.12) respectively. But, we will obtain these functions in terms of Tetranacci and Tetranacci-Lucas matrix
sequences as a consequence of Theorems 2.2 and 2.3. To do this, we will give the formulas for these numbers
by means of the related matrix sequences. In fact, in the proof of next corollary, we will just compare the

linear combination of the 2nd row and 1st column entries of the matrices.

COROLLARY 2.4. For every integers n, the Binet’s formulas for Tetranacci and Tetranacci-Lucas numbers

are given as

iy a2 6n+2 ,yn+2 (5’ﬂ+2
" @ Ae—Na-0 B-aB-DF-0 G-a-Ar-0 G-a0-B0-1)
R, = a"+p3"+9"+0".

Proof. From Theorem 2.3, we have

Mn = AlOén -+ Blﬁn -+ Cl"}/n -+ D1(5"
Mo+aa+ DM +ala— DMy +aMs ,  Mo+B 1B+ 1My +B(B—1)My + BMs;

- a(a—B)(a—7)(@—d) ot BB —a)(3—)(F—0) 4
Moy 0 DMy = DM M, Mo +671 0+ DM 505~ DM+ 6Ma
(v —a)(y = B) (v — ) K 50— a)(0 - B)(6 — )

By Theorem 2.2, we know that

Myii My + My +Myo  My+ M, M,
M, M, 1+M, os+M,_ 35 M, 1+M,_o M,

My1 Myo+ My s+My_y My o+ My_3 My_o

My_o M, 3+M, 4+M,_ 5 M, _3+M,_ 4 M,_3

M, =

Now, if we compare the 2nd row and 1st column entries with the matrices in the above two equations, then

we obtain

(2a+i(a+1)+a(a—1))an_l 28+ 5 (B+1)+B(8-1))
(@ —=B)(a—7)(a—0) (B—a)(B—7)(8-9)
2y +2(v+D)+y(v—1) (26+106+1)+5(06-1))

Mn ﬂnfl

n—1 n—1
-0 -Bn-0 | T eeae-me-7
a2 /Bn+2
T @-Ae-Na-9 B-a)B-10E-9
,yn+2 6’ﬂ+2
6B -0) -0 -R6 -
From Therem 2.3, we obtain
R, = A"+ Bgﬁn + Cg’yn 4+ +Dyo"
_ Ro + cfl(a + 1)R1 + a(a — 1)R2 + aRs o 4+ Ro + 5_1(6 + 1)R1 + 5(5 — 1)R2 + BR3 ﬁn

ala—B)(a—)(a—02) Bla—B)(a—)(a—0)

Ro+77 (7 + DRi+9(7 = DR2 +9Rs_,  Ro+3" (6 + DRy +6(5 — YRp + IRy

(o= B) (a—) (@9 v Sa—Ba-Na-9

+
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By Theorem 2.2, we know that

R,t1 Ry+R,-1+R, 2 R,+ R, 1 R,
R, R, 1+R,2+R,3 Ry_1+R,—2 R,

R,1 Ry 2+Ry3+Ry_y Ry 2+Ry 3 Ry

Rono Ry 3+Rya+Rn5 Ros+Ry,4 Rn_3

Ry =

Now, if we compare the 2nd row and 1st column entries with the matrices in the above last two equations,

then we obtain

K - (7a+§(a+1)+3a(a—1)+4)an+(7ﬁ+§(6+1)+35(ﬁ_1)+4) .

a(a—B)(a—7) (a—d) BB—B)(B—n)(B-0)
(MY +2(v+D+3y(y—1)+4) (75+§(5+1)+35(5-1)+4}6n
R CE e 5(5—B)(5—7)(6—0) '

Using the relations (1.13)-(1.16) and considering «, 3,y and § are the roots the equation 2 —2*—2?—z—1 = 0,

we obtain

(Ta+L(a+1)+3a(a—1)+4)

a(a—B)(a— (a9 !
(843D +39(G-D+8)

B(B—=5)(B—7)(B—0)
(M+30+D+3H6-D+4

Yy =8)(y=7)(v—=9)
(T0+3(0+1)+30(6—1)+4) .

6(0—pB)(0—7)(0—0)
So finally we conclude that
Kn =a" + Bn + ’Yn
as required.

Now, we present summation formulas for Tetranacci and Tetranacci-Lucas matrix sequences.

THEOREM 2.5. For m > j > 0, we have

_Q(an+2m+j + an+m+j - M2m+j - Mm+j) + 2Rm(/\/lmn+m+j - Mm+j)
o n—1 M +2(—1)m(an7m+j - Mferj) + (R2m + 2Rm - R?n - 2)(an+J - MJ)
®7) ; e (R2, — Ram — 2R + 2+ 2(—1)™(1 — R_))

and

_2(Rmn+2m+j + Rmn+m+j - R2m+j - Rm+j) +2R;, (Rmn+m+j - Rm+j)
98 n_lR _ +2(_1)m(Rmn—m+j - R—"H-j) + (Ram + 2Ry, — R?n - 2)(Rmn+j - Rj)
25 ; e (R2, = Rom — 2Ry, + 2+ 2(=1)"(1 = R—p))
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Proof. Note that

n—1 n—1
ZMmi+j _ (Alami-i-j + BlﬂmH—j + Cl’}/Mi+j + Dl(smi+j)
=0 =0
oM —1 -ﬁmn—l Loy — C g —1
= Alaﬂ(am_1)+B1ﬂ](ﬁ)+017J( m_1)+D15J(5m_1)
and
nil n71 . . - . . . . -
> Kmivj = Y (Asa™M + By 4 Cony™H 4 Dy )
=0 =0
Camn 1 . 6mn__1 . an__ N i |
= AQOZJ(W) BQﬁj(ﬁ)+C217J(ﬁ) +D25](6’m‘7—1)

Simplifying the last equalities in the last two expression imply (2.7) and (2.8) as required.
As in Corollary 2.4, in the proof of next Corollary, we just compare the linear combination of the 2nd

row and 1st column entries of the relevant matrices.

COROLLARY 2.6. For m > j > 0, we have

_Q(an+2m+j + an+m+j - M2m+j - Mm+j) + 2Rm(an+m+j - Mm+j)
(2 9) nil M . +2(_1)m(anfm+j - M*erj) + (R2m + 2R, — R?n - 2)(an+j - Mj)
' rer A (R2, — Roym — 2R +2+2(—1)™m(1 — R_,,))

and

*Q(Rmn+2m+j + Ryntmtj — Romtj — Rm+j) + 2Rm(Rmn+m+j - RTn+j)
210 i, " +2(=1)"(Rimn-m+j — R-m+j) + (Ram + 2Ry — R}, = 2)(Rintj — Rj)
(2.10) ; e (R2, — Ry — 2Ry + 2+ 2(—=1)™(1 — R_,,))

Note that using the above Corollary we obtain the following well known formulas (see, for example, [22])

(taking m = 1,5 = 0):

n—1 n—1

Mo — M, + M, 1 —1 Ryio— Ry + Rp_1 +2
> M= 2 + ! and Y R; = —* el Sy
i=0 3 1=0 3

We can write last two formulas as

- M, oM, + M,_1 — 1 - R, 2R, + Ry_1+ 2
ZMi: +2 + + 1 andZRiz +2 + + 1+ '
= 3 3

=0

We now give generating functions of M and R.

THEOREM 2.7. The generating function for the Tetranacci and Tetranacci-Lucas matrix sequences are

given as
1 a+22+z 22+ T
T 1—=x 3+ x? x?
x2 x—x2 —r2—x+1 3
e . 23 2 — 28 —d—2? 4+ -2 —z2-—ax+1
ZMnx - l—z—22—23 — 24
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and

403 + 322 +2x+1 323 +222+2x+2 —22% —422+2x+3 —z2—222 -3z +4
—23—222 —3x4+4 522452245 —-3 223 +422+5x—-2 —a3—222+5x—1

—a? —22% + 5z — 1 5— 8x 623 4+ 722 — 2 —x% 4622 -1
> —23 4622 -1 S5x — 82 23 — 622 -8z +6 Tt 422 —1
Ryx" =
nz:;) v l—z—22—23 -2t

respectively.

Proof. We prove the Tetranacci case. Suppose that g(z) = > 7 ) M, z" is the generating function for
the sequence {M,, }n>0. Then, using Definition 2.1, and substracting = f(z), 22 f(z), 2° f(z) and z* f(x) from
f(z) we obtain (note the shift in the index n in the third line)

(1—2—2*—2%—2%)g(x)

[e ) e 9] (e ) o oo

= Y Mpa" -z Yy Mpa" —27 > Mua" -2y Mua" -2ty Mpa”
n=0 n=0 n=0 n=0 n=0
[e°) [e°) [e°) [e°) [e )

= > Mpa" =3 Mua™ =Y Mpa™ =y Ma =y Mt
n=0 n=0 n=0 n=0 n=0

= Z Mn$n — Z Mn_lx" — Z Mn_zl‘n — Z Mn_g.'lin — ZMn_4Z‘n
n=0 n=1 n=2 n=3 n=4
= (Mo + Mz + Maz? + Mza®) — Moz + Myz? + Max®) — (Moz? + My2®) — Moa®

+ Z(Mn - Mnfl - Mn72 - Mnf?) - _/\/ln74).’1}n

n=4

= Mo+ (Ml - Mo)l’ + (Mz - My - M0)$2 + (Mg — Mo — My — M0)£U3

Rearranging above equation, we get

. Mo+ (M1 — Mo)x + (Mg — My — Mo).’L’2 + (Mg — My —M; — Mo)xS

l—z—a2—a3—2a4

g()

This completes the proof.

Tetranacci-Lucas case can be proved similarly.

The well known generating functions for Tetranacci and Tetranacci-Lucas numbers are as in (1.17).
However, we will obtain these functions in terms of Tetranacci and Tetranacci-Lucas matrix sequences as a
consequence of Theorem 2.7. To do this, we will again compare the the 2nd row and 1st column entries with

the matrices in Theorem 2.7. Thus we have the following corollary.

COROLLARY 2.8. The generating functions for the Tetranacci sequence { M, },>0 and Tetranacci-Lucas

sequence { Ry, }n>0 are given as

0o § " o0 N 473:1:721,27!%3
(211) ;an :1_33_552_333_334 and ;an :1_{1?—.'1]2_%3_%4'
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respectively.

3. Relation Between Tetranacci and Tetranacci-Lucas Matrix Sequences

The following theorem shows that there always exist interrelation between Tetranacci and Tetranacci-

Lucas matrix sequences.

THEOREM 3.1. For the matriz sequences {M,,} and {R,}, we have the following identities.
(a): Rp = —Mpy3+6Mpi1 — M,
(b): Ry, = —Mpqo+5Mpqq —2M,, — M, _1,
(c): Rp =4Mpy1 —3M,, —2M,_1 — Mo,
(d): Ry, =My, +2M_1 +3M_o +4M,,_3
(e): 563 M,, = 86R 43 — 61R 42 — T1R 1 — 8TR,,
(f): 563 M,, = 25Rp 42 + 15R 41 — Ry + 86Rp—1,
(g): 563 M,, = 40R 41 + 24R,, + 111R 1 + 25R 2.

Proof. From (1.3), (1.4), (1.5) and (1.6), (a), (b), (¢) and (d) follow. From (1.7), (1.8) and (1.9), (e), (f)
and (g) follow.

LEMMA 3.2. For all non-negative integers m and n, we have the following identities.
(a): R()Mn = MnRo = Rn,
(b): MR, = R, My=TR,.
Proof. Identities can be established easily. Note that to show (a) we need to use all the relations (1.3),

(1.4), (1.5) and (1.6).
In the next Corollary, we obtain (1.9) using Lemma 3.2 and then (b) follows from (a).

COROLLARY 3.3. We have the following identities.
(a): M, = s (40R,, 41 + 24R,, + 111R,_ + 25R,,_»),
(b): My = 555 (40R 11 + 24R,, + 111R 1 + 25R,_2).

Proof. From Lemma 3.2 (a), we know that RoM,, = M, Ro. To show (a), use Theorem 2.2 for the
matrix M,, and calculate the matrix operation R 'R, and then compare the 2nd row and 1st column entries
with the matrices M,, and Ry *R,,. Now (b) follows from (a).

To prove the following Theorem we need the next Lemma.

LEMMA 3.4. Let Ay, B1,C1, D1; As, By, Cy, Dy as in Theorem 2.8. Then the following relations hold:
A} = Ay, Bf =By, C{=0Cy, D} =Dy,
AlBl = BlAl = A101 = ClAl = A1D1 = DlAl =C1B = 3101 =DBy=BD, = ClDl = chl = (O),

A2B2 = BQAQ = AQCQ = CQAZ = AQDQ = D2A2 = CQBQ = BQCQ = DQBQ = BQDQ = CQDQ = DQCQ = (0) .
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Proof. Using the relations (1.13)-(1.16), required equalities can be established by matrix calculations.

THEOREM 3.5. For all non-negative integers m and n, we have the following identities.

(a): MM, = Mppipp = MM,

(b): MRy = RoMpy, = Ringn,

(€): RiRn = RuRm = Mugnie — 12Moninia + 2Moninys + 36 Mognyo — 12Mopy g1 + Mpngn,
(d): RinRn = RuRom = Mot —10Momints +29Momsnts — 18Momin i1 —6Momon +4Mongn_1+

Mopin—2,
(€): RimRp =RnRm = 16 M nt2—24M i1 — "M pn +H4 M1 +10M 0 +4Mop 3+
-
(£): RiuRp =RpRim = Mugn+4M i1 +10Mop g n—24+20 Mt —3+25M g +24 My 5+
16 M1 n—6-
Proof.

(a): Using Lemma 3.4 we obtain

MM, = (A1a™ + B1" + Ciy™ + D16™)(A1a" + B1 8" + Ciy™ + D16")
= Ala™t 4 BITTN 4 O3yt 4 DI
+A1Ba™B" + A1 Cra™y" + Ay D™ 0"
+B1 A1 8™ + B1C1 8™ y" + By D1 f™6"
+C1A1y"a™ + C1B1y™ B" + C1D1y™ 6"
+D1 A6 Q™ + D1 B16™B™ + D1C My
— Ay 4 By AT 4 Cyy™ 4 Dy g

= Mm+n~

(b): By Lemma 3.2, we have

Now from (a) and again by Lemma 3.2 we obtain M,,R,, = Mu1+nRo = Rimtn-
It can be shown similarly that R, M,, = Ruin-
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(c): Using (a) and Theorem 3.1 (a) we obtain

RuRn = (= Mpmys+6Mpi1r — Mp) (= Mgz +6 My — My,)
— MonpaMoss — 6Mos Moy + Mo s My — 6Mon g1 Mo ss
436Mop i Moysr — 6Mom st My + Mo Moy is — 6 Mo Misr + Mon M,
= Mtnte — 6Mpminta + Mpgpnis — 6Mogpnpa +36Myinie — 6Mpna
Moty — 6 Mot 4+ Mot

= Mpinte — 12Mppnia + 2Mopin3 + 36 Mopinya — 12Mo 1 + Mogpn.

It can be shown similarly that R,,R.,, = Mutnt6 — 12Moppnta + 2Moints + 36 Mo pnyo —
12Mm+n+1 + Mm—i—n-

The remaining of identities can be proved by considering again (a) and Theorem 3.1.

Comparing matrix entries and using Teorem 2.2 we have next result.

COROLLARY 3.6. For Tetranacci and Tetranacci-Lucas numbers, we have the following identities:

(a): Mypyn = My a My + My (M1 + Moo + My —3) + My 1 (M1 + Myy—2) + My _o My,

(b): Rypin = Rup1 My + Ry (Myy—1 + My—2+ Mpy—3) + Ry (Myp—1 + My—2) + Rpy—o M1

(¢): RnRpt1 + Ry (Rm—1+ Rin—2+ Ryp—3) + Rm—1Rn—2 + Rpn—1 (Rm—1+ Rim—2) = Muinie —
12M oy ynga + 2M g3 + 36 My nto — 12My 11 + Moygn

(d): RpyRpi1 + Rn (Rp—1+ Rm—2+ Rim—3) + Rm-1Rn—2 + Ru—1 (Rm-1+ Rm—2) = Mpminta —
1My s nrs + 29Myins — 18 Mt — 6Mysn + 4Mo st + Mysno

(e): RyRps1 + Ro (Rt + Rz + Rin3) + Rin—1Ru—s + Ru—1 (Ron—1 + Run2) = 16Mypsnsa —
24 Mp s i1 — TMosn + AMoy—1 + 10Mypsn—s + AMpin—3 + Mopsns

(f): RnRuy1+Ry (Rm—1 + Rm—2 + Ri—3)+Rm—1Rn—2+Rp—1 (Rpm—1+ Rm—2) = Myyn+4Mpin_1+
10Myn—s + 20Mynin—s + 25Mynina + 24My s + 16 M.

Proof.
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(a): From Theorem 3.5 we know that M,, M,, = M, . Using Theorem 2.2, we can write this result

as

Mm+1 Mm + Mm—l + Mm—2 Mm + Mm—l Mm
Mm Mm—l + Mm—2 + Mm—3 Mm—l + Mm—2 Mm—l
Mmfl Mm72 + Mm73 + Mm74 Mm72 + Mm73 Mm72
Mm72 Mm73 + Mm74 + Mm75 Mmf?) + Mm74 Mm73
M,

My My, + My + M, M, + M,,_1

M, M, 1+M, o+M, 3 M, 1+M,_o M, 4
M,y My o+ M, s+M,_4 My o+M, 5 M, o
My_o My 3+My g+My_5 Mp_3+My_s My_3

Moyint1  Mopgn + Mopyn—1+ Mpyn—2 Mopin + Myin—1 Min
Mytn  Mpin—1+Mpin—2+Mpin-3 Mptn-1+Mpin—2 Mpin_1

Mpyyn-1 Mpgn—2+Mpyn3+Mnin-a Mpyno+Mpin3 Myin o

Mpyin—2 Mmpin—3s+Mpin—a+Mmnin-s Mpin-3+Mpin-a Mpin_3

Now, by multiplying the left-side matrices and then by comparing the 2nd rows and 1st columns
entries, we get the required identity in (a).

The remaining of identities can be proved by considering again Theorems 3.5 and 2.2.
The next two theorems provide us the convenience to obtain the powers of Tetranacci and Tetranacci-
Lucas matrix sequences.

THEOREM 3.7. For non-negatif integers m,n and r with n > r, the following identities hold:

(a): M? = ana
(b): M:anrl = MTan,
(€): My Mypyr = M2 = Ms.

Proof.

(a): We can write M as

M = M M,,.. .M, (m times).
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Using Theorem 3.5 (a) iteratively, we obtain the required result:

M™ = MuMy..M,
m times
= Mo M, My.. M,
m—1 times

= Mz M, M;..M,
—_———

m—2 times

= M(m—l)nMn

= Mpn.
(b): As a similar approach in (a) we have
ZlJrl = Mn+1'Mn+1"'Mn+l = Mm(n+1) = Mman = Mleflen-

Using Theorem 3.5 (a), we can write iteratively M,,, = MiM,_1, Mpy—1 = MiMy_a, ...,
Mgy = M M. Now it follows that

:Ln-i-l = MlMl"'Mlen = MTan
—

m times

(c): Theorem 3.5 (a) gives
Mn—rMn+r - MQn - MnMn - M%

and also

Mn—rM’n+’r = Map = MaMs..Mj = Mg
——————

n times

We have analogues results for the matrix sequence R,,.

THEOREM 3.8. For non-negatif integers m,n and r with n > r, the following identities hold:

(a): Rn—ar+r = R%a
(b): R = RE M.

Proof.
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(a): We use Binet’s formula of Tetranacci-Lucas matrix sequence which is given in Theorem 2.3. So

Ry rRuptr — R2
= (A0 " 4 Byf" T+ Coy " 4+ Dod" ) (Ad™ T 4 By 4 Oy 4 Dy
—(Aza" + Byff" + Coy" + Daé")?
= DaAy(a" 8" 4+ " — 2a™6™) + Do Bo (BT 4 g — 286"
+DoC(y" 76" 4 4TS — 2976™) + AaBo(@™ AT 4 @™ AT — 2 8™)
+ 420 (@™ 4 QT = 207y™) + By BT — 28" )
= 0
is true since
Dy Ay = DyBy = DyCy = A3 By = AsCy = BoCy = (0)
by Lemma 3.4). Now we get the result as required.

(b): By Theorem 3.7, we have

R Mo = RoRo-. RoMp M. M.

m times m times

When we apply Lemma 3.2 (a) iteratively, it follows that

RIMupn = (RoMy)(RoMy)...(RoM.,,)

= RyRnp..R,=TRI.

This completes the proof.
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