Article

The sharp bound of the Hankel determinant of the third kind for starlike functions with real coefficients

Oh Sang Kwon 1 and Young Jae Sim 1*

- Department of Mathematics, Kyungsung University, Busan 48434, Korea; oskwon@ks.ac.kr (O.S. Kwon), yjsim@ks.ac.kr (Y.J. Sim)
- * Correspondence: yjsim@ks.ac.kr

Abstract: Let \mathcal{SR}^* be the class of starlike functions with real coefficients, i.e., the class of analytic functions f which satisfy the condition f(0) = 0 = f'(0) - 1, $\text{Re}\{zf'(z)/f(z)\} > 0$, for $z \in \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and $a_n := f^{(n)}(0)/n!$ is real for all $n \in \mathbb{N}$. In the present paper, the sharp estimates of the third Hankel determinant $H_{3,1}$ over the class \mathcal{SR}^* are computed.

Keywords: starlike functions; Hankel determinant; Carathéodory functions; Schwarz functions

6 1. Introduction

Let \mathcal{H} be the class of analytic functions in $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ and let \mathcal{A} be the class of functions $f\in\mathcal{H}$ normalized by f(0)=0=f'(0)-1. That is, for $z\in\mathbb{D}$, $f\in\mathcal{A}$ has the following representation

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \tag{1}$$

For $q, n \in \mathbb{N}$, the Hankel determinant $H_{q,n}(f)$ of functions $f \in \mathcal{A}$ of the form (1) are defined by

$$H_{q,n}(f) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+q-1} & a_{n+q} & \dots & a_{n+2q-2} \end{vmatrix}.$$
 (2)

Computing the upper bound of $H_{q,n}$ over subfamilies of \mathcal{A} is an interesting problem to study. Recently many authors have examined the Hankel determinant $H_{2,2}(f) = a_2a_4 - a_3^2$ of order 2 (see e.g., [1–6]). Note that $H_{2,1}(f) = a_3 - a_2^2$ is the well-known functional which for the class of univalent functions was estimated by Bieberbach (see, e.g., [7] (Vol. I, p. 35)). Especially, the functional $H_{3,1}(f)$, Hankel determinant of order 3, is presented by

$$H_{3,1}(f) = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \\ a_3 & a_4 & a_5 \end{vmatrix}$$
$$= a_3(a_2a_4 - a_3^2) - a_4(a_4 - a_2a_3) + a_5(a_3 - a_2^2).$$

The bounds of $H_{3,1}(f)$ over several subfamilies of \mathcal{A} were studied in [8–16].

Let S^* be the class of starlike functions in A. That is, the class S^* consists of all functions $f \in A$ satisfying

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad z \in \mathbb{D}. \tag{3}$$

The leading example of a function of class S^* is the Koebe function k, defined by

$$k(z) = z(1-z)^{-2} = z + 2z^2 + 3z^3 + \cdots, \quad z \in \mathbb{D}.$$

In [4], Janteng *et. al.* obtained the sharp inequality $|H_{2,2}(f)| \le 1 = |H_{2,2}(k)|$ for $f \in \mathcal{S}^*$. For the estimates on the Hankel determinant $H_{3,1}(f)$ over the class \mathcal{S}^* , Babalola [17] obtained the inequality $|H_{3,1}(f)| \le 16$. And Zaprawa [18] improved the result by proving $|H_{3,1}(f)| \le 1$. Next, Kwon *et. al.* [13], recently, found the inequality $|H_{3,1}(f)| \le 8/9$ and we conjectured that

$$|H_{3,1}(f)| \le 4/9, \quad f \in \mathcal{S}^*.$$
 (4)

- The sharp bound of $|H_{3,1}(f)|$ over the class S^* is still open.
- Let SR^* be the class of starlike functions in A with real coefficients. Hence, if $f \in A$ belongs to
- the class SR^* , then f has the form given by (1) with $a_n \in \mathbb{R}$, $n \in \mathbb{N} \setminus \{1\}$ and satisfies the condition (3). In this paper, it will be derived that

$$-\frac{4}{9} \le H_{3,1}(f) \le \frac{1}{9}\sqrt{3}, \quad f \in \mathcal{SR}^*.$$
 (5)

So, from (5), it is remarkable that the inequality (4) is true for $f \in \mathcal{SR}^*$.

2. Carathéodory and Schwarz functions

Let \mathcal{P} be the class of functions $p \in \mathcal{H}$ of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad z \in \mathbb{D},$$
 (6)

having a positive real part in \mathbb{D} , i.e., the Carathéodory class of functions. It is well known, e.g., [19] (p. 166), that for $p \in \mathcal{P}$ with the form given by (6),

$$2c_2 = c_1^2 + (4 - c_1^2)\zeta, (7)$$

for some $\zeta \in \overline{\mathbb{D}}$. Moreover, the following lemma will be used for our investigation.

Lemma 1. [20] The formula (7) with $c_1 \in [0,2)$ and $\zeta \in \mathbb{T}$ holds only for the function $p \in \mathcal{P}$ defined by

$$p(z) = \frac{1 + \tau(1 + \zeta)z + \zeta z^2}{1 - \tau(1 - \zeta)z - \zeta z^2}, \quad z \in \mathbb{D},$$

where $\tau \in [0, 1)$.

Let \mathcal{B}_0 be the subclass of \mathcal{H} of all self-mappings ω of \mathbb{D} of the form

$$\omega(z) = \sum_{n=1}^{\infty} \beta_n z^n, \quad z \in \mathbb{D},$$
(8)

- i.e., the class of Schwarz functions. It is well known that $\omega \in \mathcal{B}_0$ if and only if $p = (1+\omega)/(1-\omega) \in \mathcal{P}$.
- For coefficients of functions in \mathcal{B}_0 , the following properties, which can be found in [7] (Vol. I, pp. 84–85)
- and Vol. II, p. 78) and [21] (p. 128), will be used for our proof.

Lemma 2. If $\omega \in \mathcal{B}_0$ is of the form given by (8), then

- (1) $|\beta_1| \leq 1$,
- 20
- (2) $|\beta_2| \le 1 |\beta_1|^2$, (3) $|\beta_3(1 |\beta_1|^2) + \overline{\beta_1}\beta_2^2| \le (1 |\beta_1|^2)^2 |\beta_2|^2$.

The following inequalities, which will be used, hold for the fourth coefficients for Schwarz functions with real coefficients.

Lemma 3. [22] If $\omega \in \mathcal{B}_0$ is the form (8), $\beta_n \in \mathbb{R}$, $n \in \mathbb{N}$, and $\beta_2^2 \neq (1 - \beta_1^2)^2$, then

$$\Psi_L \le \beta_4 \le \Psi_U, \tag{9}$$

where

$$\Psi_L := \frac{1 + \beta_1^4 + \beta_2 - \beta_2^2 - \beta_2^3 - 2\beta_1^2 - \beta_1^2 \beta_2 + 2\beta_1 \beta_2 \beta_3 - \beta_3^2}{-1 + \beta_1^2 - \beta_2} \tag{10}$$

and

$$\Psi_U := \frac{1 + \beta_1^4 - \beta_2 - \beta_2^2 + \beta_2^3 - 2\beta_1^2 + \beta_1^2 \beta_2 - 2\beta_1 \beta_2 \beta_3 - \beta_3^2}{1 - \beta_1^2 - \beta_2}.$$
 (11)

3. Propositions

For given a set A, let int A, clA and ∂A be the sets of interior, closure and boundary, respectively, points of A. And let $R = [0,1] \times [-1,1]$ be a rectangle in \mathbb{R}^2 . In this section, we obtain several inequalities for functions, defined in subsets of *R*, which will be used for our main result.

Proposition 1. Define a function F_1 by

$$F_1(x,y) = \sum_{n=0}^{4} b_n(x)y^n,$$
(12)

where

$$b_4(x) = (1-x)^2(1+x)^4,$$

$$b_3(x) = -x(1+x)^3(10-11x+x^2),$$

$$b_2(x) = (1+x)^2(7-16x+14x^3-5x^4),$$

$$b_1(x) = x(10+9x-2x^2-6x^3-8x^4-3x^5),$$

$$b_0(x) = -8+16x^2+6x^3-8x^4-6x^5.$$

Then $F_1(x,y) < 2\sqrt{3}$ holds for all $(x,y) \in R$.

Proof. Let $(x,y) \in R$. Since $b_4(x) \ge 0$, we have $b_4(x)y^4 \le b_4(x)y^2$ and

$$F_1(x,y) \leq G(x,y), \quad (x,y) \in R,$$

where

$$G(x,y) = b_3(x)y^3 + (b_4(x) + b_2(x))y^2 + b_1(x)y + b_0(x).$$

We will show that $G(x, y) < 2\sqrt{3}$ holds for $(x, y) \in R$.

When x = 0, we have $G(0, y) = -8(1 - y^2) \le 0$, for $y \in [-1, 1]$. And, when x = 1, we have $G(1, y) \equiv 0.$

Now, let $x \in (0,1)$ be fixed and put $b_i = b_i(x)$ ($i \in \{0,1,2,3,4\}$). Then $b_3 < 0$. Define a function g_x by $g_x(y) = G(x,y)$. Note that

$$g_x(-1) = 0$$
 and $g_x(1) = 4x^2(1 - x^2)(5 - 2x^2) \le 0.$ (13)

Also,

$$g_x'(y) = 3b_3y^2 + 2(b_4 + b_2)y + b_1 = 0 (14)$$

occurs at $y = \zeta_1$ or ζ_2 , where

$$\zeta_i = \frac{-(b_4 + b_2) + (-1)^{i+1} \sqrt{(b_4 + b_2)^2 - 3b_1b_3}}{3b_3}, \quad i \in \{1, 2\}.$$

It is trivial that $\zeta_1 < 0 < \zeta_2$. Furthermore, since $b_3 < 0$, g_x has the local minimum at $y = \zeta_1$. Let $\alpha = 0.322818 \cdots$ be a zero of polynomial q, where

$$q(y) = 8 - 10y - 42y^2 - 14y^3 + 7y^4.$$

Note that $\zeta_2 \ge 1$ holds for x satisfying

$$2(1-x^2)q(x) = b_1 + 2(b_4 + b_2) + 3b_3 \ge 0.$$

Hence we obtain

$$\begin{cases} \zeta_2 \ge 1, & \text{when } x \in (0, \alpha], \\ \zeta_2 \le 1, & \text{when } x \in [\alpha, 1). \end{cases}$$

(a) When $x \in (0, \alpha]$, since $\zeta_2 \ge 1$, g_x is convex in [-1, 1]. So, it holds that

$$g_x(y) \le \max\{g_x(-1), g_x(1)\}, y \in [-1, 1].$$

- Hence, by (13), we get $g_x(y) \le 0 < 2\sqrt{3}$ for $y \in [-1, 1]$.
 - (b) When $x \in [\alpha, 1)$, g_x has its local maximum $g_x(\zeta_2)$. Using the fact that ζ_2 is a solution of the equation given by (14) leads us to get

$$g_x(\zeta_2) = \left(\frac{2}{3}b_1 - \frac{2(b_2 + b_4)^2}{9b_3}\right)\zeta_2 + \left(b_0 - \frac{b_1(b_2 + b_4)}{9b_3}\right).$$

We claim that $g_x(\zeta_2) - 3 < 0$ holds for all $x \in [\alpha, 1)$. A computation gives

$$g_x(\zeta_2) - 3 = \frac{1}{9b_3}(1-x)(1+x)^3[-2(1-x)(1+x)\kappa_1\zeta_2 + x\kappa_2],$$

where

$$\kappa_1 = 64 - 128x + 204x^2 + 464x^3 + 249x^4 - 14x^5 + 7x^6$$

and

$$\kappa_2 = 910 - 11x - 1340x^2 - 414x^3 + 752x^4 + 398x^5 - 64x^6 + 12x^7$$

Since $b_3 < 0$, $g_x(\zeta_2) - 3 < 0$ is equivalent to

$$2(1-x^2)\kappa_1\sqrt{(b_4+b_2)^2-3b_1b_3}<-3x\kappa_2b_3-2(1-x^2)\kappa_1(b_4+b_2).$$
(15)

We can see that the right-side of the above equation is positive for all $x \in [\alpha, 1)$. Thus, by squaring the both sides of (15), we have $g_x(\zeta_2) < 0$ is equivalent to $\Psi > 0$, where

$$\Psi = [3x\kappa_2b_3 + 2(1-x^2)\kappa_1(b_4+b_2)]^2 - 4(1-x^2)^2\kappa_1^2[(b_4+b_2)^2 - 3b_1b_3].$$

5 of 15

By a simple calculation we have

$$\Psi = -27x^2(10-x)^2(1-x)^2(1+x)^6\Lambda_x,\tag{16}$$

where

$$\Lambda_x := 22528 - 90112x - 143980x^2 + 177084x^3 + 333021x^4 - 21120x^5 - 258308x^6 - 143200x^7 + 452x^8 + 28728x^9 + 37512x^{10} + 24288x^{11} + 9748x^{12} + 2720x^{13} + 968x^{14} - 48x^{15} + 36x^{16}.$$

Since $\Lambda_x < 0$ holds for all $x \in [\alpha, 1)$, from (16), $\Psi > 0$, which implies

$$g_x(\zeta_2) < 3. \tag{17}$$

Finally, since

$$g_x(y) \le \max\{g_x(-1), g_x(1), g_x(\zeta_2)\}, y \in [-1, 1],$$

- it follows from (13) and (17) that $g_x(y) < 3 < 2\sqrt{3}$ holds for all $y \in [-1,1]$. Thus the proof of
- Proposition 1 is completed. \square

Proposition 2. Let

$$\Omega = \left\{ (x,y) \in [0,1/2) \times [0,1) : 0 \le x \le \frac{y}{1+y} \right\} \subset R.$$

Define a function $F_2: \Omega \to \mathbb{R}$ *by*

$$F_2(x,y) = \frac{1-x}{8+y-x(17+y)}H_1(x,y),\tag{18}$$

where $H_1(x,y) = \sum_{n=0}^{3} d_n(y) x^n$ with

$$d_3(y) = (1+y)^2(1-6y+y^2),$$
 $d_2(y) = 17+24y+10y^2-3y^4,$ $d_1(y) = -8-26y-y^2+12y^3+3y^4$ and $d_0(y) = y(8+y-8y^2-y^3).$

- Then $F_2(x,y) \leq (2/9)\sqrt{3}$ holds for all $(x,y) \in \Omega$.
- **Proof.** First of all, we note that F_2 is well-defined, since 8 + y x(17 + y) > 0 holds for all $(x, y) \in \Omega$. Differentiating F_2 with respect to x twice gives

$$\frac{1}{2}[8+y-x(17+y)]^3 \frac{\partial^2 F_2}{\partial x^2}(x,y) = \sum_{n=0}^4 \tilde{d}_n(y)x^n,$$
(19)

where

$$\begin{split} \tilde{d}_4(y) &= -3(1-6y+y^2)(17+18y+y^2)^2, \\ \tilde{d}_3(y) &= -4(884+3197y+4605y^2+2062y^3-302y^4-75y^5-3y^6), \\ \tilde{d}_2(y) &= 6(1024+2344y+2421y^2+956y^3-202y^4-60y^5-3y^6), \\ \tilde{d}_1(y) &= -12(8+y)^2(4+7y+5y^2+y^3-y^4), \\ \tilde{d}_0(y) &= 512+1088y+960y^2-176y^3-83y^4-30y^5-3y^6. \end{split}$$

Fix now $y \in [0,1)$ and put $y_0 = y/(1+y) \in [0,1/2)$. Let us define a function $g_y : [0,y_0] \to \mathbb{R}$ by $g_y(x) = \sum_{n=0}^4 \tilde{d}_n(y) x^n$. Then we have

$$g_y'(x) = -12(1+y)[8+y-x(17+y)]^2\varphi(x), \tag{20}$$

where

$$\varphi(x) = 4 + 3y + 2y^2 - y^3 + (1+y)(1 - 6y + y^2)x.$$

Since $-4 \le 1 - 6y + y^2 \le 1$, we have

$$\varphi(x) \ge 4 + 3y + 2y^2 - y^3 - 4x(1+y) \ge 4 - y + 2y^2 - y^3 > 0, \quad x \in [0, y_0].$$

Thus, by (20), we get $g'_y(x) < 0$, when $x \in [0, y_0]$. So g_y is decreasing on the interval $[0, y_0]$, which yields

$$g_y(x) \ge g_y(y_0) = \frac{64(1-y)(8-7y+2y^2+33y^3)}{(1+y)^2} \ge 0, \quad x \in [0,y_0].$$

Since 8 + y - x(17 + y) > 0 holds for all $(x, y) \in \Omega$, by (19), $F_2(x, \cdot)$ is convex on $[0, y_0]$. This gives us that

$$F_2(x,y) \le \max\{F_2(0,y), F_2(y_0,y)\} = F_2(0,y) = y - y^3 \le \frac{2}{9}\sqrt{3}, \quad (x,y) \in \Omega,$$

 \square as we asserted. \square

Proposition 3. Define a function F_3 by

$$F_3(x,y) = \frac{9(1-x)(1+y)}{8-y+x(1+y)}H_2(x,y),\tag{21}$$

where $H_2(x,y) = \sum_{n=0}^{3} k_n(y) x^n$ with

$$k_3(y) = (1+y)^3$$
, $k_2(y) = 1+7y+3y^2-3y^3$,
 $k_1(y) = 8-2y-15y^2+3y^3$ and $k_0(y) = -y(8-9y+y^2)$.

Then $F_3(x,y) \leq 2\sqrt{3}$ holds for all $(x,y) \in R$.

Proof. First of all, by simple calculations, the equation $(\partial F_3/\partial x)(x,y) = 0$ gives us

$$(1-x)(8-y+x(1+y))\frac{\partial H_2}{\partial x}(x,y) = 9H_2(x,y). \tag{22}$$

Also, the equation $(\partial F_3/\partial y)(x,y) = 0$ holds when

$$-(1+y)(8-y+x(1+y))\frac{\partial H_2}{\partial y}(x,y) = 9H_2(x,y). \tag{23}$$

Assume that the function F_3 has its critical point at $(x_0, y_0) \in \text{int} R$. Since $8 - y_0 + x_0(1 + y_0) \neq 0$, from (22) and (23), we have

$$(1-x_0)\frac{\partial H_2}{\partial x}(x_0,y_0) + (1+y_0)\frac{\partial H_2}{\partial y}(x_0,y_0) = 0,$$

or, equivalently, $y_0 = x_0/(1-x_0)$. However, it holds that

$$(1-x_0)(8-y_0+x_0(1+y_0))\frac{\partial H_2}{\partial x}(x_0,y_0)-9H_2(x_0,y_0)=64(1-x_0)\neq 0,$$

since $x_0 \in (0,1)$. This contradicts to (22). Hence F_3 does not have any critical points in intR. Thus F_3 has its maximum on ∂R .

We now consider F_3 on ∂R .

42

- (a) On the side x = 1, we have $F_3(1, y) \equiv 0$.
- (b) On the side y = -1, we have $F_3(x, -1) \equiv 0$.
 - (c) On the side y = 1, we have

$$F_3(x,1) = \frac{-36x(3-7x+4x^3)}{7+2x} =: \varphi(x), \quad x \in [0,1].$$
 (24)

Since the inequality $2(7+56x-126x^2+72x^4)>0$ holds for all $x\in[0,1]$, it follows that $\varphi(x)<2$

 $(x \in [0,1])$. This inequality with (24) implies $F_3(x,1) < 2 < 2\sqrt{3}$ holds for $x \in [0,1]$.

(d) On the side x = 0, we have

$$F_3(0,y) = -9y(1-y^2) =: \psi(y). \tag{25}$$

And the inequality $F_3(0,y) \le 2\sqrt{3}$ ($y \in [-1,1]$) comes directly from (25) and

$$\psi(y) \le \psi(-1/\sqrt{3}) = 2\sqrt{3}, \quad y \in [-1,1].$$

From (a)–(d), for all $(x,y) \in \partial R$, the inequality $F_3(x,y) \leq 2\sqrt{3}$ holds. Thus the proof of Proposition 3 is completed. \square

Proposition 4. For F_1 defined by (12), the inequality

$$F_1(x, y) \ge -8$$

holds for $(x, y) \in [0, 1] \times [-1, 0]$.

Proof. Define a function $G : [0,1] \times [0,1] \to \mathbb{R}$ by

$$G(x,y) = F(x,-y) - b_4(x)y^4 + 8 = l_3(x)y^3 + l_2(x)y^2 + l_1(x)y + l_0(x),$$

where $l_3(x) = -b_3(x)$, $l_2(x) = b_2(x)$, $l_1(x) = -b_1(x)$ and $l_0(x) = b_0(x) + 8$. Then we have

$$F(x,y) + 8 \ge G(x,-y), \quad (x,y) \in [0,1] \times [-1,0].$$

We note that, when x = 0, $G(0, y) = 7y^2 \ge 0$ holds for $y \in [-1, 1]$. And, when x = 1, so $G(1, y) \equiv 8 > 0$.

Let $x \in (0,1)$ be fixed and put $l_i = l_i(x)$ ($i \in \{0,1,2,3\}$). Define a function $g_x : [0,1] \to \mathbb{R}$ by $g_x(y) = G(x,y)$. We will show that the inequality $g_x(y) \ge 0$ holds for all $y \in [0,1]$.

Note that $l_3 > 0$ and $l_1 < 0$. Let

$$\zeta_i = \frac{-l_2 + (-1)^i \sqrt{l_2^2 - 3l_1 l_3}}{l_3}, \quad i = 1, 2$$

be the roots of the equation

$$g_{r}'(y) = 3l_{3}y^{2} + 2l_{2}y + l_{1} = 0.$$

Then it is easily seen that $\zeta_1 < 0 < \zeta_2$. Moreover $\zeta_2 < 1$ holds. Indeed, $\zeta_2 < 1$ is equivalent to $l_1l_3 + 3l_3^2 + 2l_2l_3 > 0$. And a computation gives

$$l_1 l_3 + 3 l_3^2 + 2 l_2 l_3 = -2x(1-x)^2 (1+x)^4 \varphi(x), \tag{26}$$

8 of 15

where

$$\varphi(x) = -70 - 73x - 52x^2 - 34x^3 - 16x^4 + 2x^5.$$

Since $\varphi(x) < 0$, by (26), we get $l_1 l_3 + 3 l_3^2 + 2 l_2 l_3 > 0$ and $\zeta_2 < 1$. Therefore, we have

$$g_x(y) \ge g_x(\zeta_2), \quad y \in [0,1].$$
 (27)

On the other hand, simple calculations give us that

$$g_x(\zeta_2) = \frac{1}{9l_3} [(6l_1l_3 - 2l_2^2)\zeta_2 + (9l_0l_3 - l_1l_2)]$$

= $\frac{-1}{9l_3} (1 - x)(1 + x)^3 [2(1 - x^2)\kappa_1\zeta_2 + x\kappa_2],$

where

$$\kappa_1 = 49 - 126x + 255x^2 + 472x^3 + 204x^4 - 24x^5 + 16x^6$$

and

$$\kappa_2 = -70 + 97x - 1352x^2 - 429x^3 + 746x^4 + 401x^5 - 56x^6 + 15x^7.$$

Since $l_3 > 0$, $g_x(\zeta_2) \ge 0$ holds, if

$$2(1-x^2)\kappa_1\zeta_2 + x\kappa_2 \le 0. (28)$$

Moreover (28) is equivalent to $\Psi \geq 0$, where

$$\Psi = [2(1-x^2)\kappa_1 l_2 - 3x\kappa_2 l_3]^2 - 4(1-x^2)^2 \kappa_1^2 (l_2^2 - 3l_1 l_3).$$

We represent Ψ by

$$\Psi = -27x^4(10-x)^2(1-x)^2(1+x)^6\tilde{\Lambda}_x,\tag{29}$$

where

$$\tilde{\Lambda}_x = -17052 + 84812x - 222415x^2 - 10212x^3 + 78990x^4 - 226456x^5 -152793x^6 + 198120x^7 + 169280x^8 - 11796x^9 - 33413x^{10} + 1068x^{11} +2790x^{12} - 1008x^{13} + 117x^{14}.$$
(30)

- Since $\tilde{\Lambda}_x < 0$ holds for all $x \in (0,1)$, from (29), $\Psi \ge 0$ is true. We thus have $g_x(\zeta_2) \ge 0$. Finally, it
- follows from (27) that $g_x(y) \ge 0$ holds for all $y \in [0,1]$. The proof of Proposition 4 is completed. \square

Proposition 5. For a function F_4 defined by

$$F_4(x,y) = F_1(-x,y),$$
 (31)

where F_1 is defined by (12), we have

$$F_4(x,y) \ge -8$$
, $(x,y) \in [0,1] \times [-1/3,1]$.

- **Proof.** It is easily checked that $F_4(x,y) \geq -8$ holds for $y \in [-1/3,1]$ when x=0 or x=1. Let
- x ∈ (0,1) be fixed and put $m_i = b_i(-x)$ (i ∈ {0,1,2,3,4}). Define a function g_x : $[-1/3,1] \to \mathbb{R}$ by
- $g_x(y) = F_4(x,y).$

First, we will show that $g_x(y) \ge -8$ holds for $y \in [-1/3,0]$. Since $m_3 > 0$ and $m_4 > 0$, we have $m_4 y^4 \ge 0$ and $m_3 y^3 \ge -m_3 y^2/3$ for $y \in [-1/3,0]$. Hence, we obtain

$$g_{x}(y) + 8 > \varphi_{x}(-y), \quad y \in [-1/3, 0],$$
 (32)

where $\varphi_x : [0,1/3] \to \mathbb{R}$ is the function defined by

$$\varphi_x(y) = \left(-\frac{1}{3}m_3 + m_2\right)y^2 - m_1y + m_0 + 8, \quad y \in [0, 1/3].$$

Since $m_1 < 0$ and

$$-\frac{1}{3}m_3+m_2=\frac{1}{3}(1-x^2)^2(21-4x+14x^2)>0, \quad x\in(0,1),$$

we get

$$\varphi'_x(y) = 2\left(-\frac{1}{3}m_3 + m_2\right)y - m_1 > 0, \quad y \in [0, 1/3].$$

Therefore φ_x is increasing on [0,1/3] and we get

$$\varphi_x(y) \ge \varphi_x(0) = m_0 + 8 = x^2(16 - 6x - 8x^2 + 6x^3) \ge 0, \quad y \in [0, 1/3].$$

Thus, by (32), $g_x(y) \ge -8$ holds for $y \in [-1/3, 0]$.

Next, we will show that $g_x(y) \ge -8$ holds for $y \in [0,1]$. For this, define a function $\psi_x : [0,1] \to \mathbb{R}$ by

$$\psi_x(y) = g_x(y) - m_4 y^4 + 8 = m_3 y^3 + m_2 y^2 + m_1 y + m_0 + 8.$$

It is sufficient to show that $\psi_x(y) \ge 0$ holds for $y \in [0,1]$, since

$$g_x(y) + 8 \ge \psi_x(y), \quad y \in [0, 1].$$

Let

$$\zeta_i = \frac{-m_2 + (-1)^i \sqrt{m_2^2 - 3m_1 m_3}}{3m_3}, \quad i \in \{1, 2\}$$

be the roots of the equation

$$\psi_x'(y) = 3m_3y^2 + 2m_2y + m_1 = 0.$$

Clearly, $\zeta_1 < 0$. Thus we have

$$\psi_x(y) \ge \min\{\psi_x(1), \psi_x(\zeta_2)\}, \quad y \in [0, 1].$$
 (33)

Since

$$\psi_x(1) = 7 + 2x - 19x^2 - 4x^3 + 29x^4 + 2x^5 - 9x^6 > 0, \quad x \in (0,1),$$

- it is enough to show that $\psi_x(\zeta_2) \ge 0$ holds. A similar argument with the proof of Proposition 4, for
- $x \in (0,1), \psi_x(\zeta_2) \ge 0$ holds if $\tilde{\Lambda}_{-x} < 0$, where $\tilde{\Lambda}_x$ is the quantity defined by (30). It can be checked
- that $\tilde{\Lambda}_x < 0$ holds for all $x \in (-1,0)$. Consequently, $\psi_x(\zeta_2) \ge 0$, when $x \in (0,1)$, follows. Hence, by
- 62 (33), $\psi_x(y) \ge 0$ holds for $y \in [0,1]$. It completes the proof of Proposition 5. \square

63 4. Main result

By using all lemmas in Section 2 and propositions in Section 3, the sharp bound of Hankel determinant of the third kind for starlike functions with real coefficients can be derived as the following result.

Theorem 1. If $f \in SR^*$ is the form (1), then the following inequalities hold:

$$-\frac{4}{9} \le H_{3,1}(f) \le \frac{1}{9}\sqrt{3}.\tag{34}$$

10 of 15

The first inequality is sharp for the function $f = f_1 \in SR^*$, where

$$f_1(z) := z(1-z^3)^{-2/3} = z + \frac{2}{3}z^4 + \frac{5}{9}z^7 + \cdots, \quad z \in \mathbb{D}.$$

The second inequality is sharp for the function $f = f_2 \in SR^*$, where

$$f_2(z) := z \exp\left(-\int_0^z \frac{(2/\sqrt{3})\zeta + 2\zeta^3}{1 + (2/\sqrt{3})\zeta^2 + \zeta^4} d\zeta\right)$$
$$= z - \frac{z^3}{\sqrt{3}} + \frac{2z^7}{3\sqrt{3}} - \frac{7z^9}{18} + \cdots, \quad z \in \mathbb{D}.$$

Proof. Let $f \in \mathcal{SR}^*$ be of the form (1). Then by (3) there exists a $\omega \in \mathcal{B}_0$ of the form (8) such that

$$\frac{zf'(z)}{f(z)} = \frac{1+\omega(z)}{1-\omega(z)}. (35)$$

Substituting the series (1) and (8) into (35), by equating the coefficients we get

$$18H_{3,1}(f) = 3\beta_1^4 \beta_2 + 6\beta_1^3 \beta_3 + 10\beta_1 \beta_2 \beta_3 - 8\beta_3^2 - 11\beta_1^2 \beta_2^2 + 9(\beta_2 - \beta_1^2)\beta_4.$$
 (36)

- Since $H_{3,1}(f)=H_{3,1}(\tilde{f})$, where $\tilde{f}(z)=-f(-z)\in\mathcal{SR}^*$, we may assume that $\beta_1\in[0,1]$.
 - **I.** When $\beta_1 = 1$, then by Schwarz's lemma, $\beta_n = 0$ for all $n \ge 2$. Thus, by (36), $H_{3,1}(f) = 0$.
 - II. When $\omega \in \mathcal{B}_0$ be such that $|\beta_2| = 1 \beta_1^2$ and $\beta_1 \in [0,1)$. Let $p = (1+\omega)/(1-\omega) \in \mathcal{P}$ be of the form (6). From the relations

$$c_1 = 2\beta_1$$
 and $c_2 = 2(\beta_1^2 + \beta_2)$,

it follows from that $c_1 \in [0,2)$ and $2c_2 = c_1^2 + (4-c_1^2)\zeta$, where $\zeta = \pm 1 \in \mathbb{T}$.

II(a) Assume that $\zeta = 1$. Then, by Lemma 1, $p = p_1$, where

$$p_1(z) = \frac{1 + 2\tau z + z^2}{1 - z^2} = 1 + 2\tau z + 2z^2 + 2\tau z^3 + \cdots, \quad z \in \mathbb{D}$$

with $\tau \in [0,1)$. And, from $p = (1 + \omega)/(1 - \omega)$, we have

$$\beta_1 = \tau$$
, $\beta_2 = 1 - \tau^2$, $\beta_3 = -\tau + \tau^3$ and $\beta_4 = \tau^2 - \tau^4$. (37)

Substituting (37) into (36), we get

$$H_{3,1}(f) = -\frac{2}{9}\tau^2(5 - 7\tau^2 + 2\tau^4) =: g(\tau^2),$$
 (38)

where

$$g(x) = -\frac{2}{9}x(1-x)(5-2x).$$

It can be easily checked that $g(x) \le g(0) = 0$, for $x \in [0,1)$. Moreover, since g'(x) = 0 occurs only when $x = x_1 := (7 - \sqrt{19})/6 = 0.440184 \cdots \in [0,1)$ and $g''(x_1) = 4\sqrt{19}/9 > 0$, it holds that

$$g(x) \ge g(x_1) = \frac{1}{243}(28 - 19\sqrt{19}) \ge -\frac{4}{9}, \quad x \in [0, 1).$$

⁷⁰ So, from (38), the inequality (34) holds.

II(b) Now assume that $\zeta = -1$. Then, by Lemma 1 again, we get $p = p_2$, where

$$p_2(z) = \frac{1 - z^2}{1 - 2\tau z + z^2}$$

$$= 1 + 2\tau z + (-2 + 4\tau^2)z^2 + (-6\tau + 8\tau^3)z^3 + (2 - 16\tau^2 + 16\tau^4)z^4 + \cdots, \quad z \in \mathbb{D}$$

with $\tau \in [0,1)$. Thus, we have

$$\beta_1 = \tau$$
, $\beta_2 = \tau^2 - 1$, $\beta_3 = \tau^3 - \tau$ and $\beta_4 = \tau^4 - \tau^2$. (39)

Substituting (39) into (36), we get $H_{3,1}(f) = 0$ and the inequality (34) holds.

III. Let now $|\beta_2| \neq 1 - \beta_1^2$ and $\beta_1 \neq 1$.

At first, we will show that the second inequality in (34) holds. Since β_1 , β_2 and β_3 are real, by Lemma 2 for $s \in [0,1]$ and $t, u \in [-1,1]$ we have

$$\beta_1 = s$$
, $\beta_2 = (1 - s^2)t$, $\beta_3 = (1 - s^2)(u(1 - t^2) - st^2)$. (40)

Substituting (40) into (10) and (11), we have

$$\Psi_U = (1 - s^2)[1 - u^2 - u(u + 2s)t - (1 - u^2)t^2 + (u + s)^2t^3]$$
(41)

and

$$\Psi_L = (1 - s^2)[-1 + u^2 - u(u + 2s)t + (1 - u^2)t^2 + (u + s)^2t^3]. \tag{42}$$

We also have $(s, t) \notin C$, where C is a curve defined by

$$C = \{(s,t) \in R : s = 1 \text{ or } t = \pm 1\} \subset \partial R.$$

III(a) Consider the case $\beta_2 \geq \beta_1^2$, i.e. $(s,t) \in \Omega_1$, where Ω_1 is the set defined by

$$\Omega_1 = \left\{ (s, t) \in [0, 1/\sqrt{2}) \times [0, 1) : \frac{s^2}{1 - s^2} \le t < 1 \right\}$$

so that $\Omega_1 \cap C = \emptyset$. In this case, by (41), we have

$$18H_{3,1}(f) \le 3\beta_1^4 \beta_2 + 6\beta_1^3 \beta_3 + 10\beta_1 \beta_2 \beta_3 - 8\beta_3^2 - 11\beta_1^2 \beta_2^2 + 9(\beta_2 - \beta_1^2) \Psi_U$$

$$= -(1 - s^2)(1 + t)\Phi(s, t, u), \quad (s, t, u) \in \Omega_1 \times [-1, 1],$$
(43)

where

$$\Phi(s, t, u) = \Phi_0 + \Phi_1 u + \Phi_2 u^2 \tag{44}$$

with

$$\begin{split} &\Phi_0 = \Phi_0(s,t) := -9(1-t)t - s^4t(3+2t-t^2) + s^2(9+2t^2-t^3), \\ &\Phi_1 = \Phi_1(s,t) := -2s(1-t)[(5-t)t + s^2(3+4t+t^2)], \\ &\Phi_2 = \Phi_2(s,t) := (1-t^2)[8+t-s^2(17+t)]. \end{split}$$

We note that $\Phi_2 > 0$, since

$$8+t-s^2(17+t) \ge \frac{8(1-t)}{1+t} > 0, \quad (s,t) \in \Omega_1.$$

Let $u_1 = -\Phi_1/(2\Phi_2)$ be the root of the equation $(\partial \Phi/\partial u)(s,t,u) = 0$. Then it can be seen that $u_1 \ge -1$. Indeed, we note that $2\Phi_2 - \Phi_1 = 2(1-t)Y(s,t)$, where $Y(s,t) = \lambda_2(s)t^2 + \lambda_1(s)t + \lambda_0(s)$, where

$$\lambda_2(s) = (1-s)^2(1+s), \quad \lambda_1(s) = 9 + 5s - 18s^2 + 4s^3$$

and

$$\lambda_0(s) = 8 - 17s^2 + 3s^3.$$

Since $\lambda_i(s) \ge 0$ when $s \in [0, 1/\sqrt{2})$ for $i \in \{1, 2\}$, we have

$$Y(s,t) \ge Y\left(s, \frac{s^2}{1-s^2}\right) = \frac{8(1+s-s^2)}{1+s} \ge 0, \quad (s,t) \in \Omega_1.$$

- Hence, we get $2\Phi_2 \Phi_1 \ge 0$ and it follows from $\Phi_2 > 0$ that $u_1 \ge -1$.
 - (i) Assume that $u_1 \ge 1$. Then we have

$$\Phi(s,t,u) \ge \Phi(s,t,1) = \Phi_0 + \Phi_1 + \Phi_2, \quad (s,t,u) \in \Omega_1 \times [-1,1].$$

Therefore, by (43), it holds that

$$18H_{3,1}(f) \le -(1-s^2)(1+t)(\Phi_0 + \Phi_1 + \Phi_2) = F_1(s,t), \quad (s,t) \in \Omega_1, \tag{45}$$

where F_1 is the function defined by (12). From Proposition 1 and (45), we thus have $H_{3,1}(f) \le \sqrt{3}/9$.

(ii) Assume that $-1 \le u_1 \le 1$. Then we have

$$\Phi(s,t,u) \ge \Phi(s,t,u_1) = \Phi_0 - \frac{\Phi_1^2}{4\Phi_2}, \quad (s,t,u) \in \Omega_1 \times [-1,1].$$

Therefore, by (43), it holds that

$$18H_{3,1}(f) \le -(1-s^2)(1+t)\left(\Phi_0 - \frac{\Phi_1^2}{4\Phi_2}\right) = 9F_2(s^2,t), \quad (s,t) \in \Omega_1,$$

where F_2 is the function defined by (18). Therefore, by Proposition 2, $H_{3,1}(f) \leq \sqrt{3}/9$ holds.

III(b) Consider the case $\beta_2 \leq \beta_1^2$, i.e. $(s,t) \in \Omega_2$, where Ω_2 is the set defined by $\Omega_2 = \operatorname{cl}(R \setminus \Omega_1) \setminus C$. Then, from (42), we have

$$18H_{3,1}(f) \le 3\beta_1^4\beta_2 + 6\beta_1^3\beta_3 + 10\beta_1\beta_2\beta_3 - 8\beta_3^2 - 11\beta_1^2\beta_2^2 + 9(\beta_2 - \beta_1^2)\Psi_L$$

= $-(1 - s^2)(1 + t)\hat{\Phi}(s, t, u), \quad (s, t, u) \in \Omega_2 \times [-1, 1],$ (46)

where

$$\hat{\Phi}(s,t,u) = \hat{\Phi}_0 + \hat{\Phi}_1 u + \hat{\Phi}_2 u^2 \tag{47}$$

with

$$\begin{split} \hat{\Phi}_0 &= \hat{\Phi}_0(s,t) := 9(1-t)t - s^4t(3+2t-t^2) - s^2(9-20t^2+t^3), \\ \hat{\Phi}_1 &= \hat{\Phi}_1(s,t) := -2s(1-t)[(5-t)t + s^2(3+4t+t^2)], \\ \hat{\Phi}_2 &= \hat{\Phi}_2(s,t) := (1-t)^2[8-t+s^2(1+t)]. \end{split}$$

- Using the inequality $s^2 \ge t/(1+t)$, we have $\hat{\Phi}_2 \ge 8(1-t)^2 > 0$ for $(s,t) \in \Omega_2$. Let $u_2 = -\hat{\Phi}_1/(2\hat{\Phi}_2)$
- be the root of the equation $(\partial \hat{\Phi}/\partial u)(s,t,u)=0$. Then, by a similar procedure with Part III(a), it can be
- seen that $u_2 \ge -1$.

(i) Assume that $u_2 \ge 1$. Then we have

$$\hat{\Phi}(s,t,u) \ge \hat{\Phi}(s,t,1) = \hat{\Phi}_0 + \hat{\Phi}_1 + \hat{\Phi}_2, \quad (s,t,u) \in \Omega_2 \times [-1,1].$$

Therefore, by (46), it holds that

$$18H_{3,1}(f) \le -(1-s^2)(1+t)(\hat{\Phi}_0 + \hat{\Phi}_1 + \hat{\Phi}_2) = F_1(s,t), \quad (s,t) \in \Omega_2,$$

where F_1 is the function defined by (12). Thus, by Proposition 1, $H_{3,1}(f) \leq \sqrt{3}/9$ holds.

(ii) Assume that $-1 \le u_2 \le 1$. Then we have

$$\hat{\Phi}(s,t,u) \ge \hat{\Phi}(s,t,u_2) = \hat{\Phi}_0 - \frac{\hat{\Phi}_1^2}{4\hat{\Phi}_2}, \quad (s,t,u) \in \Omega_2 \times [-1,1].$$

Therefore, by (46), it holds that

$$18H_{3,1}(f) \le -(1-s^2)(1+t)\left(\hat{\Phi}_0 - \frac{\hat{\Phi}_1^2}{4\hat{\Phi}_2}\right) = F_3(s^2,t), \quad (s,t) \in \Omega_2,$$

- where F_3 is the function defined by (21). Therefore, by Proposition 3, we obtain $H_{3,1}(f) \leq \sqrt{3}/9$.
- Next, we will show that the first inequality in (34) holds.

IV(a) Consider the case $\beta_2 \ge \beta_1^2$. Then we have

$$18H_{3,1}(f) \ge -(1-s^2)(1+t)\hat{\Phi}(s,t,u), \quad (s,t,u) \in \Omega_1 \times [-1,1], \tag{48}$$

where $\hat{\Phi}$ is the function defined by (47). Since $\hat{\Phi}_1 \leq 0$ and $\hat{\Phi}_2 > 0$, it holds that

$$\hat{\Phi}(s,t,u) \le \max\{\hat{\Phi}(s,t,-1), \hat{\Phi}(s,t,1)\}
= \hat{\Phi}(s,t,-1) = \hat{\Phi}_2 - \hat{\Phi}_1 + \hat{\Phi}_0, \quad (s,t,u) \in \Omega_1 \times [-1,1].$$

Hence, from (48), we obtain

$$H_{3,1}(f) \ge -(1-s^2)(1+t)(\hat{\Phi}_2 - \hat{\Phi}_1 + \hat{\Phi}_0) = F_4(s,t), \quad (s,t) \in \Omega_1,$$
 (49)

where F_4 is the function defined by (31). Thus, by Proposition 5 and (49), we get $H_{3,1}(f) \ge -4/9$. **IV(b)** We consider the case $\beta_2 \le \beta_1^2$. Then we have

$$18H_{3,1}(f) \ge -(1-s^2)(1+t)\Phi(s,t,u), \quad (s,t,u) \in \Omega_2 \times [-1,1],$$

where Φ is the function defined by (44).

For $t \in [-1/3, 0]$, let

$$s_t = \frac{t^2 - 5t}{t^2 + 4t + 3}$$

so that $0 = s_0 \le s_t \le s_{-1/3} = 1$ holds for $t \in [-1/3, 0]$. And let

$$\Omega_3 = \{(s,t) \in \Omega_2 : s \le s_t\}$$
 and $\Omega_4 = \{(s,t) \in \Omega_2 : s \ge s_t\}$.

- We note that $\Omega_3\subset [0,1]\times [-1,0]$ and $\Omega_4\subset [0,1]\times [-1/3,1]$. Then $\Phi_1\geq 0$ when $(s,t)\in \Omega_3$, and
- $\Phi_1 \leq 0 \text{ when } (s,t) \in \Omega_4.$
 - (i) For the case $(s,t) \in \Omega_3$, since $\Phi_1 \ge 0$ and $\Phi_2 \ge 0$, we have

$$\Phi(s,t,u) < \Phi(s,t,1) = \Phi_2 + \Phi_1 + \Phi_0, \quad (s,t,u) \in \Omega_3 \times [-1,1]$$

and, therefore, we get

$$18H_{3,1}(f) \ge -(1-s^2)(1+t)(\Phi_2 + \Phi_1 + \Phi_0) = F_1(s,t), \quad (s,t) \in \Omega_3,$$

- where F_1 is the function defined by (12). Since $\Omega_3 \subset [0,1] \times [-1,0]$, Proposition 4 gives us that $H_{3,1}(f) \geq -4/9$ holds.
 - (ii) For the case $(s,t) \in \Omega_4$, we have

$$18H_{3,1}(f) \ge -(1-s^2)(1+t)(\Phi_2 - \Phi_1 + \Phi_0) = F_4(s,t), \quad (s,t) \in \Omega_4,$$

- where F_4 is the funciton defined by (31). Since $\Omega_4 \subset [0,1] \times [-1/3,1]$, Proposition 5 gives us that $H_{3,1}(f) \geq -4/9$ holds. \square
- Author Contributions: Writing—Original Draft Preparation, Y.J. Sim; Writing—Review & Editing, O.S. Kwon.
- Funding: This research received no external funding.
- Acknowledgments: This work was supported by the National Research Foundation of Korea(NRF) grant funded
 by the Korea government(MSIP; Ministry of Science, ICT & Future Planning) (No. NRF-2017R1C1B5076778).
- Conflicts of Interest: The authors declare no conflict of interest.

95 References

- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. *Bull. Malay. Math. Sci. Soc.* **2018**, 41, pp. 523–535.
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel detrminant for strongly starlike functions of order alpha. *J. Math. Inequal.* 2017, 11(2), pp. 429–439.
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. *J. Inequal. Pure Appl. Math.* **2006**, 7(2), pp. 1–5.
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. *Int. J. Math. Anal.* **2007**, 1(13), pp. 619–625.
- Lee, S.K.; Ravichandran, V.; Supramanian, S. Bound for the second Hankel determinant of certain univalent functions. *J. Inequal. Appl.* **2013**, 2013(281), pp. 1–17.
- Mishra, A.K.; Gochhayat, P. Second Hankel determinat for a class of analytic functions defined by fractional derivative. *Int. J. Math. Math. Sci.* 2008, Article ID 153280.
- ¹⁰⁸ 7. Goodman, A.W. *Univalent Functions*, Mariner, Tampa, 1983.
- 8. Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. *J. Korean Math. Soc.* **2015**, 52(6), pp. 1139–1148.
- 9. Prajapat, J.K.; Bansal, D.; Singh, A.; Mishra, A.K. Bounds on third Hankel determinant for close-to-convex functions. *Acta Univ. Sapientae Mathematica* **2015**, 7(2), pp. 210–219.
- 113 10. Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. *J. Inequal. Appl.* **2013**, 2013(412), 8 pp.
- 11. Shanmugam, G.; Stephen, B.A.; Babalola, K.O. Third Hankel determinant for α -starlike functions. *Gulf J. Math.* **2014**, 2(2), pp. 107–113.
- 12. Sudharsan, T.V.; Vijayalaksmi, S.P.; Sthephen, B.A. Third Hankel determinant for a subclass of analytic functions. *Malaya J. Math.* **2014**, 2(4), pp. 438–444.
- 13. Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions.

 Bull. Malays. Math. Sci. Soc. 2019, 42, pp. 767–780.
- 14. Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions, *Bull. Korean Math. Soc.* **2018**, 55(6), pp. 1859–1868.
- 15. Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, *Complex Anal. Oper. Theory* (in press), doi:10.1007/s11785-018-0819-0.
- 16. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions, *Bull. Aust. Math. Soc.* (in press), doi:10.1017/S0004972717001125.

15 of 15

- 17. Babalola, K.O. On *H*3(1) Hankel determinants for some classes of univalent functions. In: Cho, Y.J. (ed.)
 Inequality Theory and Applications, vol. 6, pp. 1–7. Nova Science Publishers, New York (2010)
- 18. Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. *Mediter. J. Math.* **2017**, 14(1), Article 19, 10 pp.
- 19. Pommerenke, C. Univalent Functions, Vandenhoeck and Ruprecht; Göttingen, 1975.
- 20. Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. *Comput. Methods Funct. Theory.* 2018, 18(2), pp. 307–314.
- 21. Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α, β) -convex functions. *Ann. Univ. Mariae Curie-Sklodowska Sect. A.* **1981**, 35, pp. 125–143.
- 22. Kwon, O.S.; Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the fifth coefficient of strongly starlike functions with real coefficients. *Bull. Malay. Math. Sci. Soc.* 2019, 42, pp. 1719–1735.