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Abstract

The theory of the continuous two-dimensional (2D) Fourier Transform in polar coordinates has
been recently developed but no discrete counterpart exists to date. In the first part of this two-
paper series, we proposed and evaluated the theory of the 2D discrete Fourier Transform (DFT)
in polar coordinates. The theory of the actual manipulated quantities was shown, including the
standard set of shift, modulation, multiplication, and convolution rules. In this second part of the
series, we address the computational aspects of the 2D DFT in polar coordinates. Specifically,
we demonstrate how the decomposition of the 2D DFT as a DFT, Discrete Hankel Transform
(DHT) and inverse DFT sequence can be exploited for efficient code. We also demonstrate how
the proposed 2D DFT can be used to approximate the continuous forward and inverse Fourier
transform in polar coordinates in the same manner that the 1D DFT can be used to approximate
its continuous counterpart.

Keywords: Fourier Theory, DFT in polar coordinates, polar coordinates, multidimensional DFT,
Discrete Hankel Transform, Discrete Fourier Transform, Orthogonality.

1 Introduction

The Fourier transform is a powerful analytical tool and has proved to be invaluable in many
disciplines such as physics, mathematics and engineering. The development of the Fast Fourier
Transform (FFT) algorithm [1], which computes the discrete Fourier transform with a fast
algorithm, firmly established the Fourier transform as a practical tool in diverse areas, most
notably signal and image processing.

In two dimensions, the FFT can still be used to compute the discrete Fourier transform in
Cartesian coordinates. However, in many applications such as photoacoustics [2] and
tomography ([3], [4], [5]), it is often necessary to compute the Fourier transform in polar
coordinates. Moreover, for functions that are naturally described in polar coordinates, a discrete
version of the 2D Fourier transform in polar coordinates is needed. There have been some
attempts to calculate the Fourier transform in polar coordinates, most notably through the Hankel
transform, since the zeroth order Hankel transform is known to be a 2D Fourier transform in
polar coordinates for rotationally symmetric functions. However, prior work has focused on
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numerically approximating the continuous transform. This stands in contrast to the Fourier
transform, where the Discrete Fourier Transform (DFT) can stand alone as an orthogonal
transform, independent of the existence of its continuous counterpart.

In the first part of this two-part paper series, we proposed an independent discrete 2D
Fourier transform in polar coordinates, which has been defined to be discrete from first principles
[6]. Standard operational ‘rules’ of shift, modulation and convolution rules for this 2D DFT in
polar coordinates were also demonstrated. The operational rules were demonstrated via the key
properties of the proposed discrete kernel of the transform. However, using the discrete kernel
may not be the most effective way to compute the transform. Furthermore, while the 2D DFT in
polar coordinates was demonstrated to have properties and rules as a standalone transform
independent of its relationship to any continuous transform, an obvious application of the
proposed discrete transform is to approximate its continuous counterpart.

Hence, the goal of this second part of this two-part paper series is to propose computationally
efficient approaches to the computation of the previously proposed 2D DFT in polar coordinates
and also to validate its effectiveness to approximate the continuous 2D Fourier transform in polar
coordinates. Moreover, since computing speed is one of the most important criteria for a discrete
transform, computational improvements to the transform are also proposed.

The outline of the paper is as follows. Section 2 introduces the proposed definition of the
discrete 2D Fourier transform in polar coordinates. The motivation of this definition and the
transform rules (multiplication, convolution, shift etc) are given in the first part of this two-part
paper. Section 3 introduces the discretization scheme where we show the connection between
discrete samples of the continuous functions and the discrete transform. Here, the connection
between using the proposed 2D DFT and sampled vales of the continuous functions is explained.
The proposed 2D DFT relies on a specific sampling scheme (introduced in section 3) which can
be plotted and analyzed for ‘grid coverage’ — how much of the 2D plane is covered and at which
density. Thus, Section 4 analyzes the proposed discretization points and their implication of the
sampling grid for density and coverage of the grid. The insights gained from this section will be
useful in interpreting the results of approximating the continuous transform with the discrete
transform. Section 5 introduces numerical computation schemes whereby the interpretation of
the proposed 2D transform as a sequence of 1D DFT, 1D DHT and 1D IDFT is exploited.
Approaches to exploit some of Matlab’s (Mathworks 2018) built-in functions for ease of coding
and computational speed are also demonstrated. Section 6 then investigates the ability of the
proposed 2D DFT to approximate the continuous transform in terms of precision and accuracy.
Three test functions for which closed-form continuous transforms are known are analyzed.
Section 7 discusses the computational time of the transform and approaches that were
successfully undertaken to drastically improve the computation time. Finally, section 8
summarizes and concludes the paper. Sample Matlab code is included in the appendix of the

paper.
2 Definition of the Discrete 2D Fourier Transform in Polar Coordinates

The 2D-Discrete Fourier Transform in polar coordinates has been defined in the first part of this
two-paper series as the discrete transform that takes the matrix (or double-subscripted series) fpk

to the matrix (double-subscripted series) F, such that fIDk - qu is given by

N-1 M

qu :F(fpk):z Z fpqu_m;pk (1)

k=1 p=—M
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where p,k,g,m,n, N,, and N, are integers such that -M <n<M , where 2M +1=N,

1<mk,< N, -land -M < p,q <M . Similarly, for the inverse transform we propose

Nl M
fpk = ]Fil ( qu) = ; q§/| qu Eq+m;pk (2)

In equations (1) and (2), Eqim;pk are the kernels of the transformation. These can be chosen as the

‘non-symmetric’ form given by

J jnk jnm
1 M " J N Lin2ZP in2rd
B =~ Y, g2
A N2 n—ZI\/I Jr?Nl‘]rirl( Jnk) (3)

o[l

M oo [27np . 27nq
L o BN LIPPTUN S
am; pk ) Py Jril(j”m)

Here, J,(z)is the nth order Bessel function of the first kind and j,, denotes the kth zero of the

nth Bessel function. The subscript (+ or -) indicated the sign on the i* and on the exponent
containing the p variable; the g variable exponent then takes the opposite sign. From a matrix

point of view, both f, and F, are N, x(N, —1) sized matrices. Another possible form of the

kernel is the ‘symmetric’ form where the kernels are complex conjugates of each other. This

form is simply a matter of redistributing the factors of jan in the denominators so that

J ( Jnk .lnm J
| in27P 27
jan 2i—”e in N, e+|n N,

E(S)— 1 i
i N2 n=—M jan‘]rirl( jnk)

(4)

J jnmjnk
Eer _ii Ui ) g
ek N2 n=-M jan‘]ril(jnm)

As before, p,k,q,m,n, N, and N, are integers such that -M <n<M , where 2M +1=N,

1<mk,<N,~land -M < p,g<M . In equation (4), ES)", is now the complex conjugate of

Eéfn);‘pk. Both sets of kernels in equations (3) and (4) lead to the same set of modulation, shift,
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convolution, multiplication rules. The form in equation (3) arises naturally from discretization
of the continuous transform, but does not lead to the expected Parseval relationship. The form
in equation (4) is less suited to approximating the continuous transform but does lead to the
expected Parseval relationship. The Parseval relationships were presented and shown in the first

part of this two-part paper.

3 Discrete Transform to approximate the continuous transform

In this section, relationships between discretely sampled values of the function and its continuous
2D FT are presented in the case of a space-limited or band-limited function. These relationships
were derived in the first part of the paper and are repeated here since they will form the basis for
the using the discrete transform to approximate the continuous transform at specified sampling

points
Consider a function in the space domain f (r,&) which is space limitedto r € [O, R]. This
implies that the function is zero outside of the circle bounded by r e[O, R]. An approximate

relationship between sampled values of the continuous function and sampled values of its

continuous forward 2D transform F( p,l//) has been derived in the first part of the two-part

paper as

2i~ J Jnk Jnm
Jgm 27q iR 27rp M i _j2amp 270
FLQm J 2wy 3 i 8 Y e e M ()
R N k=1 p=—M pN N2 N2 n=—M Jan n+1(Jnk)

Similarly, an approximate relationship between sampled values of the continuous forward

transform F ( p,z//) and sampled values of the continuous original function f (r,&)was shown to

be given by

2| J Jnm Jnk

JuR 2 1 X (g 27q) 1 Y o, ) e A

f _pk 5 ﬂ-p ~ 2 z Z F(ﬂ,iq]_ Z > -n 1 e NZ e NZ (6)
Jon, N, 27R° 13 ¢ RN, )N, Ty Jn+1(]nm)

In equations (5) and (6), f(r,@) is the original function in 2D space and F(p,y) is the 2D

Fourier transform of the function in polar coordinates. The values of the sampled functions given

in equations and can be considered to be the discrete quantities denoted by
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f f[’ka zan
pk
Jle N2
F, —F|dm 279
| RN,

Now consider functions in the frequency domain F (o, )with an effective band limit

()

pe[O,Wp]. That is, we suppose that the 2D Fourier transform F(p,!//) of f(r,0) is band-

limited, meaning that F(p,z//) is zero for p2W =27W . The variable W, is written in this

form since W would typically be quoted in units of Hz (cycles per second) if using temporal

units or cycles per meter if using spatial units. Therefore, the multiplication by 2z ensures that
the final units are in s~ or m™. The approximate relationship between the discrete transform
F ( p,z//) and the sampled values of the continuous transform f (r, 6?)was derived in the first part

of the paper and is given by

2ifn\] jnm jnk ) )
- n H .Z2zhnp .27znq
qu 27Z'q ka 27Z'p 1 M Jan ! N + N
F _ | — e 2 e 2
( iy, N, J Z Z [ N, Z 37

JqN k=1 p=-M n+1( jnk)

(8)

The inverse transform is given by

J 276 " 2in~]n [ Jnjk Joe ] _;2anq 27mp
qm p T nN; N N

e 2e 2 (9
2 L ] N, ©)

f ka Zﬂ-p WPZ le_l
w Nz m=1 Jqu Nz 2 n=—M jan‘Jri—l(jnm)

p q=

As before, the relationships in equations (8) and (9) give relationships between the sampled

values of the original function

f, _f(ka 27sz (10)
W N,

p

and sampled values of its continuous 2D transform

F,=F Jan, p 274 (12)
Jqu N2
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The relationships given by equation (5),(6) ,(8) and (9), were the motivating definition of a 2D
Discrete Fourier transform in polar coordinates, defined in the first part of this two-part paper.
In the context of this second part of the two-part paper, they are also the relationships that permit
the use of the discrete transform to approximate the continuous transform at the specified

sampling points.

4 Discretization Points and Sampling Grid

The transforms defined in equations (1) and (2) can be applied to any matrix f, to yield its

forward transform F,, which can then be transformed backwards by using the inverse

transform. However, if these same discrete transforms are to be used for the purpose of
approximating a continuous 2D Fourier transform, then these transforms need to be applied to
the specific sampled values of the continuous functions in both space and frequency domains, as
shown in equations (7) and (11). The relationships in (7) and (11) define the sampling points
that need to be used and it is noted that the points are defined differently based on whether we
start with the assumption of a space or band limited function. These specific sampling points
as given in equation (7) and (11) imply a specific sampling grid for the function. In this section,
the sampling grid (its coverage and density in 2D) is analyzed.

4.1 Sampling points

For a space-limited function, we assume that the original function of interest is defined over
continuous (r,¢9) space where 0<r<Rand 0< 6 <2x. The discrete sampling spaces used
for radial and angular sampling points in regular Fspace(r,ﬁ) and o frequency (p,z//)space
are defined as

. R
o= 0, =227 (12)
Jle N2
and
qu 27
= = 13
Pn= VT (13)

For a band limited function, the function is assume band-limited to 0< p SWP 0<w<2r.

The sampling space used for radial and angular sampling points in regular @ frequency space
(p.y)and T space(r,&) for a bandlimited function is defined as

R (14)
W, N,
and
quWp q2z
Pgn = Vo= (15)
! Jqu ! N2
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As above, p,k,g,m,n, N,,and N, are integers such that -M <n<M , where 2M +1=N,,
1<m,k,< N, -1and —M < p,q <M. Clearly, the density of the sampling points depends on
the numbers of points chosen, that is on N, and N,. Also clear is the fact that the grid is not

equispaced in the radial variable. The sampling grid for a space-limited function are plotted
below to enable visualization. In the first instance, the polar grids are plotted for the case R =1
, N, =16and N, =15. These are shown in space (r space) and frequency (p space) in Figures
1 and 2 respectively.
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Figure 1 Sampling grid in space domain of a space limited function for R=1, N1=16 and N> = 15
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Figure 2 Sampling grid in frequency domain of a space limited function for R=1, N1=16 and N2 = 15

Clearly, the grids in Figure 1and Figure 2 are fairly sparse, but the low values of N, and N, have

been chosen so that the structure of the sampling points can be easily seen. It can be observed
that there is a hole at the center area in both domains which is caused by the special sampling

points. For higher values of the N, and N,, the grid becomes fairly dense, obtaining good

coverage of both spaces, but details are harder to observe. To demonstrate, the polar grids are
plotted for the case R =1, N, =96 and N, =95. These are shown in Figures 3 and 4

respectively.
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270

Figure 3 Sampling grid in space domain of a space limited function for R=1, N1 = 96 and N2 = 95

330

240 300
270

Figure 4 Sampling grid in frequency domain of a space limited function for R=1, N1 = 96 and N2 = 95

From Figure 3 and Figure 4, by choosing higher values of N,and N, , the sampling grid becomes
denser, however there is still a gap in the center area. The sampling grids for band-limited

functions are not plotted here since the sample grid for a band-limited function has the same
shape as with space limited function but the domains are reversed.

4.2 Sample Grid Analysis
From the first part of the paper, it was shown that the 2D-Fourier Transform can be interpreted
as a Discrete Fourier Transform in the angular direction, a Discrete Hankel Transform in the
radial direction and then an inverse Discrete Fourier Transform in the angular direction. Hence,
the sample size in the angular direction could have been decided by the Nyquist sampling
theorem [7], which states that

fo>2f (16)
where f, is the sample frequency and f_, is the highest frequency or band limit.

In the radial direction, the necessary relationship for the Discrete Hankel Transform is
given by [8]
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WpR = jan (17)

where W is the effective band-limit, R is the effective space limit and j, is the N zero of
J, (r). For the 2D Fourier Transform, since—M < p <M, the order of the Bessel zero ranges
from —M toM |, the relationship needed becomes

min(j,,,) =W, R (18)
The relationships jo = j . and joy, < Jun, < Jugn, << Juwy, are valid [9], hence equation
(18) can be written as

Jon, ZW,R (19)
It is pointed out in [10], [11] that the zeros of J, (z) are almost evenly spaced at intervals of 7

and that the spacing becomes exactly 7 in the limitas z — oo. In fact, it is shown in [10] that

a simple asymptotic form for the Bessel function is given by

Jn(z)z\/zzcos[z—(n+%j%} (20)

Therefore, an approximation to the Bessel zero, ], is given by
. 1\x
~|2k+n—-=|= 21
Jnk ( Zj 2 ( )

Hence, equation (19) can be written to choose N, approximately as

N,z >W R = 27WR
(22)
= N, > 2WR

where the reader is reminded that the units of W is m™ (the space equivalent of Hz). N, /R is

the spatial sampling frequency and we see that equation (22) effectively makes the same

statement as equation (16).

Intuitively, more sample points lead to more information captured, which gives an
expectation that increasing N, or N, individually will give a better sampling grid coverage.

However, it can be seen from Figure 1 to Figure 4 that there is a gap in the center of the sample
grid. From equation (12) and (13), the area of the gap in the center is related to the ranges of p

and K, that is N,and N,. In the sections below, it is assumed that the sampling theorems are

already satisfied (that is, an appropriate space and band limit is selected) and the relationship
between N, , N, and the size of the gap will be discussed.
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4.2.1 Space-limited function
In this section, it is assumed that the function is a space limited function, defined in r [0, R] .

The sampling points are defined as equation (12) in the space domain and (13) in the frequency
domain. In the following, a relationship between N, , N, and the area of the gap in both domains

is discussed.

4.2.1.1 Sample grid in the space domain
In the space domain, the effective limit in the space domain, R, is fixed. To analyze how the

values of N, and N, affect the coverage of the grid in space domain, consider the following
definition of ‘grid coverage’

R? — 7T?

T
= 100 23
A=—m (23)

where 7 denotes the average radius of the gap (the hole in the middle of the grid). A, as defined

in equation (23) is a measure of the ‘grid coverage’ since it gives a percentage of how much of
the original space limited domain area is captured by the discrete grid. For example, if the
average radius of the center gap is zero, then A, would be 100%, that is, complete coverage.

Based on the observation of Figure 1 and Figure 3, the relationship r,, <r,, <r,, <r,,,, isvalid.
Therefore, from equation (12), the average radius of the gap is given by

F:(rolerl):%(_JgRJrMRj (24)

Jon, Jwn,

Hence, equation (23) can be written as

1 Jo |, dwa |2
A =|1-=| 2 Jw 120900 (25)
4 Jon,  Iwy,

Table 1 shows the different values of A, as the values of N, and N, are changed.

Table 1 Spatial grid coverage, Ar, with respect to different values of N1 and N2 (R is fixed)

N1
15 75 150 300
N2
15 | A =9848% | A =99.92% A =99.98% A =99.99%
75 | A =9378% | A =99.36% A =99.81% A =99.95%
151 | A =90.14% | A =98.42% A =99.46% A =99.84%
301 | A =86.17% | A =96.58% A =98.59% A =99.51%

From Table 1, it can be seen that increasing N, (sample size in the radial direction) tends to

increase the grid coverage. Since the effective space limit R is fixed, from equation (19) it
follows that increasing N, actually increases the effective band limit. However, increasing N,

10
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(sample size in angular direction) will result in a bigger gap in the center of the grid, which then
decreases the coverage.

4.2.1.2 Sample grid in the frequency domain
Similarly, coverage of the grid in the frequency domain is defined as

A :M.

100 (26)
P 7[\sz

where p denotes the average radius of the gap. Since

— (putPu) _ Upt iu)
= = 27
p 5 R (27)

Then, it follows that equation (26) can be written as

A (jOl le)2
» { AR'W? ’ 28)

From equation (28), it can be observed that the sample grid coverage in the frequency domain is
affected by R ,W_  and M . Since N, =2M +1, in order to get a better grid coverage with a
fixed W, Rand N, can be adjusted. Table 2 shows the grid coverage A, for different values

of RandN, .

Table 2 Frequency grid coverage, A,, with respect to different values of R and N2 (W, is fixed)

R
15 75 150 300
N>
15 Ap =99.80% Ap =99.99% Ap =100.00% Ap =100.00%
75 | A, =97.66% | A =9991% | A =99.98% | A =99.99%
151| A =91.88% | A =99.68% | A =99.92% | A =99.98%
301| A =7067% | A =9883% | A =9971% | A =99.93%

From Table 2, the conclusion for the frequency domain is that when the effective band limit is
fixed, increasing R (effective space limit) tends to increase the coverage in the frequency
domain, while increasing N, (sample size in the angular direction) decreases the coverage.
However, from equation (19) it should be noted that to satisfy the sampling theorem, increasing
R with fixed W requires an increase in N, at the same time.

4.2.2 Band-limited function
In this section, we suppose that the function is an effectively band limited function, defined on

p €[0,W,] . The sampling points are defined as in equation (14) in the space domain and as in

11
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(15) in the frequency domain. In this subsection, the relationship between N, , N, and the area
of the gap in both domains is discussed.

4.2.2.1 Sampling Grid in the space domain

The same definition of grid coverage in the space domain will be used as in equation (23). Since
the sampling points of a band-limited function are given by equations (14) and(15), the average
radius of the gap can be defined as

FZ(rOl_Fer):l[h_l'MJ (29)
2 2\W, W,
Therefore, the coverage of the grid in space domain can be written as
(jOl + le)2
= 1-=M2 1100 30
A { MR (30)

It can be observed that the grid coverage in the space domain of a band-limited function is the
same as the grid coverage in the frequency domain of space limited function.

4.2.2.2 Sample Grid in frequency domain

The coverage of the grid in the frequency domain of a band limited function is defined by
equation (26). With sampling points defined in equation (15) , the average radius of the gap can
be defined as

5= (p01+pM1):1 _J&Wp.g._JﬂWp (31)
2 2 JON1 JMNl

The coverage of the grid in frequency domain can be written as

P O 0 Y ) TV 32)
4 JON1 JMN1
It can be observed that the grid coverage in the frequency domain of a band-limited function is
the same as the grid coverage in the space domain of a space limited function.

4.3 Conclusion
Based on the discussion above, the following conclusions can be made:

1. Increasing N, (angular direction) tends to decrease the sampling grid coverage in both

domains. Increasing N, (radial direction) tends to increase the sampling coverage in the

space domain for a space-limited function and in the frequency domain for a frequency-
limited function. So, if a signal changes sharply in the angular direction such that large
values of N, are needed, a large value of N, is also needed to compensate for the

effect of increasing N, on the grid coverage.

2. For a space-limited function, if there is a lot of energy at the origin in the space domain,
a larger value of N, will be required to ensure that the sampling grid gets as close to the

origin as possible in the space domain. If the function has a lot of energy at the origin in

12
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the frequency domain, a large value for both N, and R will be required to ensure
adequate grid coverage.

3. For a band-limited function, if there is a lot of energy at the origin in the frequency
domain, a large value of N, will be needed to ensure that the sample grid gets as close

to the origin as possible in the frequency domain. If the function has a lot of energy at
the origin in the space domain, large values for both N, and W are required.

5 Numerical Computation of the Transform

We have already demonstrated in the first part of the paper that the discrete 2D Fourier transform
in polar coordinates can be interpreted as a DFT, DHT and then inverse DFT. This interpretation
is quite helpful in coding the transform and in exploiting the speed of the FFT (Fast Fourier
Transform) in implementing the computations. In this section, we explain how the speed of
Matlab’s (Mathworks 2018) built-in code (or similar software) can be exploited to implement

the 2D FT in polar coordinates.

5.1 Forward transform

To transform fpk — F__, the operation is performed in steps. The first step is a forward 1D

aqm’

DFT transforming f, — f_nkwhere the psubscript is transformed to the n subscript:

fo=> f.e ™ forn=-M.M, k=1.N -1 (33)

The overbar is used to indicate a standard 1D DFT. In matrix operations, this is equivalent to
stating that each column of f is DFT’ed to yield f,, . The second step is a discrete Hankel

transform of order n, transforming f — fAnm so that the K subscript is Hankel transformed to
the msubscript:

Z‘Jn [ Jnk Jnm J
A N, -1 Jn — N, -1 _
f. = ——= 2 f . => Yhf, fon=-M.M, m=1.N -1 (34)

nm - 2 -
k=1 JnN1 J n+1 ( Jok ) k=1

Here, the overhat is used to indicate a Discrete Hankel Transform (DHT), with the DHT as
defined in [8] via the transformation matrix

Vo 2(_ )J{J”_mjnk] 1<mk <N, -1 (35)
Jnk

H 2
Jan ‘] n+l Jan

In matrix operations, this states that each row of f, is DHT ed to yield T, . These are now

A

scaled to give the Fourier coefficients of the 2D DFT f__ — F,_such that

13
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-  27R4T" 2 22RAT"E L F
F :ﬂ_— f :”—Z Yn?"f(lf forn=-M.M, m=1.N, -1 (36)
Jan Jan k=1

It is noted that the step in equation (36) exactly parallels the continuous form equivalent step
where F,(p)=27i"H,{f,(r)}, see [12], [13].

n

The final step of the forward 2D DFT in polar coordinates is then a standard inverse 1D
DFT, which transforms each column of F — F, so that the nsubscript is (inverse) DFT
transformed to the q subscript via

+in—2”q

1 M
:N_ Z N, forg=0.N,-1, m=1.N -1 (37)

qm

This last step is a 1D Inverse Discrete Fourier Transform (IDFT) for each column of Ifnm to
obtain F . The inverse 2D DFT can be similarly interpreted, shown in the next subsection.

5.2 Inverse Transform

The steps of the inverse 2D DFT are the reverse of the steps outlined above for the forward 2D
DFT. First, F,, —> F,, viaaforward 1D DFT

27rnq

M
=D Fpne n=—-M.M, m=1.N, -1 (38)

q=M

Then, a discrete Hankel transform is performed to transform F_ — F such that

JomJ
2‘Jn( nm nkJ
A N1
Fe=> $ Z YNE.,  forn=—-M.M, k=1.N,-1 (39)
m=1 Jan n+1(Jnm)

This is followed by a scaling operation to obtain Iénk — f_ from

My ~F, forn=—-M.M, k=1.N, -1 (40)
27R
Finally, an inverse 1D IDFT is applied to obtain  "nk - fpk from
1 M Zﬂnp
f o :N_ Z forp=-M.M, k=1.N -1 (41)

As previously mentioned, this parallels the steps taken for the continuous case, with each
continuous operation (Fourier series, Hankel transform) replaced by its discrete counterpart
(DFT, DHT).

Therefore, for both forward and inverse 2D-DFT, the sequence of operations is a DFT of
each column of the starting matrix, followed by a DHT of each row, a term-by-term scaling,

14
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followed by an IDFT of each column. This is a significant computational improvement because
by interpreting the transform this way, the Fast Fourier Transform (FFT) can be used, which
reduces the computational time quite significantly.

5.3 Interpretation of the sampled forward transform in Matlab terms

To use the built-in Matlab function fft, a few operations are required. First, we define matlab-
friendly indices p'=p+(M+1) and n'=n+(M +1) so that p,n=—M.M become
p,n'=1.2M +1=1..N, (since 2M +1=N,), that is the primed variables range from 1..2M

rather than —M..M . Hence, if the matrix f with entries f ., is defined, where

p'=1.N,, k=1.N, -1, then equation (33) can be written as the Matlab-defined DFT as

~27i(p'-1-M)(n'-1-M)

N2
fn'k = Z fpke . (42)
p=1

The definition of DFT in Matlab is actually given by the relationship

N, —27zi(p'-1)(n'-1)
_ B T—
fue =2 T (43)
p'=1
N, 27i(pD(-1-M) N, —27i(p'-1-M)(n'-1-M)
Since the relationship > f e N2 => f,e N2 is valid, we can sample
p'=1 p'=1

the original function to obtain the discrete f , values, put them in the matrix f , then shift the

matrix f , by M +1 along the column direction. In Matlab, the function circshift( A, K, dim)

can be used, which circularly shifts the values in array A by K positions along dimension dim.
Inputs K and dim must be scalars. Specifically, dim = lindicates the columns of matrix A and

dim = 2 indicates the rows of matrix A. Hence, equation (42) can be written as

f = it circshift(f,,,M +11),N,,1) (44)

pk?

In matrix operations, this is equivalent to stating that each column of f ., is DFT’ed to yield

f..

The second step (equation (34)) is a discrete Hankel transform of order n, transforming

f .. — f.. sothatthe k subscript is Hankel transformed to the | subscript. In order to relate the

15
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order n to the indexn' , we need to shift f,., by —(M +1) along column direction so that the

order ranges from —M to M.

ZJn(j%jmj
= = JnN
fo=>) ——=

ircshift( ... —(M +1).1 forn'=1.N,, 1=1.N, -1 45
N = circshi wr—(M +1),
" % (i e s b wheren—n—(w +3) @
By using the Hankel transform matrix defined in [8], equation (45) can be rewritten as
2 — T forn'=1.N,, I=1.N -1
f . =circshift( f . ,—(M +1),1) (Y,"™ 2 ' 46
i (fro-(M+D.1) (") { Where oM 1 (46)

In matrix operations, this states that each row of f.., is DHT ed to yield f .. These are now

A

scaled to give the Fourier coefficients of the 2D DFT f ., — F . In order to proceed to an
inverse DFT in the next step, it is necessary to shift the matrix by M +1 along the column

direction after scaling

2 S

= =circshif{2”R i f

. n'l?

{forn':l..Nz, I =1.N, -1
Jan

(47)
)

M +11
where n = n'—(M +1

This last step is a 1D IDFT for each column of F, to obtain F,- Using 2M +1=N,, and

g'=qg+1+ M, equation (37) can be written as

1 N _ +i(n'—M—l)72ﬂ(q,:17M)
F.,=— F e 2 forqg'=1..N_, 1 =1..N, -1
q'l Pd nl 2 1
2 n'=l
27(q'-1-M)
1 e _ (D)
:_Z nrle 2 (48)
Nz n'=1

= circshift ifft (¥,

N,.1),~(M +1)1)

5.4 Interpretation of the sampled inverse transform in Matlab terms
Similarly, matlab-friendly indices q'=q+ (M +1) and n'=n+(M +1) are also defined.
Hence, if the matrix F with entries F_, is defined, where q'=1..N, I=1.N, -1, it then

follows that equation (38) can be written as the matlab-defined DFT as

16
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N, _i(n'_M_l)w
N : for n'=1.N,, 1=1.N, -1

(49)

If the original function can be sampled as F, and then put into matrix F,, , then we need an

ql?

circshift operation. So equation (49) can be written as

F,, = fft(circshift(F,,, M +11),N,.1) (50)

Subsequently, a discrete Hankel transform of order nis required, transforming F,., — F.. so

that the | subscript is Hankel transformed to the k subscript. To achieve this, circshift is also

needed here.

~ T forn'=1.N,, 1=1.N, -1
) (51)

F, = circshift(F,,,—(M +1),1)(Y,}" Where n oM _1

This is followed by a scaling operation to obtain Ién.k — f_., and then a circshift by (M +1) so

that

F ircshift Jon ing M +1).1 forn'=1.N,, k=1.N, -1 5
. =circshi iE L (M +1),
" 27R? " where n=n'-(M +1) (52)

This last step is a 1D IDFT for each column of f_n.k to get f, . Using 2m +1=N,, and

p'= p+1, equation (41) can be written as

+i(n'-M _1)2”(+‘21‘M)

1 & -
fp.kzN—z f e forp'=1.N,, k=1.N -1
2 n'=l

27(n'-1)(p'-1-M)

1 N, _ i 7
- N_z f.e N2 (53)
2 n'=l

= circshift ifft  T,.,.,N,,1),-(M +1),1)

In conclusion, in this section, by using the interpretation of the kernel as sequential DFT, DHT
and IDFT operations, Matlab (or similar software) built-in code can be used to efficiently

implement the 2D DFT algorithm in polar coordinates.
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6 Numerical evaluation of the 2D DFT in polar coordinates to
approximate the continuous FT

In this section, the 2D discrete Fourier transform is evaluated for its ability to estimate the
continuous Fourier transform at the selected special sampling points in the spatial and frequency
domains.

6.1 Method for testing the Algorithm

6.1.1 Accuracy
In order to test accuracy of the 2D-DFT and 2D-IDFT to calculate approximate the continuous
counterpart, the dynamic error is proposed as a metric. The dynamic error is defined as [11]

IC(v)- D(v)q

max|D(v)| 4)

E(v)=20 Iogm{

where C(v) is the continuous forward or inverse 2D-Fourier transform and D(v) is the value

obtained from the discrete counterpart. The dynamic error is defined as the ratio of the absolute
error to the maximum amplitude of the discrete function, calculated on a log scale. Therefore, a
large negative value represents an accurate discrete transform. The dynamic error is used instead
of the percentage error in order to avoid division by zero.

6.1.2 Precision

The precision of the algorithm is an important evaluation criterion, which is tested by
sequentially performing a pair of forward and inverse transforms and comparing the result to the
original function. High precision indicates that numerical evaluation of the transform does not
add much error. An average of the absolute error between the original function and the calculated
counterpart at each sample point is used to measure the precision. It is given by

(N;-1)-N,

g(NlNZZ

n=1

(55)

where f is the original function and fis the calculated counterpart. An ideal precision would
result in the absolute error being zero.

6.2 Test functions

In this section, three test functions are chosen to evaluate the ability of the discrete transform to
approximate the continuous counterpart. The first test case is the circularly symmetric Gaussian
function. Given that it is circularly symmetric and that the Gaussian is continuous and smooth,
the proposed DFT is expected to perform well. The second test case is “Four-term sinusoid and
Sinc” function, which is not symmetric in the angular direction and suffers a discontinuity in the
radial direction. The third test function presents a more challenging test function, the “Four-term
sinusoid and Modified exponential” function. In this case, the test function is not circularly
symmetric and it explodes at the origin (approaches infinity at the origin). Given that as shown
above, the sampling grid cannot cover the area around the origin very well, a function that
explodes at the origin should give more error and should provide a reasonable test case for
evaluating the performance of the discrete transform.

6.2.1 Gaussian
The first function chosen for evaluation is a circular symmetric function which is Gaussian in
the radial direction. Specifically, the function in the space domain is given by

18
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f(r,0)=e*" (56)

where a is some real constant. Since the function is circularly symmetric, the 2D-DFT is a
zeroth-order Hankel Transform [14] and is given by

Flow)=—e* (57)

The graphs for the original function and its continuous 2D-DFT (which is also a Gaussian) are
plotted with a =1 and shown in Figure 5.

Original Function 2D-Fourier Transform

Figure 5 the original Gaussian function and its 2D-Fourier Transform

From Figure 5, the function is circular symmetric and fairly smooth in the radial direction.
Moreover, the function can be considered as either an effectively space-limited function or an
effectively band-limited function. For the purposes of testing it, it shall be considered as a space-
limited function and equations (12) and (13) will be used to proceed with the forward and inverse
transform in sequence.

To perform the transform, the following variables need to be chosen: N, ,Rand N, . In the
angular direction, since the function in the spatial domain is circularly symmetric, N, can be

chosen to be small. Thus, N, =15 is chosen.

In the radial direction, from plotting the function, it can be seen that the effective space
limit can be taken to be R =5 and the effective band limit can be taken to be W =10. From

equation (19), j,,, = R-W, =50. Therefore, N, =17 is chosen (we could also have obtained a

rough estimate of N, from equation (22)). However, most of the energy of the function in both

the space and frequency domains is located in the center near the origin. Based on the discussion
in Section 4.3, relatively large values of Rand W, are needed. The effective space limitR = 40

and effective band-limit W =30are thus chosen, which gives j,, =R-W, =1200. Therefore
N, =383 is chosen in order to satisfy this constraint. Both cases discussed here (N, =17 and
N, =383) are tested in following.
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6.2.1.1 Forward Transform
TestresultswithR =5, N, =17 are shown in Figure 6 and Figure 7. Figure 6 shows the sampled

continuous forward transform and the discrete forward transform. Figure 7 shows the error
between the sampled values of the continuous transform and the discretely calculated values.
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Sampled Continuous Forward Transform

Figure 6 Sampled continuous forward transform and discrete forward transform of the Gaussian function

with R=5, N2=15, N1=17

Error distribution with N2=15, N1=17, R=5, Wp=30

Figure 7 The error distribution of the forward transform of Gaussian Function with R=5, N>=15, N1=17

From Figure 7, it can be observed that the error gets bigger at the center, which is as expected
because the sampling grid shows that the sampling points can never attain the origin. The
maximum value of the error is E ,, =—-0.9115dB and this occurs at the center. The average

error isE,,, =-30.4446dB .

Test results withR =40, N, =383 are shown in Figure 8 and Figure 9 . Similar to the

previous case, the error gets larger at the center, as expected. However, the maximum value of
the error is E,,, =-8.3842dB and this occurs at the center. The average value of the error is

E..,. =—63.8031dB . Clearly, the test with R=40, N, =383 gives a better approximation,
which verifies the discussion in Section 4.3.
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Sampled Continuous Forward Transform
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Discrete Forward Transform
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Figure 8 Sampled Continuous forward transform and Discrete forward transform of Gaussian Function with R=40, N2=15,
N1=383

Error distribution with N2=15, N1=383, R=40, Wp=30
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Figure 9 The error distribution of the forward transform of Gaussian Function with R=40, N2=15, N1=383

With R =40, Table 3 shows the errors (max and average error) with respect to different value of
N, andN,. The trends as functions of N, and N, are shown as plots in Figure 10 and Figure
11.

Table 3 Error (dB) of forward transform of Gaussian Function with R=40, different value of N1 and N2

N1
N2

283 333 383 433 483
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Figure 10 Error of forward transform of Gaussian Function with fixed N2 (15) and varying N1
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Figure 11 Error of forward transform of Gaussian Function with fixed N1 (383) and varying N2

From Figure 10, it can be seen that when N, individually ( N, is fixed at N, =15) is less
than the minimum of 383 obtained from the sampling theorem, increasing N, will lead to smaller
errors, as expected. When N, is bigger than the sampling-theorem threshold of 383, increasing
N, still decreases the error which verifies the discussion about sample grid coverage in Section

4.3. Increasing N, tends to increase the sample grid coverage and capture more information at
the center area and thus leads to smaller errors.

From Figure 11, increasing N, alone (that is, without a corresponding increase in N;)
leads to larger errors, both Error, . and Error,

average *

Although at first counterintuitive, this result

is actually reasonable because the function is radially symmetric which implies that N, =1
should be sufficient based on the sampling theorem for the angular direction. Therefore,
increasing N, will not lead to a better approximation. Moreover, from the discussion of the
sample grid coverage in Section 4.3, the sampling grid coverage in both domains gets worse
when N, gets bigger because more information from the center is lost. This problem can be
solved by increasing N, at the same time, but it could be computationally time consuming.

Therefore, choosing N, properly is very important from the standpoint of accuracy and
computational efficiency.

6.2.1.2 Inverse Transform
Test results for the inverse transform withR =5, N, =17 are shown in Figure 12 and Figure 13.

Figure 12 shows the sampled continuous inverse transform and discrete inverse transform and
Figure 13 shows the error between the sampled continuous and discretely calculated values.
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Continuous Inverse Transform

Discrete inverse Transform

0.5

wno

Figure 12 Sampled continuous inverse transform and discrete inverse transform of the Gaussian function with R=5, N>=15,
N1=17

Error distribution with N2=15, N1=17, R=5, Wp=30
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Figure 13 The error distribution of the inverse transform of Gaussian Function with R=5, N2=15, N1=17

Similar to the case for the forward transform, the error gets larger at the center, which is
as expected because the sampling grid shows that the sampling points never attain the center.

The maximum value of the error isE_, =3.1954dB and this occurs at the center. The average
of the error isg,,, =-25.7799dB .

Test results for the inverse transform with R =40, N, =383 are shown in Figure 14 and
Figure 15.
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Continuous Inverse Transform
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Figure 14 Sampled continuous inverse transform and discrete inverse transform of the Gaussian function with R=40, N>=15,
N1=383

Error distribution with N2=15, N1=383, R=40, Wp=30
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Figure 15 The error distribution of the inverse transform of Gaussian Function with R=40, N>=15, N1=383

In this case, the maximum value of the error is E ., =-12.2602dB and this occurs at the center.
The average of the error isE,,, =—98.0316dB . Table 4 shows the errors with respect to different

value of N, and N, , from which Figure 16 and Figure 17 demonstrate the trend.

Table 4 Error (dB) of inverse transform of Gaussian Function with R=40, different value of N1 and N2

N1
283 333 383 433 483

N2
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Figure 16 Error of inverse transform of Gaussian Function with fixed N2 (15) and varying N1
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Figure 17 Error of inverse transform of Gaussian Function with fixed N1 (383) and varying N2

From Figure 16 it can be observed that increasing N, tends to improve the result but not
significantly. This could be explained by the discussion for R =40, N, =383 that with fixed R
and W, increasing N, will not allow the sampling grid in the frequency domain to get any
closer to the origin to capture more information. From Figure 17, increasing N, (with fixed
N, =383) leads to a worse approximation which verifies the discussion for R =40, N, =383.
Performing sequential 2D-DFT and 2D-IDFT results in & =4.1656xe™" where & is

calculated with equation (55) . Therefore, performing sequential forward and inverse transforms
does not add much error.

6.2.2 Four-term sinusoid & Sinc Function
The second function chosen for evaluation is given by
sin(ar) ., . . .
f(r,0) = ——=[3sin(@) +sin(36) + 4cos(100) +12sin(156)] (58)
ar

which is a sinc function in the radial direction and a four-term sinusoid in the angular direction.
The continuous 2D-FT can be calculated from [12]

N=—o0

Flo.w)= Y 2xi"e™ j f (r)J. (or)rdr (59)
0
where f (r) isthe Fourier series of f(r,&) and can be written as
1 T —in@
fn(r)z—j f(r,0)e ™do (60)
2r <.

From the sampling theorem for the angular direction, the highest angular frequency in equation
(58) results in N, being at least 31 required to reconstruct the signal. Therefore, at least 31 terms
are required to calculate the continuous 2D-FT, which can be written as
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6ri sm(y/) B P

+a p’+a

, p<a

Flow)=1-

247isin (15 arcsin Dsin(lSz//)

,p>a

p +a’
(61)

The graphs for the original function and the magnitude of its continuous 2D-FT with a=>5 are
shown in Figure 18

Original Function 2D-Fourier Transform

[7(p, W)

Figure 18 The original function and its 2D-Fourier Transform of ‘Four-term sinusoid & Sinc’ Function

From Figure 18, the function can be considered as a band-limited function. Therefore equation
(14) and (15) were used to implement the forward and inverse transform.

In the angular direction, the highest frequency term in the function in the space domain
is 12sin(156) . From the sampling theorem, the sampling frequency should be at least twice that
of the highest frequency present in the signal. Thus, N, =41 is chosen in order to go a little past

the minimum requirement of 31. In the radial direction, from the graphs of the original function
and its 2D-FT, it can be assumed that f (r,&) is space-limited atR =15 and band-limited at

W, =30. However, since most of the energy in the space domain is located at the origin, a

relatively large band limit should be chosen based on the discussion in Section 4.3. Therefore,
W, =90, N, =430 are chosen.

6.2.2.1 Forward Transform
The results for the forward 2D-DFT of Four-term sinusoid & Sinc function with W, =90,

N, =430 are shown in Figure 19 and Figure 20.
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Figure 19 Sampled continuous forward transform and discrete forward transform of ‘Four-term sinusoid & Sinc’ Function
with W, =90,N1=430, N2=41

Error distribution with N2=41, N1=430, R=15, Wp=90
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Figure 20 The error distribution of the forward transform of ‘Four-term sinusoid & Sinc’ Function with W, =90,N1=430,
N2=41

From Figure 19, the discrete transform does not approximate the continuous transform very well.
This is expected because the function in the frequency domain is discontinuous and the sampling
points close to the discontinuity will result in a very large error. The maximum value of the error

is Error_,, =10.6535dB and this occurs where the discontinuities are located. The average of
the error is Error, =-38.7831dB.

average

With W, =90, N, =430, Table 5 shows the errors with respect to different value of N,
and N, , from which Figure 21 and Figure 22 show the trend.
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Table 5 Error (dB) of the forward transform of ‘Four-term sinusoid & Sinc’ Function with different value of N1 and N2 of
forward transform

N1
330 380 430 480 530
N2
E. =46 | E_ =71| E_ =34 | E_ =90 | E_ =28
11 E,, =-336| E,, =-334| E,, =-335| E,, =-35.1| E,,, =-355
E. =67 |E, =105 E_ =32 | E_ =69 | E_ =36
21 E., =-339| E,, =-346| E,, =-37.2| E,, =-38.0| E,  =-38.1
E.=85|E,=31|E, =107 |E_ =146 | E_ =111
41 E,, =-38.7| E,, =-389| E,,, =-38.8| E,, =-39.8| E,, =-41.3
81 Emax. =97 Emax_ =32.7 Emax, =14.8 Emax- =226 Emax_ =14.5
E,, =-34.3 €, =355 g =-36.2| E,, =-37.3| E,, =-375
E_ =199 | E_ =302| E_ =225 E_ =225| E_ =16.1
161 g =294 E,, =-30.7| E, =-311| E,, =-322| E, =-328
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Figure 21 Error of the forward transform of ‘Four-term sinusoid & Sinc’ Function with fixed N2 (41) and varying N1
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Figure 22 Error of the forward transform of ‘Four-term sinusoid & Sinc’ Function with fixed N1 (512) and varying N2

From Figure 21, increasing N, alone tends improve the average error. The maximum error does

not change with N;, which is reasonable because of the discontinuity of the function in the
frequency domain.

From Figure 22, increasing N, leads to Error , and Error, first improving and

average
then worsening. This is reasonable because when N, is less than the minimum requirement of
31 from sampling theorem, the test result is actually affected by both sampling point density
(from the sampling theorem) and grid coverage (discussed in Section 4.3). Increasing N, should

give better results from the point of view of the sampling theorem but worse grid coverage. The
result from the combined effects is dependent on the function properties. In the specific case of

this function, when N, is bigger than 31, thereby implying that the angular sampling theorem
has been satisfied - the results get worse with increasing N, .
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6.2.2.2 Inverse Transform
The results for the 2D-IDFT of Four-term sinusoid & Sinc function withW, =90, N, =430 are

shown in Figure 23 and Figure 24.

Continuous Inverse Transform

20—
10
0=e
20 — - ———
10 e — e — 5 10 15
.10 —_— 10 -5 0
20 20 -15
Discrete inverse Transform
20 -
10
O=be
20 —_— —————
10 — B ———— 15
0 — — 5 10
10 P e -10 -5 0
20 20 IS

Figure 23 Sampled continuous inverse transform and discrete inverse transform of ‘Four-term sinusoid & Sinc’ Function with
W, =90,N1=430, N2=41

Error distribution with N2=41, N1=430, R=15, Wp=90
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Figure 24 The error distribution of the inverse transform of ‘Four-term sinusoid & Sinc’ Function with W, =90,N1=430,
N2=41
The maximum value of the error is Error,, =-8.6734dB .The average of the error is
Error, =-37.8119dB . With W, =90, N, =430, Table 6 shows the errors with respect to

average

different value of N, and N, , from which Figure 25 and Figure 26 show the trend.
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Table 6 Error (dB) of inverse transform of ‘Four-term sinusoid & Sinc’ Function with different value of N1 and N2
N1
330 380 430 480 530
N2
E.=01|E,=01|E, =01]|E,=01]|E, =01
11 E., =-43.7| E,, =-437| E,, =-466 | E,, =-456| E,, =-48.1
E_=07|E_=07 | E,_=06|E,=06|E_ =07
21 E,, =-383| E,, =-380 | E,, =-40.4 | E, =-40.6 | E, =-42.2
E_=-90|E, =85 E, =87 E,_=-88 E_=-86
41 E,, =-359 | E,, =-247 | E,, =-378| E, =-382| E,, =-39.0
E_=-45|E_=-47|E, =-45|E_=-46|E_ =-45
81 E,, =-35.7 | E,, =-265| E,, =-375| E,, =-36.2| E,, =-39.0
E_-08 | E_=07 |E,=07|E,_=07|E, =07
161 E,, =-356| E,, =-325| E,, =-36.6 | E,, =-37.2| E,, =-39.2
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Figure 25 Error of inverse transform of ‘Four-term sinusoid & Sinc’ Function with fixed N2 (41) and varying N1
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Figure 26 Error of inverse transform of ‘Four-term sinusoid & Sinc’ Function with fixed N1 (512) and varying N2

From Figure 25, it can be observed that the increasing N, alone improves the average error, as

was expected. However, N, =380 gives an apparently worse average error than the other points.
This could be caused by the discontinuity of the function in the frequency domain. Changing to
N, =381, the average error becomes —37.0dB which proves that the large error is caused by the
discontinuity.

From Figure 26, increasing N, does not lead to worse results, which is different from
previous cases. However, from Figure 18 it can be seen that the function in the frequency domain
does not have much information in the center area. So, even though increasing N, causes a larger

hole in the center as discussed in Section 4.3, it does not lead to losing much energy which
explains why Figure 26 shows a different trend from the previous cases.

Performing 2D-DFT and 2D-IDFT sequentially results in £ =1.3117 xe™ where & is
calculated by equation (55) .

6.2.3 Four-term sinusoid and modified exponential
For the next test function, the function is given by

—ar

f(r,0)="2

; [3sin(@) +sin(30) +4cos(100) +12sin(150)] (62)

Its continuous 2D-FT can be calculated as
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The graphs for the original function and the magnitude of its continuous 2D-FT with a=0.1 are
shown in Figure 27.

(63)

Original Function 2D-Fourier Transform

10+

[F(p.w)| 3

il

’I[, iy
i
i

Figure 27The original function and 2D-Fourier Transform of ‘Four-term Sinusoid & Modified Exponential’ function

From Figure 27, it can be observed that the function has a spike in both domains, which is a more
difficult scenario based on the discussion in Section 4.3. In this case, the function can be assumed
as space-limited or band-limited. This function will be tested as being space-limited.

From graph of the original function and its 2D-DFT, it can be assumed that f (r,&) is
effectively space-limited with R =20, and F(p,y) is effectively band-limited with W =15,
which gives j,, ~300. This results in N, =96. However, since the function explodes at the
center area in both domains, relatively large values of R and W, should give a better
approximation. Therefore, another case with R =40, W =30 is tested. In this case, N, =383
Is chosen.

In the angular direction, the highest frequency term is 12sin(15¢). From the sampling
theorem, the sampling frequency should be at least twice of the highest frequency of signal.
Thus, N, =41 is chosen.

6.2.3.1 Forward Transform
Here, the function is tested as a space limited function and equation (12) and (13) are used to
proceed with the forward and inverse transform in sequence.

The results with R =40,W =30, N, =383 are shown in Figure 28 and Figure 29.
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Figure 28 Continuous forward transform and discrete forward transform of ‘Four-term Sinusoid & Modified Exponential’
function with R=40, W, =30, N1=383, N>=41 (test as a space limited function)

Error distribution with N2=41, N1=383, R=40, Wp=15
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Figure 29 The error distribution of the forward transform of ‘Four-term Sinusoid & Modified Exponential’ function with
R=40, W, =30, N1=383, N2=41 (test as a space limited function)
The maximum value of the error is Error =-10.1535dB and this occurs at the center area.
The average of the error is Error,, .. =-32.7619dB . This demonstrates that the discrete

function approximates the sampled values of the continuous function quite well.

6.2.3.2 Inverse Transform
The results with R =40,W =30, N, =383 are shown in Figure 30 and Figure 31.
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Continuous Inverse Transform
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Figure 30 Continuous inverse transform and discrete forward transform of ‘Four-term Sinusoid & Modified Exponential’
function with R=40, W, =30, N1=383, N>=41 (tested as a space limited function)

Error distribution with N2=41, N1=383, R=40, Wp=15
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Figure 31 The error distribution of the forward transform of ‘Four-term Sinusoid & Modified Exponential’ function with
R=40, W, =30, N1=383, N>=41 (tested as a space limited function)
The maximum value of the error is Error, ., =0.5579dB and this occurs at the center. The
average of the error is Error,,,... =—68.7317dB.

verage

Performing 2D-DFT and 2D-IDFT results in ¢ =1.421xe™**, where & is calculated by
equation (55) .

It can be observed that even for functions with the worst properties, the proposed
transform can still be used to approximate the continuous Fourier transform with fairly small
errors, as long as the function is sampled properly.
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7 Improving the computing time of the transform

One of the advantages of the traditional Fourier transform is that the computing speed is fast by
using the now well-established fft algorithm. To reduce the computing time of the 2D DFT in

polar coordinates, the following steps are taken:

1. Interpreting the transform as three sequential operations (DFT, DHT, IDFT) instead of a
single four-dimensional matrix.

2. Pre-calculating and saving the Bessel zeros.

7.1 Reducing computing time by interpreting the transform as three operations in
sequence

As explained above, the essence of the transform is that the matrix f, is transformed into the
matrix F,, . The intuitive way to interpret the transform kernel is to think of it as a four-

dimensional matrix or matrices in a matrix. However, interpreting the transform as a 1D-DFT of
each column, a 1D-DHT of each row and then a 1D-IDFT of each column makes it possible to

use the Matlab built in functions fft and ifft , which significantly reduced the computational

time.

7.2 Reduce computing time by pre-calculating the Bessel Zeros
After defining the transform as three operations in sequence and using the matrix for the discrete
Hankel transform defined in [8], it was found that a lot of computational time was used to

calculate the Bessel zeros for every different test case, even though the Bessel zeros are the same

in every case. Pre-calculating the Bessel zeros and storing the results for large numbers of N,

and N, savesa lot of time.

Table 7 shows the computing time of a forward transform on the same computer (Processor:
Intel(R) Core(TM) i7-4710HQ CPU, RAM:12GB) for three cases:

1. Evaluate the transform as matrices in a matrix without pre-calculating the Bessel zeros.

2. Evaluate the transform as a DFT, DHT and IDFT in sequence without pre-calculating the
Bessel zeros.

3. Evaluate the transform as a DFT, DHT and IDFT in sequence with pre-calculating the

Bessel zeros.

The Gaussian function was used as the test function therefore N,=383 and N,=15.
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Table 7 Computing time of three cases: Casel: Run the transform as matrixes in matrix without pre-calculating the Bessel
zeros; Case2: Run the transform as DFT,DHT and IDFT in sequence without pre-calculating the Bessel zeros; Case3: Run the
transform as DFT,DHT and IDFT in sequence with pre-calculating the Bessel zeros

Test cases Total computing time(seconds)
Case 1 3346.5
Case 2 3211
Case 3 14.3

From Table 7, it can be clearly observed that the computing time by running the transform as
matrices in a matrix costs 3346.5s, which is not acceptable or the transform to be useful. Testing
the transform as three operations turns 3346.5 seconds into 321.1 seconds. This is much better.
Finally, pre-calculating the Bessel Zeros makes the transform much faster and applicable.

8 Summary and Conclusion

8.1 Accuracy and Precision of the transform

The proposed discrete 2D-Fourier Transform in polar coordinates demonstrates an acceptable
accuracy in providing discrete estimates to the continuous Fourier transform in polar coordinates.
In [8],[11]and[15], the one dimensional Hankel transform of a sinc function showed similar
dynamic error, which could be used as a comparative measure. Since the discrete Hankel
transform is one step of the proposed discrete 2D-Fourier Transform, and the definition of the
Hankel transform is based on [8], a similar dynamic error should be expected.

The test cases showed that the transform introduced very small errors (& =1.4004 xe™* for
worst case) by performing a forward transform and an inverse transform sequentially, which
demonstrates that the algorithm shows good precision.

8.2 Guidelines of choosing sample size
As discussed in Section 4.3 and proved by test cases, the sample size N, (sample size in the radial

direction) and N, (sample size in the angular direction) do not have to be of the same order. For

functions with different properties, sample size in the different directions could be very different.
To approximate the continuous Fourier transform properly, sample size should be chosen based
on the discussion in Section 4.3.

8.3 Interpretation of the transform
By interpreting the transform as a 1D Fourier transform, 1D Hankel transform and 1D inverse
Fourier transform, the computing time of the transform is improved to a useful level.
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Appendix A —Matlab Code
A-1. Theta matrix for space limited function

% N1 sample size in radial direction
% N2 sample size in angular direction
function theta=thetamatrix_SpaceLimited(N2,N1)
theta=zeros(N2,N1-1);
M=(N2-1)/2;
for ii=1:N2;

p=ii-1-M;

for k=1:N1-1;

theta(ii,k)=(p/N2)*2%*pi;

end

end

A-2. r matrix for space limited function

% N1 sample size in radial direction
% N2 sample size in angular direction
% R effective space Tlimit
% zeromatrix precalculated Bessel zero
function r=rmatrix_sSpaceLimited(N2,N1,R,zeromatrix)
M=(N2-1)/2;
for ii=1:N2;
p=ii-1-M;
for k=1:N1-1;
zero2=zeromatrix(5001-abs(p),:);
jpk=zero2(k);
jpNl=zero2(N1);
r(ii,k)=(pk/jpN1)*R;
end
end

A-3. Psi matrix for space limited function

% N1 sample size in radial direction
% N2 sample size in angular direction
function psi=psimatrix_SpaceLimited(N2,N1)
psi=zeros(N2,N1-1);
M=(N2-1)/2;
for ii=1:N2;

g=1i-1-M;

for 1=1:N1-1;

psi(ii,1)=C0q/N2)*2%pi;

end

end
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A-4. Rho matrix for space limited function

% N1 sample size in radial direction
% N2 sample size in angular direction
% R effective space Tlimit
% zeromatrix precalculated Bessel zero
function rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix)
M=(N2-1)/2;
for ii=1:N2;
g=11-1-M;
for 1=1:N1-1;
zero2=zeromatrix(5001-abs(q),:);
jgl=zero2(1);
rho(ii,1)=jql1/R;
end
end

A-5.'Y matrix Assembly Function

% Y is the N-1 x N-1 transformation matrix to be assembled
% n is the order of the bessel function

% N is the size of the transformation matrix

%zeros are the bessel zeros passed to the function

function Y = YmatrixAssembly(n,N,zero)

%tic
for 1=1:N-1
for k=1:N-1
jnk=zero(k);
jnl=zero(1);
jnN=zero(N);
jnplusl=besselj(n+l, jnk);
Y(1,k)=(2*besselj(n, (jnk*jn1/jnN)))/(jnN*jnpluslA2);
end
end
%toc
end
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A-5. Forward transform of Gaussian function

N2=15; %number of sample points in angular direction

N1=383; %number of sample points in radial direction

M=(N2-1)/2; %highest order of bessel function

R=40;% space limit

wWp=30; % band Timit

a=0.1;

load('zeromatrix.mat')

theta=thetamatrix_SpaceLimited(N2,N1); %Sample point in angular direction in space domain.
r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in space domain.
psi=psimatrix_SpaceLimited(N2,N1);%Sample point in angular direction in frequency domain.
rho=rhomatrix_sSpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in frequency
domain.

[x,y]l=pol2cart(theta,r); %sample points in Cartesian coordinates in space domain
[x1,yl]=pol2cart(psi,rho); %sample points in Cartesian coordinates in frequency domain

%Discretizing the function
for ii=1:N2
for jj=1:N1-1
f(ii,33)=exp(-r(ii,3jdA2);
end
end
% DFT
fnk=circshift(fft(circshift(f,m+1,1),N2,1),-(M+1),1);
% DHT
for n=-M:M
ii=n+M+1;
zero2=zeromatrix(5001-abs(n),:);
jnN1l=zero2(N1);
if n<0
Y=((-1)Aabs(n))*YmatrixAssembly(abs(n),N1,zero2);
else
Y=YmatrixAssembly(abs(n),N1,zero2);
end
fn1 i, )=Cy*fnkGi,:)")";
Fnl1(id, :)=f1Gd,:)*2*pi*(iA(-n)))*(RA2/jnN1);
end
% IDFT
TwoDFT=circshift(ifft(circshift(Fnl,Mm+1,1),N2,1),-(M+1),1);
%creating a discrete 2D Fourier transform
for ii=1:N2
for jj=1:N1-1
trueFunc(ii,jj)=pi*exp((-rho(ii,jj)A2)/4);
end
end

%calculating the dynamic error from transform and true function
error= 20*1ogl0(abs(trueFunc- TwoDFT)/max(max(abs(TwoDFT))));

figure(1)

subplot(2,1,1)

surf(x1l,yl,abs(trueFunc))

title('\fontsize{24}sampled Continuous Forward Transform')
subplot(2,1,2)

surf(x1l,yl,abs(TwoDFT))

title('\fontsize{24}Discrete Forward Transform')

44


https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 d0i:10.20944/preprints201907.0189.v1

figure(2)

surf(xl,yl,error)

xlabel('x");

ylabel('y");

zlabel('db")

str=sprintf('Error distribution with N2 = %d, N1 = %d,R= %d, a= %d ', N2,N1,R,a);
title(['\fontsize{24}Error distribution with N2=',num2str(N2),', N1=',num2str(N1l),',
R=',num2str(R), ', Wp=',num2str(wp)]);

meanl=mean(mean(error)); % Average dynamic error
maxl=max(max(error)); % Maximum dynamic error

A-6. Inverse transform of Gaussian function

N2=15 ; %number of sample points in angular direction

N1=383; %number of sample points in radial direction

M=(N2-1)/2; %highest order of bessel function

R=40;% space limit

wp=30; % band Timit

a=0.1;

load('zeromatrix.mat")

theta=thetamatrix_SpaceLimited(N2,N1);%Sample point in angular direction in space domain.
r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix) ;%Sample point in radial direction in space domain.
psi=psimatrix_SpaceLimited(N2,N1);%Sample point in angular direction in frequency domain.
rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix) ;%Sample point in radial direction in frequency
domain.

[x,y]l=pol2cart(theta,r); %sample points in Cartesian coordinates in space domain
[x1,yl]=pol2cart(psi,rho); %sample points in Cartesian coordinates in frequency domain

%creating a discrete true function
for ii=1:N2
for jj=1:N1-1
trueFunc(ii,jj)=pi*exp((-rho(ii,jjd)A2)/4);
end
end
% DFT
FNL=circshift(fft(circshift(truefFunc,m+1,1),N2,1),-(M+1),1);
% DHT
for n=-M:M
Ji=n+M+1;
zero2=zeromatrix(5001-abs(n),:);
jnN1l=zero2(N1);
if n<0
Y=((-1)Aabs(n))*YmatrixAssembly(abs(n),N1,zero2);
else
Y=YmatrixAssembly(abs(n),N1,zero2);
end
Y0=Y"';
Fnk(ii,:)=FNL(i1i,:)*YO0;
fnk(Gid, :)=Fnk(ii, :)*((GnND) *(GAN)) /(2*pi*RA2);

end
% IDFT
TwoDIFT=circshift(ifft(circshift(fnk,m+1,1),N2,1),-(M+1),1);
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%%discretizing the function in space domain
for ii=1:N2

for jj=1:N1-1

fGii,ji)=exp(-r(ii,jjdA2);

end
end
%calculating the dynamic error from transform and origal function
error= 20*1ogl0(abs(f- TwoDIFT)/max(max(abs(TwoDIFT))));

figure(1)

subplot(2,1,1)

surf(x,y,abs(f))

title('\fontsize{24}Continuous Inverse Transform')
subplot(2,1,2)

surf(x,y,abs(TwoDIFT))
title('\fontsize{24}Discrete inverse Transform')

figure(2)

surf(x,y,error)

xlabel('x");

ylabel('y");

zlabel('db")

str=sprintf('Error distribution with N2 = %d, N1 = %d,R= %d, a= %d ', N2,N1,R,a);
title(['\fontsize{24}Error distribution with N2=',num2str(N2),', N1=',num2str(N1l),',
R=',num2str(R), ', Wp=',num2str(wp)]);

mean=mean(mean(error)); % Average dynamic error
max=max (max(error)) ;% Maximum dynamic error
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