
1

Discrete Two Dimensional Fourier Transform in

Polar Coordinates Part II: Numerical Computation

and Approximation of the Continuous Transform

Xueyang Yao1, Natalie Baddour2

1Department of Systems Design, University of Waterloo, 200 University Avenue West,

Waterloo, Ontario, N2L 3G1, Canada

2Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa,

Ontario, K1N 6N5, Canada

1xueyang.yao@uwaterloo.ca

2nbaddour@uottawa.ca (corresponding author)

Abstract

The theory of the continuous two-dimensional (2D) Fourier Transform in polar coordinates has

been recently developed but no discrete counterpart exists to date. In the first part of this two-

paper series, we proposed and evaluated the theory of the 2D discrete Fourier Transform (DFT)

in polar coordinates. The theory of the actual manipulated quantities was shown, including the

standard set of shift, modulation, multiplication, and convolution rules. In this second part of the

series, we address the computational aspects of the 2D DFT in polar coordinates. Specifically,

we demonstrate how the decomposition of the 2D DFT as a DFT, Discrete Hankel Transform

(DHT) and inverse DFT sequence can be exploited for efficient code. We also demonstrate how

the proposed 2D DFT can be used to approximate the continuous forward and inverse Fourier

transform in polar coordinates in the same manner that the 1D DFT can be used to approximate

its continuous counterpart.

Keywords: Fourier Theory, DFT in polar coordinates, polar coordinates, multidimensional DFT,

Discrete Hankel Transform, Discrete Fourier Transform, Orthogonality.

1 Introduction

The Fourier transform is a powerful analytical tool and has proved to be invaluable in many

disciplines such as physics, mathematics and engineering. The development of the Fast Fourier

Transform (FFT) algorithm [1], which computes the discrete Fourier transform with a fast

algorithm, firmly established the Fourier transform as a practical tool in diverse areas, most

notably signal and image processing.

In two dimensions, the FFT can still be used to compute the discrete Fourier transform in

Cartesian coordinates. However, in many applications such as photoacoustics [2] and

tomography ([3], [4], [5]), it is often necessary to compute the Fourier transform in polar

coordinates. Moreover, for functions that are naturally described in polar coordinates, a discrete

version of the 2D Fourier transform in polar coordinates is needed. There have been some

attempts to calculate the Fourier transform in polar coordinates, most notably through the Hankel

transform, since the zeroth order Hankel transform is known to be a 2D Fourier transform in

polar coordinates for rotationally symmetric functions. However, prior work has focused on

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

mailto:1xueyang.yao@uwaterloo.ca
mailto:nbaddour@uottawa.ca
https://doi.org/10.20944/preprints201907.0189.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7717/peerj-cs.257

2

numerically approximating the continuous transform. This stands in contrast to the Fourier

transform, where the Discrete Fourier Transform (DFT) can stand alone as an orthogonal

transform, independent of the existence of its continuous counterpart.

 In the first part of this two-part paper series, we proposed an independent discrete 2D

Fourier transform in polar coordinates, which has been defined to be discrete from first principles

[6]. Standard operational ‘rules’ of shift, modulation and convolution rules for this 2D DFT in

polar coordinates were also demonstrated. The operational rules were demonstrated via the key

properties of the proposed discrete kernel of the transform. However, using the discrete kernel

may not be the most effective way to compute the transform. Furthermore, while the 2D DFT in

polar coordinates was demonstrated to have properties and rules as a standalone transform

independent of its relationship to any continuous transform, an obvious application of the

proposed discrete transform is to approximate its continuous counterpart.

Hence, the goal of this second part of this two-part paper series is to propose computationally

efficient approaches to the computation of the previously proposed 2D DFT in polar coordinates

and also to validate its effectiveness to approximate the continuous 2D Fourier transform in polar

coordinates. Moreover, since computing speed is one of the most important criteria for a discrete

transform, computational improvements to the transform are also proposed.

The outline of the paper is as follows. Section 2 introduces the proposed definition of the

discrete 2D Fourier transform in polar coordinates. The motivation of this definition and the

transform rules (multiplication, convolution, shift etc) are given in the first part of this two-part

paper. Section 3 introduces the discretization scheme where we show the connection between

discrete samples of the continuous functions and the discrete transform. Here, the connection

between using the proposed 2D DFT and sampled vales of the continuous functions is explained.

The proposed 2D DFT relies on a specific sampling scheme (introduced in section 3) which can

be plotted and analyzed for ‘grid coverage’ – how much of the 2D plane is covered and at which

density. Thus, Section 4 analyzes the proposed discretization points and their implication of the

sampling grid for density and coverage of the grid. The insights gained from this section will be

useful in interpreting the results of approximating the continuous transform with the discrete

transform. Section 5 introduces numerical computation schemes whereby the interpretation of

the proposed 2D transform as a sequence of 1D DFT, 1D DHT and 1D IDFT is exploited.

Approaches to exploit some of Matlab’s (Mathworks 2018) built-in functions for ease of coding

and computational speed are also demonstrated. Section 6 then investigates the ability of the

proposed 2D DFT to approximate the continuous transform in terms of precision and accuracy.

Three test functions for which closed-form continuous transforms are known are analyzed.

Section 7 discusses the computational time of the transform and approaches that were

successfully undertaken to drastically improve the computation time. Finally, section 8

summarizes and concludes the paper. Sample Matlab code is included in the appendix of the

paper.

2 Definition of the Discrete 2D Fourier Transform in Polar Coordinates

The 2D-Discrete Fourier Transform in polar coordinates has been defined in the first part of this

two-paper series as the discrete transform that takes the matrix (or double-subscripted series) pkf

to the matrix (double-subscripted series)
 qlF such that pk qmf F is given by

  
1 1

;

1

N M

qm pk pk qm pk

k p M

F f f E




 

   (1)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

3

where , , , ,p k q m n , 1
N , and 2

N are integers such that M n M   , where 2
2 1M N 

1
1 , , 1m k N   and ,M p q M   . Similarly, for the inverse transform we propose

  
1 1

1

;

1

N M

pk qm qm qm pk

m q M

f F F E


 

 

   (2)

In equations (1) and (2), ;qm pkE
are the kernels of the transformation. These can be chosen as the

‘non-symmetric’ form given by

 

 

1

1 2 2

1 2 2

; 2 2

1

2 2

; 2

2 1

2 2

2

2

1
2

1
qm pk

nN n nk

nm nk
n np nqM i i

nN N Nn

qm pk

n M n nm

nmnk
n p qM in innN N Nn

n M

j j
J

j
i e e

N J j

j j
J

j
E i e e

N j J j

E

 

 





 
 

 

 




 
 
 
 

 
 
 
 



 


 (3)

Here,  n zJ is the nth order Bessel function of the first kind and nkj denotes the kth zero of the

nth Bessel function. The subscript (+ or -) indicated the sign on the i


 and on the exponent

containing the p variable; the q variable exponent then takes the opposite sign. From a matrix

point of view, both pkf and qlF are  2 1 1N N  sized matrices. Another possible form of the

kernel is the ‘symmetric’ form where the kernels are complex conjugates of each other. This

form is simply a matter of redistributing the factors of
1nNj in the denominators so that

 

 

1

1 2 2

1

1 2 2()

; 2

1

2 2

()

; 2

2 1

2 2

2

2

1
2

1s

qm pk

nN n nk

nm nk
n np nqM i i

nN N Ns n

qm pk

n M nN n nm

nmnk
n p qM in innN N Nn

n M

j j
J

j
i e e

N j J j

j j
J

j
E i e e

N j J j

E

 

 





 


 

 




 
 
 
 

 
 
 
 



 


 (4)

As before, , , , ,p k q m n , 1N , and 2N are integers such that M n M   , where 2
2 1M N 

1
1 , , 1m k N   and ,M p q M   . In equation (4),

()

;

s

qm pkE 
is now the complex conjugate of

()

;

s

qm pkE 
. Both sets of kernels in equations (3) and (4) lead to the same set of modulation, shift,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

4

convolution, multiplication rules. The form in equation (3) arises naturally from discretization

of the continuous transform, but does not lead to the expected Parseval relationship. The form

in equation (4) is less suited to approximating the continuous transform but does lead to the

expected Parseval relationship. The Parseval relationships were presented and shown in the first

part of this two-part paper.

3 Discrete Transform to approximate the continuous transform

In this section, relationships between discretely sampled values of the function and its continuous

2D FT are presented in the case of a space-limited or band-limited function. These relationships

were derived in the first part of the paper and are repeated here since they will form the basis for

the using the discrete transform to approximate the continuous transform at specified sampling

points

Consider a function in the space domain (,f r   which is space limited to  0,r R . This

implies that the function is zero outside of the circle bounded by  0,r R . An approximate

relationship between sampled values of the continuous function and sampled values of its

continuous forward 2D transform  F   has been derived in the first part of the two-part

paper as

 

1
1 2 2

1 1

2 21
2

2 2
12 2 2 1

2
2 2 1

2

n nk nm
n np nqN M M i i

nNqm pk N N

k p M n MpN nN n nk

j j
i J

jj j Rq p
F R f e e

R N j N N j J j

 
 





  

   

 
 
     

      
   

   (5)

Similarly, an approximate relationship between sampled values of the continuous forward

transform  F   and sampled values of the continuous original function (,f r  was shown to

be given by

 

1
1 2 2

1

2 21

2 2
12 2 2 1

2
2 1 2 1

2

n nm nk
n np nqN M M i i

nNpk qm N N

m q M n MpN n nm

j j
i J

jj R jp q
f F e e

j N R N NR J j

 
 



  

   

 
 
      

      
  

   (6)

In equations (5) and (6),  ,f r  is the original function in 2D space and  F   is the 2D

Fourier transform of the function in polar coordinates. The values of the sampled functions given

in equations and can be considered to be the discrete quantities denoted by

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

5

1 2

2

2

2

pk

pk

pN

qm

qm

j R p
f f

j N

j q
F F

R N





 
   

 

 
  

 

 (7)

Now consider functions in the frequency domain  F   with an effective band limit

0,W    . That is, we suppose that the 2D Fourier transform  F   of (,f r   is band-

limited, meaning that  F   is zero for 2W W   . The variable W is written in this

form since W would typically be quoted in units of Hz (cycles per second) if using temporal

units or cycles per meter if using spatial units. Therefore, the multiplication by 2 ensures that

the final units are in
1s or

1m
. The approximate relationship between the discrete transform

 F   and the sampled values of the continuous transform  ,f r  was derived in the first part

of the paper and is given by

 

1
1 2 2

1

2 21

2 2
12 2 2 1

2
2 2 2 1

n nm nk
n np nqN M M i i

nNqm p pk N N

k p M n MqN n nk

j j
i J

jj W jq p
F f e e

j N W N NW J j

 



  



  

   

 
 
      

     
  
  

   (8)

The inverse transform is given by

 

1
1 2 2

1 1

2 22 1

2 2
12 2 2 1

2
2 2 1

2

n nk nm
n nq npN M M i i

nNpk qm p N N

m q M n MqN nN n nm

j j
i J

jj j WWp q
f F e e

W N j N N j J j

 





 



  

   

 
 
     

    
   
   

   (9)

As before, the relationships in equations (8) and (9) give relationships between the sampled

values of the original function

2

2pk

pk

p

j p
f f

W N

 
   

 

 (10)

and sampled values of its continuous 2D transform

1 2

2qm

qm

qN

j W q
F F

j N

  
  

 
 

 (11)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

6

The relationships given by equation (5),(6) ,(8) and (9), were the motivating definition of a 2D

Discrete Fourier transform in polar coordinates, defined in the first part of this two-part paper.

In the context of this second part of the two-part paper, they are also the relationships that permit

the use of the discrete transform to approximate the continuous transform at the specified

sampling points.

4 Discretization Points and Sampling Grid

The transforms defined in equations (1) and (2) can be applied to any matrix pkf to yield its

forward transform qmF , which can then be transformed backwards by using the inverse

transform. However, if these same discrete transforms are to be used for the purpose of

approximating a continuous 2D Fourier transform, then these transforms need to be applied to

the specific sampled values of the continuous functions in both space and frequency domains, as

shown in equations (7) and (11). The relationships in (7) and (11) define the sampling points

that need to be used and it is noted that the points are defined differently based on whether we

start with the assumption of a space or band limited function. These specific sampling points

as given in equation (7) and (11) imply a specific sampling grid for the function. In this section,

the sampling grid (its coverage and density in 2D) is analyzed.

4.1 Sampling points
For a space-limited function, we assume that the original function of interest is defined over

continuous  ,r  space where 0 r R  and 0     . The discrete sampling spaces used

for radial and angular sampling points in regular r space  ,r  and  frequency    space

are defined as

1 2

2pk

pk p

pN

j R p
r

j N


  (12)

and

2

2qm

qm q

j q

R N


   (13)

For a band limited function, the function is assume band-limited to 0 W  ,0     .

The sampling space used for radial and angular sampling points in regular  frequency space

   and r space  ,r  for a bandlimited function is defined as

2

2pk

pk p

j p
r

W N


  (14)

and

1 2

2qm

qm q

qN

j W q

j N

 
   (15)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

7

As above, , , , ,p k q m n , 1N , and 2N are integers such that M n M   , where 22 1M N  ,

11 , , 1m k N   and ,M p q M   . Clearly, the density of the sampling points depends on

the numbers of points chosen, that is on 1N and 2N . Also clear is the fact that the grid is not

equispaced in the radial variable. The sampling grid for a space-limited function are plotted

below to enable visualization. In the first instance, the polar grids are plotted for the case 1R 

, 1 16N  and 2 15N  . These are shown in space (r space) and frequency (ρ space) in Figures

1 and 2 respectively.

Figure 1 Sampling grid in space domain of a space limited function for R=1, N1=16 and N2 = 15

Figure 2 Sampling grid in frequency domain of a space limited function for R=1, N1=16 and N2 = 15

Clearly, the grids in Figure 1and Figure 2 are fairly sparse, but the low values of 2N and 1N have

been chosen so that the structure of the sampling points can be easily seen. It can be observed

that there is a hole at the center area in both domains which is caused by the special sampling

points. For higher values of the 2N and 1N , the grid becomes fairly dense, obtaining good

coverage of both spaces, but details are harder to observe. To demonstrate, the polar grids are

plotted for the case R =1,
1

96N  and 2 95N  . These are shown in Figures 3 and 4

respectively.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

8

Figure 3 Sampling grid in space domain of a space limited function for R=1, N1 = 96 and N2 = 95

Figure 4 Sampling grid in frequency domain of a space limited function for R=1, N1 = 96 and N2 = 95

From Figure 3 and Figure 4, by choosing higher values of 1N and 2N , the sampling grid becomes

denser, however there is still a gap in the center area. The sampling grids for band-limited

functions are not plotted here since the sample grid for a band-limited function has the same

shape as with space limited function but the domains are reversed.

4.2 Sample Grid Analysis
From the first part of the paper, it was shown that the 2D-Fourier Transform can be interpreted

as a Discrete Fourier Transform in the angular direction, a Discrete Hankel Transform in the

radial direction and then an inverse Discrete Fourier Transform in the angular direction. Hence,

the sample size in the angular direction could have been decided by the Nyquist sampling

theorem [7], which states that

 max2sf f (16)

where sf is the sample frequency and maxf is the highest frequency or band limit.

In the radial direction, the necessary relationship for the Discrete Hankel Transform is

given by [8]

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

9

1nNW R j  (17)

where W is the effective band-limit, R is the effective space limit and nNj is the Nth zero of

 nJ r . For the 2D Fourier Transform, since M p M   , the order of the Bessel zero ranges

from M to M , the relationship needed becomes

1

()pNmin j W R (18)

The relationships nN nNj j and
1 1 1 10 1 2 ...N N N MNj j j j      are valid [9], hence equation

(18) can be written as

10Nj W R (19)

It is pointed out in [10], [11] that the zeros of  nJ z are almost evenly spaced at intervals of 

and that the spacing becomes exactly  in the limit as z  . In fact, it is shown in [10] that

a simple asymptotic form for the Bessel function is given by

  
2 1

cos
2 2

nJ z z n
z





  
    

  
 (20)

Therefore, an approximation to the Bessel zero, nkj is given by

1

2
2 2

nkj k n
 

   
 

 (21)

Hence, equation (19) can be written to choose 1N approximately as

1

1

2

2

N W R WR

N WR

  

 
 (22)

where the reader is reminded that the units of W is m-1 (the space equivalent of Hz). 1 /N R is

the spatial sampling frequency and we see that equation (22) effectively makes the same

statement as equation (16).

Intuitively, more sample points lead to more information captured, which gives an

expectation that increasing 1N or 2N individually will give a better sampling grid coverage.

However, it can be seen from Figure 1 to Figure 4 that there is a gap in the center of the sample

grid. From equation (12) and (13), the area of the gap in the center is related to the ranges of p

and k , that is 2N and 1N . In the sections below, it is assumed that the sampling theorems are

already satisfied (that is, an appropriate space and band limit is selected) and the relationship

between 2N , 1N and the size of the gap will be discussed.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

10

4.2.1 Space-limited function

In this section, it is assumed that the function is a space limited function, defined in [0,]r R .

The sampling points are defined as equation (12) in the space domain and (13) in the frequency

domain. In the following, a relationship between 2N , 1N and the area of the gap in both domains

is discussed.

4.2.1.1 Sample grid in the space domain
In the space domain, the effective limit in the space domain, R, is fixed. To analyze how the

values of 2N and 1N affect the coverage of the grid in space domain, consider the following

definition of ‘grid coverage’

2 2

2
100r

R r
A

R

 




  (23)

where r denotes the average radius of the gap (the hole in the middle of the grid). rA as defined

in equation (23) is a measure of the ‘grid coverage’ since it gives a percentage of how much of

the original space limited domain area is captured by the discrete grid. For example, if the

average radius of the center gap is zero, then rA would be 100%, that is, complete coverage.

Based on the observation of Figure 1 and Figure 3, the relationship 01 11 21 1Mr r r r     is valid.

Therefore, from equation (12), the average radius of the gap is given by

1 1

01 1 01 1

0

() 1

2 2

M M

N MN

r r j j
r R R

j j

 
   

 
 

 (24)

Hence, equation (23) can be written as

1 1

201 1

0

1
1 100

4

M
r

N MN

j j
A

j j

  
     

    

 (25)

Table 1 shows the different values of rA as the values of 1N and 2N are changed.

Table 1 Spatial grid coverage, Ar, with respect to different values of N1 and N2 (R is fixed)

N1

N2
15 75 150 300

15 98.48%rA  99.92%rA  99.98%rA  99.99%rA 

75 93.78%rA  99.36%rA  99.81%rA  99.95%rA 

151 90.14%rA  98.42%rA  99.46%rA  99.84%rA 

301 86.17%rA  96.58%rA  98.59%rA  99.51%rA 

From Table 1, it can be seen that increasing 1N (sample size in the radial direction) tends to

increase the grid coverage. Since the effective space limit R is fixed, from equation (19) it

follows that increasing 1N actually increases the effective band limit. However, increasing 2N

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

11

(sample size in angular direction) will result in a bigger gap in the center of the grid, which then

decreases the coverage.

4.2.1.2 Sample grid in the frequency domain
Similarly, coverage of the grid in the frequency domain is defined as

2 2

2
100

W
A

W







 




  (26)

where  denotes the average radius of the gap. Since

 01 1 01 1() ()

2 2

M Mj j

R

 


 
  (27)

Then, it follows that equation (26) can be written as

2

01 1

2 2

()
1 100%

4

Mj j
A

R W




 
   
  

 (28)

From equation (28), it can be observed that the sample grid coverage in the frequency domain is

affected by R ,W and M . Since 2 2 1N M  , in order to get a better grid coverage with a

fixed W , R and
2N can be adjusted. Table 2 shows the grid coverage A for different values

of R and 2N .

Table 2 Frequency grid coverage, Aρ, with respect to different values of R and N2 (Wρ is fixed)

R

N2
15 75 150 300

15 99.80%A  99.99%A  100.00%A 

75 97.66%A  99.91%A  99.98%A  99.99%A 

151 91.88%A  99.68%A  99.92%A  99.98%A 

301 70.67%A  98.83%A  99.71%A  99.93%A 

From Table 2, the conclusion for the frequency domain is that when the effective band limit is

fixed, increasing R (effective space limit) tends to increase the coverage in the frequency

domain, while increasing 2N (sample size in the angular direction) decreases the coverage.

However, from equation (19) it should be noted that to satisfy the sampling theorem, increasing

R with fixed W requires an increase in 1N at the same time.

4.2.2 Band-limited function

In this section, we suppose that the function is an effectively band limited function, defined on

[0,]pW  . The sampling points are defined as in equation (14) in the space domain and as in

100.00%A 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

12

(15) in the frequency domain. In this subsection, the relationship between 2N , 1N and the area

of the gap in both domains is discussed.

4.2.2.1 Sampling Grid in the space domain
The same definition of grid coverage in the space domain will be used as in equation (23). Since

the sampling points of a band-limited function are given by equations (14) and(15), the average

radius of the gap can be defined as

 01 1 01 1
() 1

2 2

M M
r r j j

r
W W 

 
    

 

 (29)

Therefore, the coverage of the grid in space domain can be written as

2

01 1

2 2

()
= 1 100

4

M
r

j j
A

W R

 
  

  

 (30)

It can be observed that the grid coverage in the space domain of a band-limited function is the

same as the grid coverage in the frequency domain of space limited function.

4.2.2.2 Sample Grid in frequency domain
The coverage of the grid in the frequency domain of a band limited function is defined by

equation (26). With sampling points defined in equation (15) , the average radius of the gap can

be defined as

1 1

01 1 01 1

0

() 1

2 2

M M

N MN

j j
W W

j j
 

 


 
   

 
 

 (31)

The coverage of the grid in frequency domain can be written as

1 1

201 1

0

1
1 100

4

M

N MN

j j
A

j j


  
     

    

 (32)

It can be observed that the grid coverage in the frequency domain of a band-limited function is

the same as the grid coverage in the space domain of a space limited function.

4.3 Conclusion
Based on the discussion above, the following conclusions can be made:

1. Increasing 2N (angular direction) tends to decrease the sampling grid coverage in both

domains. Increasing 1N (radial direction) tends to increase the sampling coverage in the

space domain for a space-limited function and in the frequency domain for a frequency-

limited function. So, if a signal changes sharply in the angular direction such that large

values of 2N are needed, a large value of 1N is also needed to compensate for the

effect of increasing 2N on the grid coverage.

2. For a space-limited function, if there is a lot of energy at the origin in the space domain,

a larger value of 1N will be required to ensure that the sampling grid gets as close to the

origin as possible in the space domain. If the function has a lot of energy at the origin in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

13

the frequency domain, a large value for both 1N and R will be required to ensure

adequate grid coverage.

3. For a band-limited function, if there is a lot of energy at the origin in the frequency

domain, a large value of 1N will be needed to ensure that the sample grid gets as close

to the origin as possible in the frequency domain. If the function has a lot of energy at

the origin in the space domain, large values for both 1N and W are required.

5 Numerical Computation of the Transform

We have already demonstrated in the first part of the paper that the discrete 2D Fourier transform

in polar coordinates can be interpreted as a DFT, DHT and then inverse DFT. This interpretation

is quite helpful in coding the transform and in exploiting the speed of the FFT (Fast Fourier

Transform) in implementing the computations. In this section, we explain how the speed of

Matlab’s (Mathworks 2018) built-in code (or similar software) can be exploited to implement

the 2D FT in polar coordinates.

5.1 Forward transform

To transform pk qmf F , the operation is performed in steps. The first step is a forward 1D

DFT transforming pk nkf f where the p subscript is transformed to the n subscript:

 2

1

2

for , 1.. 1..

pM in
N

nk pk

p M

n k NM Mf f e






    (33)

The overbar is used to indicate a standard 1D DFT. In matrix operations, this is equivalent to

stating that each column of pkf is DFT’ed to yield
nkf . The second step is a discrete Hankel

transform of order n , transforming
ˆ

nk nmf f so that the k subscript is Hankel transformed to

the m subscript:

 

1 1

1 1

1

1

1 1

,2
1 11

for , 1.. 1..

2
ˆ

nk nm
n

N N
nN nN

nm nk m k nk

k knN n nk

n m NM M

j j
J

j
Y

j J j
f f f

 

 

  

 
 
 
     (34)

Here, the overhat is used to indicate a Discrete Hankel Transform (DHT), with the DHT as

defined in [8] via the transformation matrix

 

1

1 1

, 12

1

2
1 , 1

nN nm nk
m k n

nN n nk nN

j j
Y J m k N

j J j j

 
    

 
 

 (35)

In matrix operations, this states that each row of
nkf is DHT’ed to yield

ˆ
nmf . These are now

scaled to give the Fourier coefficients of the 2D DFT
ˆ
nm nmFf  such that

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

14

1

1

1 1

1

12 2

,

1

for , 1.. 1..
2 2ˆ

Nn n
nN

nm nm m k nk

knN nN

n m NM M
R i R i

F Y
j j

f f
   



     (36)

It is noted that the step in equation (36) exactly parallels the continuous form equivalent step

where    2 ()n

n n nF i f r   , see [12], [13].

The final step of the forward 2D DFT in polar coordinates is then a standard inverse 1D

DFT, which transforms each column of nm qmF F so that the n subscript is (inverse) DFT

transformed to the q subscript via

 2

2 1

2

2

0for 1, 1.. 1..
1

q
in

N

qm nm

M

n M

q N m NF F e
N






     (37)

This last step is a 1D Inverse Discrete Fourier Transform (IDFT) for each column of
nmF to

obtain qmF . The inverse 2D DFT can be similarly interpreted, shown in the next subsection.

5.2 Inverse Transform

The steps of the inverse 2D DFT are the reverse of the steps outlined above for the forward 2D

DFT. First, qm nmF F via a forward 1D DFT

 2

1

2

, 1.. 1..

nqM i
N

nm qm

q M

n m NM MF F e






    (38)

Then, a discrete Hankel transform is performed to transform
ˆ

nm nkF F such that

 

1 1

1 1

1

1

1 1

,2
1 11

, 1.. 1..

2

ˆ for

nm nk
n

N N
nN nN

nk nm k m nm

m mnN n nm

n k NM M

j j
J

j
F F Y F

j J j

 

 

  

 
 
 
     (39)

This is followed by a scaling operation to obtain
ˆ
nk nkF f from

 1

12
, 1.. 1..

ˆ for
2

n

nN

nk nk n k NM M
j i

f F
R



    (40)

Finally, an inverse 1D IDFT is applied to obtain nk pkf f
 from

 2

1

2

2

.. , 1.. 1
1

for

npM i
N

pk nk

n M

M M k Nf f e p
N






     (41)

As previously mentioned, this parallels the steps taken for the continuous case, with each

continuous operation (Fourier series, Hankel transform) replaced by its discrete counterpart

(DFT, DHT).

 Therefore, for both forward and inverse 2D-DFT, the sequence of operations is a DFT of

each column of the starting matrix, followed by a DHT of each row, a term-by-term scaling,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

15

followed by an IDFT of each column. This is a significant computational improvement because

by interpreting the transform this way, the Fast Fourier Transform (FFT) can be used, which

reduces the computational time quite significantly.

5.3 Interpretation of the sampled forward transform in Matlab terms

To use the built-in Matlab function fft , a few operations are required. First, we define matlab-

friendly indices ' (1)p p M   and ' (1)n n M   so that , ..p n M M  become

21..2 1 1..', ' M Np n    (since
2

2 1M N ), that is the primed variables range from 1..2M

rather than ..M M . Hence, if the matrix f with entries 'p kf is defined, where

12' 1 , 1.. 1..p k NN   , then equation (33) can be written as the Matlab-defined DFT as

2

2

2 (' 1)(' 1)

'

' 1

i p M n MN
N

n k pk

p

f f e

    



 (42)

The definition of DFT in Matlab is actually given by the relationship

2

2

2 (' 1)(' 1)

' '

' 1

i p nN
N

n k p k

p

f f e

  



 (43)

Since the relationship
2 22 (' 1)(' 1) 2 (' 1)(' 1)

2 2
'

' 1 ' 1

i p n M i p M n MN N

N N
p k pk

p p

f e f e
         

 

  is valid, we can sample

the original function to obtain the discrete pkf values, put them in the matrix 'p kf then shift the

matrix 'p kf by 1M  along the column direction. In Matlab, the function  , ,circshift A K dim

can be used, which circularly shifts the values in array A by K positions along dimension dim.

Inputs K and dim must be scalars. Specifically, dim = 1 indicates the columns of matrix A and

dim = 2 indicates the rows of matrix A. Hence, equation (42) can be written as

   2' ' ,, 1,1 ,1n k p kcircshiftf fft M Nf  (44)

In matrix operations, this is equivalent to stating that each column of 'p kf is DFT’ed to yield

'n kf .

The second step (equation (34)) is a discrete Hankel transform of order n , transforming

' '

ˆ
n k n lf f so that the k subscript is Hankel transformed to the l subscript. In order to relate the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

16

order n to the index 'n , we need to shift
'n kf by (1)M  along column direction so that the

order ranges from –M to M.

 

 
 

1

1

1

1

1
2

' '2
1 1

or , 1.. 11..
2

f '
, (1),1

where ' 1

ˆ

nk nl
n

N
nN

n l n k

k nN n nk

l NN
circshif

j j
J

j n
M

n n Mj J
t

j
f f



 

  

 
 
      

  
 (45)

By using the Hankel transform matrix defined in [8], equation (45) can be rewritten as

    1 12

' ' ,

or , 1.. 11..f '
, (1),1

where ' 1

ˆ T
nN

n l n k l k

l NN
circshift

n
M Y

n n M
f f

  
   

  
 (46)

In matrix operations, this states that each row of 'n kf is DHT’ed to yield '

ˆ
n lf . These are now

scaled to give the Fourier coefficients of the 2D DFT ' '

ˆ
n l n lFf  . In order to proceed to an

inverse DFT in the next step, it is necessary to shift the matrix by 1M  along the column

direction after scaling

 

1

1

2
2

' '

or , 1.. 11..f '2
, 1,1

where ' 1

ˆn

n l n l

nN

l NNnR
F i M

n n Mj
circshift f

 
   

 
 
 


  

  
 (47)

This last step is a 1D IDFT for each column of 'n lF to obtain qlF . Using 22 1M N  , and

' 1q q M   , equation (37) can be written as

 
 

 

    

2

2

2

2 1

2

2 ' 1
' 1

'

' 2

' 12

2 ' 1
(' 1)

'
' 12

' 1for , 1.. 1..

, ,1 , 1 ,1

1

1

q M
i n M

N

q l nl

n l

N

n

q MN i n
N

n l
n

q N l NF

h

F e

ifcircs ift ft F N M

N

F e
N





 
  



 
 



  





  



 (48)

5.4 Interpretation of the sampled inverse transform in Matlab terms

Similarly, matlab-friendly indices ' (1)q q M   and ' (1)n n M   are also defined.

Hence, if the matrix F with entries 'q lF is defined, where 2, 1' 1.. 1.. 1q N l N   , it then

follows that equation (38) can be written as the matlab-defined DFT as

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

17

2

2
'

2

2

1

2 (' 1)
(' 1)

2

' 1

2 (' 1)
(' 1)

'

' 1

' 1 , 1.. 1..

q MN i n M
N

qln l
q

qN i n M
N

q l

q

n l NNF F e for

F e





 
  




  



  







 (49)

If the original function can be sampled as qlF and then put into matrix 'q lF , then we need an

circshift operation. So equation (49) can be written as

  ' ' 2(, 1,1), ,1n l q lF fft circshift F M N  (50)

Subsequently, a discrete Hankel transform of order n is required, transforming
' '

ˆ
n l n lF F so

that the l subscript is Hankel transformed to the k subscript. To achieve this, circshift is also

needed here.

   1 12

' ' ,

or , 1.. 11..f 'ˆ , (1),1
where ' 1

T
nN

n k n l k l

l NNn
F circshift F M Y

n n M

  
   

  
 (51)

This is followed by a scaling operation to obtain
' '

ˆ
n k n kF f and then a circshift by (1)M  so

that

 

1 12

' '2

or , 1.. 11..f 'ˆ , (1),1
where ' 12

nN n

n k n k

k NNnj
f circshift i F M

n n MR


   

   
    

 (52)

This last step is a 1D IDFT for each column of 'n kf to get 'p kf . Using
2

2 1M N  , and

' 1p p  , equation (41) can be written as

 
 

  

  

2

2

2

2 1

2

2 ' 1
' 1

'k

' 2

' 12

2 ' 1 ' 1

'
' 12

' 1for , 1.. 1..

, ,1 , (1),1

1

1

p M
i n M

N

p nk

n k

N

n

n p MN i
N

n k
n

p N k Nf f e

circshift ifft f N M

N

f e
N





 
  



  




  





  



 (53)

In conclusion, in this section, by using the interpretation of the kernel as sequential DFT, DHT

and IDFT operations, Matlab (or similar software) built-in code can be used to efficiently

implement the 2D DFT algorithm in polar coordinates.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

18

6 Numerical evaluation of the 2D DFT in polar coordinates to

approximate the continuous FT

In this section, the 2D discrete Fourier transform is evaluated for its ability to estimate the

continuous Fourier transform at the selected special sampling points in the spatial and frequency

domains.

6.1 Method for testing the Algorithm

6.1.1 Accuracy

In order to test accuracy of the 2D-DFT and 2D-IDFT to calculate approximate the continuous

counterpart, the dynamic error is proposed as a metric. The dynamic error is defined as [11]

 10

(v) (v)
(v) 20log

max (v)

C D
E

D

 
  

 
 (54)

where (v)C is the continuous forward or inverse 2D-Fourier transform and (v)D is the value

obtained from the discrete counterpart. The dynamic error is defined as the ratio of the absolute

error to the maximum amplitude of the discrete function, calculated on a log scale. Therefore, a

large negative value represents an accurate discrete transform. The dynamic error is used instead

of the percentage error in order to avoid division by zero.

6.1.2 Precision

The precision of the algorithm is an important evaluation criterion, which is tested by

sequentially performing a pair of forward and inverse transforms and comparing the result to the

original function. High precision indicates that numerical evaluation of the transform does not

add much error. An average of the absolute error between the original function and the calculated

counterpart at each sample point is used to measure the precision. It is given by

 

 1 21

*

11 2

1

1

N N

n

f f
N N


 



 
 

 (55)

where f is the original function and
*f is the calculated counterpart. An ideal precision would

result in the absolute error being zero.

6.2 Test functions
In this section, three test functions are chosen to evaluate the ability of the discrete transform to

approximate the continuous counterpart. The first test case is the circularly symmetric Gaussian

function. Given that it is circularly symmetric and that the Gaussian is continuous and smooth,

the proposed DFT is expected to perform well. The second test case is “Four-term sinusoid and

Sinc” function, which is not symmetric in the angular direction and suffers a discontinuity in the

radial direction. The third test function presents a more challenging test function, the “Four-term

sinusoid and Modified exponential” function. In this case, the test function is not circularly

symmetric and it explodes at the origin (approaches infinity at the origin). Given that as shown

above, the sampling grid cannot cover the area around the origin very well, a function that

explodes at the origin should give more error and should provide a reasonable test case for

evaluating the performance of the discrete transform.

6.2.1 Gaussian

The first function chosen for evaluation is a circular symmetric function which is Gaussian in

the radial direction. Specifically, the function in the space domain is given by

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

19

2 2

(,) a rf r e  (56)

where a is some real constant. Since the function is circularly symmetric, the 2D-DFT is a

zeroth-order Hankel Transform [14] and is given by

2

24
2

(,) aF e
a




 


 (57)

The graphs for the original function and its continuous 2D-DFT (which is also a Gaussian) are

plotted with 1a  and shown in Figure 5.

Figure 5 the original Gaussian function and its 2D-Fourier Transform

From Figure 5, the function is circular symmetric and fairly smooth in the radial direction.

Moreover, the function can be considered as either an effectively space-limited function or an

effectively band-limited function. For the purposes of testing it, it shall be considered as a space-

limited function and equations (12) and (13) will be used to proceed with the forward and inverse

transform in sequence.

To perform the transform, the following variables need to be chosen: 2N , R and 1N . In the

angular direction, since the function in the spatial domain is circularly symmetric, 2N can be

chosen to be small. Thus, 2 15N  is chosen.

In the radial direction, from plotting the function, it can be seen that the effective space

limit can be taken to be 5R  and the effective band limit can be taken to be 10W  . From

equation (19),
10 50Nj R W   . Therefore, 1 17N  is chosen (we could also have obtained a

rough estimate of 1N from equation (22)). However, most of the energy of the function in both

the space and frequency domains is located in the center near the origin. Based on the discussion

in Section 4.3, relatively large values of R and W are needed. The effective space limit 40R 

and effective band-limit 30pW  are thus chosen, which gives
10 1200Nj R W   . Therefore

1 383N  is chosen in order to satisfy this constraint. Both cases discussed here (and

) are tested in following.

1 17N 

1 383N 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

20

6.2.1.1 Forward Transform

Test results with 5R  , 1 17N  are shown in Figure 6 and Figure 7. Figure 6 shows the sampled

continuous forward transform and the discrete forward transform. Figure 7 shows the error

between the sampled values of the continuous transform and the discretely calculated values.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

21

Figure 6 Sampled continuous forward transform and discrete forward transform of the Gaussian function

 with R=5, N2=15, N1=17

Figure 7 The error distribution of the forward transform of Gaussian Function with R=5, N2=15, N1=17

From Figure 7, it can be observed that the error gets bigger at the center, which is as expected

because the sampling grid shows that the sampling points can never attain the origin. The

maximum value of the error is max 0.9115E dB  and this occurs at the center. The average

error is . 30.4446avgE dB  .

Test results with 40R  , 1 383N  are shown in Figure 8 and Figure 9 . Similar to the

previous case, the error gets larger at the center, as expected. However, the maximum value of

the error is max 8.3842E dB  and this occurs at the center. The average value of the error is

. 63.8031avgE dB  . Clearly, the test with 40R  , 1 383N  gives a better approximation,

which verifies the discussion in Section 4.3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

22

Figure 8 Sampled Continuous forward transform and Discrete forward transform of Gaussian Function with R=40, N2=15,

N1=383

Figure 9 The error distribution of the forward transform of Gaussian Function with R=40, N2=15, N1=383

With 40R  , Table 3 shows the errors (max and average error) with respect to different value of

1N and 2N . The trends as functions of 1N and 2N are shown as plots in Figure 10 and Figure

11.

Table 3 Error (dB) of forward transform of Gaussian Function with R=40, different value of N1 and N2

N1

N2
283 333 383 433 483

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

23

3

max. 21.6E  

. -71.3avgE 

max. 23.0E  

. -76.9avgE 

max. 24.3E  

. -81.8avgE 

max. 25.4E  

. -86.0avgE 

max. 26.3E  

. -89.8avgE 

7

max. 12.9E  

. -62.6avgE 

max. 14.4E  

. -68.3avgE 

max. 15.7E  

. -73.2avgE 

max. 16.9E  

. -77.5avgE 

max. 17.8E  

. -81.4avgE 

15

max. 5.4E  

. -53.1avgE 

max. 7.0E  

. -58.9avgE 

max. 8.4E  

. -63.8avgE 

max. 9.6E  

. -68.1avgE 

max. 10.6E  

. -72.0avgE 

31

max. 2.3E 

. 42.0avgE  

max. 0.5E 

. 47.6avgE  

max. 1.0E  

. 52.5avgE  

max. 2.3E  

. 56.9avgE  

max. 3.4E  

. 60.7avgE  

61

max. 9.7E 

. 32.5avgE  

max. 7.9E 

. 37.5avgE  

max. 6.4E 

. 42.0avgE  

max. 5.0E 

. 46.1avgE  

max. 3.8E 

. 49.8avgE  

Figure 10 Error of forward transform of Gaussian Function with fixed N2 (15) and varying N1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

24

Figure 11 Error of forward transform of Gaussian Function with fixed N1 (383) and varying N2

From Figure 10, it can be seen that when 1N individually (2N is fixed at 2N =15) is less

than the minimum of 383 obtained from the sampling theorem, increasing 1N will lead to smaller

errors, as expected. When 1N is bigger than the sampling-theorem threshold of 383, increasing

1N still decreases the error which verifies the discussion about sample grid coverage in Section

4.3. Increasing 1N tends to increase the sample grid coverage and capture more information at

the center area and thus leads to smaller errors.

 From Figure 11, increasing 2N alone (that is, without a corresponding increase in)

leads to larger errors, both maxError and averageError . Although at first counterintuitive, this result

is actually reasonable because the function is radially symmetric which implies that 2 1N 

should be sufficient based on the sampling theorem for the angular direction. Therefore,

increasing 2N will not lead to a better approximation. Moreover, from the discussion of the

sample grid coverage in Section 4.3, the sampling grid coverage in both domains gets worse

when 2N gets bigger because more information from the center is lost. This problem can be

solved by increasing 1N at the same time, but it could be computationally time consuming.

Therefore, choosing 2N properly is very important from the standpoint of accuracy and

computational efficiency.

6.2.1.2 Inverse Transform

Test results for the inverse transform with 5R  , 1 17N  are shown in Figure 12 and Figure 13.

Figure 12 shows the sampled continuous inverse transform and discrete inverse transform and

Figure 13 shows the error between the sampled continuous and discretely calculated values.

1N

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

25

Figure 12 Sampled continuous inverse transform and discrete inverse transform of the Gaussian function with R=5, N2=15,

N1=17

Figure 13 The error distribution of the inverse transform of Gaussian Function with R=5, N2=15, N1=17

Similar to the case for the forward transform, the error gets larger at the center, which is

as expected because the sampling grid shows that the sampling points never attain the center.

The maximum value of the error is max 3.1954E dB and this occurs at the center. The average

of the error is . 25.7799avgE dB  .

Test results for the inverse transform with 40R  , 1 383N  are shown in Figure 14 and

Figure 15.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

26

Figure 14 Sampled continuous inverse transform and discrete inverse transform of the Gaussian function with R=40, N2=15,

N1=383

Figure 15 The error distribution of the inverse transform of Gaussian Function with R=40, N2=15, N1=383

In this case, the maximum value of the error is max 12.2602E dB  and this occurs at the center.

The average of the error is . 98.0316avgE dB  . Table 4 shows the errors with respect to different

value of 1N and 2N , from which Figure 16 and Figure 17 demonstrate the trend.

Table 4 Error (dB) of inverse transform of Gaussian Function with R=40, different value of N1 and N2

N1

N2
283 333 383 433 483

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

27

3

max. 25.9E  

. -115.3avgE 

max. 27.5E  

. 115.4avgE 

max. 28.9E  

. 115.4avgE 

max. 30.2E  

. 115.5avgE 

max. 31.3E  

. 115.5avgE 

7

max. 16.5E  

. 107.0avgE 

max. 18.1E  

. 107.1avgE 

max. 19.4E  

. 107.2avgE 

max. 20.5E  

. 107.2avgE 

max. 21.6E  

. 107.2avgE 

15

max. 9.7E  

. 97.9avgE  

max. 11.0E  

. 98.0avgE  

max. 12.3E  

. 98.0avgE  

max. 13.4E  

. 98.1avgE  

max. 14.4E  

. 98.1avgE  

34

max. 4.4E  

. 86.9avgE  

max. 5.5E  

. 86.9avgE  

max. 6.5E  

. 87.0avgE  

max. 7.5E  

. 87.0avgE  

max. 8.3E  

. 87.0avgE  

61

max. 1.1E  

. 75.6avgE  

max. 1.7E  

. 75.6avgE  

max. 2.4E  

. 75.6avgE  

max. 3.0E  

. 75.6avgE  

max. 3.7E  

. 75.7avgE  

Figure 16 Error of inverse transform of Gaussian Function with fixed N2 (15) and varying N1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

28

Figure 17 Error of inverse transform of Gaussian Function with fixed N1 (383) and varying N2

From Figure 16 it can be observed that increasing 1N tends to improve the result but not

significantly. This could be explained by the discussion for 40R  , 1 383N  that with fixed R

and W , increasing 1N will not allow the sampling grid in the frequency domain to get any

closer to the origin to capture more information. From Figure 17, increasing 2N (with fixed

1 383N ) leads to a worse approximation which verifies the discussion for 40R  , 1 383N  .

Performing sequential 2D-DFT and 2D-IDFT results in 174.1656 e   where  is

calculated with equation (55) . Therefore, performing sequential forward and inverse transforms

does not add much error.

6.2.2 Four-term sinusoid & Sinc Function

The second function chosen for evaluation is given by

sin()

(,) [3sin() sin(3) 4cos(10) 12sin(15)]
ar

f r
ar

        (58)

which is a sinc function in the radial direction and a four-term sinusoid in the angular direction.

The continuous 2D-FT can be calculated from [12]

0

(,) 2 () ()n in

n n

n

F i e f r J r rdr   






   (59)

where ()nf r is the Fourier series of (,)f r  and can be written as

1

() (,)
2

in

nf r f r e d







 






  (60)

From the sampling theorem for the angular direction, the highest angular frequency in equation

(58) results in 2N being at least 31 required to reconstruct the signal. Therefore, at least 31 terms

are required to calculate the continuous 2D-FT, which can be written as

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

29

10

2 2 2 2 10

2 2 2 2 2 2

2 2

8 cos(10)
,

()

2 sin 3arcsin sin(3) 8 sin 10arcsin cos(10)
6 sin()

(,)

24 sin 15arcsin sin(15)

,

a
a a a a

a a
i

i
F

a a a a

a
i

a
a

  


 

   
  

 
   

 








  


      
             

   
  


  
  

  
 








 (61)

The graphs for the original function and the magnitude of its continuous 2D-FT with 5a  are

shown in Figure 18

Figure 18 The original function and its 2D-Fourier Transform of ‘Four-term sinusoid & Sinc’ Function

From Figure 18, the function can be considered as a band-limited function. Therefore equation

(14) and (15) were used to implement the forward and inverse transform.

In the angular direction, the highest frequency term in the function in the space domain

is 12sin(15) . From the sampling theorem, the sampling frequency should be at least twice that

of the highest frequency present in the signal. Thus, 2 41N  is chosen in order to go a little past

the minimum requirement of 31. In the radial direction, from the graphs of the original function

and its 2D-FT, it can be assumed that (,)f r  is space-limited at 15R  and band-limited at

30W  . However, since most of the energy in the space domain is located at the origin, a

relatively large band limit should be chosen based on the discussion in Section 4.3. Therefore,

90W  , 1 430N  are chosen.

6.2.2.1 Forward Transform
The results for the forward 2D-DFT of Four-term sinusoid & Sinc function with 90W  ,

1 430N  are shown in Figure 19 and Figure 20.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

30

Figure 19 Sampled continuous forward transform and discrete forward transform of ‘Four-term sinusoid & Sinc’ Function

with Wρ =90,N1=430, N2=41

Figure 20 The error distribution of the forward transform of ‘Four-term sinusoid & Sinc’ Function with Wρ =90,N1=430,

N2=41

From Figure 19, the discrete transform does not approximate the continuous transform very well.

This is expected because the function in the frequency domain is discontinuous and the sampling

points close to the discontinuity will result in a very large error. The maximum value of the error

is max 10.6535Error dB and this occurs where the discontinuities are located. The average of

the error is 38.7831averageError dB  .

With 90W  , 1 430N  ,Table 5 shows the errors with respect to different value of 1N

and 2N , from which Figure 21 and Figure 22 show the trend.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

31

Table 5 Error (dB) of the forward transform of ‘Four-term sinusoid & Sinc’ Function with different value of N1 and N2 of

forward transform

N1

N2
330 380 430 480 530

11

max. 4.6E 

. -33.6avgE 

max. 7.1E 

. -33.4avgE 

max. 3.4E 

. -33.5avgE 

max. 9.0E 

. -35.1avgE 

max. 2.8E 

. -35.5avgE 

21

max. 6.7E 

. -33.9avgE 

max. 10.5E 

. -34.6avgE 

max. 3.2E 

. -37.2avgE 

max. 6.9E 

. -38.0avgE 

max. 3.6E 

. -38.1avgE 

41

max. 8.5E 

. -38.7avgE 

max. 35.1E 

. -38.9avgE 

max. 10.7E 

. -38.8avgE 

max. 14.6E 

. -39.8avgE 

max. 11.1E 

. -41.3avgE 

81

max. 9.7E 

. -34.3avgE 

max. 32.7E 

. 35.5avgE 

max. 14.8E 

. -36.2avgE 

max. 22.6E 

. -37.3avgE 

max. 14.5E 

. -37.5avgE 

161

max. 19.9E 

. -29.4avgE 

max. 30.2E 

. -30.7avgE 

max. 22.5E 

. -31.1avgE 

max. 22.5E 

. -32.2avgE 

max. 16.1E 

. -32.8avgE 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

32

Figure 21 Error of the forward transform of ‘Four-term sinusoid & Sinc’ Function with fixed N2 (41) and varying N1

Figure 22 Error of the forward transform of ‘Four-term sinusoid & Sinc’ Function with fixed N1 (512) and varying N2

From Figure 21, increasing 1N alone tends improve the average error. The maximum error does

not change with 1N , which is reasonable because of the discontinuity of the function in the

frequency domain.

 From Figure 22, increasing 2N leads to maxError and averageError first improving and

then worsening. This is reasonable because when 2N is less than the minimum requirement of

31 from sampling theorem, the test result is actually affected by both sampling point density

(from the sampling theorem) and grid coverage (discussed in Section 4.3). Increasing 2N should

give better results from the point of view of the sampling theorem but worse grid coverage. The

result from the combined effects is dependent on the function properties. In the specific case of

this function, when 2N is bigger than 31, thereby implying that the angular sampling theorem

has been satisfied - the results get worse with increasing 2N .

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

33

6.2.2.2 Inverse Transform

The results for the 2D-IDFT of Four-term sinusoid & Sinc function with 90W  , 1 430N  are

shown in Figure 23 and Figure 24.

Figure 23 Sampled continuous inverse transform and discrete inverse transform of ‘Four-term sinusoid & Sinc’ Function with

Wρ =90,N1=430, N2=41

Figure 24 The error distribution of the inverse transform of ‘Four-term sinusoid & Sinc’ Function with Wρ =90,N1=430,

N2=41

The maximum value of the error is max -8.6734Error dB .The average of the error is

37.8119averageError dB  . With 90W  , 1 430N  , Table 6 shows the errors with respect to

different value of 1N and 2N , from which Figure 25 and Figure 26 show the trend.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

34

Table 6 Error (dB) of inverse transform of ‘Four-term sinusoid & Sinc’ Function with different value of N1 and N2

N1

N2
330 380 430 480 530

11

max. 0.1E 

. -43.7avgE 

max. 0.1E 

. -43.7avgE 

max. 0.1E 

. -46.6avgE 

max. 0.1E 

. -45.6avgE 

max. 0.1E 

. -48.1avgE 

21

max. 0.7E 

. -38.3avgE 

max. 0.7E 

. -38.0avgE 

max. 0.6E 

. -40.4avgE 

max. 0.6E 

. -40.6avgE 

max. 0.7E 

. -42.2avgE 

41

max. 9.0E  

. -35.9avgE 

max. 8.5E  

. -24.7avgE 

max. 8.7E  

. -37.8avgE 

max. 8.8E  

. -38.2avgE 

max. 8.6E  

. -39.0avgE 

81

max. 4.5E  

. -35.7avgE 

max. 4.7E  

. -26.5avgE 

max. 4.5E  

. -37.5avgE 

max. 4.6E  

. -36.2avgE 

max. 4.5E  

. -39.0avgE 

161

max. 0.8E 

. -35.6avgE 

max. 0.7E 

. -32.5avgE 

max. 0.7E 

. -36.6avgE 

max. 0.7E 

. -37.2avgE 

max. 0.7E 

. -39.2avgE 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

35

Figure 25 Error of inverse transform of ‘Four-term sinusoid & Sinc’ Function with fixed N2 (41) and varying N1

Figure 26 Error of inverse transform of ‘Four-term sinusoid & Sinc’ Function with fixed N1 (512) and varying N2

From Figure 25, it can be observed that the increasing 1N alone improves the average error, as

was expected. However, 1 380N  gives an apparently worse average error than the other points.

This could be caused by the discontinuity of the function in the frequency domain. Changing to

1 381N  , the average error becomes 37.0 dB which proves that the large error is caused by the

discontinuity.

From Figure 26, increasing 2N does not lead to worse results, which is different from

previous cases. However, from Figure 18 it can be seen that the function in the frequency domain

does not have much information in the center area. So, even though increasing 2N causes a larger

hole in the center as discussed in Section 4.3, it does not lead to losing much energy which

explains why Figure 26 shows a different trend from the previous cases.

Performing 2D-DFT and 2D-IDFT sequentially results in 121.3117 e   where  is

calculated by equation (55) .

6.2.3 Four-term sinusoid and modified exponential

For the next test function, the function is given by

e

(,) [3sin() sin(3) 4cos(10) 12sin(15)]
ar

f r
r

    


    (62)

Its continuous 2D-FT can be calculated as

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

36

2 2 2 2 3

2 2 3 2 2

2 2 10 2 2 15

10 2 2 15 2 2

()
(,) 6 sin() 2 sin(3)

() ()
8 cos(10) 24 sin(15)

a a a a
F i i

a a

a a a a
i

a a

 
     

   

 
   

   

   
  

 

   
 

 

 (63)

The graphs for the original function and the magnitude of its continuous 2D-FT with a=0.1 are

shown in Figure 27.

Figure 27The original function and 2D-Fourier Transform of ‘Four-term Sinusoid & Modified Exponential’ function

From Figure 27, it can be observed that the function has a spike in both domains, which is a more

difficult scenario based on the discussion in Section 4.3. In this case, the function can be assumed

as space-limited or band-limited. This function will be tested as being space-limited.

From graph of the original function and its 2D-DFT, it can be assumed that (,)f r  is

effectively space-limited with 20R  , and (,)F   is effectively band-limited with 15W  ,

which gives
10 300Nj  . This results in 1 96.N  However, since the function explodes at the

center area in both domains, relatively large values of R and W should give a better

approximation. Therefore, another case with 40R  , 30W  is tested. In this case, 1 383N 

is chosen.

In the angular direction, the highest frequency term is 12sin(15) . From the sampling

theorem, the sampling frequency should be at least twice of the highest frequency of signal.

Thus, 2 41N  is chosen.

6.2.3.1 Forward Transform
Here, the function is tested as a space limited function and equation (12) and (13) are used to

proceed with the forward and inverse transform in sequence.

The results with 140, 30, 383R W N   are shown in Figure 28 and Figure 29.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

37

Figure 28 Continuous forward transform and discrete forward transform of ‘Four-term Sinusoid & Modified Exponential’

function with R=40, Wρ =30, N1=383, N2=41 (test as a space limited function)

Figure 29 The error distribution of the forward transform of ‘Four-term Sinusoid & Modified Exponential’ function with

R=40, Wρ =30, N1=383, N2=41 (test as a space limited function)

The maximum value of the error is max 10.1535Error dB  and this occurs at the center area.

The average of the error is 32.7619averageError dB  . This demonstrates that the discrete

function approximates the sampled values of the continuous function quite well.

6.2.3.2 Inverse Transform
The results with 140, 30, 383R W N   are shown in Figure 30 and Figure 31.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

38

Figure 30 Continuous inverse transform and discrete forward transform of ‘Four-term Sinusoid & Modified Exponential’

function with R=40, Wρ =30, N1=383, N2=41 (tested as a space limited function)

Figure 31 The error distribution of the forward transform of ‘Four-term Sinusoid & Modified Exponential’ function with

R=40, Wρ =30, N1=383, N2=41 (tested as a space limited function)

The maximum value of the error is max 0.5579Error dB and this occurs at the center. The

average of the error is 68.7317averageError dB  .

Performing 2D-DFT and 2D-IDFT results in 121.421 e   , where  is calculated by

equation (55) .

It can be observed that even for functions with the worst properties, the proposed

transform can still be used to approximate the continuous Fourier transform with fairly small

errors, as long as the function is sampled properly.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

39

7 Improving the computing time of the transform

One of the advantages of the traditional Fourier transform is that the computing speed is fast by

using the now well-established fft algorithm. To reduce the computing time of the 2D DFT in

polar coordinates, the following steps are taken:

1. Interpreting the transform as three sequential operations (DFT, DHT, IDFT) instead of a

single four-dimensional matrix.

2. Pre-calculating and saving the Bessel zeros.

7.1 Reducing computing time by interpreting the transform as three operations in

sequence

As explained above, the essence of the transform is that the matrix pkf is transformed into the

matrix qlF . The intuitive way to interpret the transform kernel is to think of it as a four-

dimensional matrix or matrices in a matrix. However, interpreting the transform as a 1D-DFT of

each column, a 1D-DHT of each row and then a 1D-IDFT of each column makes it possible to

use the Matlab built in functions fft and ifft , which significantly reduced the computational

time.

7.2 Reduce computing time by pre-calculating the Bessel Zeros

After defining the transform as three operations in sequence and using the matrix for the discrete

Hankel transform defined in [8], it was found that a lot of computational time was used to

calculate the Bessel zeros for every different test case, even though the Bessel zeros are the same

in every case. Pre-calculating the Bessel zeros and storing the results for large numbers of 1N

and 2N saves a lot of time.

Table 7 shows the computing time of a forward transform on the same computer (Processor:

Intel(R) Core(TM) i7-4710HQ CPU, RAM:12GB) for three cases:

1. Evaluate the transform as matrices in a matrix without pre-calculating the Bessel zeros.

2. Evaluate the transform as a DFT, DHT and IDFT in sequence without pre-calculating the

Bessel zeros.

3. Evaluate the transform as a DFT, DHT and IDFT in sequence with pre-calculating the

Bessel zeros.

The Gaussian function was used as the test function therefore 1=383N and 2 =15N .

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

40

Table 7 Computing time of three cases: Case1: Run the transform as matrixes in matrix without pre-calculating the Bessel

zeros; Case2: Run the transform as DFT,DHT and IDFT in sequence without pre-calculating the Bessel zeros; Case3: Run the

transform as DFT,DHT and IDFT in sequence with pre-calculating the Bessel zeros

Test cases Total computing time(seconds)

Case 1 3346.5

Case 2 321.1

Case 3 14.3

From Table 7, it can be clearly observed that the computing time by running the transform as

matrices in a matrix costs 3346.5s, which is not acceptable or the transform to be useful. Testing

the transform as three operations turns 3346.5 seconds into 321.1 seconds. This is much better.

Finally, pre-calculating the Bessel Zeros makes the transform much faster and applicable.

8 Summary and Conclusion
8.1 Accuracy and Precision of the transform
The proposed discrete 2D-Fourier Transform in polar coordinates demonstrates an acceptable

accuracy in providing discrete estimates to the continuous Fourier transform in polar coordinates.

In [8],[11]and[15], the one dimensional Hankel transform of a sinc function showed similar

dynamic error, which could be used as a comparative measure. Since the discrete Hankel

transform is one step of the proposed discrete 2D-Fourier Transform, and the definition of the

Hankel transform is based on [8], a similar dynamic error should be expected.

The test cases showed that the transform introduced very small errors (121.4004 e   for

worst case) by performing a forward transform and an inverse transform sequentially, which

demonstrates that the algorithm shows good precision.

8.2 Guidelines of choosing sample size

As discussed in Section 4.3 and proved by test cases, the sample size 1N (sample size in the radial

direction) and 2N (sample size in the angular direction) do not have to be of the same order. For

functions with different properties, sample size in the different directions could be very different.

To approximate the continuous Fourier transform properly, sample size should be chosen based

on the discussion in Section 4.3.

8.3 Interpretation of the transform
By interpreting the transform as a 1D Fourier transform, 1D Hankel transform and 1D inverse

Fourier transform, the computing time of the transform is improved to a useful level.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

41

References

[1] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex

Fourier Series,” Math. Comput., vol. 19, no. 90, pp. 297–301, 1965.

[2] Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for

thermoacoustic tomography. I. Planar geometry,” Med. Imaging IEEE Trans. On, vol. 21,

no. 7, pp. 823–828, 2002.

[3] M. C. Scott et al., “Electron tomography at 2.4-ångström resolution,” Nature, vol. 483, no.

7390, p. 444, Mar. 2012.

[4] B. P. Fahimian et al., “Radiation dose reduction in medical x-ray CT via Fourier-based

iterative reconstruction,” Med. Phys., vol. 40, no. 3, Mar. 2013.

[5] E. Lee et al., “Radiation dose reduction and image enhancement in biological imaging

through equally-sloped tomography,” J. Struct. Biol., vol. 164, no. 2, pp. 221–227, 2008.

[6] N. Baddour, “Discrete Two Dimensional Fourier Transform in Polar Coordinates Part I:

Theory and Operational Rules,” Preprints, vol. 2019, no. 2019070151, Jul. 2019.

[7] C. E. Shannon, “Communication in the presence of noise,” Proc. IEEE, vol. 72, no. 9, pp.

1192–1201, 1984.

[8] N. Baddour and U. Chouinard, “Theory and operational rules for the discrete Hankel

transform,” JOSA A, vol. 32, no. 4, pp. 611–622, Apr. 2015.

[9] D. W. Lozier, “NIST Digital Library of Mathematical Functions,” Ann. Math. Artif. Intell.,

vol. 38, no. 1–3, pp. 105–119, 2003.

[10] N. Baddour, “The Discrete Hankel Transform,” in Fourier Transforms - Century of

Digitalization and Increasing Expectations, London, UK: IntechOpen, 2019.

[11] M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel

transforms of integer order for propagating optical wave fields,” JOSA A, vol. 21, no. 1, pp.

53–58, Jan. 2004.

[12] N. Baddour, “Two-Dimensional Fourier Transforms in Polar Coordinates,” Adv. Imaging

Electron Phys., vol. 165, pp. 1–45, Jan. 2011.

[13] N. Baddour, “Operational and convolution properties of two-dimensional Fourier

transforms in polar coordinates,” J. Opt. Soc. Am. A, vol. 26, no. 8, pp. 1767–1777, Aug.

2009.

[14] A. D. Poularikas, Transforms and Applications Handbook, Third Edition. CRC Press,

2010.

[15] W. Higgins and Jr. Munson D., “An algorithm for computing general integer-order

Hankel transforms,” Acoust. Speech Signal Process. IEEE Trans. On, vol. 35, no. 1, pp. 86–

97, 1987.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

42

Appendix A –Matlab Code

A-1. Theta matrix for space limited function

% N1 sample size in radial direction

% N2 sample size in angular direction

function theta=thetamatrix_SpaceLimited(N2,N1)

theta=zeros(N2,N1-1);

M=(N2-1)/2;

for ii=1:N2;

 p=ii-1-M;

 for k=1:N1-1;

 theta(ii,k)=(p/N2)*2*pi;

 end

end

A-2. r matrix for space limited function

% N1 sample size in radial direction

% N2 sample size in angular direction

% R effective space limit

% zeromatrix precalculated Bessel zero

function r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix)

M=(N2-1)/2;

for ii=1:N2;

 p=ii-1-M;

 for k=1:N1-1;

 zero2=zeromatrix(5001-abs(p),:);

 jpk=zero2(k);

 jpN1=zero2(N1);

 r(ii,k)=(jpk/jpN1)*R;

 end

end

A-3. Psi matrix for space limited function

% N1 sample size in radial direction

% N2 sample size in angular direction

function psi=psimatrix_SpaceLimited(N2,N1)

psi=zeros(N2,N1-1);

M=(N2-1)/2;

for ii=1:N2;

 q=ii-1-M;

 for l=1:N1-1;

 psi(ii,l)=(q/N2)*2*pi;

 end

end

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

43

A-4. Rho matrix for space limited function

% N1 sample size in radial direction

% N2 sample size in angular direction

% R effective space limit

% zeromatrix precalculated Bessel zero

function rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix)

M=(N2-1)/2;

for ii=1:N2;

 q=ii-1-M;

 for l=1:N1-1;

 zero2=zeromatrix(5001-abs(q),:);

 jql=zero2(l);

 rho(ii,l)=jql/R;

 end

end

A-5. Y matrix Assembly Function

% Y is the N-1 x N-1 transformation matrix to be assembled

% n is the order of the bessel function

% N is the size of the transformation matrix

%zeros are the bessel zeros passed to the function

function Y = YmatrixAssembly(n,N,zero)

%tic

for l=1:N-1

 for k=1:N-1

 jnk=zero(k);

 jnl=zero(l);

 jnN=zero(N);

 jnplus1=besselj(n+1, jnk);

 Y(l,k)=(2*besselj(n,(jnk*jnl/jnN)))/(jnN*jnplus1^2);

 end

end

%toc

end

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

44

A-5. Forward transform of Gaussian function

N2=15; %number of sample points in angular direction

N1=383; %number of sample points in radial direction

M=(N2-1)/2; %highest order of bessel function

R=40;% space limit

Wp=30; % band limit

a=0.1;

load('zeromatrix.mat')

theta=thetamatrix_SpaceLimited(N2,N1); %Sample point in angular direction in space domain.

r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in space domain.

psi=psimatrix_SpaceLimited(N2,N1);%Sample point in angular direction in frequency domain.

rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in frequency

domain.

[x,y]=pol2cart(theta,r); %sample points in Cartesian coordinates in space domain

[x1,y1]=pol2cart(psi,rho); %sample points in Cartesian coordinates in frequency domain

%Discretizing the function

for ii=1:N2

 for jj=1:N1-1

 f(ii,jj)=exp(-r(ii,jj)^2);

 end

end

% DFT

fnk=circshift(fft(circshift(f,M+1,1),N2,1),-(M+1),1);

% DHT

for n=-M:M

 ii=n+M+1;

 zero2=zeromatrix(5001-abs(n),:);

 jnN1=zero2(N1);

 if n<0

 Y=((-1)^abs(n))*YmatrixAssembly(abs(n),N1,zero2);

 else

 Y=YmatrixAssembly(abs(n),N1,zero2);

 end

 fnl(ii,:)=(Y*fnk(ii,:)')';

 Fnl(ii,:)=fnl(ii,:)*(2*pi*(i^(-n)))*(R^2/jnN1);

end

% IDFT

TwoDFT=circshift(ifft(circshift(Fnl,M+1,1),N2,1),-(M+1),1);

%creating a discrete 2D Fourier transform

for ii=1:N2

 for jj=1:N1-1

 trueFunc(ii,jj)=pi*exp((-rho(ii,jj)^2)/4);

 end

end

%calculating the dynamic error from transform and true function

error= 20*log10(abs(trueFunc- TwoDFT)/max(max(abs(TwoDFT))));

figure(1)

subplot(2,1,1)

surf(x1,y1,abs(trueFunc))

title('\fontsize{24}Sampled Continuous Forward Transform')

subplot(2,1,2)

surf(x1,y1,abs(TwoDFT))

title('\fontsize{24}Discrete Forward Transform')

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

45

figure(2)

surf(x1,y1,error)

xlabel('x');

ylabel('y');

zlabel('db')

str=sprintf('Error distribution with N2 = %d, N1 = %d,R= %d, a= %d ', N2,N1,R,a);

title(['\fontsize{24}Error distribution with N2=',num2str(N2),', N1=',num2str(N1),',

R=',num2str(R), ', Wp=',num2str(Wp)]);

mean1=mean(mean(error)); % Average dynamic error

max1=max(max(error)); % Maximum dynamic error

A-6. Inverse transform of Gaussian function

N2=15 ; %number of sample points in angular direction

N1=383; %number of sample points in radial direction

M=(N2-1)/2; %highest order of bessel function

R=40;% space limit

Wp=30; % band limit

a=0.1;

load('zeromatrix.mat')

theta=thetamatrix_SpaceLimited(N2,N1);%Sample point in angular direction in space domain.

r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in space domain.

psi=psimatrix_SpaceLimited(N2,N1);%Sample point in angular direction in frequency domain.

rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in frequency

domain.

[x,y]=pol2cart(theta,r); %sample points in Cartesian coordinates in space domain

[x1,y1]=pol2cart(psi,rho); %sample points in Cartesian coordinates in frequency domain

%creating a discrete true function

for ii=1:N2

 for jj=1:N1-1

 trueFunc(ii,jj)=pi*exp((-rho(ii,jj)^2)/4);

 end

end

% DFT

FNL=circshift(fft(circshift(trueFunc,M+1,1),N2,1),-(M+1),1);

% DHT

for n=-M:M

 ii=n+M+1;

 zero2=zeromatrix(5001-abs(n),:);

 jnN1=zero2(N1);

 if n<0

 Y=((-1)^abs(n))*YmatrixAssembly(abs(n),N1,zero2);

 else

 Y=YmatrixAssembly(abs(n),N1,zero2);

 end

 Y0=Y';

 Fnk(ii,:)=FNL(ii,:)*Y0;

 fnk(ii,:)=Fnk(ii,:)*((jnN1)*(j^n))/(2*pi*R^2);

end

% IDFT

TwoDIFT=circshift(ifft(circshift(fnk,M+1,1),N2,1),-(M+1),1);

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

46

%%discretizing the function in space domain

for ii=1:N2

 for jj=1:N1-1

 f(ii,jj)=exp(-r(ii,jj)^2);

 end

end

%calculating the dynamic error from transform and origal function

error= 20*log10(abs(f- TwoDIFT)/max(max(abs(TwoDIFT))));

figure(1)

subplot(2,1,1)

surf(x,y,abs(f))

title('\fontsize{24}Continuous Inverse Transform')

subplot(2,1,2)

surf(x,y,abs(TwoDIFT))

title('\fontsize{24}Discrete inverse Transform')

figure(2)

surf(x,y,error)

xlabel('x');

ylabel('y');

zlabel('db')

str=sprintf('Error distribution with N2 = %d, N1 = %d,R= %d, a= %d ', N2,N1,R,a);

title(['\fontsize{24}Error distribution with N2=',num2str(N2),', N1=',num2str(N1),',

R=',num2str(R), ', Wp=',num2str(Wp)]);

mean=mean(mean(error)); % Average dynamic error

max=max(max(error));% Maximum dynamic error

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2019 doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257

