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Abstract 

The theory of the continuous two-dimensional (2D) Fourier Transform in polar coordinates has 

been recently developed but no discrete counterpart exists to date.  In the first part of this two-

paper series, we proposed and evaluated the theory of the 2D discrete Fourier Transform (DFT) 

in polar coordinates. The theory of the actual manipulated quantities was shown, including the 

standard set of shift, modulation, multiplication, and convolution rules. In this second part of the 

series, we address the computational aspects of the 2D DFT in polar coordinates. Specifically, 

we demonstrate how the decomposition of the 2D DFT as a DFT, Discrete Hankel Transform 

(DHT) and inverse DFT sequence can be exploited for efficient code.  We also demonstrate how 

the proposed 2D DFT can be used to approximate the continuous forward and inverse Fourier 

transform in polar coordinates in the same manner that the 1D DFT can be used to approximate 

its continuous counterpart.    

Keywords: Fourier Theory, DFT in polar coordinates, polar coordinates, multidimensional DFT, 

Discrete Hankel Transform, Discrete Fourier Transform, Orthogonality. 

1 Introduction 

The Fourier transform is a powerful analytical tool and has proved to be invaluable in many 

disciplines such as physics, mathematics and engineering. The development of the Fast Fourier 

Transform (FFT) algorithm  [1], which computes the discrete Fourier transform with a fast 

algorithm, firmly established the Fourier transform as a practical tool in diverse areas, most 

notably signal and image processing.  

In two dimensions, the FFT can still be used to compute the discrete Fourier transform in 

Cartesian coordinates. However, in many applications such as photoacoustics [2] and 

tomography ([3], [4], [5]), it is often necessary to compute the Fourier transform in polar 

coordinates. Moreover, for functions that are naturally described in polar coordinates, a discrete 

version of the 2D Fourier transform in polar coordinates is needed. There have been some 

attempts to calculate the Fourier transform in polar coordinates, most notably through the Hankel 

transform, since the zeroth order Hankel transform is known to be a 2D Fourier transform in 

polar coordinates for rotationally symmetric functions.   However, prior work has focused on 
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numerically approximating the continuous transform. This stands in contrast to the Fourier 

transform, where the Discrete Fourier Transform (DFT) can stand alone as an orthogonal 

transform, independent of the existence of its continuous counterpart.  

 In the first part of this two-part paper series, we proposed an independent discrete 2D 

Fourier transform in polar coordinates, which has been defined to be discrete from first principles 

[6].  Standard operational ‘rules’ of shift, modulation and convolution rules for this 2D DFT in 

polar coordinates were also demonstrated.  The operational rules were demonstrated via the key 

properties of the proposed discrete kernel of the transform.  However, using the discrete kernel 

may not be the most effective way to compute the transform. Furthermore, while the 2D DFT in 

polar coordinates was demonstrated to have properties and rules as a standalone transform 

independent of its relationship to any continuous transform, an obvious application of the 

proposed discrete transform is to approximate its continuous counterpart.   

Hence, the goal of this second part of this two-part paper series is to propose computationally 

efficient approaches to the computation of the previously proposed 2D DFT in polar coordinates 

and also to validate its effectiveness to approximate the continuous 2D Fourier transform in polar 

coordinates. Moreover, since computing speed is one of the most important criteria for a discrete 

transform, computational improvements to the transform are also proposed. 

The outline of the paper is as follows. Section 2 introduces the proposed definition of the 

discrete 2D Fourier transform in polar coordinates.  The motivation of this definition and the 

transform rules (multiplication, convolution, shift etc) are given in the first part of this two-part 

paper.  Section 3 introduces the discretization scheme where we show the connection between 

discrete samples of the continuous functions and the discrete transform. Here, the connection 

between using the proposed 2D DFT and sampled vales of the continuous functions is explained.  

The proposed 2D DFT relies on a specific sampling scheme (introduced in section 3) which can 

be plotted and analyzed for ‘grid coverage’ – how much of the 2D plane is covered and at which 

density.  Thus, Section 4 analyzes the proposed discretization points and their implication of the 

sampling grid for density and coverage of the grid.  The insights gained from this section will be 

useful in interpreting the results of approximating the continuous transform with the discrete 

transform.  Section 5 introduces numerical computation schemes whereby the interpretation of 

the proposed 2D transform as a sequence of 1D DFT, 1D DHT and 1D IDFT is exploited.  

Approaches to exploit some of Matlab’s (Mathworks 2018) built-in functions for ease of coding 

and computational speed are also demonstrated.  Section 6 then investigates the ability of the 

proposed 2D DFT to approximate the continuous transform in terms of precision and accuracy.  

Three test functions for which closed-form continuous transforms are known are analyzed.  

Section 7 discusses the computational time of the transform and approaches that were 

successfully undertaken to drastically improve the computation time.  Finally, section 8 

summarizes and concludes the paper.   Sample Matlab code is included in the appendix of the 

paper.  

2 Definition of the Discrete 2D Fourier Transform in Polar Coordinates 

The 2D-Discrete Fourier Transform in polar coordinates has been defined in the first part of this 

two-paper series as the discrete transform that takes the matrix (or double-subscripted series) pkf  

to the matrix (double-subscripted series)
 qlF  such that pk qmf F is given by 

  
1 1

;

1

N M

qm pk pk qm pk

k p M

F f f E




 

     (1) 
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where , , , ,p k q m n , 1
N , and 2

N are integers such that M n M   , where 2
2 1M N    

1
1 , , 1m k N   and ,M p q M   . Similarly, for the inverse transform we propose  

  
1 1

1

;

1

N M

pk qm qm qm pk

m q M

f F F E


 

 

     (2) 

In equations (1) and (2), ;qm pkE
are the kernels of the transformation.  These can be chosen as the 

‘non-symmetric’ form given by  
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 


  (3) 

Here,  n zJ is the nth order Bessel function of the first kind and nkj  denotes the kth zero of the 

nth Bessel function.  The subscript (+ or -) indicated the sign on the i


 and on the exponent 

containing the p variable; the q variable exponent then takes the opposite sign. From a matrix 

point of view, both pkf  and qlF are  2 1 1N N   sized matrices.  Another possible form of the 

kernel is the ‘symmetric’ form where the kernels are complex conjugates of each other. This 

form is simply a matter of redistributing the factors of 
1nNj in the denominators so that 
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  (4) 

As before, , , , ,p k q m n , 1N , and 2N are integers such that M n M   , where 2
2 1M N    

1
1 , , 1m k N   and ,M p q M   .  In equation (4), 

( )

;

s

qm pkE 
is now the complex conjugate of  

( )

;

s

qm pkE 
.  Both sets of kernels in equations (3) and (4) lead to the same set of modulation, shift, 
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convolution, multiplication rules. The form in equation (3) arises naturally from discretization 

of the continuous transform, but does not lead to the expected Parseval relationship.  The form 

in equation (4) is less suited to approximating the continuous transform but does lead to the 

expected Parseval relationship.  The Parseval relationships were presented and shown in the first 

part of this two-part paper.  

3 Discrete Transform to approximate the continuous transform 

In this section, relationships between discretely sampled values of the function and its continuous 

2D FT are presented in the case of a space-limited or band-limited function.  These relationships 

were derived in the first part of the paper and are repeated here since they will form the basis for 

the using the discrete transform to approximate the continuous transform at specified sampling 

points 

Consider a function in the space domain ( ,f r    which is space limited to  0,r R . This 

implies that the function is zero outside of the circle bounded by  0,r R .  An approximate 

relationship between sampled values of the continuous function and sampled values of its 

continuous forward 2D transform  F    has been derived in the first part of the two-part 

paper as 
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      
   

     (5) 

Similarly, an approximate relationship between sampled values of the continuous forward 

transform  F   and sampled values of the continuous original function ( ,f r  was shown to 

be given by 
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     (6) 

In equations  (5) and (6),  ,f r   is the original function in 2D space and  F    is the 2D 

Fourier transform of the function in polar coordinates.  The values of the sampled functions given 

in equations  and  can be considered to be the discrete quantities denoted by 
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  (7) 

Now consider functions in the frequency domain  F   with an effective band limit

0,W    .  That is, we suppose that the 2D Fourier transform  F    of ( ,f r     is band-

limited, meaning that  F    is zero for 2W W   .  The variable W   is written in this 

form since W  would typically be quoted in units of Hz (cycles per second) if using temporal 

units or cycles per meter if using spatial units.  Therefore, the multiplication by 2  ensures that 

the final units are in 
1s  or 

1m
.  The approximate relationship between the discrete transform 

 F   and the sampled values of the continuous transform  ,f r  was derived in the first part 

of the paper and is given by  
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The inverse transform is given by 
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As before, the relationships in equations (8) and  (9) give relationships between the sampled 

values of the original function 

 
2

2pk

pk

p

j p
f f

W N

 
   

 

  (10) 

and sampled values of its continuous 2D transform 
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The relationships given by equation (5),(6) ,(8) and (9), were the motivating  definition of a 2D 

Discrete Fourier transform in polar coordinates, defined in the first part of this two-part paper.  

In the context of this second part of the two-part paper, they are also the relationships that permit 

the use of the discrete transform to approximate the continuous transform at the specified 

sampling points.  

4 Discretization Points and Sampling Grid 

The transforms defined in equations (1) and (2) can be applied to any matrix pkf  to yield its 

forward transform qmF , which can then be transformed backwards by using the inverse 

transform. However, if these same discrete transforms are to be used for the purpose of 

approximating a continuous 2D Fourier transform, then these transforms need to be applied to 

the specific sampled values of the continuous functions in both space and frequency domains, as 

shown in equations (7) and (11).  The relationships in (7) and (11) define the sampling points 

that need to be used and it is noted that the points are defined differently based on whether we 

start with the assumption of a space or band limited function.   These specific sampling points 

as given in equation  (7) and (11) imply a specific sampling grid for the function. In this section, 

the sampling grid (its coverage and density in 2D) is analyzed.  

4.1 Sampling points 
For a space-limited function, we assume that the original function of interest is defined over 

continuous  ,r   space where 0 r R  and 0     . The discrete sampling spaces used 

for radial and angular sampling points in regular r space  ,r  and   frequency    space 

are defined as 

 

1 2
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and  
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For a band limited function, the function is assume band-limited to 0 W  ,0     .  

The sampling space used for radial and angular sampling points in regular   frequency space 

   and r space  ,r   for a bandlimited function is defined as 
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As above, , , , ,p k q m n , 1N , and 2N are integers such that M n M   , where 22 1M N  ,

11 , , 1m k N   and ,M p q M   . Clearly, the density of the sampling points depends on 

the numbers of points chosen, that is on 1N  and 2N .  Also clear is the fact that the grid is not 

equispaced in the radial variable.  The sampling grid for a space-limited function are plotted 

below to enable visualization.  In the first instance, the polar grids are plotted for the case 1R   

, 1 16N  and 2 15N  .  These are shown in space (r space) and frequency (ρ space) in Figures 

1 and 2 respectively. 

 

Figure 1 Sampling grid in space domain of a space limited function for R=1, N1=16 and N2 = 15 

 

Figure 2 Sampling grid in frequency domain of a space limited function for R=1, N1=16 and N2 = 15 

Clearly, the grids in Figure 1and Figure 2 are fairly sparse, but the low values of 2N and 1N  have 

been chosen so that the structure of the sampling points can be easily seen. It can be observed 

that there is a hole at the center area in both domains which is caused by the special sampling 

points. For higher values of the 2N  and 1N , the grid becomes fairly dense, obtaining good 

coverage of both spaces, but details are harder to observe.  To demonstrate, the polar grids are 

plotted for the case R =1, 
1

96N   and 2 95N  .  These are shown in Figures 3 and 4 

respectively. 
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Figure 3 Sampling grid in space domain of a space limited function for R=1, N1 = 96 and N2 = 95 

 

Figure 4 Sampling grid in frequency domain of a space limited function for R=1, N1 = 96 and N2 = 95 

From Figure 3 and Figure 4, by choosing higher values of 1N and 2N , the sampling grid becomes 

denser, however there is still a gap in the center area. The sampling grids for band-limited 

functions are not plotted here since the sample grid for a band-limited function has the same 

shape as with space limited function but the domains are reversed. 

4.2 Sample Grid Analysis 
From the first part of the paper, it was shown that the 2D-Fourier Transform can be interpreted 

as a Discrete Fourier Transform in the angular direction, a Discrete Hankel Transform in the 

radial direction and then an inverse Discrete Fourier Transform in the angular direction. Hence, 

the sample size in the angular direction could have been decided by the Nyquist sampling 

theorem [7], which states that  

 max2sf f   (16) 

where sf  is the sample frequency and maxf  is the highest frequency or band limit.   

In the radial direction, the necessary relationship for the Discrete Hankel Transform is 

given by [8] 
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1nNW R j    (17) 

where W  is the effective band-limit, R  is the effective space limit and nNj  is the Nth zero of 

 nJ r . For the 2D Fourier Transform, since M p M   , the order of the Bessel zero ranges 

from M  to M  , the relationship needed becomes 

 
1

( )pNmin j W R   (18) 

The relationships nN nNj j  and 
1 1 1 10 1 2 ...N N N MNj j j j       are valid [9], hence equation 

(18) can be written as 

 
10Nj W R   (19) 

It is pointed out in [10], [11] that the zeros of   nJ z are almost evenly spaced at intervals of   

and that the spacing becomes exactly  in the limit as  z  .  In fact, it is shown in [10] that 

a simple asymptotic form for the Bessel function is given by 

  
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Therefore, an approximation to the Bessel zero, nkj is given by 

 
1

2
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nkj k n
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  (21) 

Hence, equation (19) can be written to choose 1N  approximately as  

 
1

1

2

2

N W R WR

N WR
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 
  (22) 

where the reader is reminded that the units of W is m-1 (the space equivalent of Hz).  1 /N R  is 

the spatial sampling frequency and we see that equation (22) effectively makes the same 

statement as equation (16). 

Intuitively, more sample points lead to more information captured, which gives an 

expectation that increasing 1N  or 2N  individually will give a better sampling grid coverage. 

However, it can be seen from Figure 1 to Figure 4 that there is a gap in the center of the sample 

grid. From equation (12) and (13), the area of the gap in the center is related to the ranges of p

and k , that is 2N and 1N . In the sections below, it is assumed that the sampling theorems are 

already satisfied (that is, an appropriate space and band limit is selected) and the relationship 

between 2N , 1N  and the size of the gap will be discussed. 
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4.2.1 Space-limited function 

In this section, it is assumed that the function is a space limited function, defined in [0, ]r R  . 

The sampling points are defined as equation (12) in the space domain and (13) in the frequency 

domain. In the following, a relationship between 2N , 1N  and the area of the gap in both domains 

is discussed. 

4.2.1.1 Sample grid in the space domain 
In the space domain, the effective limit in the space domain, R, is fixed. To analyze how the 

values of 2N  and 1N  affect the coverage of the grid in space domain, consider the following 

definition of ‘grid coverage’ 

 
2 2

2
100r

R r
A

R

 




    (23) 

where r  denotes the average radius of the gap (the hole in the middle of the grid). rA  as defined 

in equation (23) is a measure of the ‘grid coverage’ since it gives a percentage of how much of 

the original space limited domain area is captured by the discrete grid.  For example, if the 

average radius of the center gap is zero, then rA  would be 100%, that is, complete coverage. 

Based on the observation of Figure 1 and Figure 3, the relationship 01 11 21 1Mr r r r      is valid. 

Therefore, from equation (12), the average radius of the gap is given by 

 

1 1

01 1 01 1

0

( ) 1

2 2

M M

N MN

r r j j
r R R

j j

 
   

 
 

  (24) 

Hence, equation (23) can be written as 

 

1 1

201 1

0

1
1 100

4

M
r

N MN

j j
A

j j

  
     

    

  (25) 

Table 1 shows the different values of rA as the values of 1N  and 2N  are changed. 

Table 1 Spatial grid coverage, Ar, with respect to different values of N1 and N2 (R is fixed) 

N1 

N2 
15 75 150 300 

15 98.48%rA   99.92%rA   99.98%rA   99.99%rA   

75 93.78%rA   99.36%rA   99.81%rA   99.95%rA   

151 90.14%rA   98.42%rA   99.46%rA   99.84%rA   

301 86.17%rA   96.58%rA   98.59%rA   99.51%rA   

 

From Table 1, it can be seen that increasing 1N  (sample size in the radial direction) tends to 

increase the grid coverage. Since the effective space limit R  is fixed, from equation (19) it 

follows that increasing 1N actually increases the effective band limit. However, increasing 2N  
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(sample size in angular direction) will result in a bigger gap in the center of the grid, which then 

decreases the coverage.    

4.2.1.2 Sample grid in the frequency domain  
Similarly, coverage of the grid in the frequency domain is defined as 

 

2 2

2
100

W
A

W







 




    (26) 

where   denotes the average radius of the gap. Since 

 01 1 01 1( ) ( )

2 2

M Mj j

R

 


 
    (27) 

Then, it follows that equation (26) can be written as 

 
2

01 1

2 2

( )
1 100%

4

Mj j
A

R W




 
   
  

  (28) 

From equation (28), it can be observed that the sample grid coverage in the frequency domain is 

affected by R  ,W  and M . Since 2 2 1N M  , in order to get a better grid coverage with a 

fixed W , R and 
2N can be adjusted.  Table 2 shows the grid coverage A  for different values 

of R and 2N  . 

Table 2 Frequency grid coverage, Aρ, with respect to different values of R and N2 (Wρ is fixed) 

R 

N2 
15 75 150 300 

15 99.80%A   99.99%A   100.00%A    

75 97.66%A   99.91%A   99.98%A   99.99%A   

151 91.88%A   99.68%A   99.92%A   99.98%A   

301 70.67%A   98.83%A   99.71%A   99.93%A   

  

From Table 2, the conclusion for the frequency domain is that when the effective band limit is 

fixed, increasing R   (effective space limit) tends to increase the coverage in the frequency 

domain, while increasing 2N  (sample size in the angular direction) decreases the coverage. 

However, from equation (19) it should be noted that to satisfy the sampling theorem, increasing 

R   with fixed W  requires an increase in 1N at the same time. 

4.2.2 Band-limited function 

In this section, we suppose that the function is an effectively band limited function, defined on

[0, ]pW   . The sampling points are defined as in equation (14) in the space domain and as in 

100.00%A 
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(15) in the frequency domain.  In this subsection, the relationship between 2N , 1N  and the area 

of the gap in both domains is discussed. 

4.2.2.1 Sampling Grid in the space domain 
The same definition of grid coverage in the space domain will be used as in equation (23). Since 

the sampling points of a band-limited function are given by equations (14) and(15), the average 

radius of the gap can be defined as 

 01 1 01 1
( ) 1

2 2

M M
r r j j

r
W W 

 
    

 

  (29) 

Therefore, the coverage of the grid in space domain can be written as 

 
2

01 1

2 2

( )
= 1 100

4

M
r

j j
A

W R

 
  

  

  (30) 

It can be observed that the grid coverage in the space domain of a band-limited function is the 

same as the grid coverage in the frequency domain of space limited function. 

4.2.2.2  Sample Grid in frequency domain 
The coverage of the grid in the frequency domain of a band limited function is defined by 

equation (26). With sampling points defined in equation (15) , the average radius of the gap can 

be defined as 

 

1 1

01 1 01 1

0

( ) 1

2 2

M M

N MN

j j
W W

j j
 

 


 
   

 
 

  (31) 

The coverage of the grid in frequency domain can be written as 

 

1 1

201 1

0

1
1 100

4

M

N MN

j j
A

j j


  
     

    

  (32) 

It can be observed that the grid coverage in the frequency domain of a band-limited function is 

the same as the grid coverage in the space domain of a space limited function. 

4.3 Conclusion 
Based on the discussion above, the following conclusions can be made:  

1. Increasing 2N (angular direction) tends to decrease the sampling grid coverage in both 

domains. Increasing 1N (radial direction) tends to increase the sampling coverage in the 

space domain for a space-limited function and in the frequency domain for a frequency-

limited function. So, if a signal changes sharply in the angular direction such that large 

values of 2N  are needed, a large value of 1N  is also needed to compensate for the 

effect of increasing 2N  on the grid coverage.  

2. For a space-limited function, if there is a lot of energy at the origin in the space domain, 

a larger value of 1N  will be required to ensure that the sampling grid gets as close to the 

origin as possible in the space domain. If the function has a lot of energy at the origin in 
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the frequency domain, a large value for both 1N  and R  will be required to ensure 

adequate grid coverage.  

3. For a band-limited function, if there is a lot of energy at the origin in the frequency 

domain, a large value of  1N  will be needed to ensure that the sample grid gets as close 

to the origin as possible in the frequency domain. If the function has a lot of energy at 

the origin in the space domain, large values for both 1N  and W are required. 

5 Numerical Computation of the Transform 

We have already demonstrated in the first part of the paper that the discrete 2D Fourier transform 

in polar coordinates can be interpreted as a DFT, DHT and then inverse DFT. This interpretation 

is quite helpful in coding the transform and in exploiting the speed of the FFT (Fast Fourier 

Transform) in implementing the computations. In this section, we explain how the speed of 

Matlab’s (Mathworks 2018) built-in code (or similar software) can be exploited to implement 

the 2D FT in polar coordinates.    

5.1 Forward transform 

To transform pk qmf F , the operation is performed in steps.  The first step is a forward 1D 

DFT transforming pk nkf f where the p subscript is transformed to the n subscript: 

 2

1

2

for , 1.. 1.. 

pM in
N

nk pk

p M

n k NM Mf f e






      (33) 

The overbar is used to indicate a standard 1D DFT.  In matrix operations, this is equivalent to 

stating that each column of pkf  is DFT’ed to yield
nkf . The second step is a discrete Hankel 

transform of order n , transforming 
ˆ

nk nmf f so that the k subscript is Hankel transformed to 

the m subscript: 

 
 

1 1

1 1

1

1

1 1

,2
1 11

for , 1.. 1..

2
ˆ

nk nm
n

N N
nN nN

nm nk m k nk

k knN n nk

n m NM M

j j
J

j
Y

j J j
f f f

 

 

  

 
 
 
       (34) 

Here, the overhat is used to indicate a Discrete Hankel Transform (DHT), with the DHT as 

defined in [8] via the transformation matrix 

 
 

1

1 1

, 12

1

2
1 , 1

nN nm nk
m k n

nN n nk nN

j j
Y J m k N

j J j j

 
    

 
 

  (35) 

In matrix operations, this states that each row of 
nkf  is DHT’ed to yield 

ˆ
nmf . These are now 

scaled to give the Fourier coefficients of the 2D DFT 
ˆ
nm nmFf  such that 
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1

1

1 1

1

12 2

,

1

for , 1.. 1..
2 2ˆ

Nn n
nN

nm nm m k nk

knN nN

n m NM M
R i R i

F Y
j j

f f
   



       (36) 

It is noted that the step in equation (36) exactly parallels the continuous form equivalent step 

where    2 ( )n

n n nF i f r   , see [12], [13]. 

The final step of the forward 2D DFT in polar coordinates is then a standard inverse 1D 

DFT, which transforms each column of nm qmF F so that the n subscript is (inverse) DFT 

transformed to the q subscript via 

 2

2 1

2

2

0for 1, 1.. 1..
1

q
in

N

qm nm

M

n M

q N m NF F e
N






       (37) 

This last step is a 1D Inverse Discrete Fourier Transform (IDFT) for each column of 
nmF  to 

obtain qmF .   The inverse 2D DFT can be similarly interpreted, shown in the next subsection.  

5.2 Inverse Transform 

The steps of the inverse 2D DFT are the reverse of the steps outlined above for the forward 2D 

DFT.  First, qm nmF F  via a forward 1D DFT 

 2

1

2

, 1.. 1..

nqM i
N

nm qm

q M

n m NM MF F e






      (38) 

Then, a discrete Hankel transform is performed to transform 
ˆ

nm nkF F such that
 

 
 

1 1

1 1

1

1

1 1

,2
1 11

, 1.. 1..

2

ˆ for 

nm nk
n

N N
nN nN

nk nm k m nm

m mnN n nm

n k NM M

j j
J

j
F F Y F

j J j

 
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  

 
 
 
       (39) 

This is followed by a scaling operation to obtain
ˆ
nk nkF f from

 

 1

12
, 1.. 1..

ˆ for 
2

n

nN

nk nk n k NM M
j i

f F
R



      (40) 

Finally, an inverse 1D IDFT is applied to obtain   nk pkf f
   from 

 2

1

2

2

.. , 1.. 1
1

for 

npM i
N

pk nk

n M

M M k Nf f e p
N






       (41) 

As previously mentioned, this parallels the steps taken for the continuous case, with each 

continuous operation (Fourier series, Hankel transform) replaced by its discrete counterpart 

(DFT, DHT). 

 Therefore, for both forward and inverse 2D-DFT, the sequence of operations is a DFT of 

each column of the starting matrix, followed by a DHT of each row, a term-by-term scaling, 
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followed by an IDFT of each column.  This is a significant computational improvement because 

by interpreting the transform this way, the Fast Fourier Transform (FFT) can be used, which 

reduces the computational time quite significantly. 

5.3 Interpretation of the sampled forward transform in Matlab terms 

To use the built-in Matlab function fft , a few operations are required. First, we define matlab-

friendly indices ' ( 1)p p M    and ' ( 1)n n M    so that , ..p n M M  become 

21..2 1 1..', ' M Np n     (since 
2

2 1M N  ), that is the primed variables range from 1..2M  

rather than ..M M . Hence, if the matrix f  with entries 'p kf is defined, where 

12' 1 , 1.. 1..p k NN   , then equation (33) can be written as the Matlab-defined DFT as 

 

2

2

2 ( ' 1 )( ' 1 )

'

' 1

i p M n MN
N

n k pk

p

f f e

    



   (42) 

The definition of DFT in Matlab is actually given by the relationship 

 

2

2

2 ( ' 1)( ' 1)

' '

' 1

i p nN
N

n k p k

p

f f e
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

   (43) 

Since the relationship 
2 22 ( ' 1)( ' 1 ) 2 ( ' 1 )( ' 1 )

2 2
'

' 1 ' 1

i p n M i p M n MN N

N N
p k pk

p p

f e f e
         

 

   is valid, we can sample 

the original function to obtain the discrete pkf values, put them in the matrix 'p kf  then shift the 

matrix 'p kf  by 1M   along the column direction. In Matlab, the function  , ,circshift A K dim   

can be used, which circularly shifts the values in array A  by K   positions along dimension dim.  

Inputs K  and dim must be scalars. Specifically, dim = 1 indicates the columns of matrix A  and 

dim = 2 indicates the rows of matrix A. Hence, equation (42) can be written as  

   2' ' ,, 1,1 ,1n k p kcircshiftf fft M Nf     (44) 

In matrix operations, this is equivalent to stating that each column of 'p kf  is DFT’ed to yield 

'n kf .   

The second step (equation (34)) is a discrete Hankel transform of order n , transforming 

' '

ˆ
n k n lf f so that the k subscript is Hankel transformed to the l subscript. In order to relate the 
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order n  to the index 'n  , we need to shift 
'n kf  by ( 1)M   along column direction so that the 

order ranges from –M to M. 
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1

1
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 
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  
  (45) 

By using the Hankel transform matrix defined in [8], equation (45) can be rewritten as 

    1 12

' ' ,

or , 1.. 11..f '
, ( 1),1

where ' 1

ˆ T
nN

n l n k l k

l NN
circshift

n
M Y

n n M
f f

  
   
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   (46) 

In matrix operations, this states that each row of 'n kf  is DHT’ed to yield '

ˆ
n lf . These are now 

scaled to give the Fourier coefficients of the 2D DFT ' '

ˆ
n l n lFf  . In order to proceed to an 

inverse DFT in the next step, it is necessary to shift the matrix by 1M   along the column 

direction after scaling 
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 (47) 

This last step is a 1D IDFT for each column of 'n lF  to obtain qlF .  Using 22 1M N  , and 

' 1q q M   , equation (37) can be written as 

 

 
 

 

    

2

2

2

2 1

2

2 ' 1
' 1

'

' 2

' 12

2 ' 1
( ' 1)

'
' 12

' 1for , 1.. 1..

, ,1 , 1 ,1

1

1

q M
i n M

N

q l nl

n l

N

n

q MN i n
N

n l
n

q N l NF

h

F e

ifcircs ift ft F N M

N

F e
N





 
  



 
 


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   (48) 

5.4 Interpretation of the sampled inverse transform in Matlab terms 

Similarly, matlab-friendly indices ' ( 1)q q M    and ' ( 1)n n M    are also defined. 

Hence, if the matrix F  with entries 'q lF  is defined, where 2, 1' 1.. 1.. 1q N l N   , it then 

follows that equation (38) can be written as the matlab-defined DFT as 
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
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  (49) 

If the original function can be sampled as qlF  and then put into matrix 'q lF , then we need an 

circshift  operation. So equation (49) can be written as 

  ' ' 2( , 1,1), ,1n l q lF fft circshift F M N    (50) 

Subsequently, a discrete Hankel transform of order n is required, transforming 
' '

ˆ
n l n lF F so 

that the l subscript is Hankel transformed to the k subscript. To achieve this, circshift is also 

needed here. 

   1 12

' ' ,

or , 1.. 11..f 'ˆ , ( 1),1
where ' 1

T
nN

n k n l k l

l NNn
F circshift F M Y

n n M

  
   

  
 (51) 

This is followed by a scaling operation to obtain
' '

ˆ
n k n kF f  and then a circshift by ( 1)M   so 

that 

 
 

1 12

' '2

or , 1.. 11..f 'ˆ , ( 1),1
where ' 12

nN n

n k n k

k NNnj
f circshift i F M

n n MR


   

   
    

 (52) 

This last step is a 1D IDFT for each column of 'n kf  to get 'p kf  .  Using 
2

2 1M N  , and 

' 1p p  , equation (41) can be written as 

 

 
 

  

  

2

2

2

2 1

2

2 ' 1
' 1

'k

' 2

' 12

2 ' 1 ' 1

'
' 12

' 1for , 1.. 1..

, ,1 , ( 1),1

1

1

p M
i n M

N

p nk

n k

N

n

n p MN i
N

n k
n

p N k Nf f e

circshift ifft f N M

N

f e
N





 
  



  




  





  



   (53) 

In conclusion, in this section, by using the interpretation of the kernel as sequential DFT, DHT 

and IDFT operations, Matlab (or similar software) built-in code can be used to efficiently 

implement the 2D DFT algorithm in polar coordinates.   
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6 Numerical evaluation of the 2D DFT in polar coordinates to 

approximate the continuous FT   

In this section, the 2D discrete Fourier transform is evaluated for its ability to estimate the 

continuous Fourier transform at the selected special sampling points in the spatial and frequency 

domains. 

6.1 Method for testing the Algorithm 

6.1.1 Accuracy  

In order to test accuracy of the 2D-DFT and 2D-IDFT to calculate approximate the continuous 

counterpart, the dynamic error is proposed as a metric. The dynamic error is defined as [11] 

 10

(v) (v)
(v) 20log

max (v)

C D
E

D

 
  

 
  (54) 

where (v)C  is the continuous forward or inverse 2D-Fourier transform and (v)D  is the value 

obtained from the discrete counterpart. The dynamic error is defined as the ratio of the absolute 

error to the maximum amplitude of the discrete function, calculated on a log scale. Therefore, a 

large negative value represents an accurate discrete transform. The dynamic error is used instead 

of the percentage error in order to avoid division by zero.  

6.1.2 Precision 

The precision of the algorithm is an important evaluation criterion, which is tested by 

sequentially performing a pair of forward and inverse transforms and comparing the result to the 

original function. High precision indicates that numerical evaluation of the transform does not 

add much error. An average of the absolute error between the original function and the calculated 

counterpart at each sample point is used to measure the precision. It is given by 

 
 

 1 21

*

11 2

1

1

N N

n

f f
N N


 



 
 

   (55) 

where f  is the original function and 
*f is the calculated counterpart. An ideal precision would 

result in the absolute error being zero. 

6.2 Test functions  
In this section, three test functions are chosen to evaluate the ability of the discrete transform to 

approximate the continuous counterpart. The first test case is the circularly symmetric Gaussian 

function. Given that it is circularly symmetric and that the Gaussian is continuous and smooth, 

the proposed DFT is expected to perform well. The second test case is “Four-term sinusoid and 

Sinc” function, which is not symmetric in the angular direction and suffers a discontinuity in the 

radial direction. The third test function presents a more challenging test function, the “Four-term 

sinusoid and Modified exponential” function.  In this case, the test function is not circularly 

symmetric and it explodes at the origin (approaches infinity at the origin). Given that as shown 

above, the sampling grid cannot cover the area around the origin very well, a function that 

explodes at the origin should give more error and should provide a reasonable test case for 

evaluating the performance of the discrete transform. 

6.2.1 Gaussian 

The first function chosen for evaluation is a circular symmetric function which is Gaussian in 

the radial direction. Specifically, the function in the space domain is given by 
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2 2

( , ) a rf r e    (56) 

where a is some real constant.  Since the function is circularly symmetric, the 2D-DFT is a 

zeroth-order Hankel Transform [14] and  is given by 

 

2

24
2

( , ) aF e
a




 


   (57) 

The graphs for the original function and its continuous 2D-DFT (which is also a Gaussian) are 

plotted with 1a   and shown in Figure 5. 

  

Figure 5 the original Gaussian function and its 2D-Fourier Transform 

From Figure 5, the function is circular symmetric and fairly smooth in the radial direction. 

Moreover, the function can be considered as either an effectively space-limited function or an 

effectively band-limited function. For the purposes of testing it, it shall be considered as a space-

limited function and equations (12) and (13) will be used to proceed with the forward and inverse 

transform in sequence. 

To perform the transform, the following variables need to be chosen: 2N , R and 1N . In the 

angular direction, since the function in the spatial domain is circularly symmetric, 2N  can be 

chosen to be small. Thus, 2 15N   is chosen. 

In the radial direction, from plotting the function, it can be seen that the effective space 

limit can be taken to be 5R   and the effective band limit can be taken to be 10W  . From 

equation (19), 
10 50Nj R W   . Therefore, 1 17N   is chosen (we could also have obtained a 

rough estimate of 1N  from equation (22)). However, most of the energy of the function in both 

the space and frequency domains is located in the center near the origin. Based on the discussion 

in Section 4.3, relatively large values of R and W   are needed. The effective space limit 40R   

and effective band-limit 30pW  are thus chosen, which gives
10 1200Nj R W   . Therefore 

1 383N   is chosen in order to satisfy this constraint.  Both cases discussed here ( and 

) are tested in following.  

1 17N 

1 383N 
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6.2.1.1 Forward Transform  

Test results with 5R  , 1 17N   are shown in Figure 6 and Figure 7.  Figure 6 shows the sampled 

continuous forward transform and the discrete forward transform.  Figure 7 shows the error 

between the sampled values of the continuous transform and the discretely calculated values.     
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Figure 6 Sampled continuous forward transform and discrete forward transform of the Gaussian function 

 with R=5, N2=15, N1=17  

 

 

Figure 7 The error distribution of the forward transform of Gaussian Function with R=5, N2=15, N1=17 

From Figure 7, it can be observed that the error gets bigger at the center, which is as expected 

because the sampling grid shows that the sampling points can never attain the origin. The 

maximum value of the error is max 0.9115E dB   and this occurs at the center.  The average 

error is . 30.4446avgE dB  .  

Test results with 40R  , 1 383N   are shown in Figure 8 and Figure 9 . Similar to the 

previous case, the error gets larger at the center, as expected. However, the maximum value of 

the error is max 8.3842E dB   and this occurs at the center. The average value of the error is

. 63.8031avgE dB  . Clearly, the test with 40R  , 1 383N  gives a better approximation, 

which verifies the discussion in Section 4.3. 
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Figure 8 Sampled Continuous forward transform and Discrete forward transform of Gaussian Function with R=40, N2=15, 

N1=383 

 

Figure 9 The error distribution of the forward transform of Gaussian Function with R=40, N2=15, N1=383 

 

With 40R  , Table 3 shows the errors (max and average error) with respect to different value of 

1N  and 2N .  The trends as functions of 1N  and 2N  are shown as plots in Figure 10 and Figure 

11. 

Table 3 Error (dB) of forward transform of Gaussian Function with R=40, different value of N1 and N2 

N1 

N2 
283 333 383 433 483 
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3 

max. 21.6E  

. -71.3avgE 

 

max. 23.0E  

. -76.9avgE 

 

max. 24.3E  

. -81.8avgE 

 

max. 25.4E  

. -86.0avgE 

 

max. 26.3E  

. -89.8avgE 

 

7 

max. 12.9E  

. -62.6avgE 

 

max. 14.4E  

. -68.3avgE 

 

max. 15.7E  

. -73.2avgE 

 

max. 16.9E  

. -77.5avgE 

 

max. 17.8E  

. -81.4avgE 

 

15 

max. 5.4E  

. -53.1avgE 

 

max. 7.0E  

. -58.9avgE 

 

max. 8.4E  

. -63.8avgE 

 

max. 9.6E  

. -68.1avgE 

 

max. 10.6E  

. -72.0avgE 

 

31 

max. 2.3E 

. 42.0avgE  

 

max. 0.5E 

. 47.6avgE  

 

max. 1.0E  

. 52.5avgE  

 

max. 2.3E  

. 56.9avgE  

 

max. 3.4E  

. 60.7avgE  

 

61 

max. 9.7E 

. 32.5avgE  

 

max. 7.9E 

. 37.5avgE  

 

max. 6.4E 

. 42.0avgE  

 

max. 5.0E 

. 46.1avgE  

 

max. 3.8E 

. 49.8avgE  

 

 

Figure 10 Error of forward transform of Gaussian Function with fixed N2 (15) and varying N1 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2019                   doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257


24 

 

 

Figure 11 Error of forward transform of Gaussian Function with fixed N1 (383) and varying N2 

From Figure 10, it can be seen that when 1N  individually ( 2N is fixed at 2N =15) is less 

than the minimum of 383 obtained from the sampling theorem, increasing 1N will lead to smaller 

errors, as expected. When 1N is bigger than the sampling-theorem threshold of 383, increasing 

1N still decreases the error which verifies the discussion about sample grid coverage in Section 

4.3. Increasing 1N  tends to increase the sample grid coverage and capture more information at 

the center area and thus leads to smaller errors. 

  From Figure 11, increasing 2N  alone (that is, without a corresponding increase in ) 

leads to larger errors, both maxError  and averageError .  Although at first counterintuitive, this result 

is actually reasonable because the function is radially symmetric which implies that  2 1N   

should be sufficient based on the sampling theorem for the angular direction. Therefore, 

increasing 2N will not lead to a better approximation. Moreover, from the discussion of the 

sample grid coverage in Section 4.3, the sampling grid coverage in both domains gets worse 

when 2N gets bigger because more information from the center is lost. This problem can be 

solved by increasing 1N  at the same time, but it could be computationally time consuming. 

Therefore, choosing 2N  properly is very important from the standpoint of accuracy and 

computational efficiency.  

6.2.1.2 Inverse Transform 

Test results for the inverse transform with 5R  , 1 17N   are shown in Figure 12 and Figure 13.  

Figure 12 shows the sampled continuous inverse transform and discrete inverse transform and 

Figure 13 shows the error between the sampled continuous and discretely calculated values.  

1N
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Figure 12 Sampled continuous inverse transform and discrete inverse transform of the Gaussian function with R=5, N2=15, 

N1=17 

 

Figure 13 The error distribution of the inverse transform of Gaussian Function with R=5, N2=15, N1=17 

Similar to the case for the forward transform, the error gets larger at the center, which is 

as expected because the sampling grid shows that the sampling points never attain the center. 

The maximum value of the error is max 3.1954E dB   and this occurs at the center.  The average 

of the error is . 25.7799avgE dB   .  

Test results for the inverse transform with 40R  , 1 383N   are shown in Figure 14 and 

Figure 15. 
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Figure 14 Sampled continuous inverse transform and discrete inverse transform of the Gaussian function with R=40, N2=15, 

N1=383 

 

Figure 15 The error distribution of the inverse transform of Gaussian Function with R=40, N2=15, N1=383 

In this case, the maximum value of the error is max 12.2602E dB    and this occurs at the center.  

The average of the error is . 98.0316avgE dB  . Table 4 shows the errors with respect to different 

value of 1N  and 2N , from which Figure 16 and Figure 17 demonstrate the trend.   

Table 4 Error (dB) of inverse transform of Gaussian Function with R=40, different value of N1 and N2 

N1 

N2 
283 333 383 433 483 
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3 

max. 25.9E  

. -115.3avgE 

 

max. 27.5E  

. 115.4avgE 

 

max. 28.9E  

. 115.4avgE 

 

max. 30.2E  

. 115.5avgE 

 

max. 31.3E  

. 115.5avgE 

 

7 

max. 16.5E  

. 107.0avgE 

 

max. 18.1E  

. 107.1avgE 

 

max. 19.4E  

. 107.2avgE 

 

max. 20.5E  

. 107.2avgE 

 

max. 21.6E  

. 107.2avgE 

 

15 

max. 9.7E  

. 97.9avgE  

 

max. 11.0E  

. 98.0avgE  

 

max. 12.3E  

. 98.0avgE  

 

max. 13.4E  

. 98.1avgE  

 

max. 14.4E  

. 98.1avgE  

 

34 

max. 4.4E  

. 86.9avgE  

 

max. 5.5E  

. 86.9avgE  

 

max. 6.5E  

. 87.0avgE  

 

max. 7.5E  

. 87.0avgE  

 

max. 8.3E  

. 87.0avgE  

 

61 

max. 1.1E  

. 75.6avgE  

 

max. 1.7E  

. 75.6avgE  

 

max. 2.4E  

. 75.6avgE  

 

max. 3.0E  

. 75.6avgE  

 

max. 3.7E  

. 75.7avgE  

 

 

 

Figure 16 Error of inverse transform of Gaussian Function with fixed N2 (15) and varying N1 
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Figure 17 Error of inverse transform of Gaussian Function with fixed N1 (383) and varying N2 

From Figure 16 it can be observed that increasing 1N  tends to improve the result but not 

significantly. This could be explained by the discussion for 40R  , 1 383N   that with fixed R  

and W , increasing 1N   will not allow the sampling grid in the frequency domain to get any 

closer to the origin to capture more information.  From Figure 17, increasing 2N  (with fixed 

1 383N  ) leads to a worse approximation which verifies the discussion for 40R  , 1 383N  . 

Performing sequential 2D-DFT and 2D-IDFT results in 174.1656 e     where   is 

calculated with equation (55) . Therefore, performing sequential forward and inverse transforms 

does not add much error. 

6.2.2 Four-term sinusoid & Sinc Function 

The second function chosen for evaluation is given by 

 
sin( )

( , ) [3sin( ) sin(3 ) 4cos(10 ) 12sin(15 )]
ar

f r
ar

          (58) 

which is a sinc function in the radial direction and a four-term sinusoid in the angular direction.  

The continuous 2D-FT can be calculated from [12] 

 
0

( , ) 2 ( ) ( )n in

n n

n

F i e f r J r rdr   






     (59) 

where ( )nf r  is the Fourier series of ( , )f r   and can be written as 

 
1

( ) ( , )
2

in

nf r f r e d







 






    (60) 

From the sampling theorem for the angular direction, the highest angular frequency in equation 

(58) results in 2N  being at least 31 required to reconstruct the signal. Therefore, at least 31 terms 

are required to calculate the continuous 2D-FT, which can be written as  
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 (61) 

The graphs for the original function and the magnitude of its continuous 2D-FT with 5a   are 

shown in Figure 18 

 

Figure 18 The original function and its 2D-Fourier Transform of ‘Four-term sinusoid & Sinc’ Function 

 

From Figure 18, the function can be considered as a band-limited function. Therefore equation 

(14) and (15)  were used to implement the forward and inverse transform. 

In the angular direction, the highest frequency term in the function in the space domain 

is 12sin(15 ) . From the sampling theorem, the sampling frequency should be at least twice that 

of the highest frequency present in the signal. Thus, 2 41N   is chosen in order to go a little past 

the minimum requirement of 31.  In the radial direction, from the graphs of the original function 

and its 2D-FT, it can be assumed that ( , )f r   is space-limited at 15R   and band-limited at 

30W  . However, since most of the energy in the space domain is located at the origin, a 

relatively large band limit should be chosen based on the discussion in Section 4.3. Therefore, 

90W  , 1 430N   are chosen. 

6.2.2.1 Forward Transform 
The results for the forward 2D-DFT of Four-term sinusoid & Sinc function with 90W  ,

1 430N   are shown in Figure 19 and Figure 20. 
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Figure 19 Sampled continuous forward transform and discrete forward transform of ‘Four-term sinusoid & Sinc’ Function 

with Wρ =90,N1=430, N2=41 

 

Figure 20 The error distribution of the forward transform of ‘Four-term sinusoid & Sinc’ Function with Wρ =90,N1=430, 

N2=41 

From Figure 19, the discrete transform does not approximate the continuous transform very well. 

This is expected because the function in the frequency domain is discontinuous and the sampling 

points close to the discontinuity will result in a very large error. The maximum value of the error 

is max 10.6535Error dB  and this occurs where the discontinuities are located. The average of 

the error is 38.7831averageError dB  .  

With 90W  , 1 430N  ,Table 5 shows the errors with respect to different value of 1N  

and 2N , from which Figure 21 and Figure 22 show the trend. 
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Table 5 Error (dB) of the forward transform of ‘Four-term sinusoid & Sinc’ Function with different value of N1 and N2 of 

forward transform 

N1 

N2 
330 380 430 480 530 

11 

max. 4.6E 

. -33.6avgE 

 

max. 7.1E 

. -33.4avgE 

 

max. 3.4E 

. -33.5avgE 

 

max. 9.0E 

. -35.1avgE 

 

max. 2.8E 

. -35.5avgE 

 

21 

max. 6.7E 

. -33.9avgE 

 

max. 10.5E 

. -34.6avgE 

 

max. 3.2E 

. -37.2avgE 

 

max. 6.9E 

. -38.0avgE 

 

max. 3.6E 

. -38.1avgE 

 

41 

max. 8.5E 

. -38.7avgE 

 

max. 35.1E 

. -38.9avgE 

 

max. 10.7E 

. -38.8avgE 

 

max. 14.6E 

. -39.8avgE 

 

max. 11.1E 

. -41.3avgE 

 

81 

max. 9.7E 

. -34.3avgE 

 

max. 32.7E 

. 35.5avgE   

max. 14.8E 

. -36.2avgE 

 

max. 22.6E 

. -37.3avgE 

 

max. 14.5E 

. -37.5avgE 

 

161 

max. 19.9E 

. -29.4avgE 

 

max. 30.2E 

. -30.7avgE 

 

max. 22.5E 

. -31.1avgE 

 

max. 22.5E 

. -32.2avgE 

 

max. 16.1E 

. -32.8avgE 
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Figure 21 Error of the forward transform of ‘Four-term sinusoid & Sinc’ Function with fixed N2 (41) and varying N1 

 

Figure 22 Error of the forward transform of ‘Four-term sinusoid & Sinc’ Function with fixed N1 (512) and varying N2 

From Figure 21, increasing 1N  alone tends improve the average error. The maximum error does 

not change with 1N , which is reasonable because of the discontinuity of the function in the 

frequency domain.  

 From Figure 22, increasing 2N leads to maxError  and averageError  first improving and 

then worsening.  This is reasonable because when 2N  is less than the minimum requirement of 

31 from sampling theorem, the test result is actually affected by both sampling point density 

(from the sampling theorem) and grid coverage (discussed in Section 4.3). Increasing 2N  should 

give better results from the point of view of the sampling theorem but worse grid coverage. The 

result from the combined effects is dependent on the function properties. In the specific case of 

this function, when 2N is bigger than 31, thereby implying that the angular sampling theorem 

has been satisfied - the results get worse with increasing 2N . 
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6.2.2.2 Inverse Transform 

The results for the 2D-IDFT of Four-term sinusoid & Sinc function with 90W  , 1 430N   are 

shown in Figure 23 and Figure 24. 

 

Figure 23 Sampled continuous inverse transform and discrete inverse transform of ‘Four-term sinusoid & Sinc’ Function with 

Wρ =90,N1=430, N2=41 

 

Figure 24 The error distribution of the inverse transform of ‘Four-term sinusoid & Sinc’ Function with Wρ =90,N1=430, 

N2=41 

The maximum value of the error is max -8.6734Error dB .The average of the error is

37.8119averageError dB  . With 90W  , 1 430N  , Table 6 shows the errors with respect to 

different value of 1N  and 2N , from which Figure 25 and Figure 26 show the trend. 
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Table 6 Error (dB) of inverse transform of ‘Four-term sinusoid & Sinc’ Function with different value of N1 and N2  

N1 

N2 
330 380 430 480 530 

11 

max. 0.1E 

. -43.7avgE 

 

max. 0.1E 

. -43.7avgE 

 

max. 0.1E 

. -46.6avgE 

 

max. 0.1E 

. -45.6avgE 

 

max. 0.1E 

. -48.1avgE 

 

21 

max. 0.7E 

. -38.3avgE 

 

max. 0.7E 

. -38.0avgE 

 

max. 0.6E 

. -40.4avgE 

 

max. 0.6E 

. -40.6avgE 

 

max. 0.7E 

. -42.2avgE 

 

41 

max. 9.0E  

. -35.9avgE 

 

max. 8.5E  

. -24.7avgE 

 

max. 8.7E  

. -37.8avgE 

 

max. 8.8E  

. -38.2avgE 

 

max. 8.6E  

. -39.0avgE 

 

81 

max. 4.5E  

. -35.7avgE 

 

max. 4.7E  

. -26.5avgE 

 

max. 4.5E  

. -37.5avgE 

 

max. 4.6E  

. -36.2avgE 

 

max. 4.5E  

. -39.0avgE 

 

161 

max. 0.8E 

. -35.6avgE 

 

max. 0.7E 

. -32.5avgE 

 

max. 0.7E 

. -36.6avgE 

 

max. 0.7E 

. -37.2avgE 

 

max. 0.7E 

. -39.2avgE 
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Figure 25 Error of inverse transform of ‘Four-term sinusoid & Sinc’ Function with fixed N2 (41) and varying N1 

 

Figure 26  Error of inverse transform of ‘Four-term sinusoid & Sinc’ Function with fixed N1 (512) and varying N2 

From Figure 25, it can be observed that the increasing 1N  alone improves the average error, as 

was expected. However, 1 380N  gives an apparently worse average error than the other points. 

This could be caused by the discontinuity of the function in the frequency domain. Changing to 

1 381N  , the average error becomes 37.0 dB which proves that the large error is caused by the 

discontinuity. 

From Figure 26, increasing 2N does not lead to worse results, which is different from 

previous cases. However, from Figure 18 it can be seen that the function in the frequency domain 

does not have much information in the center area. So, even though increasing 2N causes a larger 

hole in the center as discussed in Section 4.3, it does not lead to losing much energy which 

explains why Figure 26 shows a different trend from the previous cases. 

Performing 2D-DFT and 2D-IDFT sequentially results in 121.3117 e    where   is 

calculated by equation (55) . 

6.2.3 Four-term sinusoid and modified exponential   

For the next test function, the function is given by 

 
e

( , ) [3sin( ) sin(3 ) 4cos(10 ) 12sin(15 )]
ar

f r
r

    


      (62) 

Its continuous 2D-FT can be calculated as 
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2 2 2 2 3

2 2 3 2 2

2 2 10 2 2 15

10 2 2 15 2 2

( )
( , ) 6 sin( ) 2 sin(3 )

( ) ( )
8 cos(10 ) 24 sin(15 )

a a a a
F i i

a a

a a a a
i

a a

 
     

   

 
   

   

   
  

 

   
 

 

 (63) 

The graphs for the original function and the magnitude of its continuous 2D-FT with a=0.1 are 

shown in Figure 27. 
  

 

Figure 27The original function and 2D-Fourier Transform of ‘Four-term Sinusoid & Modified Exponential’ function 

From Figure 27, it can be observed that the function has a spike in both domains, which is a more 

difficult scenario based on the discussion in Section 4.3. In this case, the function can be assumed 

as space-limited or band-limited. This function will be tested as being space-limited. 

From graph of the original function and its 2D-DFT, it can be assumed that ( , )f r   is 

effectively space-limited with 20R  , and ( , )F    is effectively band-limited with 15W  , 

which gives 
10 300Nj  . This results in 1 96.N    However, since the function explodes at the 

center area in both domains, relatively large values of R  and W  should give a better 

approximation. Therefore, another case with 40R  , 30W   is tested. In this case, 1 383N 

is chosen. 

In the angular direction, the highest frequency term is 12sin(15 ) . From the sampling 

theorem, the sampling frequency should be at least twice of the highest frequency of signal.  

Thus, 2 41N   is chosen. 

6.2.3.1 Forward Transform 
Here, the function is tested as a space limited function and equation (12) and (13) are used to 

proceed with the forward and inverse transform in sequence.  

The results with 140, 30, 383R W N    are shown in Figure 28 and Figure 29. 
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Figure 28 Continuous forward transform and discrete forward transform of ‘Four-term Sinusoid & Modified Exponential’ 

function with R=40, Wρ =30, N1=383, N2=41 (test as a space limited function) 

 

Figure 29 The error distribution of the forward transform of ‘Four-term Sinusoid & Modified Exponential’ function with 

R=40, Wρ =30, N1=383, N2=41 (test as a space limited function) 

The maximum value of the error is max 10.1535Error dB   and this occurs at the center area. 

The average of the error is 32.7619averageError dB  .  This demonstrates that the discrete 

function approximates the sampled values of the continuous function quite well. 

6.2.3.2 Inverse Transform 
The results with 140, 30, 383R W N    are shown in Figure 30 and Figure 31. 
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Figure 30 Continuous inverse transform and discrete forward transform of ‘Four-term Sinusoid & Modified Exponential’ 

function with R=40, Wρ =30, N1=383, N2=41 (tested as a space limited function) 

 

Figure 31 The error distribution of the forward transform of ‘Four-term Sinusoid & Modified Exponential’ function with 

R=40, Wρ =30, N1=383, N2=41 (tested as a space limited function) 

The maximum value of the error is max 0.5579Error dB  and this occurs at the center. The 

average of the error is 68.7317averageError dB  .  

Performing 2D-DFT and 2D-IDFT results in 121.421 e   , where   is calculated by 

equation (55) . 

It can be observed that even for functions with the worst properties, the proposed 

transform can still be used to approximate the continuous Fourier transform with fairly small 

errors, as long as the function is sampled properly.  
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7 Improving the computing time of the transform 

One of the advantages of the traditional Fourier transform is that the computing speed is fast by 

using the now well-established fft algorithm. To reduce the computing time of the 2D DFT in 

polar coordinates, the following steps are taken: 

1. Interpreting the transform as three sequential operations (DFT, DHT, IDFT) instead of a 

single four-dimensional matrix. 

2. Pre-calculating and saving the Bessel zeros. 

7.1 Reducing computing time by interpreting the transform as three operations in 

sequence 

As explained above, the essence of the transform is that the matrix pkf  is transformed into the 

matrix qlF . The intuitive way to interpret the transform kernel is to think of it as a four-

dimensional matrix or matrices in a matrix. However, interpreting the transform as a 1D-DFT of 

each column, a 1D-DHT of each row and then a 1D-IDFT of each column makes it possible to 

use the Matlab built in functions fft  and ifft , which significantly reduced the computational 

time. 

7.2 Reduce computing time by pre-calculating the Bessel Zeros 

After defining the transform as three operations in sequence and using the matrix for the discrete 

Hankel transform defined in [8], it was found that a lot of computational time was used to 

calculate the Bessel zeros for every different test case, even though the Bessel zeros are the same 

in every case. Pre-calculating the Bessel zeros and storing the results for large numbers of 1N  

and 2N   saves a lot of time. 

Table 7 shows the computing time of a forward transform on the same computer (Processor: 

Intel(R) Core(TM) i7-4710HQ CPU, RAM:12GB) for three cases: 

1. Evaluate the transform as matrices in a matrix without pre-calculating the Bessel zeros. 

2. Evaluate the transform as a DFT, DHT and IDFT in sequence without pre-calculating the 

Bessel zeros. 

3. Evaluate the transform as a DFT, DHT and IDFT in sequence with pre-calculating the 

Bessel zeros. 

The Gaussian function was used as the test function therefore 1=383N  and 2 =15N . 
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Table 7 Computing time of three cases: Case1: Run the transform as matrixes in matrix without pre-calculating the Bessel 

zeros; Case2: Run the transform as DFT,DHT and IDFT in sequence without pre-calculating the Bessel zeros; Case3: Run the 

transform as DFT,DHT and IDFT in sequence with pre-calculating the Bessel zeros 

Test cases Total computing time(seconds) 

Case 1 3346.5 

Case 2 321.1 

Case 3 14.3 

 

From Table 7, it can be clearly observed that the computing time by running the transform as 

matrices in a matrix costs 3346.5s, which is not acceptable or the transform to be useful. Testing 

the transform as three operations turns 3346.5 seconds into 321.1 seconds. This is much better. 

Finally, pre-calculating the Bessel Zeros makes the transform much faster and applicable.  

8 Summary and Conclusion 
8.1 Accuracy and Precision of the transform 
The proposed discrete 2D-Fourier Transform in polar coordinates demonstrates an acceptable 

accuracy in providing discrete estimates to the continuous Fourier transform in polar coordinates. 

In [8],[11]and[15], the one dimensional Hankel transform of a sinc function showed similar 

dynamic error, which could be used as a comparative measure. Since the discrete Hankel 

transform is one step of the proposed discrete 2D-Fourier Transform, and the definition of the 

Hankel transform is based on [8], a similar dynamic error should be expected. 

The test cases showed that the transform introduced very small errors ( 121.4004 e   for 

worst case) by performing a forward transform and an inverse transform sequentially, which 

demonstrates that the algorithm shows good precision. 

8.2 Guidelines of choosing sample size 

As discussed in Section 4.3 and proved by test cases, the sample size 1N (sample size in the radial 

direction) and 2N (sample size in the angular direction) do not have to be of the same order. For 

functions with different properties, sample size in the different directions could be very different. 

To approximate the continuous Fourier transform properly, sample size should be chosen based 

on the discussion in Section 4.3. 

8.3 Interpretation of the transform  
By interpreting the transform as a 1D Fourier transform, 1D Hankel transform and 1D inverse 

Fourier transform, the computing time of the transform is improved to a useful level.  
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Appendix A –Matlab Code  

A-1. Theta matrix for space limited function 

% N1 sample size in radial direction 

% N2 sample size in angular direction 

function theta=thetamatrix_SpaceLimited(N2,N1) 

theta=zeros(N2,N1-1); 

M=(N2-1)/2; 

for ii=1:N2; 

    p=ii-1-M; 

    for k=1:N1-1; 

        theta(ii,k)=(p/N2)*2*pi; 

    end 

end 

A-2. r matrix for space limited function 

% N1 sample size in radial direction 

% N2 sample size in angular direction 

% R effective space limit 

% zeromatrix precalculated Bessel zero 

function r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix) 

M=(N2-1)/2; 

for ii=1:N2; 

    p=ii-1-M; 

    for k=1:N1-1; 

        zero2=zeromatrix(5001-abs(p),:); 

        jpk=zero2(k); 

        jpN1=zero2(N1); 

        r(ii,k)=(jpk/jpN1)*R; 

    end 

end 

A-3. Psi matrix for space limited function 

% N1 sample size in radial direction 

% N2 sample size in angular direction 

function psi=psimatrix_SpaceLimited(N2,N1) 

psi=zeros(N2,N1-1); 

M=(N2-1)/2; 

for ii=1:N2; 

    q=ii-1-M; 

    for l=1:N1-1; 

        psi(ii,l)=(q/N2)*2*pi; 

    end 

end 
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A-4. Rho matrix for space limited function 

% N1 sample size in radial direction 

% N2 sample size in angular direction 

% R effective space limit 

% zeromatrix precalculated Bessel zero 

function rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix) 

M=(N2-1)/2; 

for ii=1:N2; 

    q=ii-1-M; 

    for l=1:N1-1; 

        zero2=zeromatrix(5001-abs(q),:); 

        jql=zero2(l); 

        rho(ii,l)=jql/R; 

    end 

end 

 

A-5. Y matrix Assembly Function 

% Y is the N-1 x N-1 transformation matrix to be assembled 

% n is the order of the bessel function 

% N is the size of the transformation matrix 

%zeros are the bessel zeros passed to the function 

 

function Y = YmatrixAssembly(n,N,zero) 

%tic 

 

 

for l=1:N-1 

 

    for k=1:N-1 

 

        jnk=zero(k); 

        jnl=zero(l); 

        jnN=zero(N); 

        jnplus1=besselj(n+1, jnk); 

 

        Y(l,k)=(2*besselj(n,(jnk*jnl/jnN)))/(jnN*jnplus1^2); 

 

 

    end 

end 

 

%toc 

 

end 
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A-5. Forward transform of Gaussian function 

N2=15; %number of sample points in angular direction 

N1=383; %number of sample points in radial direction 

M=(N2-1)/2; %highest order of bessel function 

R=40;% space limit 

Wp=30; % band limit 

a=0.1; 

load('zeromatrix.mat') 

theta=thetamatrix_SpaceLimited(N2,N1); %Sample point in angular direction in space domain. 

r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in space domain. 

psi=psimatrix_SpaceLimited(N2,N1);%Sample point in angular direction in frequency domain. 

rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in frequency 

domain. 

[x,y]=pol2cart(theta,r); %sample points in Cartesian coordinates in space domain 

[x1,y1]=pol2cart(psi,rho); %sample points in Cartesian coordinates in frequency domain 

 

 

%Discretizing the function 

for ii=1:N2 

    for jj=1:N1-1 

        f(ii,jj)=exp(-r(ii,jj)^2); 

    end 

end 

% DFT 

fnk=circshift(fft(circshift(f,M+1,1),N2,1),-(M+1),1); 

% DHT 

for n=-M:M 

    ii=n+M+1; 

    zero2=zeromatrix(5001-abs(n),:); 

    jnN1=zero2(N1); 

    if n<0 

    Y=((-1)^abs(n))*YmatrixAssembly(abs(n),N1,zero2); 

    else 

    Y=YmatrixAssembly(abs(n),N1,zero2); 

    end 

    fnl(ii,:)=(Y*fnk(ii,:)')'; 

    Fnl(ii,:)=fnl(ii,:)*(2*pi*(i^(-n)))*(R^2/jnN1); 

end 

% IDFT 

TwoDFT=circshift(ifft(circshift(Fnl,M+1,1),N2,1),-(M+1),1); 

%creating a discrete 2D Fourier transform 

for ii=1:N2 

    for jj=1:N1-1 

        trueFunc(ii,jj)=pi*exp((-rho(ii,jj)^2)/4); 

    end 

end 

 

%calculating the dynamic error from transform and true function 

error= 20*log10(abs(trueFunc- TwoDFT)/max(max(abs(TwoDFT)))); 

 

figure(1) 

subplot(2,1,1) 

surf(x1,y1,abs(trueFunc)) 

title('\fontsize{24}Sampled Continuous Forward Transform') 

subplot(2,1,2) 

surf(x1,y1,abs(TwoDFT)) 

title('\fontsize{24}Discrete Forward Transform') 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2019                   doi:10.20944/preprints201907.0189.v1

Peer-reviewed version available at PeerJ Computer Science 2020; doi:10.7717/peerj-cs.257

https://doi.org/10.20944/preprints201907.0189.v1
https://doi.org/10.7717/peerj-cs.257


45 

 

 

figure(2) 

 

surf(x1,y1,error) 

xlabel('x'); 

ylabel('y'); 

zlabel('db') 

str=sprintf('Error distribution with N2 = %d, N1 = %d,R= %d, a= %d ', N2,N1,R,a); 

title(['\fontsize{24}Error distribution with N2=',num2str(N2),', N1=',num2str(N1),', 

R=',num2str(R), ', Wp=',num2str(Wp)]); 

 

mean1=mean(mean(error)); % Average dynamic error 

max1=max(max(error)); % Maximum dynamic error 

 

A-6. Inverse transform of Gaussian function 

N2=15 ; %number of sample points in angular direction 

N1=383; %number of sample points in radial direction 

M=(N2-1)/2; %highest order of bessel function 

R=40;% space limit 

Wp=30; % band limit 

a=0.1; 

load('zeromatrix.mat') 

theta=thetamatrix_SpaceLimited(N2,N1);%Sample point in angular direction in space domain. 

r=rmatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in space domain. 

psi=psimatrix_SpaceLimited(N2,N1);%Sample point in angular direction in frequency domain. 

rho=rhomatrix_SpaceLimited(N2,N1,R,zeromatrix);%Sample point in radial direction in frequency 

domain. 

[x,y]=pol2cart(theta,r); %sample points in Cartesian coordinates in space domain 

[x1,y1]=pol2cart(psi,rho); %sample points in Cartesian coordinates in frequency domain 

 

%creating a discrete true function 

for ii=1:N2 

    for jj=1:N1-1 

       trueFunc(ii,jj)=pi*exp((-rho(ii,jj)^2)/4); 

    end 

end 

% DFT 

FNL=circshift(fft(circshift(trueFunc,M+1,1),N2,1),-(M+1),1); 

% DHT 

for n=-M:M 

    ii=n+M+1; 

    zero2=zeromatrix(5001-abs(n),:); 

    jnN1=zero2(N1); 

    if n<0 

    Y=((-1)^abs(n))*YmatrixAssembly(abs(n),N1,zero2); 

    else 

    Y=YmatrixAssembly(abs(n),N1,zero2); 

    end 

    Y0=Y'; 

    Fnk(ii,:)=FNL(ii,:)*Y0; 

    fnk(ii,:)=Fnk(ii,:)*((jnN1)*(j^n))/(2*pi*R^2); 

 

end 

% IDFT 

TwoDIFT=circshift(ifft(circshift(fnk,M+1,1),N2,1),-(M+1),1); 
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%%discretizing the function in space domain 

for ii=1:N2 

    for jj=1:N1-1 

        f(ii,jj)=exp(-r(ii,jj)^2); 

    end 

end 

%calculating the dynamic error from transform and origal function 

error= 20*log10(abs(f- TwoDIFT)/max(max(abs(TwoDIFT)))); 

 

figure(1) 

subplot(2,1,1) 

surf(x,y,abs(f)) 

title('\fontsize{24}Continuous Inverse Transform') 

subplot(2,1,2) 

surf(x,y,abs(TwoDIFT)) 

title('\fontsize{24}Discrete inverse Transform') 

 

figure(2) 

surf(x,y,error) 

xlabel('x'); 

ylabel('y'); 

zlabel('db') 

str=sprintf('Error distribution with N2 = %d, N1 = %d,R= %d, a= %d ', N2,N1,R,a); 

title(['\fontsize{24}Error distribution with N2=',num2str(N2),', N1=',num2str(N1),', 

R=',num2str(R), ', Wp=',num2str(Wp)]); 

 

 

mean=mean(mean(error)); % Average dynamic error 

max=max(max(error));% Maximum dynamic error 
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