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Abstract: Rapid developments in the field of underwater photogrammetry have given scientists 
the ability to produce accurate 3-dimensional (3D) models which are now increasingly used in the 
representation and study of local areas of interest. This paper addresses the lack of systematic 
analysis of 3D reconstruction and navigation fusion strategies, as well as associated error evaluation 
of models produced at larger scales in GPS-denied environments using a monocular camera (often in 
deep-sea scenarios). Based on our prior work on automatic scale estimation of Structure from 
Motion (SfM)-based 3D models using laser scalers, an automatic scale accuracy framework is 
presented. The confidence l evel f or e ach o f t he s cale e rror e stimates i s i ndependently assessed 
through the propagation of the uncertainties associated with image features and laser spot detections 
using a Monte Carlo simulation. The number of iterations used in the simulation was validated 
through the analysis of the final estimate b ehaviour. To facilitate the detection and uncertainty 
estimation of even greatly attenuated laser beams, an automatic laser spot detection method, 
mitigating the effects of scene texture, was developed, with the main novelty of estimating the 
uncertainties based on the recovered characteristic shapes of laser spots with radially decreasing 
intensities. The effects of four different reconstruction strategies resulting from the combinations of 
Incremental/Global SfM, and the a priori/a posteriori use of navigation data were analyzed using two 
distinct survey scenarios captured during the SUBSAINTES 2017 cruise (doi: 10.17600/17001000). The 
study demonstrates that surveys with multiple overlaps of non-sequential images result in a nearly 
identical solution regardless of the strategy (SfM or navigation fusion), while surveys with weakly 
connected sequentially acquired images are prone to produce broad-scale deformation (doming 
effect) when navigation is not included in the optimization. Thus the scenarios with complex survey 
patterns substantially benefit f rom using multi-objective BA navigation f usion. In all c ases, the 
errors in the models are inferior to 5%, with errors often being around 1%. The effects of combining 
data from multiple surveys were also evaluated. The introduction of additional vectors in the 
optimization of multi-survey problems successfully accounted for offset changes present in the 
underwater USBL-based navigation data and thus minimize the effect of contradicting navigation 
priors. Our results also illustrate the importance of collecting a multitude of evaluation data at 
different locations and moments during the survey.28
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1. Introduction32

Accurate and detailed 3D models of the environment are now an essential tool in different33

scientific and applied fields such as geology, biology, engineering, archaeology, among others. With34

advancements in photographic equipment and improvements in image processing and computational35

capabilities of computers, optical cameras are now widely used due to their low cost, ease of use, and36

sufficient accuracy of the resulting models for their scientific exploitation. The application of traditional37

aerial and terrestrial photogrammetry has greatly expanded in recent years, with commercial and38

custom build camera systems and software solutions enabling nearly black-box type of data processing39

(e.g., [1–4]).40

These rapid developments have also significantly benefited the field of underwater41

photogrammetry. The ability to produce accurate 3D models from monocular cameras under42

unfavorable properties of the water medium (i.e., light attenuation and scattering, among other43

effects) [5], and advancements of unmanned underwater vehicles has given scientists unprecedented44

access to image the seafloor and its ecosystems from shallow waters to the deep ocean [6–9]. Optical45

seafloor imagery is now routinely acquired with deep-sea vehicles, and often associated with other46

geophysical data (acoustic backscatter, multibeam bathymetry) and water column measurements47

(temperature, salinity, chemical composition). High resolution 3D models with associated textures48

are thus increasingly used in the representation and study of local areas of interest. However,49

most remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs) that are used50

nowadays in science missions have limited optical sensing capabilities, commonly consisting of a main51

camera used by the ROV-pilot, while larger workclass ROVs have additional cameras for maneuvering.52

Due to the nature of projective geometry, performing 3D reconstruction using only optical imagery53

acquired by monocular cameras results in a 3D model which is defined only up to scale, meaning that54

a unit is not necessary a standardized unit such as a meter [10]. In order to correctly disambiguate the55

scale, it is essential to use additional information in the process of model building. Predominantly,56

solutions in sub-aerial applications are based on the fusion of image measurement with robust and57

dependable satellite references, such as Global Navigation Satellite System (GNSS) [11–13], or ground58

control pointss (GCPs)[14–16], due to their accuracy and ease of integration. On the contrary, the water59

medium not only hinders the possibility of accurately establishing the control points, but also prevents60

the use of global positioning system (GPS) due to the absorption of electromagnetic waves. Hence the61

scale is normally disambiguated either using a combination of acoustic positioning (e.g., Ultra-Short62

BaseLine (USBL)) and inertial navigation system (INS) [17–19], or through the introduction of known63

distances between points in the scene [20].64

In shallow water environments, researchers have often placed auxiliary objects (such as a scaling65

cube [21], locknuts [22], graduated bars [23], etc.) into the scene, and used the knowledge of their66

dimensions to scale the model a posteriori. Such approaches, while applicable in certain scenarios, are67

limited for small scale reconstructions, and for shallow water environments, due to the challenges in68

transporting and placing objects in deep-sea environments. Similarly, laser scalers have been used69

since late 1980s projecting parallel laser beams onto the scene to estimate the scale of the observed70

area, given known geometric setup of the lasers. Until recently, lasers have been mostly used in71

image-scaling methods, for measurements within individual images (e.g., Pilgrim et al. [24] and Davis72

and Tusting [25]). To provide proper scaling, we have recently proposed two novel approaches [26],73

namely fully- (FCM) and partially-calibrated method (PCM), to automatically estimate 3D model74

scale using a single optical image with identifiable laser projections. The proposed methods alleviate75
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numerous restrictions imposed by earlier laser photogrammetry methods (e.g., laser alignment with76

the optical axis of the camera, perpendicularity of lasers with the scene), and removes the need for77

manual identification of identical points on the image and 3D model. The main drawback of these78

methods is the need for purposeful acquisition of images with laser projections, with the required79

additional acquisition time.80

Alternatively, the model scaling can be disambiguated with known metric vehicle displacements81

(i.e., position and orientation from acoustic positioning, Doppler systems, and depth sensors [19,27,28]).82

As this information is recorded throughout the mission, such data is normally available for arbitrary83

segments even if they have not been identified as interesting beforehand. The classic range-and-bearing84

position estimates from acoustic-based navigation, such as USBL, have an uncertainty that increases85

with increasing range (i.e., depth) in addition to possible loss of communication (navigation gaps).86

Consequently, the scale information is inferred from data which is often noisy, poorly resolved, or87

both. Hence the quality of the final dataset is contingent on the strategy used in the fusion of image88

and navigation information. Depending on the approach, the relative ambiguity can cause scale drift,89

i.e. a variation of scale along the model, causing distortions [29]. Furthermore, building of large90

3D models may require fusion of imagery acquired in multiple surveys. This merging often results91

in conflicting information among different dives, and affect preferentially areas of overlap between92

surveys, negatively impacting the measurements on the model (distances, areas, angles).93

The need to validate the accuracy of optical-based 3D models has soared as the possibilities94

of using standard imaging systems increase and replace the need for more complex and dedicated95

reconstruction techniques (e.g., structured light). Numerous evaluations of this accuracy are available96

for aerial and terrestrial 3D models (e.g., [2,30–32]). Environmental conditions and limitations of97

underwater image acquisition preclude their transposition to underwater image acquisition and, to98

date, most underwater accuracy studies use known 3D models providing reference measurements.99

Early studies [33–39] evaluated the accuracy of small-scale reconstructions (mainly on coral100

colonies), comparing model-based and laboratory-based volume and surface areas for specific corals.101

More recently, auxiliary objects (e.g., locknuts [22], graduated bars [23], special frames [40,41] and102

diver weights [42]) have been used to avoid removal of objects from the environment. Reported103

inaccuracies range from 0.85% to 17%, while more recent methods achieve errors as low as 2%-3% [22,104

42]. Diver-based measurements and/or placement of multiple objects at the seafloor restricts the use105

of these methods to shallow-water or experimental environments, and hinder such approaches in deep106

sea environments (e.g., scientific cruises), where reference-less evaluation is needed instead, which has107

been performed in only a few experiments.108

Ferrari et al. [39] evaluated their reconstruction method on a medium size reef area (400 m) and a109

2 km long reef transect. Maximum heights of several quadrants within the model were compared to110

in situ measurements, coupled with an estimation of structural complexity (rugosity). The average111

accuracy in reef height was 82%± 2%. This study split larger transects into approx 10 m long sections to112

reduce potential drift, and hence model distortion. Similarly, Gonzales et al. [43] obtained 85% accuracy113

in rugosity estimates from stereo imaging and compared with results from a standard chain-tape114

method, along a 2 km long transect. To the best of our knowledge, no other scale accuracy estimate of115

submarine large-area models has been published. Furthermore, although laser scalers are often used116

for qualitative visual scaling, they have never been used to evaluate the accuracy of underwater 3D117

models.118

Objectives119

While a growing body of literature supports that underwater optical-based 3D reconstruction is a120

highly efficient and accurate method at small spatial extents, there is a clear gap in the accuracy analyses121

of models produced at larger scales (often in deep-sea scenarios). Validation of 3D reconstruction122

methods, and associated error evaluation, are thus required for large underwater scenes and to allow123
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quantitative measurements (distances and volumes, orientations, etc.) required for scientific and124

technical studies.125

The main goal of this paper is to present an automatic scale accuracy estimation framework,126

applicable to models reconstructed from optical imagery and associated navigation data. We also127

evaluate various reconstruction strategies, often used in academic and private ROVs deep-sea surveys.128

The framework is based on the method recently presented by Istenič et al. [26] for automatic scale129

estimation of SfM-based 3D models.130

First, we present several methods of 3D reconstruction using underwater vehicle navigation,131

to provide both scaling and an absolute geographic reference. Most commonly, SfM uses either an132

incremental or a global strategy, while the vehicle navigation may be considered a priori as part of the133

optimization process, or a posteriori after full 3D model construction. Here we compare four different134

strategies resulting from the combinations of Incremental/Global SfM, and the a priori/a posteriori use135

of navigation data. We discuss the impact of each of these strategies on the final 3D model accuracy.136

Second, the four methods are evaluated to identify which is best suited to generate 3D models137

that combine data from multiple surveys, as it is often required under certain surveying scenarios.138

Navigation from different surveys may have significant offsets at the same location (x, y, z, rotation),139

show noise differences, or both. The changes between different acquisitions of a single scene are taken140

into account differently by each 3D reconstruction strategy.141

Third, prior approaches to estimate model scale using laser scalers, namely FCM and PCM142

methods, are augmented with Monte Carlo simulations to evaluate the uncertainty of obtained scale143

estimates. Furthermore, the results are compared to estimates commonly used and suffering from144

parallax error.145

Fourth, an automatic laser detection and uncertainty estimation method is presented. Accurate146

analyses requires a multitude of reliable measurements spread across the 3D model, whose manual147

annotation is extremely labor intensive, error-prone, and time consuming, when not nearly impossible.148

Unlike previous detection methods, our method detects centers of the lasers by considering the texture149

of the scene, and determines their uncertainty, which, to the best of our knowledge, has not been150

presented in the literature yet.151

With the data from the SUBSAINTES 2017 cruise (doi: 10.17600/17001000; [44]) we evaluate152

the advantages and drawbacks of the different strategies to construct underwater 3D models, while153

providing quantitative error estimates. As indicated above, these methods are universal as they are154

not not linked to data acquired with specific sensors (e.g., laser systems, stereo cameras), and can be155

applied to standard imagery acquired with underwater ROVs. Hence, it is possible to process legacy156

data from prior cruises and with different vehicles and/or imaging systems. Finally, we discuss the157

best practices to conduct optical surveys, based on nature of targets and the characteristics of the158

underwater vehicle and sensors.159

2. Optical-based Underwater 3D reconstruction160

In this section we present a brief overview of the most important steps of the 3D reconstruction161

process for underwater applications, laying out our approach to evaluate the accuracy of the models.162

Textured 3D models result from a set of sequential processing steps (Fig. 1). As scene geometry163

is computed entirely from the optical imagery, the end result directly depends on image quality164

and adequate survey strategy. Compared to sub-aerial imagery, the unfavorable properties of water165

medium (i.e., light attenuation and scattering effects) [5] cause blurriness of details, low image contrast166

and distance-dependent alteration of colors [45]. To prevent overly degraded data, acquisition is167

conducted at close range, significantly limiting the observation area of any single image, while168

significantly increasing the amount of data collected and processed. Keyframe selection and color169

correction are hence preprocessing steps used to minimize the degradation effects of water, and170

to remove unnecessary redundancies (i.e., images taken from similar poses). A concise set of171

pre-filtered images is then used to estimate the initial sparse 3D geometry of the scene and the camera172
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Figure 1. Flowchart of a 3D reconstruction process for underwater applications.

trajectory through a technique called Structure from Motion (SfM). The inherent scale ambiguity of the173

reconstructed 3D structure and camera motion from a set of images is addressed by either using the174

vehicle navigation a priori as part of the SfM optimization process (multi-objective BA), or a posteriori175

through an alignment with the reconstructed camera path using a similarity transformation. An176

accurate, high-detailed model description is subsequently obtained through an efficient patch-based177

stereo matching and fusion densification process, followed by a surface estimation from an unorganized178

noisy set of 3D points obtained earlier. A final photo-realistic 3D model uses a consistent high-quality179

texture from a seamless mapping of input images.180

Accuracy of the measurements performed in 3D models, required for quantitative studies (precise181

measurement of distances and volumes, etc.), depends on the strategy used for optical-based 3D182

reconstruction, in addition to data quality itself. Four different approaches are often used:183

A) Incremental SfM with a posteriori navigation fusion;184

B) Global SfM with a posteriori navigation fusion;185

C) Incremental SfM with multi-objective BA navigation fusion;186

D) Global SfM with multi-objective BA navigation fusion.187

2.1. Keyframe selection188

Surveying for underwater 3D models often produce redundant imagery so as to insure adequate189

imaging of areas that are of difficult access. Discarding unnecessary images is important to both190

reduce the computational time, and to minimize the possibility of unreliable depth estimations [10].191

Commonly used time-dependent image selection (e.g., selecting a frame every n-th second) is often192

not suited; surveys with significant speed changes and/or distance to the scene lead to over or under193

filtering of images. Instead, we use an approach with implicit detection of frames with similar vantage194

points [46] through estimates of feature displacements between consecutive frames (e.g., Lucas–Kanade195

tracking algorithm [47]). For sufficiently dense image sets (e.g., video acquisitions), sharpness may be196

used for further selection (e.g., variance of Laplacian [48]).197
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2.2. Color correction198

Owing to the non-uniform absorption of the visible light spectrum over its frequency components199

[49,50], underwater images are typically bluish/greenish and present low contrast [51]. Minimizing200

the effects of the water medium not only benefits human perception and interpretation of the scene,201

but also improves the quality and quantity of successful feature matches between image pairs [52],202

thus increasing the quality of the final model.203

Accurate color information recovery depends on the knowledge of the physical image formulation204

process model which is rarely available in its completeness. Alternatively, color enhancing methods205

(e.g., Bianco et al. [53] can remove the attenuation effects, as well as the color cast introduced by an206

unknown illuminant (Fig. 2).207

(a) (b) (c) (d)

Figure 2. (a) Original UW image. (b) Chromatic components (α, β) of the estimated local illuminant.
(c) White balanced image. (d) Final enhanced image.

2.3. Sparse Reconstruction208

A sparse set of 3D points (the structure), and the camera parameters (motion) can be estimated209

from multiple projections of the same 3D point in overlapping images through the equations of210

projective geometry using SfM.211

2.3.1. Feature detection and matching212

As the structure and motion parameters are inferred entirely from feature points, robustness of213

detection and matching across the image set is important. In our approach, salient 2-dimensional214

(2D) points are detected as accelerated KAZE (AKAZE) local features [54], and described using a215

Modified-SURF descriptor [55], which was selected for its scale and local affine invariance properties.216

Feature association across the image set is performed over image pairs using descriptor matching217

with an additional geometric filtering procedure (e.g., fundamental/essential matrix [10]). To avoid an218

empirical selection of the inlier/outlier threshold in robust estimation techniques, the parameter-free219

A Contrario Ransac (AC-RANSAC) [56] is used to automatically determine the model meaningfulness220

by a statistical balance between the tight fitting of data and the number of the inliers.221

With high number of images, the potential image pairs can be restricted either by pose (if222

navigation is available) or by image retrieval strategies [57,58].223

2.3.2. Structure from Motion224

Structure from Motion is a method in which the structure is jointly estimated with the motion225

of the camera from a noisy set of 2D features and their previously identified correspondences. The226

structure is expressed as a sparse set of 3D points X ={Xk∈R3 | k = 1 . . . L}, while camera motion is227

represented with the set of projection matrices P={Pi =
[
RT

i |−RT
i ti

]
| i = 1 . . . N}, where Pi∈SE(3)228

defines the projection from world to camera frame. Additionally, intrinsic camera parameters K =229

{Ki | i = 1 . . . N} can be considered in the optimization, leading to lower complexity of the problem230

and thus improving the results.231

Due to the non-linearity in the projection process, a non-linear optimization, Bundle Adjustment232

(BA), is required. The solution is obtained by formulating a non-linear least squares (NLS) problem,233

which can be efficiently solved using iterative methods such as Levenberg-Marquardt (LM) [59]. The234

cost function to be minimized is normally an image-based error, consisting of the sum of squared235
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re-projection errors (Eq. 1), defined as the distance between the 2D feature observations Fj = {xj | j =236

1 . . . M} of the 3D points Xk and their corresponding projections onto the images.237

E(v) =
M

∑
j=1

∥∥xj − proj(Ki, Pi, Xk)
∥∥2 . (1)

The LM algorithm only guarantees to find a local minimum of the optimizing function, making238

it extremely sensitive to the initial parameter estimate. The different strategies proposed to initialize239

these parameters can be broadly classified as either: incremental or global.240

Incremental SfM expands model reconstruction one image at the time, allowing for a gradual241

estimate of parameters for the newly added points and cameras. Each image is registered by solving242

the Perspective-n-Point (PnP) problem, followed by a triangulation to augment the set of scene points.243

After each addition, intermediate BA can be performed to propagate and minimize the error of244

intermediate reconstructions. Incremental approaches are broadly used given that the intermediate245

partial reconstructions enable a more robust detection of outliers and thus decrease the chance of246

convergence to a wrong local minimum. However, when no prior information about the scene is247

available, the initialization step of decomposing the fundamental/essential matrix is critical, as a248

poor selection of the seed pair of images can quickly force the optimization to a non-recoverable249

state. Furthermore, as the method inherently gives disproportionate weight to images used at the250

beginning of the process, it can result in error accumulation. This may produce significant drift and fail251

to reconstruct the scene in the form of a single connected model. In our tests, the method of Moulon et252

al. [60,61] was used with a contrario model estimation.253

Global SfM considers instead the entire problem at once, with full BA performed only at the254

end. To alleviate the lack of partial reconstructions, that identifies possible outliers, the parameter255

initialization is split into two sequential steps (i.e., rotation and translation estimation), the first one256

being more robust to a small number of outliers. This mitigates the need for intermediate non-linear257

optimizations, as camera and scene points are estimated simultaneously in a single iteration. It258

also ensures an equal treatment of all the images and consequently equal distribution of the errors.259

The methods rely on averaging relative rotations and translations, thus requiring images to have260

overlap with multiple other images, to ensure meaningful constraints and mutual information. As261

a consequence, the reconstruction from a sparsely connected set of images will result in distorted or262

even multiple disconnected components. In our test Moulon et al. [61,62] method was used.263

2.4. Navigation Fusion264

Joint reconstruction of 3D structure and camera motion from a set of images acquired by a single265

camera is an inherently ill-conditioned problem, with a solution determined only up to an unknown266

scale [10]. The estimated parameters can be multiplied by an arbitrary factor, resulting in an equal267

projection of the structure on the images. A metric solution thus requires known measurements [20] or268

metric vehicle displacements (navigation/inertial priors) [19,27,28]. Depending on the availability269

of synchronization between the camera and the navigation, priors C = {Ci | i = 1 . . . N} extracted270

from the ROV/AUV’s navigation, can either be used in a multi-sensor fusion approach or to align the271

reconstructed camera path via a similarity transformation.272

2.4.1. Multi-objective BA273

When navigation priors are available for a significant proportion of images, then this information274

can be incorporated in the optimization through a multi-sensor fusion approach. The fusion is275

defined as a multi-objective optimization consisting of re-projection (Ei(v)) and navigation fit errors276

(Ei(n) = Ti−Ci). Most commonly, there is no unique solution that would simultaneously optimize both277
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objectives, but instead exists a hyper-surface of Pareto optimal solutions1. Such solution space can be278

defined as a weighted compound function of the two objectives [63]. Assuming that both re-projection279

and navigation fit errors are independent and Gaussian, it is statistically optimal to weight the errors280

by their variance [64,65]:281

E =
1

Mσ2
v

M

∑
j=1

∥∥Ej(v)
∥∥2

+
1

Nσ2
n

N

∑
i=1

∥∥Ei(n)
∥∥2

=
M

∑
j=1

∥∥Ej(v)
∥∥2

+
M
N

λ2
N

∑
i=1

∥∥Ei(n)
∥∥2 , (2)

where λ = σv/σn indicates the ratio between the two covariances, representing the noise variance of282

each sensor measurement and M and N are the number of re-projection and navigation prior terms.283

The selection of the preferred solution on the Pareto Frontier [66] crucially depends on the284

knowledge of the ratio of variances, often unknown, in different units, or both (e.g., pixels vs. meters).285

In those cases, the weight can be selected empirically or through automatic weight determining286

methods.287

For bi-objective optimizations, Michot et al. [63] have shown that the L-Curve criterion is the288

preferred selection method. This criterion is based on plotting the trade-off between the cost of the289

objectives using different weights, represented in log-log space. This plot has a typical L-curve shape,290

with two prominent segments. Each term dominating a segment (flat and vertical part) is used to detect291

the "corner" separating the two, essentially identifying a neutral objective dominance. The associated292

weight is considered to be the optimal, and representative of the ratio between the covariances of the293

sensors. Lying between two nearly flat segments, it can be easily identified as the point with maximum294

curvature.295

2.4.2. Similarity Transformation296

Alternatively, the navigation data can be used in an a posteriori step of re-scaling and297

geo-referencing. A similarity transformation, which minimizes the sum of differences between298

the reconstructed camera poses and their navigation priors, is applied to the reconstructed model.299

Depending on the survey pattern, this method can be used even in cases when the camera is not300

synchronized with the navigation data. If the reconstructed path can be unambiguously matched to301

the path given by the navigation data, then the associations between the cameras and navigation poses302

can be determined through finding the closest points between the paths.303

2.5. Dense Reconstruction304

To accurately describe the scene geometry in high detail, a dense representation is computed305

using the method of Shen [67]. For each image reconstructed in SfM, a depth-map is computed, and306

subsequently refined to enforce consistency over neighboring views. Initial depth-map estimates are307

generated by projecting points of the sparse reconstruction and interpolating intermediate depths with308

Delaunay triangulation. Using assigned reference images (i.e., images with a similar viewing direction309

and suitable baseline), each depth-map is improved by iterative spatial propagation and random310

assignment operations. The depth of each pixel is refined with information of neighboring pixels,311

subsequently reducing the discrepancy between the local window around the pixel and the projected312

patch on the reference image. This assumes that neighboring pixels likely have similar depths. Once313

estimated, depth maps are merged into a single (dense) set of 3D points. Points with high photometric314

inconsistencies are removed to suppress those violating the visibility constraints, efficiently reducing315

noise and outliers in the final dense representation of the 3D scene geometry.316

1 Pareto optimal solutions refer to solutions of objectives functions that can be improved solely by degrading a different
objective.
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2.6. Surface and Texture Reconstruction317

The obtained 3D sparse and dense point clouds are an unorganized and noisy scene description. A318

final photo-realistic 3D model requires an estimate of the surface and a consistent high-quality texture319

by seamlessly mapping input images. As underwater optical-based reconstructions are inevitably320

corrupted by both noise and outliers due to poor imaging conditions [5], an approximation-based321

surface reconstruction method is used [68]. It computes the most probable surface, given the available322

sampling of the scene, modeling the surface as an interface between the free and full space as opposed323

to directly using the input points. This method efficiently mitigates noise discrepancies and yields a324

robust reconstruction of weakly represented surfaces. The reconstruction is completed by estimating325

the texture with a two step method [69]. Initially, each mesh triangle is assigned the best representative326

image through an energy minimization process, which attempts to minimize color discontinuities327

between neighboring regions. This method prefers close, focused and orthogonal high-resolution328

views as well as similar adjacent patches. To mitigate texture inconsistencies due to inaccuracies329

in the estimation of camera poses and the scene, as well as unreconstructed occluding objects, an330

additional photo-consistency check is employed. Finally, any significant color discontinuities between331

neighboring regions are addressed by per-vertex-based globally optimal luminance correction as well332

as with Poisson image editing [70].333

3. Model Evaluation Framework334

Estimating the scale accuracy of 3D models reconstructed from underwater optical imagery and335

robot navigation data is of paramount importance since the input data is often noisy and erroneous.336

The noisy data commonly leads to inaccurate scale estimates and noticeable variations of scale within337

the model itself, which precludes the use of such models for their intended science applications. Real338

underwater scenarios usually lack elements of known sizes that could be readily used as size references339

to evaluate the accuracy of 3D models. However laser scalers are frequently used during underwater340

image collection to project laser beams onto the scene and can be used to provide such size reference.341

The framework builds upon two methods for scale estimation of SfM-based 3D models using342

laser scalers, that were recently introduced [26]. We extend the scale estimation process by including it343

into a Monte Carlo (MC) simulation, where we propagate the uncertainties associated with the image344

features and laser spot detections through the estimation process.345

As the evaluated models are built with metric information (e.g., the vehicle navigation data,346

dimension of auxiliary objects), their scale is expected to be consistent with the scale provided by the347

laser scaler (sL). Therefore, any deviation from the expected scale value (s=1.0) can be regarded as348

an inaccuracy of the scale of the model (εs). The error thus represents the percentage for which any349

spatial measurement using the model will be affected.350

εs = sL − 1.0 =
m
m̂
− 1.0 , (3)

where m and m̂ represent a known metric quantity and its model based estimate.351

3.1. Scale Estimation352

The two methods, namely fully-calibrated method (FCM) and partially-calibrated method (PCM)353

are both suitable for different laser scaler configurations. FCM permits an arbitrary position and354

orientation for each of the lasers in the laser scaler, at the expense of requiring a full a priori knowledge355

of their geometry relative to the camera (Fig. 3a). On the other hand, the laser-camera constraints are356

significantly reduced for using the PCM method. The laser origins have to be equidistant to the camera357

center and laser pairs have to be parallel (Fig. 3b). As opposed to prior image scaling methods [24,25],358

the lasers do not have to be aligned with the optical axis of the camera.359

Both methods exploit images with visible intersections of laser beams with the scene beyond the360

simple location of the laser spots. The model scale is estimated through a three step process: laser361
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Figure 3. (a) Fully- and (b) partially-calibrated setup consisting of an optical camera and lasers, with
the required information marked in red.

detection, pose estimation and scale estimation (Fig. 4). The two initial steps are identical in both362

methods; First, a laser detection method determines the locations of laser spots on an image; Second,363

the pose of the camera (wrt. the 3D model) at the time of image acquisition is estimated through a364

feature-based localization process.365

The initial camera extrinsic values (and optionally camera intrinsics) are obtained by solving an366

PnP problem [71] using 3D-2D feature pairs. Each pair connects an individual image feature and a367

feature associated with the sparse set of points representing the model. As these observations and368

matches are expected to be noisy and can contain outliers, the process is performed in conjunction with369

a robust estimation method A-Contrario Ransac (AC-RANSAC) [56]. The estimate is further refined370

through a non-linear optimization (BA) minimizing the re-projection error of known (and fixed) 3D371

points and their 2D observation on the image.372

The camera pose and location of the laser spots are lastly used either to estimate the position of373

the laser origin so as to produce the recorded result (FCM), or to estimate the perpendicular distance374

between the two parallel laser beams (PCM). As these predictions are based on the 3D model, they are375

directly affected by its scale, and can therefore be used to determine it through a comparison with a376

priori known values. As shown through an extensive evaluation in our previous work, both FCM and377

PCM can be used to estimate model scale regardless of the camera view angle, camera-scene distance,378

or terrain roughness [26]. The use of a maximum likelihood estimator (BA) and a robust estimation379

method (AC-RANSAC), the final scale estimation is minimally affected by noise in the detection of380

feature positions and the presence of outlier matches .381

Figure 4. Flowchart of the scale estimation process depicting three crucial steps in scale estimation:
laser spot detection, pose estimation, and scale estimation.

In the fully-calibrated method, the knowledge of the complete laser geometry is used (origins382

OL and directions vL) to determine the position of laser emission ÔL, and so as to produce the383

results observed on the image (Eq. 4). The laser origins ÔL are predicted by projecting 3D points384

XL, representing the location of laser beam intersections with the model, using a known direction of385

the beam vL. As the points XL had to be seen by the camera, i.e. be in the line-of-sight of the camera,386

their positions can be deducted by a ray casting procedure using a ray starting in the camera center387
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and passing through the laser spot xL detected in the image. The final scale estimate can then be388

determined by comparing the displacement of the m̂L = ‖ÔL‖ with its a priori known value ‖OL‖.389

ÔL = PXL −
PXL · cz

vL · cz
vL , (4)

where P is defined as the projection from world to camera frame and cz represents the optical axis of390

the camera.391

1

2

1

2

(a) (b)

Figure 5. Scale estimation using (a) fully-calibrated and (b) partially-calibrated approach, based on
the 3D model and optical image depicting the laser beam projection on the scene intersection with the
scene.

Alternatively, the partially-calibrated method can be used when laser pairs are parallel but with392

unknown relation with the camera. As opposed to other image scaling methods, laser alignment393

with the optical axis of the camera is not required, allowing its application to numerous scenarios394

in which strict rigidity between camera and lasers is undetermined or not maintained (e.g., legacy395

data). To overcome the lack of information about the direction of the laser beams wrt. the camera,396

equidistance between the laser origins and the camera center is exploited. Laser beam direction is397

thus approximated with the direction of the vector connecting the camera center and the middle398

point between the two points of lasers intersections with the model vCM. As we have showed in our399

previous work [26], this approximation can lead to small scaling errors in the most extreme cases400

where the depth discrepancy between two points on the model is disproportionally large compared to401

the camera-scene distance. As underwater surveys are always conducted at sufficiently large safety402

distances, this scenario is de facto absent in underwater reconstructions.403

3.2. Uncertainty Estimation404

Uncertainty characterization of each scale estimate is key for quantitative studies (precise405

measurement of distances and volumes, orientations, etc.), as required in marine science studies where406

accurate metrology is essential (such as in geology, biology, engineering, archaeology and others). The407

effect of uncertainties of input values on the final estimate is evaluated using a MC simulation method.408

The propagation through the process is modelled by repetitions of computation of the same quantities,409

while statistically sampling the input values based on their probability distributions. Final uncertainty410

estimate in scale is derived from the independently computed values.411

Figure 6 depicts the complete MC simulation designed to compute the probability distribution412

of an estimated scale error, computed from multiple laser observations in an image. We assume that413

the sparse 3D model points, associated with the 2D features in the localization process, are constant414

and thus noise free. On the other hand, uncertainty of the imaging process and feature detection is415

characterized using the re-projection error obtained by the localization process. We also account for the416

plausible uncertainty in the laser calibration and laser spot detection, with each laser being considered417

independently.418
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Figure 6. Monte Carlo simulation scheme used for propagating input uncertainties through the process
of scale error estimation.

4. Laser Spot Detection419

The accurate quantification of scale errors affecting 3D models derived from imagery requires420

numerous reliable measurements that have to distributed throughout the model. As scale estimates are421

obtained by exploiting the knowledge of laser spot positions on the images, the quantity and quality422

of such detections directly determines the number of useful scale estimates. Furthermore, to properly423

estimate the confidence levels of such estimated scale, the uncertainty of the laser spot detections424

needs to be known.425

The laser beam center is commonly considered to be the point with the highest intensity in the426

laser spot, as the luminosity of laser spots normally overpowers the texture of the scene. However,427

due to the properties of the water medium, the laser light can significantly attenuate on its path to428

the surface, before being reflected back to the camera. In such cases, the final intensity of the beam429

reaching the camera might be overly influenced by the texture at the point of the impact (Fig. 7). As430

such, performing manual accurate annotations of laser spots tends to be extremely challenging and431

labor intensive, and even impossible in certain cases.432

Figure 7. Example of image used for scale error evaluation with enlarged laser area.

Considerable attention has been given to the development of the image processing components433

of laser scanners, namely on laser line detection [72,73], while the automatic detection of laser dots434

from underwater laser scalers has only been addressed in few studies. Rzhanov et al. [74] developed a435

toolbox (The Underwater Video Spot Detector - UVSD), with a semi-automatic algorithm based on a436

Support Vector Machine (SVM) classifier. Training of this classifier requires user-provided detections.437

Although the algorithm can provide a segmented area of the laser dot, this information is not used438

for uncertainty evaluation. More recently, [75] presented a web-based, adaptive learning laser point439

detection for benthic images. The process comprises a training step using k-means clustering on440

color features, followed by a detection step based on a k-nearest-neighbor (kNN) classifier. From this441

training on laser point patterns the algorithm deals with a wide range of input data, such as the cases442
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of having lasers of different wavelengths, or acquisitions under different visibility conditions. Neither443

the uncertainty in laser point detection nor the laser line calibration are addressed by this method.444

To overcome the lack of tools capable of detecting and estimating the uncertainty in laser spot445

detection, while producing robust and accurate detections, we propose a new automatic laser detection446

method. To mitigate the effect of laser attenuation on the detection accuracy, scene texture is considered447

while estimating the laser beam center. We use a Monte Carlo simulation to estimate the uncertainty of448

detections, consider the uncertainty of image intensities.449

4.1. Detection450

To determine laser spot positions on any image, the first step is a restriction of the search area to a451

patch where visible lasers are expected (Fig. 8a). While not compulsory, this restriction minimizes false452

detections and reduces computational complexity and cost. The predicted area may be determined453

from the general pose of lasers with respect to the camera, and from the range of distances to the scene.454

An auxiliary image is used to obtain a pixel-wise aligned description of the texture in the patch.455

This additional image is assumed to have been acquired at a similar distance, and with laser spots456

either absent or in different positions. This ensures visually similar texture information at the positions457

of the laser spots. The requirement is easily achievable for video acquisitions, as minor changes458

in camera pose sufficiently change the positions of the lasers. The appropriate auxiliary patch is459

determined using normalized cross correlation in Fourier domain [76] using the original patch and460

the auxiliary image. The patch is further refined using a homography transformation estimated461

by enhanced correlation coefficient maximization [77] (Fig. 8b). Potential discrepancies caused by462

the changes of the environment between acquisitions of the two images, are further reduced using463

histogram matching. Once estimated, the texture is removed from the original patch to reduce the464

impact of the texture on the laser beam spots. A low-pass filter further reduces noise and effect of465

other artifacts (e.g., image compression), before detection using color thresholding (e.g., red color) in466

the HSV (Hue, Saturation, Value) color space (Fig. 8d). Pixels with low saturation values are discarded467

as hue can not be reliably computed. The remaining pixels are further filtered using mathematical468

morphology (opening operation). The final laser spots are selected by connected-component analysis469

(Fig. 8e).470

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Laser spot detection: (a) predicted ROI of original image; (b) aligned auxiliary patch; (c) ROI
after the removal of texture information (intensity x5); (d) potential laser pixels after color thresholding;
(e) filtered laser pixels; (f,g) estimated laser beam luminosity without/with texture removal; (h)
detected laser spot with detection uncertainty.
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Once the effects of the scene texture have been eliminated, the highest intensity point may be471

assigned to the laser beam center. In our procedure, the beam luminosity is characterized by the V472

channel of the HSV image representation. Figures 8f and 8g depict the estimate of the laser beam473

luminosity without and with the texture removal. Our proposed texture removal step clearly recovers474

the characteristic shape of the beam, with radially decreasing intensity from the center. Fitting a 2D475

Gaussian distribution to each laser spot allows us to estimate the center of the beam, assuming a 95%476

probability that the center falls within the top 20% of the luminance values (Fig. 8h).477

4.2. Uncertainty478

Given that the estimation of the laser center is based on color information, it is important to479

consider the effect the image noise. Depending on the particularities of the image set, image noise is480

the result of the combined effects of sensor noise, image compression and motion blur, among others.481

In our approach, the image noise is characterized by comparing the same area in two images taken a482

fraction of a second apart, where the sensed difference can be attributed to noise rather than an actual483

change in the environment. As shown in figure 9, the lack of correlation between image noise and pixel484

intensity levels or color channel supports our assumptions. Furthermore, the histogram of differences485

shows that noise can be well described by a Gaussian distribution.486

For a final estimate of confidence levels of detection, we propagate the uncertainty of image487

intensities through the laser detection process using MC simulation. At each iteration we add noise488

independently to each pixel before the described laser spots detection. The iterations yield a set of489

independent detections, which are joined into a final laser spot detection represented by the sum of 2D490

Gaussians [78]. If the laser is not detected in > 80% of iterations, the detection is considered unstable491

and discarded. A set of laser spot detections obtained by a MC simulation is shown in figure 10492

together with the final joined estimation. Red and green ellipses represent 66% and 95% confidence493

levels for independent detections, while blue and cyan indicate the final (combined) uncertainty.494

(a) (b)

Figure 9. Characterization of image noise: (a) image noise vs. pixel intensity; (b) distribution of noise
per color channel.

Figure 10. Examples of detected laser spot with uncertainty estimated through MC simulation for
image shown in Fig. 8. Individual detections and uncertainties are depict with blue dots and red/green
ellipses, while final uncertainty estimate is blue and cyan.
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5. Dataset495

During the SUBSAINTES 2017 cruise (doi: 10.17600/17001000) [44] an extensive seafloor imagery496

was acquired with the ROV VICTOR 6000 (IFREMER) [79]. The cruise targeted tectonic and volcanic497

features off Les Saintes Islands (French Antilles), at the same location as that of the model published in498

an earlier study [80], and derived from imagery of the ODEMAR cruise (doi: 10.17600/13030070). One499

of the main goals of this cruise was to study geological features associated with a recent earthquake, to500

measure the associated displacement along a fault rupture, while expanding a preliminary study that501

presented a first 3D model where this kind of measurements was performed [80]. To achieve this, the502

imagery was acquired at more than 30 different sites along ∼20 km, at the base of a submarine fault503

scarp. This is therefore one of the largest sets of image-derived underwater 3D models acquired with504

deep-sea vehicles to date.505

The ROV recorded HD video with a monocular camera (Sony FCB-H11 camera with corrective506

optics and dome port) at 30Hz, and with a resolution of 1920 × 1080 (Fig. 11). Intrinsic camera507

parameters were determined using a standard calibration procedure [81] assuming a pinhole model508

with the 3rd degree radial distortion model. These camera parameters are kept constant through the509

entire acquisition process. Onboard navigation systems included a Doppler velocity log (Workhorse510

Navigator R©), fibre-optic gyrocompass (OCTANS), depth sensor (Paroscientific Digiquartz R©) and a511

long-range USBL acoustic positioning system (POSIDONIA R©) with a nominal accuracy of about 1%512

of the depth. As the camera was positioned on a pan-and-tilt module lacking synchronization with the513

navigation data, only the ROV position can be reliably exploited.514

(a) (b)

Figure 11. (a) ROV VICTOR 6000 (IFREMER) [79]. (b) Enlarged camera and laser system.

To date, 3D models at more than 30 geological outcrops throughout the SUBSAINTES study area515

have been built. Models vary in length between ∼10 m and ∼300 m horizontally, and extend vertically516

up to 30 m. Here we select two out of the 30 models (FPA and AUTT28), representative both of different517

survey patterns and spatial extents and complexity. Concurrently, evaluation data were collected with518

the same optical camera centered around a laser scaler consisting of 4 laser beams. For both selected519

datasets, numerous laser observations were collected, ensuring data spanning throughout the whole520

area. This enabled us to properly quantify the potential scale drifts within the models.521

5.1. FPA522

The first model (named FPA), extends laterally 33 m and 10 m vertically, and corresponds to a523

subvertical fault outcrop at a water depth of 1075 m. The associated imagery was acquired in a 10 min524

51 s video recording during a single ROV dive (VICTOR dive 654). To fully survey the outcrop, the525

ROV conducted multiple passes over the same area. In total 218 images were selected and successfully526

processed to obtain the final model shown in Fig. 12.527
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Figure 12. Textured 3D model of FPA area.

5.2. AUTT28528

The second model (named AUTT28) is larger and required a more complex surveying scenario, as529

often encountered in real oceanographic cruises. Initially, the planned area of interest was recorded530

during VICTOR dive 654. Following a preliminary onboard analysis of the data, a vertical extension of531

the model was required, which was subsequently surveyed during VICTOR dive 658. This second532

survey also partially overlapped with the prior dive, with overlapping images acquired at a closer533

range and thus providing higher textural detail. The survey also included a long ROV pass with the534

camera nearly parallel to the vertical fault outcrop, an extremely undesirable imaging setup. This535

second 3D model is the largest constructed in this area, covering a sub-vertical fault scarp spanning536

over 300 m laterally and 10 m vertically, with an additional section of about 30 m in height from a537

vertical ROV travel. This model is thus well suited to evaluate scaling errors associated with drift as it538

includes several complexities (survey strategy and geometry, multiple dives, extensive length and size539

of the outcrop). After keyframe selection, 821 images were used out of a combined 1 h 28 min and 19 s540

of video imagery.541

Figure 13. Textured 3D model of AUTT28 area.

5.2.1. Multi-Objective BA Weight Selection542

Models built with a priori navigation fusion through the multi-objective BA strategy require543

a weight selection which represents the ratio between re-projection and navigation fit errors. As544

uncertainties of the two quantities are in different units and, more importantly, not precisely known,545

this selection must be done either empirically or automatically. Due to the tedious and potentially546

ambiguous trial-and-error approach of empirical selection, the weight was determined using L-Curve547

analysis.548

The curve, shown in figure 14a, uses the FPA dataset and 100 BA repetitions with weights λ549

spanning from 0.18 to 18. As predicted, the shape of the curve resembles an "L", with two dominant550

parts. The point of maximum curvature is determined to identify the weight with which neither551

objective has dominance (Fig. 14b). As noise levels of the camera and navigation sensors do not552

significantly change between the acquisition of different datasets, the same optimal weight λ = 2.325553

was used in all our multi-objective optimizations.554

5.2.2. Multi-Survey Data555

As is often the case in real cruise scenarios, the data for AUTT28 model was acquired in multiple556

dives (Fig. 15). When combining the data, it is important to consider the consequences of the merger.557
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Figure 14. (a) L-Curve for FPA dataset. (b) Curvature of L-Curve (shown on a smaller segment of
weights for bigger clarity).

Optical imagery can be simply combined, given the short time period of time in between the two dives558

in which no significant differences are expected to happen in the scene. In contrast, the merging of559

navigation data may be challenging; ROV navigation is computed using smoothed USBL and pressure560

sensor data, with expected errors in acoustic positioning being approx. 1% of depth. As data was561

collected at roughly 1000 m depth, the expected nominal errors are of ∼10 m, or more in areas of poor562

acoustic conditions (e.g., close to vertical scarps casting acoustic shadows or reverberating acoustic563

pings). These errors, however, do not represent the relative uncertainty between nearby poses, but a564

general bias of the collected data for a given dive. While constant within each dive, the errors can differ565

between the dives over the same area, and are problematic when data from multiple dives are fused.566

Models built with data from a single dive will only be affected by a small error in geo-referencing,567

while multi-survey optimization may have to deal with contradicting navigation priors; images taken568

from identical positions would have different acoustic positions, with offsets in the order of several569

meters or higher.570

This is overcome by introducing an additional parameter to be estimated, in the form of a 3D571

vector for each additional dive, representing the difference between USBL-induced offsets. Each vector572

is estimated simultaneously with the rest of the parameters in the SfM. For the case of AUTT28, the573

offset between the dives 654 and 658 was estimated to be (-2.53 m, 1.64 m, -0.02 m) in the x (E-W), y574

(N-S) and z (depth) directions, respectively. The disproportionately smaller z offset is due to the fact575

that the pressure sensor yields inter-dive discrepancies that are orders of magnitude smaller than the576

USBL positions.577

Figure 15. Navigation data for AUTT28 model merged from multiple dives (654 - blue; 658 - red).

5.3. Laser Calibration578

The evaluation data was collected during multiple dives separated by days, and with camera and579

lasers being mounted and dismounted several times. While laser scaler mounting brackets ensured580

that the laser origins remained constant, the directions with respect to the camera changed slightly581

with each installation. Due to operational reasons, calibration data was not collected before each dive.582

However, the origins of the lasers remained fixed throughout the cruise, leaving as the only unknown583

in our setup the inter-dive variations in laser directions (relative to the camera and with respect to each584

other).585
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In a normal calibration process, laser information is computed by fitting individual lines through586

sets of 3D points that are known to lay on the laser beams. Points are typically acquired by identifying587

laser intersections with a surface at a range of known distances. Given that in our case laser origins are588

known and fixed, we are only interested in individual laser directions. As these do not encapsulate589

scale information (as opposed to laser origins), the points used for individual line fittings do not590

necessarily have to be in metric scale, although they do have to be affected by the same scale factor.591

In our case, the set of points lying along the laser beams is obtained from images with detected592

laser spots. Their 3D position can be determined from the camera pose, and a ray-casting procedure, as593

laser spots represent the projection of laser intersection with the scene onto the image. As our interest594

is solely in the laser directions, any model, regardless of its potential scale error can be used. However,595

it is important to avoid models with scale drift, or to use data from multiple models with different596

scales. Moreover, to maximize the conditioning of line fitting, the selection of a model with the widest597

depth range of such intersection points is important. This is the case for the AUTT28 model built using598

Global SfM and multi-objective BA, selected here. The global nature of the SfM and internal fusion of599

navigation data is predicted to most efficiently reduce a potential scale drift. As noisy laser detections600

are used to obtain the 3D points utilized in the calibration, laser spot uncertainties were propagated601

to obtain the associated uncertainty of the estimated laser direction. A MC simulation with a 1000602

repetitions was used.603

The evaluation data were collected on dives 653, 654 and 658. As no camera and laser604

dismounting/mounting occurred between dives 653 and 654, there are two distinct laser setups:605

one for dives 653 and 654 and one for dive 658. Figure 16 depicts all laser intersections with the scene606

(for both AUTT28 and FPA models), as well as the calibration results, projected onto an image plane.607

Intersections detected in 3D model AUTT28 are depicted in black, while those from 3D model FPA are608

shown in orange. Similarly, the squares and circles represent dives 653/654 and dive 658, respectively.609

The projections of the final laser beam estimations are presented as solid and dotted lines. The figure610

shows a good fit of estimated laser beams with the projections of the intersections, both in the AUTT28611

and FPA models. The adequate fit to the vast majority of AUTT28 points shows that the model used in612

the calibration had no significant scale drift. Furthermore, the fitting of the FPA related points, which613

were not used in the calibration and are affected by a different scale factor, confirms that calibration of614

laser directions is independent of the 3D model used, and of different scalings. The broad spread of615

the black points relative to the orange ones also confirms that the choice of the AUTT28 over the FPA616

model was adequate for this analysis. Lastly, it is worth reiterating that it was not possible to combine617

the data from all the models for calibration, as they are affected by a different scale factors.618

Figure 16. Calibration results for dives 653/654 and 658. Solid and dotted lines represent the projections
of estimate laser beams on the image plane, while projected laser intersections with the scene are depicts
as squares/circles.
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6. Results619

As introduced above, the evaluation of the scale accuracy was performed for four different620

optical-based 3D reconstruction strategies: A) Incremental SfM with a posteriori navigation fusion; B)621

Global SfM with a posteriori navigation fusion; C) Incremental SfM with multi-objective BA navigation622

fusion; D) Global SfM with multi-objective BA navigation fusion. The models for each of the two623

datasets (FPA and AUTT28) were built using each of the four strategies, and subsequently evaluated624

on multiple segments spread across the observed area.625

Using the model evaluation framework and laser spot detection method presented above, the626

scale accuracy and its associated uncertainties were automatically estimated using more than 550627

images. To minimize the effects of possible false laser spot detections, only images with at least two628

confidently detected laser points were used. Furthermore, any images exhibiting excessive variation of629

the estimated scale between the individual lasers were discarded, as scale can be assumed to be locally630

constant.631

6.1. Scale accuracy estimation632

During accuracy evaluation, the scale error εs is estimated for each image independently. The633

final per-image scale error and its uncertainty are estimated through a MC simulation, with input634

variables (features, laser spot locations and laser calibration) sampled according to their probability635

distributions. The repeated computation with noisy data thus results in an equal number of final scale636

error estimates per laser. Figure 17 shows one example of such estimation, together with the selected637

intermediate results of the evaluation process. As each MC iteration encapsulates the complete638

evaluation process (image localization, ray-casting, origin estimation and scale error evaluation),639

intermediate distributions presented in Fig. 17 are only shown for illustration, and are not used as640

distribution assumptions in the process itself.641

Figure 17. Intermediate results of a scale estimation procedure.

To satisfactorily represent the complexity of the process, 5000 iterations were used for each642

estimation. Figure 18 shows the evolution of the estimated scale error with associated uncertainty643

under increasing number of samples. After 500 iterations, the errors exhibit only minor fluctuations,644

and after 1500 iterations there is no noticeable difference. Hence, our selection of 5000 iterations is645

more than adequate to encapsulate the distribution of noise.646

To show the advantages of our fully-calibrated approach compared to previously available647

methods or our partially-calibrated method, scale estimates obtained for each laser/laser pair are648

compared. Given the non-alignment of lasers with the optical axis of the camera, the majority of649

previous image-scaling methods (e.g. 24,25) are not applicable. The only available option is thus a650

simplified approach where the Euclidean distance between a pair of 3D points (laser intersection points651

with the scene) is assumed to be the actual distance between the laser pair.652
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Figure 18. Evolution of scale error
estimate with increasing number of MC
iterations.

Figure 19. Error induced in scale
error estimate due to disregarding
non-parallelism of laser beams.

Results using different lasers (Fig. 20) show that the FCM method produces the most consistent653

results. This is expected as the estimation process considers both individual laser directions and the654

geometry of the scene. The effect of scene geometry is clear when Figs. 20a and 20b are compared.655

The slightly slanted angle together with the uneven geometry of the scene causes a large variation in656

the scale error estimates by the individual laser pairs. Similarly, the comparison of Figs. 20b and 20c657

shows the effect of inaccurate assumption of laser parallelism. This error depends on the camera-scene658

distance as shown in Fig. 19. It is evident that the overestimation of laser pair 3-4 and underestimation659

of other laser pairs can be explained by the use of oversimplified laser geometry. To validate this660

assumption, the results of the partially-calibrated method were corrected by the expected errors (at661

d = 2m) induced by disregarding non-parallelism of laser beams (Fig. 20d). While the result is nearly662

identical to that from a FCM method (Fig. 20c), we note that the scale error in Fig. 20c is computed for663

each laser individually, while the partially-calibrated method considers laser pairs instead, and hence664

minor discrepancies.665

(a) (b) (c) (d)

Figure 20. Estimated scale error per laser using different methods of computation: (a) Simplistic; (b)
partially-calibrated method; (c) fully-calibrated method; (d) partially-calibrated method corrected for
errors induced by non-parallelism of laser beams.

6.2. FPA666

The accuracy of the FPA model was analyzed using 148 images (432 lasers). To represent the667

results concisely, measurements are grouped into 7 segments based on their model position (Fig. 21668

and Table 2). To ensure that the scale of the model did not vary within each segment, the maximum669

distance of any laser detection to the assigned segment center was set to 1 m.670

FPA covers a relatively small area, imaged with multiple passes providing redundancy that671

promotes model accuracy. It is thus expected to have only minor variations in scale error between672

areas. Figure 22 depicts the distribution of estimated scale errors for all four methods of 3D model673
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Figure 21. 3D reconstruction with the distribution of laser observations per segment for FPA area.

Table 1. Distribution of laser observations per segment for FPA area.

A B C D E F G

# Images 12 6 39 40 12 24 15
# Lasers 29 12 137 103 33 53 36

Laser distance (min/max) [m] 3.23/3.29 4.44/4.46 3.03/3.50 3.58/4.01 3.59/3.61 3.19/3.37 3.19/3.79

construction. The comparison of results shows that accuracy does not significantly differ. The scale674

error varies between −1% and −5% with estimated uncertainties of around ±3%. The highest errors675

occur at the borders of the model. As expected, uncertainty is closely related to the camera-scene676

distance, as small uncertainties in the laser direction translate to larger discrepancies at larger distances.677

Table 2. Estimated scale errors (%) per segment for different reconstructions of FPA area (values
represent mean value with standard deviation).

A B C D E F G

Global SfM w/ Similarity T. −3.6± 2.9 0.9± 3.2 −1.1± 1.9 −1.2± 3.4 −1.4± 2.8 −4.0± 2.9 −4.0± 3.4
Incremental SfM w/ Similarity T. −3.6± 2.9 0.9± 3.2 −1.0± 1.9 −1.2± 3.4 −1.4± 2.8 −4.0± 2.9 −4.0± 3.5

Global SfM w/ multi-objective BA −4.7± 2.8 0.7± 3.2 −1.3± 1.9 −1.2± 3.4 −1.4± 2.8 −3.1± 2.9 −2.2± 3.5
Incremental SfM w/ multi-objective BA −4.7± 2.9 0.7± 3.2 −1.3± 1.9 −1.2± 3.4 −1.4± 2.8 −3.2± 2.9 −2.1± 3.5

6.3. AUTT28678

For model AUTT28, the evaluation data (images containing projected laser spots) were gathered679

during VICTOR dives 654 and 658, after the video acquisition of data used for 3D model creation. A680

total of 432 images with 1378 laser measurements were selected and grouped in 6 distinct sections681

throughout the 3D model, as shown in Table 3 and Fig. 23. Dive 654 covered a longer vertical path682

(blue dots), while dive 658 (red dots) surveyed an additional horizontal segment together with parts683

of the area already viewed using dive 654. The higher density of red points indicates that the ROV684

observed the scene at a closer range during dive 658, requiring a higher number of images to obtain685

the necessary overlap compared to dive 654.686

The comparison of results shows that the models built using a posteriori navigation fusion (Figs. 24a687

and 24b) are significantly impacted by scale drift (∼ 15%), and that this impact is nearly identical688

regardless of the use of global or incremental SfM approaches. The gradual scale sliding observed is689

caused by inherit scale ambiguity of the two-view image pair geometry when BA is solely dependent690
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Figure 22. Estimated scale errors per segment for model FPA: (a/b) Global / Incremental SfM with
similarity transformation navigation fusion; (c/d) Global / Incremental SfM with multi-objective BA
navigation fusion.

Table 3. Distribution of laser observations per segment for AUTT28 area.

A B C D E F

# Images 30 47 20 46 261 28
# Lasers 97 169 51 165 812 84

Laser distance (min/max) [m] 1.95/2.25 2.13/2.67 2.90/3.36 3.21/3.89 1.70/4.14 3.63/3.79

on visual information. While this might not have been as obvious in the previous case, the long single691

pass of the camera, as performed in dive 654, introduces in this particular model numerous consecutive692

two-view image pairs, magnifying the scale drift. As shown in Figs. 24c and 24d, additional constraints693

in the BA (e.g., navigation data) reduce ambiguity and, ultimately, nearly eliminate scale drift. Overall,694

scale error of the model built with global SfM using multi-objective BA is less than 1% with nearly zero695

scale drift, while a model built with incremental SfM approach showed a 2% scale drift along its 300 m696

length. It is worth noting that the observed difference in scale estimates are within the uncertainty697

levels of the estimations, and therefore inconclusive.698

Table 4. Estimated scale errors (%) per segment for different reconstructions of AUTT28 area (values
represent mean value with standard deviation).

A B C D E F

Global SfM w/ Similarity T. −6.4± 2.3 −6.3± 1.9 −4.5± 2.4 −1.1± 2.0 2.1± 2.2 9.2± 2.9
Incremental SfM w/ Similarity T. −6.3± 2.3 −6.1± 1.9 −4.1± 2.5 −0.8± 2.0 2.3± 2.3 9.3± 2.8

Global SfM w/ multi-objective BA 0.7± 2.4 0.7± 2.0 0.8± 2.6 −0.2± 2.0 1.7± 2.3 0.9± 2.6
Incremental SfM w/ multi-objective BA −0.6± 2.4 −0.1± 2.1 1.2± 2.6 2.0± 2.2 1.7± 2.3 0.6± 2.7
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Figure 23. 3D reconstruction with the distribution of laser observations per segment for AUTT28 area.
Red and blue dots correspond to VICTOR dives 654 and 658.
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Figure 24. Estimated scale errors per segment for model AUTT28: (a/b) Global / Incremental SfM
with similarity transformation navigation fusion. (c/d) Global / Incremental SfM with multi-objective
BA navigation fusion.

6.3.1. Multi-Objective BA vs Similarity Transformation navigation fusion699

The effects of different navigation fusion strategies are demonstrated through the comparison700

of two reconstructions obtained using Global SfM with multi-objective BA and with similarity701

transformation (Fig. 25). The reconstructions diverge on the outer parts of the model, consistent702

with a "doming" effect. A broad-scale systematic deformation produces a reconstruction that appears703

as a rounded-vault-distortion of a flat surface. This effect is a result of a rigorous re-projection error704

minimization of a loosely interconnected longer sequence of images taken from a nearly parallel705

direction combined with slight inaccuracies in modelling of the radial distortion of the camera [14]. As706

for scale drift, additional non-vision related constraints can reduce this distortion and the associated707

error.708
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Figure 25. Comparison of navigation fusion strategies on the reconstruction of 3D models.

6.3.2. Multi-Survery data fusion709

As explained in section 5.2.2, the multi-mission data fusion can cause contradictory navigation710

priors during optimization. We address this by expanding the optimization problem with an additional711

3D vector, representing the possible USBL offset between the recorded navigation data of the two dives.712

To examine the effects of this offset compensation on model construction, an additional model was713

constructed using raw navigation data (i.e., without offset compensation). Figure 26 depicts errors in714

the camera pose estimates with respect to their navigation priors, and show a concentration of errors in715

areas imaged during both dives (Fig. 15), where navigation priors of the two dives are incoherent. The716

errors dramatically decrease with the introduction of an offset, yielding an improved fitting solution.717

Alternatively, incoherences can cause model distortions to compensate for contradicting priors, as718

shown by abrupt changes of scale (area D in Fig. 27).719

Figure 26. Comparison of multi-survey data fusion strategies on the estimated camera path.

6.3.3. Scale error estimation methods720

To recover high-resolution and precise information from 3D models (lengths, areas, volumes) it is721

important to use the most accurate method. As the non-alignment of lasers with the optical axis of722

the camera prevents the use of previous image-scaling methods (e.g., Pilgrim et al. [24], Davis and723

Tusting [25]), two other methods could be used instead. Minor misalignments of laser scalers may724

be discarded for simplicity or lack of sufficiently distributed calibration data. In such case both, our725

partially-calibrated approach and simplified direct 3D method, that assumes an equivalence of the726
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Figure 27. Estimated scale errors per segment for AUTT28 model built with Global SfM with
multi-objective BA navigation fusion without an additional offset vector.

Euclidean distance between the points of laser intersections and the beams themselves, could be used727

for the evaluation.728

For this comparison the model with least scale drift was selected (Global SfM and multi-objective729

BA navigation fusion) to emphasize the effects of different methods on the results. Furthermore, as730

the simplistic direct 3D and partially-calibrated method assume laser-pair parallelism, the analysis of731

these two methods was performed on data consisting of only laser pairs that were the closest to being732

parallel (Figs. 28a and 29a), as well as on the complete dataset (Figs. 28b and 29b), to show the effect733

that non-parallelism of laser beams may have on the different methods.734

As expected, in comparison to the simplistic approach (orange) (Fig. 28a), our method (green) is735

less impacted by the range of camera-scene angles and distances, whereas the spread of the estimated736

values within each segment for the direct approach correlates directly with the span of camera-scene737

distances. Although varying distances themselves do not play a role, they do however increase738

the probability of both having different camera-surface angles, and of violating the surface flatness739

requirement.740
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Figure 28. Comparison of estimated scale errors computed with fully-calibrated and simplistic direct
3D method using: (a) only nearly-parallel laser pairs; (b) all laser pairs.

In contrast, the analysis of the results of the partially-calibrated approach (Fig. 29a) confirms741

that this method is unaffected by changes of camera angle and scene roughness. As expected, the742

results in sections D, E and F are nearly identical, with discrepancies in sections A, B and C. Sections743

A, B, and C were evaluated using data collected during dive 658, while D, E, F in dive 654, and we744

attribute this discrepancy to the marginally larger error in non-parallelism of the laser configuration745

used during dive 658 than that of dive 654. This is clearly shown when the results are computed on746

the data from all laser pairs (Fig. 29b), as non-parallelism of different laser pairs causes significant747

variation in the results. Segments acquired at closer ranges (A, B and C), and therefore less affected by748

the errors in parallelism, have smaller errors than those of segments D and F, which are evaluated at749

a larger distances. While similar multi-modal distributions appear in the results of the simple direct750
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3D method, the clear multi-modal peaks are suppressed by the effects of camera-surface angles and751

roughness of the surface model.752
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Figure 29. Comparison of estimated scale errors computed with fully- and partially-calibrated method
using: (a) only nearly-parallel laser pairs; (b) all laser pairs.

7. Conclusions753

In this study the scale error evaluation of four most commonly used optical-based 3D754

reconstruction strategies of underwater scenes is presented. This evaluation seeks to determine755

the advantages and limitations of the different methods, and to provide a quantitative estimate756

of model scaling and the precision of measurements performed on them for quantitative studies757

(distances, areas, volumes, etc.). The analysis was performed on two data sets acquired during a758

scientific cruise (SUBSAINTES 2017) with a scientific ROV (VICTOR6000), and therefore under realistic759

deep-sea fieldwork conditions. For models built using multi-objective BA navigation fusion strategy,760

an L-Curve analysis was performed to determine the optimal weight between competing objectives of761

the optimization. Furthermore, the potential offset in navigation when using USBL-based positioning762

from different dives was addressed in a representative experiment.763

Building upon our previous work, the lack of known measurements readily available in large scale764

models was overcome with the fully-calibrated method, which exploits laser projections onto the scene765

from laser scalers, which are common in deep-sea ROVs. The confidence level for each of the scale error766

estimates was independently assessed with a propagation of the uncertainties associated with image767

features and laser spot detections using a Monte Carlo simulation. The number of iterations used in the768

simulation to satisfactorily represent the complexity of the process was validated through the analysis769

of the final estimate behaviour. The comparison of the results show that the fully-calibrated method is770

more consistent and accurate than the two other plausible approaches, i.e. partially-calibrated and771

simplistic direct 3D method. We also note that by limiting the data to parallel laser pairs (dive 654),772

the partially-calibrated method produced similar results. Therefore, the PCM approach can be used773

when the relation between parallel lasers and the camera is not known. This opens its use in numerous774

scenarios where strict rigidity between the camera and lasers is not maintained or determined (e.g.,775

legacy data).776

As each scale error estimate characterizes an error at a specific area of the model, independent777

evaluations across the models enable efficient determination of potential scale drifts. To obtain a778

sufficient number of accurate laser measurements, an automatic laser spot detector was also developed.779

By mitigating the effects of scene texture, a much larger amount of accurate detections was possible,780

even with greatly attenuated laser beams. Furthermore, the recovery of characteristic shapes of laser781

spots with radially decreasing intensities enabled additional determination of the uncertainty of laser782

spot detections. In total, the scale errors have been evaluated on a large set of measurements in both783

models (432/1378) spread across them.784

The effects of different reconstruction strategies were analyzed using two distinct survey scenarios.785

The first model (FPA dataset) was acquired with multiple passes over the same areas. Overlap of786
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non-sequential images restricted the potential solution of the optimization problem to a nearly identical787

solution regardless of the strategy (SfM or navigation fusion). In a second model (AUTT28 dataset), data788

were acquired during two separate surveys, and includes a long single pass with the camera oriented789

nearly parallel to the vertical wall. The results demonstrate that surveys with weakly connected790

sequentially acquired images are prone to produce broad-scale deformation (doming effect) in the final791

model. Rigorous minimization of the re-projection error, combined with the projective scale ambiguity,792

bends the model, and can further lead to drift in the scale estimate. While navigation fusion strategy793

did not play a role in the first model (FPA), the results of this second model (AUTT28) demonstrate the794

advantage of using multi-objective BA navigation fusion to process data with more complex survey795

patterns. Furthermore, the introduction of additional vectors in the optimization of multi-survey796

problems successfully accounted for offset changes present in the underwater USBL-based navigation797

data and thus minimize the effect of contradicting navigation priors.798

Finally, in surveys over a single dive and with multiple overlapping regions, the reconstruction799

strategy is to a first order irrelevant, while more complex scenarios significantly benefit from800

optimization including the navigation data. In all cases, the errors in the models are inferior to801

5%, with errors often being around 1%.802

Acquisition of calibration data (points collected at large range of distances) is also critical.803

Depending on laser setup, a modification of laser geometry is possible (e.g., during the process804

of diving due to pressure changes). As minor discrepancies in parallelism can cause significant offsets805

at the evaluating distance, to perform a calibration in the field is desirable (e.g., approach of the scene806

illuminated with laser beams). Furthermore, our results also indicate that it is important to collect807

multitude of evaluation data at different locations and moments during the survey.808
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