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Abstract: Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of rare malignancies 

mainly originated from hormones secreting cells, which are widespread in human tissues. The 

identification of mutations in ATRX/DAXX genes in sporadic NENs, as well as the high burden of 

mutations scattered throughout MEN-1 gene in both sporadic and inherited syndromes, provided 

new insights into the molecular biology of tumour development. Other molecular mechanisms, such 

as the NOTCH signaling pathway, have shown to play an important role in the pathogenesis of 

NENs. NOTCH receptors are expressed on neuroendocrine cells and generally, act as tumour 

suppressor proteins, but in some contexts can function as oncogenes. The biological heterogeneity 

of NENs suggests that to fully understand the roles and the potential therapeutic implications of 

gene mutations and NOTCH signaling in NENs, a comprehensive analysis of genetic alterations, 

NOTCH expression patterns and their potential roles across all NEN subtypes is required.  
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1. Introduction 

Neuroendocrine cells are sensor cells, which play an important role in the connection between 

nervous system and endocrine organs. In response to neurogenic stimulation, neuroendocrine cells 

secrete several molecules, including peptide hormones, which produce slow and long-lasting effects. 

The neuroendocrine cells are widely scattered throughout the human body, such as the gastro-entero-

pancreatic tract, uro-genital apparatus, lung, breast, skin, as well as the central and peripheral 
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nervous system. These cells are able to dedifferentiate and transdifferentiate under physiological 

conditions in response to intracellular metabolic pathways and microenvironmental stress conditions 

[1].  

NOTCH signaling is a highly conserved cell-signaling pathway that is implicated at different 

stages of development through the regulation of cell proliferation, differentiation and cell death. 

At a physiological level, in the neuroendocrine system, NOTCH signaling drives the maturation 

process of multi-potent cells to become functionally competent cells during the early stage of 

embryonic neuroendocrine development [2]. For instance, NOTCH signaling regulates the ductal and 

endocrine differentiation of pancreatic cells during the development of the pancreas [3].  

Neuroendocrine neoplasms (NENs) are originated from the neoplastic transformation of 

neuroendocrine cells at various anatomic locations, being the gastrointestinal tract, the endocrine 

pancreas and the respiratory tract, the most involved sites. [4].  

Little is known about the mechanisms of neoplastic transformation and metastatic dissemination 

for neuroendocrine cells, but it is known that NENs originating in different organs, despite some 

common molecular characteristics, have distinct signatures and display significant biological 

heterogeneity.  

In this heterogeneous neoplastic setting, NOTCH pathway has shown to have a role by 

triggering both tumour suppressor and oncogenic functions in some neuroendocrine cell lines and in 

different subtypes of NENs [5-10].  

The availability of treatments with a modulatory and inhibitory role on NOTCH-dependent 

pathways, and the possibility to use the molecular alterations as diagnostic and prognostic markers, 

has highlighted the need a deeper knowledge on the implication of NOTCH pathway and the 

different molecular signatures  in NENs. 

This review will summarize the current knowledge on the molecular heterogeneity of NENs and 

the complex function of NOTCH signaling in different types of NENs, as well as the new therapeutic 

approaches based on NOTCH pathway modulators. 

 

2. Neuroendocrine Neoplasms and Molecular Heterogeneity 

Neuroendocrine neoplasms are genomically and clinically heterogeneous. This heterogeneity 

occurs between cancers originating from different organs, within the cancers originating in the same 

organ, and between primary and metastatic lesions [4, 11-13]. For instance, small intestine NETs are 

genomic stable cancers, with a low mutational load compared with NETs originating from different 

organs, such as lung and pancreas. Viral-associated Merkel carcinomas have a low mutational 

burden, in contrast to UV-induced Merkel cell carcinomas [14].  The fully understand of the 

molecular mechanisms and the clinical significance of this heterogeneity could led to the 

identification of new hallmarks to target in the neuroendocrine neoplasms treatment.   

Current advances in genomic analysis techniques have enabled to identify recurrent mutations 

and chromosomal aberrations at the base of the molecular landscape of NENs [15,16].  

Recurrent mutations have been identified in MEN1 and VHL genes, in chromatin remodelling 

genes, such as DAXX and ATRX, in mechanistic target of rapamycin (mTOR) pathway genes, 

especially in PTEN, TSC2, and PIK3CA, in tumor suppressor gene CHEK2, in telomerase maintenance 

genes, in the cell cycle regulator CDKN1B and in the DNA repair gene MUTYH [ 15,16]. These 

mutations can occur in genetic syndromes, such as multiple endocrine neoplasia 1 (MEN1), tuberous 

sclerosis complex (TSC1/2), neurofibromatosis type 1 (NF1), and von Hippel–Lindau (VHL) disease, 

or in sporadic NENS, and can be germline or somatic mutation [15-17].  

Genetic syndromes account for 15-20% of NENs, while the remaining 80-85% is sporadic. 

 Interestingly, as confirmation of the high heterogeneity of NENs, whole exome sequencing 

analysis performed in different studies has identified only 21 genes in common between the small 

intestinal NENs samples analysed from different patients [11, 18]. Furthermore, comparing the 

results of these studies on small bowel NENs with the one on pancreatic NENs, a concordance of 

only 17 genes with somatic mutations was found [11, 15, 18].    
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In addition, some mutations, namely mutations in MEN1 and DAXX/ATRX genes, are associated 

with a better prognosis, and they seem to occur very rarely in poorly differentiated NECs [19]. On 

the other hand, mutation in TP53, RB1, PTEN and PIK3CA are more frequent in poorly differentiated 

NECs [19, 20].  

In the following paragraph, we are going to summarise the current knowledge and the clinical 

significance of the most common genetic alterations in NENs, classifying them in hereditary and 

sporadic. 

  

3. Common Genetic Alterations and Molecular pathways in the development of Neuroendocrine 

Neoplasms 

3.1 Heritable genetic traits in neuroendocrine neoplasms 

NENs comprise at least ten recognized inherited NET syndromes, including multiple endocrine 

neoplasia type 1 and 2 (MEN-1 and MEN-2), von Hippel-Lindau syndrome (VHL) and 

neurofibromatosis type 1 (NF1) [21].  

The MEN-1 is a rare autosomal dominant syndrome caused by inactivating mutations in the 

MEN-1 gene, and mostly associated with the appearance of neoplastic lesions in pancreas and 

duodenum, as well as in pituitary and parathyroid glands [22, 23]. The majority of germline 

mutations in MEN-1 gene cause the truncation or absence of the menin protein in the cancer cells. 

Typically, tumour development is associated with the mutation of both MEN-1 alleles, however an 

incomplete inactivation of this gene has been observed in thymic and duodenal NETs [24, 25]. The 

menin protein is usually located in the nucleus, cytoplasm and around telomerases. However, its 

specific biological role has not been described yet [26].  

The MEN-2 syndrome is an inherited autosomal dominant disorder comprising MEN-2A (55% 

of all cases), MEN-2B (5%–10%), and familial medullary thyroid carcinoma (FMTC; 35%–40%) [27]. 

The MEN-2A and MEN-2B patients have almost 100% risk of developing MTC and about 50% risk of 

developing pheochromocytoma and parathyroid adenomas. The MEN-2 syndrome is caused by 

mutations in the RET proto-oncogene, encoding a tyrosine kinase receptor. These mutations cause 

activation of RAS/MAPK and PI3K/AKT signaling pathways [28], and may occur in two different 

regions of RET gene, originating two different types of disorders. In addition, the Familial MTC 

(FMTC) syndrome, which is also caused by RET mutations, is only associated to MTC but is less 

aggressive than MEN-2 tumours [29]. 

The MEN-4 is a rare autosomal dominant syndrome predisposing to NETs development, such 

as parathyroid and pituitary adenomas, associated with the germline mutations in CDKN1B genes 

encoding p27kip protein [30]. However, more studies are needed to know the penetrance and 

biological effect of CDKN1B mutations. 

The Von Hippel-Lindau (VHL) syndrome is associated with pheochromocytomas, 

paragangliomas and pancreatic neoplasia and it is caused by the loss of VHL tumour supressor gene, 

regulating the HIF and VEGF pathways [31-33]. The VHL protein shuttles between nucleus and 

cytoplasm binding to elongen C, elongen B, Cul2, and Rbx1 and degrading the alpha subunits of 

hypoxia-inducible factor (HIF) in an oxygen-dependent manner [32 ,34, 35]. Lack of degradation of 

this factor due to the absence of the VHL protein results, for instance, in an uncontrolled production 

of factors promoting blood vessel formation (eg, vascular endothelial growth factor) and implicated 

in tumour development. The germline mutations in the VHL gene are extremely heterogeneous and 

are spreaded throughout the coding sequence. They are present in virtually all families with VHL, 

although the exact molecular mechanism of development of NETs in VHL has still many unknowns 

[36].  

The neurofibromatosis type 1 (NF1) syndrome is another familiar NET disorder, which is 

associated with duodenal NETs or pheochromocytomas and is linked to RAS and ERK/MAPK 

pathways’ deregulations [37]. Genetic alterations of the NF1 gene include missense, nonsense, and 

splice site mutations, as well as insertions/deletions (in/dels) and chromosomal rearrangements [38]. 
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Tuberosclerosis gene TSC1 (9q34) and TSC2 (16p13.3) are regulated by neurofibromin through mTOR 

activation, linking the three proteins in terms of their potential roles in tumour progression [37]. 

 Loss of function of the NF1 gene causes mTOR activation and tumour development. Disruption 

of TSC2 in pancreatic beta cells induces beta cell mass expansion in an mTOR-dependent manner 

[39]. Furthermore, it has recently been demonstrated that patients with PNET, and loss of PTEN 

protein as well as tuberosclerosis 1 protein, show a significant shorter survival [40]. 

Familial pheochromocytoma and paraganglioma syndromes are autosomal-dominant disorders 

caused by mostly germline mutations in the succinate dehydrogenase subunit genes, such as SDHB, 

SDHC, SDHD, SHDA, and SDHAF2 (Succinate dehydrogenase complex assembly factor 2). These 

are encoding factors required for the assembly of the mitochondrial complex II [32, 33 41-50]. This 

mitochondrial complex participates in two main cellular processes: Krebs cycle and the electron-

transport chain. The mutations in the key components for the formation of complex II make decrease 

the enzymatic activity of the rest of the complex. The link between the perturbation in complex II and 

the tumorigenesis has still many unknowns. SDH deficiency leads to pseudohypoxic conditions in 

cancer cells. However, this fact alone is probably not sufficient to induce the tumorigenic process so 

different possibilities seems to be feasible, for instance, the implication of ROS or the possibility of 

the inhibition of other α-ketoglutaratedependent enzymes.  

SDH mutations are commonly associated with multiple pheochromocytomas and 

paragangliomas, however, gastrointestinal stromal tumours, SDH-deficient renal cell carcinoma and 

pituitary adenomas can also be associated with these mutations [51, 52]. 

 

3.2. Genetic alterations and tumour mutation burden in NENs 

Several chromosomal alterations and gene mutations have been consistently identified in 

different types of sporadic NENs, although the tumour mutational burden is relatively low compared 

to other tumour’s types [21]. In fact, massive parallel sequencing showed that only 24 cancer driver 

genes are affected by non-synonymous mutations in neuroendocrine neoplasms [53]. Remarkably, 

cancer driver genes and mutations are unevenly distributed in different tumour types and may 

contribute to the mechanisms of NENs heterogeneity. The factors encoded by these mutated genes 

may affect several pathways involved in cell proliferation, metabolism and chromatin modification.  

The genetic landscape of GEP-NENs confirmed essential differences of mutational profiles 

between well-differentiated NETs, including those with high proliferation index, and NECs [54].  

Mutations in TP53 and RB1 genes are pivotal drivers in poorly differentiated NECs of any 

anatomical origin [16, 55-58]. Mutations in TP53 gene have been consistently detected in poorly 

differentiated GEP-NECs with a frequency ranging from 20% to 73% of the tested patients [20, 55, 59, 

60]. The presence of TP53 mutations in GEP-NECs correlate with poor survival [20], and recently Ali 

et al have demonstrated that p53 immunoexpression, in colorectal NECs, correlates with a poorer 

response to platinum-based chemotherapy and worse prognosis [61]. These results suggest a 

potential diagnostic, prognostic and predictive role of p53 immunoexpression in GEP-NECs, this role 

is currently under investigation in different trials. 

The inactivation of RB1 gene product, which occurs mainly by somatic mutations, have been 

reported in 71% of poorly differentiated pancreatic NECs [54].  

KRAS mutations have been identified in gastric, pancreatic and colorectal NECs with 

frequencies ranging from 8% to 60% [20, 54, 60, 62-66].  

On the other hand, BRAF mutations were only found in colorectal NECs with a frequency 

between 13% and 59% [67], as well as APC affecting some cancer cases [68].  

The genetic alterations characterizing poorly differentiated NECs are absent in G3 NETs. This 

subtype presents typical mutations of G1/G2 NETs. For example, G3 Pancreatic NETs showed high 

frequency of MEN1, DAXX, and ATRX mutations or protein loss (31-44%, 9-25% and 18-36% 

respectively). Therefore, the scientific community is proposing these mutations as possible 
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biomarkers to distinguish G3 Pancreatic NETs from NECs [69]. It has a particular clinical relevance 

due to the fact of NECs and G3 NETs are detected at an advanced stage. 

The molecular similarities between G1/G2 and G3 NETs suggested a new model for GEP-NENs 

tumorigenesis in which poorly differentiated NECs and well-differentiated NETs, including G3 

NETs, were originated from a common-normal neuroendocrine progenitor through different routes 

[70]. These foresee the alteration of TP53 and RB1 for all poorly differentiated NECs, and specific 

alterations for well-differentiated pancreatic NETs and small intestine NETs [71].  

Despite the remarkable biological heterogeneity of NETs, the mammalian target of rapamycin 

(mTOR) molecular pathway has been found to be prominently altered in a vast majority of NETs [72]. 

The mTOR is a kinase-dependent signaling cascade, formed by the mTORC1 and mTORC2 

multiprotein complexes, which main function is related with controlling cell growth. Mutations in 

NF1, TSC2 or PTEN- encoding for key suppressor’s genes of this pathway and altered expression of 

mTOR pathway components are common hallmarks of a great proportion of NETs, wherein these 

alterations seem to be directly related with tumour development and progression [72].  

 

4. Structure of NOTCH Receptors and NOTCH Signaling Pathway 

NOTCH receptors family in mammalian comprises four transmembrane proteins (NOTCH1-4) 

which are evolutionary conserved with a high homology between different species. NOTCH 

receptors are activated by trans-ligands expressed on neighboring cells, whereas cis-ligands within 

the same cell inhibit the NOTCH signaling [73]  

The four NOTCH receptor isoforms in mammals are characterized by an extracellular region of 

repetitive Epidermal Growth Factor-like (EGF-like) sequences which are involved in the interaction 

with Delta-like ligands (DLL1, DLL3, DLL4) and Jagged (JAG1, JAG2) proteins, by a single 

transmembrane portion and by an intra-cytoplasmic tail involved in the signal transduction (Figure 

1) . The expression of these receptors is in a cell and tissue-type specific manner.  

 

 
Figure 1. Structure of 4 human NOTCH receptors: NOTCH receptors are characterized by an extracellular region 

of repetitive EGF-like sequences, which are involved in the interaction with Delta-like ligands and Jagged 

proteins, by a negative regulatory region that prevents Notch activation in the absence of the correct signal, by 

a single transmembrane portion and by an intra-cytoplasmic tail involved in the signal transduction. S2 and S3 

are respectively the metalloprotease and γ-secretase sites of cleavage. NTM: transmembrane subunit; EGF: 

epidermal growth factor; LNR: cysteine-rich LNR repeats; HD: heterodimerization domain; RAM: RAM domain; 
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ANK: ankyrin repeat domain; PEST: region rich in proline (P), glutamine (E), serine (S) and threonine (T) 

residues. 

 

 

The interaction of NOTCH receptors with their ligands causes a structural modification in the 

protein and the cleavage of the intracellular domain (NICD) that moves into the nucleus where it 

binds to Centromere Binding Factor – 1 (CBF1) complexes, to activate expression of NOTCH-

responsive genes (Figure 2).  

 

 

 
Figure 2. NOTCH signaling pathway: The interaction between NOTCH receptors and their ligands initiates 

proteolytic cleavage of the receptor by ADAMs. A subsequent cleavage by γ-secretase complex releases the 

NOTCH intracellular domain (NICD) of the receptor. NOTCH-NICD migrates into the nucleus where it binds 

to Recombining binding protein suppressor of hairless (RBP-J = CSL/CBF1/Suppressor of Hairless (Su (H))/LAG-

1) and Mastermind-like (MAML) co-activators to assemble an active transcription complex on NOTCH-

responsive genes. 

 

 

Genes regulated by NOTCH signaling pathway include the Hairy-Enhancer of Split (Hes1, 

Hey1, Hey2) encoding the double-helical transcription factors with negative regulatory function, as 

well as c-Myc and cyclin D involved in cell cycle regulation [74]. 

The main roles of NOTCH has been associated to the regulation of homeostasis and cell 

proliferation as well as development and cell differentiation in a variety of tissues. This regulation 

can occur during both embryonic stages and postnatal life. 

The plethora of ligands regulating NOTCH receptors have been extensively studied in different 

tumour types for their onco-regulatory effects [75-77]. Depending on the biological 

microenvironment, the activation of NOTCH signaling seems to have a dual role, showing an 

oncogenic effects in certain tissues (i.e. small cell lung cancer) [78,79], and tumour-suppressor 

function in others (i.e. medullary thyroid carcinoma, small cell lung cancer, pancreatic and biliary 

neuroendocrine tumours) [80-83]. 

 

 

 

5. The role of NOTCH signaling in NENs 
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Pre-clinical studies showed a heterogeneous expression of NOTCH receptor family in tumoral 

tissues, and genome sequencing analysis has identified several NOTCH gene mutations in various 

solid and hematological malignancies [81, 84-86].   

The main role attributed to NOTCH signaling pathway is as a mediator of cell differentiation. 

Depending on the NOTCH receptors expression levels, the cross-talk with other signaling pathways 

and the cellular context, NOTCH signaling can have a oncogenic or tumor suppressor role [84]. In 

addition, NOTCH signaling is responsible of the smooth transition from non-neuroendocrine to 

neuroendocrine phenotype, as a result of a coordinated anti-cancer drug response, in pathological 

cell conditions. 

Therefore, to understand completely the impact that NOTCH operates in the development of 

neuroendocrine tumours, it is required to analyze the NOTCH signaling at different layers of 

genomic regulation, ranging from gene expression levels to epigenetic alterations, and involving its 

diverse components as NOTCH receptors and ligands. 

In the biggest cancers killers the study of NOTCH pathway was a milestone, and several 

analyses elucidated its role in pathogenesis. The expression of the different isoforms were 

exanimated and the presence of mutations was assessed.  

In breast cancer tissue,aberrant high levels of NOTCH1 and NOTCH2 was found in comparison 

with control tissue [87]. Moreover, alterations in Notch signaling were also linked to triple-negative 

breast cancer (TNBC). Mutations were found in NOTCH1-3 at the C-terminal PEST domain and also 

in the prolyl-isomerase PIN1(Peptidylprolyl Cis/Trans Isomarase, NIMA-Interacting 1) [88], 

supporting the theory of the involvement of Notch in breast cancer. 

In some neoplasms, mutation can contribute to enhance the physiological function of the 

pathway, as was described in a previous non-small cell lung carcinoma (NSCLC) analysis. In this 

study it was demonstrated that the presence of a c-terminal mutation in NOTCH-1 gene confers a 

gain of function, increasing the receptor signaling transduction in NSCLC cancer [89]. 

In colorectal cancer (CRC), the genomic alteration in NOTCH pathway correlates with clinical 

outcome: it may lead cells to proliferate without differentiation or to maintain the transcriptional 

program of normal adult colon cells.  A common upregulation of  NOTCH-1 gene expression was 

found in tumoral samples belonging to the three different CRC transcriptional subtypes, 

characterized by specific transcriptional programs related to normal adult colon, early colon 

embryonic development, and epithelial mesenchymal transition. This finding is consistent with the 

critical role of Notch pathway in CRC initiation [90]. 

Interestingly, a recent study showed that mutation of NOTCH1 in oral squamous cell carcinoma 

occurs in 15% of Caucasian population, whereas in the Asian population the rate of NOTCH1 

mutations was about 50% [91]. This finding emphasizes the need to clarify the NOTCH alteration 

prevalence in human cancer, even more in rare neoplasms. 

In NENs, the NOTCH mutational status assessment has been analyzed only in few studies 

conducing whole-genome sequencing in specific neuroendocrine neoplasms. 

Up-to-date one next generation sequence study was performed on small cell neuroendocrine 

carcinoma of uterine cervix (SCNEC). Deyin Xing et al. found oncogenic driver mutations in KRAS, 

Erb-B2, c-Myc, BCL6 and NOTCH1 in a cohort of 10 Small cell neuroendocrine carcinomas (SCNEC) 

of the uterine cervix, a rare but extremely aggressive tumour [92]. In addition, in a cohort of large 

cells neuroendocrine carcinoma (LCNEC), the most relevant molecular alteration was detected in 

DLL3, a well-known NOTCH canonical ligand. The DLL3 inhibition in combination with the use of 

immunotherapy has been also pointed out as therapeutic option for LCNEC [93].  And a separate 

study conducted whole-genome sequencing of Small Cell Lung Cancer (SCLC), identifying 

inactivating mutations in NOTCH family genes in 25% of cases [58, 94]. 

 In the next paragraphs, we are going to summarize the current knowledges on the epigenetic 

modifications and NOTCH signaling pathway alteration in different types of NENs.  
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5.1. NOTCH in NENs : the epigenetic implications 

It is conceivable to think in epigenetic changes contributing to the pathological development of 

the tissue and how these alterations could affect gene expression after stem cell differentiation, as 

happens in other neoplasms. The epigenetic modifications by definition encompass all the 

mechanisms that modify the genetic expression and alter the genome stability, without modifying 

the DNA sequence. These alterations not only can occur at chromatin level, and involve acetylation 

and deacetylation of the histones and the methylation of the cytosine at DNA level, but can also be 

caused by other molecules like non-coding RNAs, for instance, long non-coding RNAs and 

microRNAs.  

Experimental data suggests that epigenetic alterations are involved in neuroendocrine 

tumorigenesis [95, 96]. Some pivotal preclinical studies were conducted to explore the role of 

epigenetic alterations in NETs, obtaining interesting results: silencing regulatory genes (Wnt 

signaling components) and aberrant mutations in core pathways contributes in NET pathogenesis 

[96]. Furthermore, missense mutation in the mixed-lineage leukemia protein 3 (MLL3) often trigger 

aggressive neuroendocrine tumours, medulloblastomas and Merkel cell carcinoma [97] by means of 

inducing genomic instability.  

Moreover, Lysine-specific histone demethylase 1A (LSD1) inhibitor ORY-1001 was described in 

small cell lung cancer (SCLC) because of its anti-tumorigenic role. This inhibitor activates NOTCH 

pathway, inhibiting consequently the transcription factor ASCL1 and the repression of the 

tumorigenesis and the neuroendocrine phenotype in this type of tumours. A complete and long-term 

tumour regression was obtained after treating with ORY-1001 SCLC patient-derived xenograft (PDX) 

mice models [98]. Thus, this inhibitor has been suggested as a potential new targeted therapy for 

SCLC. 

Recent findings on transcriptional activation of NOTCH appear to be regulated by means of 

microRNAs (miRNAs), a small single-stranded RNAs that regulate gene expression post-

transcriptionally. Preliminary research about how aberrant miRNA expression can influence 

neuroendocrine cells behaviors showed a direct post-transcriptional repression of NOTCH2 and 

RBPJ proteins operated by miR-375 in Merkel cell carcinoma (MCC), a rare cutaneous neuroendocrine 

malignancy [99]. This small molecule is having an increasing connotation in modern pathology of 

NET, Arvidsson et al. discovered that miR-375 is highly expressed in small intestinal neuroendocrine 

tumours and could be used as prognostic biomarker for survival [100]. 

In the age of precision medicine, the identification of epigenetic biomarkers in a subpopulation 

of patients could help clinicians to choose the most appropriate therapeutic strategy. Recently, 

epigenetic drugs are providing promising results in preclinical phases, making attractive the idea of 

their use in combination with the standard chemotherapy or immunotherapy. However, further 

validation in clinical trials is needed and side effects have to be assessed for the possible use of these 

combined strategies [101]. 

Currently, only few studies are focused on the epigenetic landscape in NET, and even less if we 

are pointing out to the implications that may occur between these epigenetic factors and one of the 

main drivers of neuroendocrine differentiation: NOTCH pathway. A coordinated effort between 

multidisciplinary groups of experts is needed to clarify the role of NOTCH in diverse neuroendocrine 

neoplasms. 

 

5.2. Role of NOTCH in neuroendocrine tumour of the lung 

In lung tissue, the role of NOTCH has been established as driving  the differentiation of 

neuroendocrine cells present in the organ. NOTCH mutation can provoke a dysfunction of its activity 

and induces neuroendocrine differentiation from no-neuroendocrine progenitors. Clinical data 

indicate that some neuroendocrine neoplasms of the lung could relapse and present a secondary 

tumour formation after anticancer therapy.  

Recent findings suggest that the presence of inactivating  mutations in NOTCH signaling is 

involved in the pathogenesis of neuroendocrine neoplasms of the lung, being defined as more than a 
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25% of the cases for small cell lung carcinomas (SCLC) [58, 102]. This fact suggests that NOTCH 

signaling needs to be inactivated for the development of SCLC. Moreover, NOTCH signaling is 

involved in the modulation of the neural and neuroendocrine differentiation process, what could 

mean the implication of mutations in NOTCH in the neuroendocrine features of these tumours, and 

also in disease progression and relapse.  

NOTCH pathway deregulation has been also pointed out to have a role in chemoresistance in 

SCLC. The effect of NOTCH in tumorigenesis seems to be done throughout the activation of the delta-

like protein 3 (DLL3). Its expression is directly correlated with ASCL1 transcription factor, whose was 

found expressed in the 85% of SCLCs, in contrast with an absent or minimal expression in normal 

lung tissue.  

In the mixed forms of small cell carcinomas, the modulation of the NOTCH system 

demonstrated the importance of this pathway in tumorigenesis and response to treatment: the 

activation of NOTCH reduces the particularly aggressive neuroendocrine subtype by increasing the 

epithelial component with slower cell proliferation rate, whose growth can be controlled with 

chemotherapy [79]. 

Summarizing, NOTCH signaling pathway acquires a tumour suppressive role in 

neuroendrocrine lung cancers. It could be interesting to explore the possible therapeutic strategies 

restoring the expression of  NOTCH mutated components in SCLC. 

 

5.3. Role of NOTCH in neuroendocrine Gastro-Entero-Pancreatic Neuroendocrine Neoplasms (GEP-

NENs). 

Gastrointestinal (GI) tract and the pancreas are two of the most common sites of origin for NENs. 

Tumours arising from these organs are named gastroenteropancreatic NENs (GEP NENs) and they 

represent almost the 65% of all NENs. Previously GEP-NENs were considered as a unique group of 

tumours but currently, many studies have highlighted the biological and molecular differences 

between pancreatic and GI NENs, as well as between the GI NENs originating from different organs 

of the GI tract [11, 15, 16, 18]. Wang et al have confirmed this heterogeneity also in the NOTCH 

signalling pathway [103]. They demonstrated a uniform immune-histochemical expression of 

NOTCH1 and HES1 in well-differentiated rectal NENs, respectively 100% and 64%, whereas only 

34% and 10% of well-differentiated pancreatic NENs were positive for NOTCH1 and HES1 at 

immunohistochemistry, and all ileal NENs were negative to both, suggesting a possible different role 

of NOTCH1 in the pathogenesis of these cancers. [103].  

   The majority of the available studies have evaluated the role of NOTCH signaling in 

pancreatic NENs, thus there is a lack of knowledge on the role of NOTCH signaling in the others 

GEP-NENs. 

In pancreas, endocrine and exocrine cells move from a common pool of multipotent progenitors 

into differentiated state, coordinately regulated by different mechanisms, forming together a 

complete and functional adult organ. After the initial developmental phase, the epithelium start to 

spread pancreatic progenitor cells into different compartments: acinar cells migrated into the tips, 

and ductal and endocrine cells into the trunk. Endocrine cells leave the adjacent epithelia by 

delamination, assembling into islets of Langerhans. During the differentiation process, the 

mechanism of differentiation is not synchronous and it is controlled by several regulatory agents, 

such as NOTCH receptor that has an important role in early developmental embryologic phase as 

well as in adult plasticity.  

In aggressive tumours of the pancreas like pancreatic ductal adenocarcinomas (PDAC), the 

tumour is believed to derive from a pancreatic intraperitoneal neoplasia (PanIN). In these cases, 

Nocth plays a dual role in the tumour initiation and development: NOTCH works as a tumour 

suppressor in PanIN lessions [104] and later on it has an oncogenic role in PDAC [105]. Even more, 

these studies indicate not only this dual role of NOTCH pathway in tumorigenesis, but also the 

implication of several pathway components, revealing a complex fine-tunning regulation of NOTCH 

pathway. 
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Moreover, histo-pathological studies had shown that the NOTCH1 is absent or lowly expressed 

in well-differentiated pancreatic NET (pNET) [8, 103]. However, in MiNEN (mixed 

neuroendocrine/non neuroendocrine neoplasm), particularly aggressive neoplasms, in the same 

tissue the expression of NOTCH1 and Hes1 is reduced or absent in the NET cells but present in the 

adenomatous component [106] what could indicate a possible role of NOTCH as a tumour suppressor 

gene. Further studies are needed characterizing the molecular mechanisms implicated in 

neuroendocrine tumorigenesis and for understanding the functional differences observed within 

pancreatic tumours. 

In ileal NENs, the low or absent expression of NOTCH and HES1 has led to hypnotize a possible 

tumor suppressor role of the NOTCH signalling [103]. As confirmation of this hypothesis, Maggi et 

al. [107] demonstrates that RBP2, a key component of the NOTCH repressor complex, is upregulated 

in gastrointestinal NENs and in liver metastases. Anyway, further studies are needed to confirm the 

role of NOTCH signalling in GI-NENs and to drive an effective therapeutic strategy modulating the 

NOTCH pathway in these tumour.  

 

5.4. Role of NOTCH in medullary thyroid cancer 

Medullary thyroid cancer (MTC) is a neuroendocrine tumour that emerges from parafollicular 

C-cells of thyroid gland. In MTC the proliferation of neuroendocrine cells and tumour growth process 

appear to be regulated by a common pathway. A major role is played by the achaete-scute complex-

like 1 (ASCL1) transcription factor, highly expressed in MTC, that is involved in supporting  cell 

proliferation and embryologic precursors survival, as well as inhibiting apoptosis [108].  

The activation of NOTCH signaling directly blocks expression of ASCL1, with an anti-

proliferative effect. The stimulation of NOTCH1 and NOTCH3 has demonstrated, in vitro and in 

vivo, a reduction in tumour growth and a decrease in the production of chromogranin A 

neuropeptides and specific neuron enolase (NSE), two of the main MTC biomarkers. 

 More specifically, NOTCH3 expression may be fundamental to the thyroid oncogenesis due to 

its involvement in the dedifferentiation process suffered by the cells. Thus, activation of NOTCH3 in 

thyroid cancer cells not only has an antiproliferative effect but also restores the differentiated 

phenotype, lost in the oncogenic transformation of the cells [109]. 

Other studies also pointed out to the role of NOTCH1 in the regulation of the aggressiveness of 

differentiated thyroid carcinomas. This effect could be mediated by the inhibition of SERPIN1 with a 

possible therapeutic effect [110]. 

 

5.5. NOTCH malignant castration-resistant prostatic cells 

  Prostatic small-cell carcinoma originated from neuroendocrine diffuse cells in prostate is a rare 

neoplasia with a lack of understanding in tumour development and progression, as well as in useful 

prognostic factors and genetic biomarkers. More often, in prostatic cancer (PCa), prostatic cells loose 

the maintenance of tissue identity and by a lineage-plasticity manner transdifferentiate in 

neuroendocrine phenotype, following androgen deprivation therapy.  

The neuroendocrine cells promote the hormone-resistance, secreting peptides that can stimulate 

androgen-dependent growth, and reducing apoptosis. Neuroendocrine cells do not express 

androgenic receptors, for which are not sensitive to the therapy of androgenic deprivation, and have 

poor sensitivity to standard chemotherapeutic agents. Interestingly, this fact seems to be related with 

the tumour plasticity for the epithelial mesenchymal transition (EMT) process and with the alteration 

of the signaling pathway regulators involved in cellular proliferation and differentiation.  

Currently, there are ongoing studies aimed to explore the role of NOTCH in malignant 

castration-resistant prostatic cancer models. Preliminary investigations revealed that NOTCH 

activity is elevated in cancer cells and anti-tumoral effects are achieved with the use of NOTCH 

pharmacological inhibitors targeting NOTCH pathway [111]. Likewise, it has been recently described 
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the involvement of NOTCH in the resistance of PCa to androgen deprivation therapy, in murine 

xenografts models, suggesting its use as a possible coadjuvant therapy [112]. 

 

6. Therapeutic Approach Targeting NOTCH in NENs 

A pharmacological modulation of NOTCH pathway is an interesting concept to pursue for 

neuroendocrine tumours treatment. Overall, there are several approaches to modulate NOTCH 

signaling that are in different stage of development in cancer treatment. Between them neutralizing 

antibodies, histone deacetylase inhibitors, and γ-secretase NOTCH inhibitors. Positive data were 

obtained in neuroendocrine neoplasms. In-vitro studies observed that the histone deacetylase 

inhibitors and valproic acid (VA) cause an antineoplastic effect in neuroendocrine cell line, inducing 

NOTCH1 mRNA expression through binding AP transcription factor [113]. This effect was confirmed 

in a phase II trial, in which the VA was evaluated in G1/G2 neuroendocrine tumours, with a relative 

good tumour control [114].  

An in-vivo study showed that tarextumab, a NOTCH 2/3 neutralizing antibody, inhibits tumour 

growth in SCLC xenograft tumours [115]. In an explorative clinical phase I trial the γ-secretase 

NOTCH inhibitor RO4929097 was tested in solid malignancies, within this trial a patient affected by 

colorectal cancer with neuroendocrine feature achieved a partial response [116].  

The intensive crosstalk between NOTCH signaling and other biological pathways is an 

opportunity to exploit, and could be the rationale for combined therapies. For example, in 

neuroendocrine cells VA showed to stimulate the expression of somatostatin receptor type 2 (SSTR2) 

that is largely targeted in neuroendocrine anticancer therapy [117], these results could be used to get 

a sensitization to SSTR2-targeted therapy.  

Future steps should be driven to invest more effort in elucidating the possible therapeutic targets 

within NOTCH pathway susceptible to pharmacological regulation, and how to intervene on 

NOTCH signaling.  In addition, further investigations on the most debated areas concerning the 

treatment with NOTCH signaling regulator, such as possible side effects of targeting important 

components of NOTCH pathways due to its biological relevance, and unexpected off targets due to 

the crosstalk regulated by NOTCH with other different pathways, are also required. In fact, an 

inappropriate modulation in humans could result in a higher damage of the patient instead of reach 

the benefit desired in the clinical practice. This is one of the main point to be clarified in the near 

future. 

 

7. Conclusions 

Although several studies have been conducted with the aim of identifying genetic mutations 

involved in the genesis of neuroendocrine tumours, none of them has shown a substantial mutational 

percentage in the samples analyzed, revealing a low-abundance of consistent mutations in G1/G2 

neoplasms compared to other malignancies. Moreover, the modern sequencing technologies 

highlighted heterogeneity of mutations depending on the tumour anatomic origin.  

For these reasons, there are still many unknowns in the genomic characterization of NETs in 

comparison with other neoplasia, with the majority of the data covering predominantly pancreatic, 

lung and small-intestine NET.  

Therefore, multi-center collaborations, international databases, biological banks and genome-

wide profiling overture should be pursued.  

As concerning the role of NOTCH signalling in NETs, it also remains not fully understood.  

Interestingly, NOTCH1 and NOTCH3 act as a tumour suppressor in medullary thyroid cancer, 

with a tumour suppressor role proposed also in SCLC and pancreatic NETs, whereas the NOTCH 

signalling activation, in particular the expression of NOTCH1, seems to play an important role in the 

development of docetaxel and castration resistant prostate cancer.  

This bivalent action of NOTCH signalling in NETs suggests that separated studies and 

therapeutic approach for the different NETs subtypes should be undertaken. This approach could 
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lead to a complete understanding of NOTCH signalling role and the potential therapeutic 

implications in NETs. 
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