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Abstract: The change in both streamflow and baseflow in urban catchments has received significant 10 
attention in the latest decades as a result of their drastic variability. In this research, effects of climate 11 
variation and dynamics of land use are measured separately and in combination on streamflow and 12 
baseflow in the Little Eagle Creek (LEC) watershed (Indianapolis, Indiana). These effects are 13 
examined using land use maps, statistical tests, and hydrological modeling. Transition matrix 14 
analysis was used to investigate the change in land use between 1992 and 2011. Temporal trends 15 
and changes in meteorological data were evaluated from 1980-2017 using the Mann-Kendall test.  16 
Changes in streamflow and baseflow were assessed using the Soil and Water Assessment Tool 17 
(SWAT) hydrological model using multiple scenarios that varied in land use and climate change. 18 
Evaluation of the model outputs showed streamflow and baseflow in LEC are well represented 19 
using SWAT; however, comparing the calibration and validation period showed SWAT performs 20 
better for the calibration. During 1992-2011, roughly 30% of the watershed experienced change, 21 
typically cultivated agricultural areas became urbanized. Baseflow is significantly affected by the 22 
observed urbanization; however, the combination of land and climate variability has a larger effect 23 
on the baseflow in LEC. Generally, the variability in the baseflow and streamflow appears to be 24 
heavily driven by the response to climate change in comparison to variability due to altered land 25 
use. The results reported herein expand the current understanding of variation in hydrological 26 
components, and provides useful information for management planning regarding water resources, 27 
as well as water and soil conservation in urban watersheds in Indiana and beyond. 28 

Keywords: Urbanization, climate variability, streamflow, baseflow, SWAT model, Little Eagle 29 
Creek 30 

 31 

1. Introduction 32 

Water is an indispensable natural resource for life and an increasingly limiting factor to 33 
socioeconomic developments. Water resources issues are widely discussed throughout the world. 34 
Addressing these issues requires information about the factors that drive hydrological changes and 35 
their related effects on local water resources. Evaluating water resources becomes a complex task that 36 
needs to consider many facets. Studies that detail the spatial and temporal distribution of water 37 
resources are of vital significance to inform management strategies. 38 

Both climate variation and human actions act as stressors that contribute to putting water 39 
resources under severe pressure [1]. Intensive human activities apart from climate change, such as 40 
land use change, urbanization, economic development and population growth, have posed 41 
unprecedented impacts on watershed hydrological conditions. For example, these stressors can alter 42 
surface runoff, evapotranspiration, baseflow, the frequency of floods, annual mean discharge, flow 43 
routing time, peak flows and volume [2]. 44 
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The impacts of individual factors on watershed hydrology theoretically cannot be separated [3]. 45 
This coupling effect, together with water withdrawal and retention, contributes to the uncertainties 46 
in identifying the specific impact of each factor on watershed hydrology [4]. This creates difficulty in 47 
inferring causation on a sufficient scale, and therefore, it remains unclear which of these factors 48 
dominantly contributes to watershed hydrology [4,5]. Indeed, several reports show conflicting 49 
conclusions when the combined hydrological responses are measured [6,7,8,9]. Climate variation 50 
exerts a control on dominant agricultural and land use practices including their spatial properties 51 
[10,11]. The joint impact on hydrology of climate variation and land use change has been shown to 52 
be similar to that of a single climate change factor [12]. Hence, identifying the distinct impacts of 53 
changing land use from climate variability and understanding the water balance is considered a 54 
particular challenge for studies on operational management of reservoirs and river basins. 55 

In recent years, several investigations have studied the effect that climate variation and land use 56 
change on watershed hydrology. Zhang et al. [13] studied these effects on streamflow in the China 57 
Fenhe River Basin. The study found a stronger influence of land use on streamflow than climate 58 
change. Xu et al. [14] similarly showed that land use affects streamflow variation twice as much across 59 
more than 50 watersheds throughout the Midwestern United States. 60 

Although an increase in high streamflow and decrease in low streamflow is often associated 61 
with urbanization [15], the impact of land use change often varies with climate [12]. On the other 62 
hand, the changes in watershed hydrology and annual water balance can also be attributed to climate 63 
variability, especially in large scale watersheds, likely caused by compensatory effects in a complex 64 
watershed [16]. Novotny and Stefan [17] reported a correlation between the mean annual streamflow 65 
trend and rainfall in five major Minnesota River watersheds, while in Indiana rainfall has shown a 66 
strong relationship with low flow [18]. In addition, Frans et al. [19] concluded that wet climates, rather 67 
than land use change, had the most impact on streamflow in the Upper Mississippi River Basin. 68 
Comparable research was conducted by Tan et al. [20] in the Johor River Basin in Malaysia; results 69 
indicated that climate change was the main driving force that impacted watershed hydrology. In the 70 
Yellow River Basin in China, climate fluctuation accounted for a 10 mm per year reduction in mean 71 
annual streamflow [21]. Thus, it is important to distinguish between effects related to land use 72 
changes and those due to climate variability for an accurate estimation of surface and groundwater 73 
responses. 74 

Impacts of these factors on watershed hydrology is different across watersheds. Therefore, sites 75 
must be evaluated on a local scale [22]. Due to limited available data, it is essential to use both 76 
comprehensive and physical tools to extract as much information about hydrologic responses as 77 
possible [23]. Hydrological models are considered an appealing approach to carry out impact 78 
assessment studies, as they provide a conceptualized framework to be used in scenario studies on 79 
the relationship between hydrological components, land use change and climate variability [24]. 80 
Model parameters can have physical meaning as related to measurable landscape properties and 81 
meteorological conditions [25], and explicitly represent spatial variability [26]. Initial model 82 
parameters describing vegetation, land use and soil types are called physically based parameter 83 
values; they can be adjusted to improve streamflow simulation through subsequent model calibration 84 
processes [27]. 85 

Recently, water resource managers and modelers have counted on hydrological models to 86 
identify alternative strategies for water resource allocation and to obtain more information about 87 
watershed systems, hydrological processes, and their responses to both anthropogenic and natural 88 
factors [28]. Some of these models incorporate the watershed’s heterogeneity and the spatial 89 
distribution of land use, topography, soil type, and meteorological conditions [29]. Among these 90 
models is the Soil and Water Assessment Tool (SWAT) model. SWAT is a conceptual mathematical 91 
semi-physical, semi-distributed based model [30]. SWAT employs parameters with time steps at a 92 
daily scale [31]. The model is designed with basic components, for example, climate, sediment type, 93 
nutrients, and hydrology [32]. This allows for interconnections of different physical processes that 94 
occur in the environment, making it the model able to evaluate how the hydrological components are 95 
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impacted by land management methods in complex catchments with different land covers, and 96 
climate scenarios in extreme events such as droughts and floods drought [33]. 97 

Streamflow and baseflow in watersheds in the US Midwest region reported upward trends with 98 
both urbanization and climate change [16,32]. While previous streamflow and baseflow trend 99 
investigations included urbanized watersheds in the Midwest region, they lacked integration 100 
analysis, which exclusively focuses on the interactive impacts of land and climate variability on 101 
urbanized catchments. In addition, multiple factors, nonlinear relationships, and poor understanding 102 
of mechanisms limits the ability to attribute causation [35]. Therefore, the current study focuses on 103 
this issue through a systematic investigation, taking into account the effects of both individual and 104 
coupled impacts of human and natural impacts. 105 

The overall aim of this research was to evaluate the response of watershed streamflow and 106 
baseflow to climate variability and land use change in an urban watershed in Indiana, based on 107 
simulation following a comprehensive calibration. The specific objectives are: (A) use a historical 108 
streamflow, land use and rainfall dataset to evaluate long-term trend properties of these data in an 109 
urban watershed; (B) identify changes in land use from 1992 and 2011 through transition matrix 110 
analysis; (C) calibrate and validate SWAT model performance, using different land use patterns for 111 
different periods; (D) investigate hydrological streamflow and baseflow sensitivity to land use 112 
change and climate variability; and (E) simulate the joint effects of both climate and land use change 113 
on hydrology in this watershed. For this goal, plausible scenarios of land use change and climate 114 
variation were developed based on trends and information exploited from the Little Eagle Creek 115 
(LEC) watershed. The results obtained provide useful information towards the improvement of the 116 
current understanding of hydrological component variation. Additionally, the results are informative 117 
to planning and management strategies for water resources that seek to minimize the undesirable 118 
effects of land use change and climate variation as well as water and soil preservation in urban 119 
watersheds in Midwestern USA and potentially beyond. 120 

2. Materials and Methods 121 

2.1 Description and literature review of the study area  122 

Little Eagle Creek (LEC) Watershed is located in northwest Indianapolis, Marion County in 123 
central Indiana (Fig. 1). The watershed covers approximately 74.5 km2 (USGS Gauge 03353600), with 124 
annual precipitation ranging from 795 to 1443 mm. This watershed has undergone significant 125 
urbanization in the past several decades due to its proximity to the capitol city, creating a possible 126 
threat to the watershed’s water resources. Land use includes non-urban natural grass, forest and 127 
agricultural areas, as well as typical urban residential and commercial categories [36]. Regionally, 128 
thunderstorms occur throughout the year and particularly in the spring and summer seasons [37]. 129 

The LEC watershed was investigated by several researchers to evaluate the impacts of 130 
urbanization on water issues. Bhaduri et al. [38] utilized the Long-Term Hydrologic Impact 131 
Assessment (L-THIA) model with different land use patterns to evaluate nonpoint source (NPS) 132 
pollution and to assess impacts on annual average runoff from the watershed. The study concluded 133 
that the 18% increase in urban areas, from 1973 to 1991, resulted in an estimated 80% and 50% increase 134 
in annual average runoff and pollutant loads, respectively. Grove et al. [39] conducted a similar 135 
study; results were consistent with Bhaduri et al [38], though they reported an increase of 60% in 136 
average annual runoff depth from 1973 to 1991 due to urbanization. Doyle et al. [37] reported that 137 
stream incision occurring in the LEC was a response to urbanization though the measures of channel 138 
stability were not directly related to levels of urbanization. Choi et al. [40] estimated an increase in 139 
direct runoff from 49% to 63% during a 12-year time-span (1973 to 1984), suggesting that urbanization 140 
impacted direct runoff more than total runoff. In addition, they also pointed out that substantial 141 
baseflow is essential to maintain sound stream ecosystems in the LEC watershed. In their attempt to 142 
minimize the runoff impact of urbanization in the LEC, Tang et al. [41] were able to reduce runoff 143 
increase by as much as 4.9% from 1973 to 1997. 144 
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More recently, Lim et al. [42] estimated the effect of initial abstraction and urban growth on 145 
estimated runoff using modified curve number values in the L-THIA model. Results showed 146 
improvements in the prediction of direct runoff over the long term, resulting from using modified 147 
curve numbers and hydrologic soil groups for urbanized areas. Lim et al. [36] reported that improved 148 
input parameters could improve L-THIA model performance. 149 
 150 

 151 
Figure 1: Index map showing location of the study watershed (LEC) in Indiana 152 

2.2 Datasets Description 153 

The explicit datasets used to build and calibrate the SWAT model can be classified into statistical, 154 
geographical or spatial data for hydrologic simulation. The statistical data includes hydro-155 
meteorological data, while the spatial data include Digital Elevation Model (DEM), land use and soil 156 
maps. 157 

2.2.1. Hydro-meteorological data 158 

The sets of data used herein includes long-term daily meteorological data from 1980-2017, 159 
(precipitation, minimum/maximum air temperature, wind speed, solar radiation and humidity), 160 
obtained from the National Climate Data Center (NCDC). The weather station was approximately 161 
2.5 miles from the LEC watershed. Hydrological streamflow data were based on observations from 162 
1980 to 2017 at a gauged station within the watershed. The streamflow data were used for the 163 
calibration and validation of the SWAT model and to separate the baseflow from the direct discharge. 164 
Streamflow data were complete with no missing records. 165 

2.2.2. Topography and soil type 166 

The results reported herein used elevation, flow direction, accumulation, stream network, 167 
channel properties, slope and aspect to describe the topography of the study areas. The DEM 168 
topographical data used had a resolution of 10 m by 10 m and was obtained from the Geospatial Data 169 
Gateway (GDG). DEM data were first used to delineate watersheds into sub-basins and the drainage 170 
patterns and identify flow direction of the land surface terrain. Soil type, slope and land use was then 171 
used to classify these sub-basins into small Hydrologic Response Units (HRUs) [43]. HRUs 172 
demonstrate the smallest representative unit of the watershed. Soil type data were obtained from Soil 173 
Survey Geographic Data (SSURGO) with a resolution ranging from 1:12,000 to 1:63,630. The SWAT 174 
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model requires these soil parameters, as the soil’s chemical and physical properties play an important 175 
role in evaluating water movement within the HRU [44]. 176 

2.2.3. Land use data 177 

This study used digital land use data acquired from the National Map Viewer (NMV). To 178 
examine the consequence of land use change on the hydrology of the watershed, raster land use maps 179 
of 1992 and 2011 were used in this research. 180 

2.2.4. Hydrological SWAT model 181 

The SWAT model, developed by the USDA Agriculture Research Service, is designed to model 182 
hydrology at the scale of a watershed [30]. The SWAT model is structured on fundamental 183 
components of action, such as: climate, hydrology , sediment, nutrients and management [29,44,45, 184 
46] and can be used to predict the variation in these components by change in land use and climate. 185 
SWAT follows a defined operating sequence; (1) data preparation, (2) discretization of sub-basins and 186 
definition of HRUs, (3) sensitivity analysis, (4) parameter calibration and (5) validation. The 187 
computational simulations in this study were performed with the SWAT 2012 extension, using the 188 
ArcSWAT interface of ArcGIS 10.4.1 [31]. 189 

The hydrologic routine within SWAT includes the vadose zone processes (plant uptake, 190 
evaporation, infiltration, lateral flows, and percolation), groundwater flows and snow fall and melt. 191 
The hydrologic cycle in the SWAT model is based on water balance and is expressed as follows (Table 192 
1) [48]: 193 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1           (1) 194 

Table 1: SWAT water balance component 195 

Component Description Unit 

𝑆𝑊𝑡 Final soil water content mm 

𝑆𝑊0 Previous soil water mm 

t Time step d 

𝑅𝑑𝑎𝑦 Precipitation measurement mm 

𝑄𝑠𝑢𝑟𝑓  Surface runoff measurement mm 

𝐸𝑎 Evaporation measurement mm 

𝑊𝑠𝑒𝑒𝑝 Amount of water entering the vadose zone from the soil profile mm 

𝑄𝑔𝑤  Amount of return flow mm 

 196 
For each HRU, SWAT simulates surface water and shallow groundwater. Then, these values are 197 

calculated for the sub-basins by a weighted value using the combined HRUs. Using daily rainfall 198 
amounts and a modified version of the Soil Conservation Service (SCS) curve number method, 199 
surface runoff is computed. Estimation of baseflow and groundwater flow is based on the hydraulic 200 
conductivity of the shallow aquifer, water table height and the distance between the sub-basin and 201 
main channel. 202 

The SWAT framework serves to conceptualize the relationship between climate variation, land 203 
use change and human activities and their synchronous impacts on watershed hydrology [6]. For 204 
further information on the SWAT model, refer to the online resource at https://swat.tamu.edu/ and 205 
Arnold et al. [31]. 206 

2.3 Mehods 207 

2.3.1. Land use change detection 208 
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Post-classification change detection analysis was applied to determine the temporal change in 209 
land use of the watershed. Statistics for change detection from the land use maps have been obtained 210 
over time (1992 and 2011) for this research through the thematic overlay of the classified land use 211 
maps using pixel-by-pixel cross-tabulation analysis. This was used to evaluate the “from-to” change 212 
detection matrix table that shows the major gains and losses in each category [46,47,48]. 213 

2.3.2. Temporal trend analysis method  214 

The modified Mann-Kendall (M-K) test suggested by Hamed and Rao [52] was applied in this 215 
study to analyze the change in annual precipitation and temperature in the LEC watershed. The M-216 
K test is a widely-used, non-parametric, rank-based test [53], that has found considerable use in 217 
hydrology and climatology given its robustness and ability to avoid the effects of extreme values [54]. 218 
The modified M-K was chosen for this research due to the presence of negative and positive serial 219 
correlations recognized in meteorological data, that can result in overestimation or underestimation 220 
of the trends [2]. The M-K test can identify the magnitude of the slope of individual variables, 221 
whereby a positive slope magnitude indicates an upward trend and vice versa [52,53]. The M-K test 222 
statistic is calculated by: 223 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                (2) 224 

and 225 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) = {

+1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

             (3) 226 

where S is the M-K test statistic, xj and xi are the sequential data values; and n is the dataset size [56]. 227 

2.3.3. Baseflow separation using web-based BFlow  228 

Baseflow separation methods were used for streamflow separation into direct runoff and 229 
baseflow since the measurement of baseflow is considered more difficult as compared to streamflow 230 
measurement. Baseflow measurements were calculated from USGS daily streamflow data using the 231 
‘Bflow’ digital filter program. The Bflow program calculates baseflow by filtering streamflow data 232 
three times (1-Pass, 2-Pass and 3-Pass) through the filter in Equation 6, allowing the user to select the 233 
required number of passes for baseflow evaluation [54,55]. 234 

𝐵𝐹𝑡 = 𝛼 × 𝐵𝐹𝑡−1 +
1−𝛼

2
× (𝑄𝑡 + 𝑄𝑡−1)             (4) 235 

where 𝐵𝐹 is the baseflow, 𝛼 is the filter parameter (0.925), 𝑄 is the total streamflow, and t is the 236 
time step. Equation 1 is applied only when BF ≤ Qt [59]. 237 

2.3.4. Selection of SWAT model structure  238 

After incorporating all the data inputs, and in accordance with the detection of temporal trends 239 
in temperature and precipitation results, the period of 1980-2017 was divided into two time-spans, 240 
1980-1998 and 1999-2017. The model was run for 1980-1998 with the first 4 years (1980-1984) used as 241 
a warm up period for the model. On the basis of the 1992 land use map, the period of 1980-1998 was 242 
recognized as the baseline condition for the SWAT model. The 1980-1993 period was assigned for 243 
model calibration, while the years from 1994-1998 were used for model validation. Careful 244 
consideration should be taken so that both calibration and validation periods have similar water 245 
balance [31]. The monthly statistical streamflow and baseflow outputs for the baseline model were 246 
used to evaluate the model performance. 247 

2.3.5. The SUFI-2 calibration and uncertainty analysis algorithm 248 

The Sequential Uncertainty Fitting program algorithm (SUFI-2) approach within the SWAT-249 
CUP interface was applied for optimization, calibration, validation and uncertainty analysis of  250 
parameters in the model [60]. In this algorithm, several sources of uncertainties, such as conceptual 251 
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model, measured data (e.g., observed flow, sediments), driving variables (e.g., precipitation) and 252 
parameters, were quantified by the 95 Percent Prediction Uncertainty (95PPU), that calculate the  253 
cumulative distribution of an output variable at the 2.5% and 97.5% levels achieved through Latin 254 
Hypercube Sampling (LHS). 255 

Based on previous studies, 20 hydrologic parameters were considered (Table 2). These 256 
parameters were described according to  their existence among the main flow rate variable 257 
calibration parameters [45]. SUFI-2 begins with wide ranges of meaningful parameters that capture 258 
most of the observed data within the 95PPU and then iteratively decreases the uncertainty of the 259 
parameters [61]. Newer and narrower parameter ranges of uncertainties are computed after each 260 
iteration, in which larger uncertainty reductions are more related to the sensitive parameters [62]. 261 
Finally, the best fitted parameters obtained from SUFI-2 were incorporated into SWAT for streamflow 262 
and baseflow simulations at a daily time step but summarized monthly [43]. 263 

Performance assessment of the default model showed discrepancies between observed and 264 
simulated values; therefore, both automatic and manual calibration were done. Due to the large 265 
number of parameters within the SWAT model, a sensitivity analysis was first conducted, in order to 266 
decrease the number of parameters to be optimized. The calibration process included only sensitive 267 
parameters, and parameters were optimized based on monthly values [44]. 268 

Table 2. SWAT input parameters used for the LEC calibration of streamflow and baseflow 269 

Parameter 1Ext. Description Adjustment 1IV 1LB 1UB 
    

Parameters controlling water balance 

ESCO hru Soil evaporation compensation factor R 0.95 0.01 1 

EPCO hru Plant uptake compensation factor R 1 0.01 1 

CANMX hru Max canopy storage  R 0 0 25 

SFTMP bsn Snowfall temp  R 1 -5 5 

SMTMP bsn Snowmelt base temp  R 0.5 -5 5 

TIMP bsn Snow back temp lag factor  R 1 0.01 1 

SMFMX bsn Melt factor for snow on June 21 R 4.5 0.01 10 

SMFMN bsn Melt factor for snow on Dec. 21 R 4.5 0.01 10 

Parameters controlling surface water response 

CN2 mgt Initial SCS Curve number V -- -0.25 0.25 

SURLAG bsn Surface runoff lag coefficient R 4 0.1 10 

Parameters controlling sub-surface water response 

ALPHA_BF gw Baseflow alpha factor  R 0.048 0.01 1 

GWQMN gw Depth of water for return flow R 1000 0.01 5000 

GW_DELAY gw Groundwater delay time R 31 0.1 50 

REVAPMN gw Depth of water for evaporation R 750 0.01 250 

GW_REVAP gw Groundwater evaporation coefficient R 0.02 0.02 0.2 

RCHRG_DP gw Deep aquifer percolation fraction R 0.05 0.01 1 

Parameters controlling soil’s physical properties 

SOL_AWC sol Available water capacity of the soil water V -- -0.25 0.25 

SOL_K sol Saturated hydraulic conductivity  V -- -0.15 0.15 

Parameters controlling channel’s physical properties 

CH_K2 rte Effective hydraulic conductivity R 0 5 300 

CH_N2 rte Main channel manning  R 0.014 0.01 0.15 

1Ext: Extension, R: Replace by value, V: Multiply by value, IV: Initial values, LB: Lower bound, UB: Upper bound 270 
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The SUFI-2 global sensitivity analysis, in concurrence with the calibration procedure, was used 271 
to test 20 recommended parameters. Global sensitivity is important in identifying the relative 272 
significance of each parameter and the objective function sensitivity using the t-test. As a statistical 273 
measurement, the t-stat and p-value were used. A t-stat provides a sensitivity measure, in which 274 
greater absolute values are more sensitive, while the p-value determines the importance of the 275 
sensitivity [62]. 276 

Following Moriasi et al. [63], graphical comparison and statistical indices can assess the 277 
performance of the calibrated parameters. The coefficient of determination (R2), Nash–Sutcliffe 278 
model efficiency (ENS), PBIAS and modified Kling-Gupta Efficiency (KGE) were used to evaluate the 279 
model performance for the simulated streamflow and baseflow. The formulas for R2 and ENS, PBIAS 280 
and KGE can be acquired as previously outlined by Gupta et al. [64] and Nie et al. [65], respectively, 281 
and can be calculated as follows: 282 

𝑅2 = [
∑ [(𝑌𝑜𝑏𝑠−𝜇𝑜𝑏𝑠)(𝑌𝑠𝑖𝑚−𝜇𝑠𝑖𝑚)]𝑖

2

√∑ (𝑌𝑜𝑏𝑠−𝜇𝑜𝑏𝑠)
2

𝑖 ∑ (𝑌𝑠𝑖𝑚−𝜇𝑠𝑖𝑚)
2

𝑖

]

2

                      (5) 283 

𝐸𝑁𝑆 = 1 − [
∑ (𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚)

2
𝑖

∑ (𝑌𝑜𝑏𝑠
𝑖 −𝜇𝑜𝑏𝑠)2]                (6) 284 

𝑃𝐵𝐼𝐴𝑆 =
∑(𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚)

∑ 𝑌𝑜𝑏𝑠 × 100               (7) 285 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2            (8) 286 

where 287 

𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠                   (9) 288 

and 289 

𝛾 =
𝐶𝑉𝑠𝑖𝑚

𝐶𝑉𝑜𝑏𝑠 =
𝜎𝑠𝑖𝑚

𝜇𝑠𝑖𝑚⁄

𝜎𝑜𝑏𝑠

𝜇𝑜𝑏𝑠⁄
                (10) 290 

𝑌𝑜𝑏𝑠 is the observed data, 𝑌𝑠𝑖𝑚 is the simulated output, 𝜇𝑜𝑏𝑠 and 𝜇𝑠𝑖𝑚 are the mean of the observed 291 
and simulated flow, respectively, r is the correlation between the measured and simulated values, β 292 
is the ratio between the simulated mean (𝜇𝑠𝑖𝑚) and the observed mean (𝜇𝑜𝑏𝑠) flow, and γ is the 293 
variation coefficient ration between the simulated (𝐶𝑉𝑠𝑖𝑚) and the observed (𝐶𝑉𝑜𝑏𝑠) flow, in which 294 
𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 represent the standard deviations of both simulated and measured data, respectively. 295 
Calibration and validation results were utilized to evaluate model success. Table 3 reports a model 296 
performance rating of “Very good, good, satisfactory and unsatisfactory” for each parameter. 297 

Table 3. SWAT performance evaluation criteria (Moriasi et al., 2013; Lee et al., 2018) 298 

Measure Output 
Evaluation Criteria of the model 

Very Good Good Satisfactory Unsatisfactory 

R2 Flow > 0.85 0.75 < R2 < 0.85 0.60 < R2 < 0.75 R2 ≤ 0.60 

ENS Flow > 0.80 0.70 < ENS < 0.80 0.50 < ENS < 0.70 ENS ≤ 0.50 

PBIAS Flow < ±10 ±10 ≤ PBIAS ≤ ±15 ±15 ≤ PBIAS ≤ ±30 PBIAS ≥ ±30 

2.3.6. Scenario analysis: modeling hydrological response to climate variability and land use 299 
dynamic 300 

Land use data and HRU outputs for the LEC watershed showed a dramatic change in impervious 301 
cover after 1992. However, little change was detected in impervious cover between 2001 and 2011, as 302 
the watershed area was mostly urbanized by 2001. Therefore, at this stage, only land use data for 1992 303 
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and 2011 were considered in the calibration and validation processes for the two climate periods. Land 304 
use data from NLCD for 2001 and 2006 were not used in further analysis. 305 

To evaluate the separate and combined influences of land use dynamics and climate alteration on 306 
hydrological components, the “fix-changing” approach was used, in which one factor at a time was 307 
changed while holding others constant. Based on the change detection analysis of temporal trends of 308 
precipitation and temperature and land use change, the meteorological data from 1980-2017 were 309 
divided into two periods, with each period including one land use map. The period of 1980–1998 was 310 
called CP1, representing the 1980s and 1990s and was considered the baseline period, and the impacted 311 
period of 1999–2017 was called CP2 and represented the 2000s and 2010s. The 1992 land use map for 312 
1992 represented the patterns in CP1, while the 2011 land use map for 2011 was used to show the 313 
patterns in CP2, assuming that minimal change existed in the watershed land use after 1992 to 1998, 314 
similarly after 2011. The calibrated baseline SWAT model of Scenario 1 (or S1) was applied for each of 315 
the other three scenarios of the two meteorological time periods to give four scenarios overall to evaluate 316 
the influences of land use and climate change. For SWAT simulation, these four scenarios were 317 
developed: 318 

 1st scenario (S1: Baseline): 1992 land use and CP1 climate data (1980–1998). 319 
 2nd scenario (S2: Land use change): 2011 land use and CP1 climate data (1980–1998). 320 
 3rd scenario (S3: Climate change): 1992 land use and CP2 climate data (1999–2017). 321 
 4th scenario (S4: Climate and land-use change): 2011land use and CP2 climate data (1999–2017). 322 

In order to evaluate the separate and combined impacts of climate and land use dynamics on 323 
streamflow and baseflow, the four modeling experiments were used to run the well-calibrated and 324 
validated SWAT model. The simulated output values were compared to the corresponding values 325 
for the baseline period under a no-change scenario. In these four scenarios, S1 and S4 represent actual 326 
circumstances, and the difference between S2 and S1 outputs indicates the individual impacts of land 327 
use on flows, while the difference between S3 and S1 simulations describes the impacts of climate 328 
variation on flows. Finally, comparison between S1 and S4 attempted to depict the combined effects 329 
of climate change and land use change on flows in the watershed. 330 

A flow chart of the model set up, sensitivity analysis, calibration and validation process of the 331 
streamflow and baseflow for the LEC watershed is described and summarized in Figure 2. 332 

 333 

Figure 2: Flow chart depicting procedure for SWAT model setup, calibration and validation of both 334 
streamflow and baseflow in the LEC watershed 335 
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3. Results and discussion 336 

3.1. Land use changes from 1992 to 2011 337 

The 1992 and 2011 land use maps for the LEC watershed are shown in Fig. 3a and Fig. 3b, and 338 
the change in land use types is shown in Fig. 3c. The most commonly distributed land use types in 339 
LEC are developed and cultivated areas. Results highlighted from the land use change detection 340 
showed two clearly recognizable trends; a) the decline of cultivated areas; and b) rapid increase in 341 
developed areas. Developed areas showed an increase of 30.75 km2 or 75.8%. On the other hand, 342 
cultivated surface experienced a reduction of 30.16 km2 or 99.1% from 1992 to 2011. 343 

 
              (a)                        (b)                          (c) 

 
 

Figure 3. Land use types in LEC watershed in (a) 1992; (b) 2011 and (c) the transition between 1992 and 2011 344 

Table 4. Land use change transition matrix in LEC from 1992 to 2011 (km2) 345 

1992 
2011 

Water Developed Forest Shrubland Cultivated Wetlands Total 

Water 0.10 0.14 0 0 0 0 0.25 

Developed 0.05 40.38 0.15 0.01 0 0.02 40.62 

Forest 0.01 1.50 1.59 0.07 0.03 0.01 3.21 

Cultivated 0.16 29.34 0.62 0 0.24 0.02 30.38 

Wetlands 0 0.04 0 0 0 0 0.05 

Total 0.33 71.41 2.36 0.08 0.27 0.05  

Table 4 explains the variation in the LEC from 1992 to 2011 by analyzing the transition matrix of 346 
land use. 40.4 km2 of urban area remained unchanged, whereas the most notable transition is the 347 
conversion of 29.3 km2 of cultivated areas and 1.50 km2 of forests to urban uses from 1992 to 2011.  348 
The transition between other land uses was very small and have been omitted from analysis and the 349 
map. For instance, the change from water to developed and planted to water are only 0.14 and 0.16 350 
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km2, respectively. This might be attributed to the different classification algorithms used in NLCD 351 
data of 1992 and 2011. 352 

3.2. Changes in temperatures and precipitation 353 

Both annual precipitation and temperature experienced a significant increase during the past 38 354 
years. In order to quantify the magnitude of the increase in the meteorological data, the non-355 
parametric M-K test was applied. The analysis showed that the meteorological time series data were 356 
not stationary, and there was one change point in the time series that occurred in 1998. This change 357 
is likely associated with regional environmental change such as urbanization and climate variability. 358 

The trend Z-test statistics and the slope of precipitation and temperature were all positive and 359 
are displayed in Table 5. The results show that the monotonic trends of annual precipitation and 360 
temperature were different. For the overall period from 1980 to 2017, the annual precipitation 361 
increased at significance levels greater than 0.1, while air temperature passed the 0.001 significance 362 
level. These findings mean that the long-term monotonic trend of annual temperature exhibited a 363 
significant increase during the study period, whereas the long-term monotonic trend of annual 364 
precipitation is statistically insignificant and weak over time. Of note, statistical significance, or 365 
lacking of significance with respect to climate can be misleading.  Although increase in annual 366 
temperature and precipitation were obtained, changes in seasonal precipitation and temperature 367 
might impact the increase in precipitation and temperature during the study period. For instance, 368 
Sekaluvu et al. [67] reported an overall insignificant decrease in precipitation by 0.4 mm/year during 369 
the period 2005-2015; however, winter and fall precipitation decreased by approximately 7.8 370 
mm/year and 5.4 mm/year, respectively, and that reduction was significant. While spring 371 
precipitation increased significantly by 20 mm/year, and summer precipitation decreased 372 
insignificantly by about 4.0 mm/year. 373 

Table 5. Temporal trends in annual precipitation and temperature in the LEC watershed 374 
 Precipitation Temperature 

Z-Stat 1.521 2.930 

Slope 4.219 0.032 

α > 0.1 0.001 

Figure 4 shows the average values of annual precipitation and temperature before (red dashed 375 
line) and after (green dashed line) the change point. Compared to CP1, the results show that the 376 
average annual precipitation increased by 6.8% (73.7 mm, from 1080 mm to 1154 mm), while air 377 
temperature increased by 0.6 °C (from 11.6 °C to 12.2 °C) in the LEC . 378 

 
(a) 

 
(b) 

Figure 4. Annual precipitation (a) and temperature (b) in the LEC watershed 379 
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In some cases, annual temperature and precipitation might not provide a true picture for the 380 
change in trends given the change in seasonality. Therefore, taking α = 0.05 as the significance level, 381 
the Mann-Kendal test was conducted at a monthly scale for the monthly precipitation and 382 
temperature data series. The outcomes showed a significant, positive, monotonic trend in the 383 
monthly precipitation in January and June in the LEC, while the monthly temperature exhibited a 384 
significant increase in April and September (Table 6). 385 

Table 6. Trend analysis and significance test for monthly precipitation and temperature in the LEC Watershed 386 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

Z-Stat 2.238 -0.352 0.402 1.308 -0.214 2.226 -0.063 -0.038 -0.013 0.780 -0.478 0.339 

Slope 1.167 -0.037 0.206 1.216 -0.116 2.055 0.243 -0.321 0.194 0.290 -0.834 0.153 

Sig 1S NS NS NS NS S NS NS NS NS NS NS 

P-value 0.006 0.181 0.172 0.048 0.208 0.006 0.237 0.242 0.247 0.109 0.158 0.184 

Temperature 

Z-Stat 0.83 0.201 1.031 2.552 1.144 1.396 -0.717 1.195 1.974 1.107 0.779 0.05 

Slope 0.33 0.004 0.05 0.066 0.028 0.029 -0.005 0.027 0.048 0.035 0.02 0.044 

Sig NS NS NS S NS NS NS NS S NS NS NS 

P-value 0.102 0.210 0.076 0.002 0.063 0.041 0.118 0.058 0.012 0.067 0.109 0.240 

1S: Significant. NS: Not significant. Significant level (α) = 0.05 387 

3.3. Changes in hydrological variables 388 

The monotonic trends of streamflow and baseflow in the LEC watershed were quantified using 389 
the Mann-Kendall test. The Z-statistics and the slope of annual streamflow and baseflow were 390 
positive (Table 7). Both long-term annual streamflow and baseflow in LEC were positively trending 391 
and significant at a level of 0.001; this implies that both showed significant increasing trends over the 392 
1980-2017 period (Fig. 5). 393 

Table 7. Temporal trends in annual streamflow and baseflow in the LEC watershed 394 

 Streamflow Baseflow 

Z-Stat 3.319 3.395 

Slope 5.078 2.062 

α  0.001 0.001 

The increases in streamflow have a relationship with the increased rainfall. The increasing trend 395 
in annual baseflow might seem contradictory at first, as urbanization and imperviousness is 396 
increasing, the surface runoff is expected to increase instead of baseflow and infiltration. However, 397 
with a conductive hydrologic and geologic setting, evapotranspiration reductions, meeting water 398 
supply needs in urban areas and import of water into watersheds, sewage leakage, water distribution 399 
lines, retention and detention basins can all contribute to the baseflow to be increased in urban 400 
watersheds [34]. Detention basins have vital roles in increasing baseflow in urban watersheds, as 401 
water retained at the surface due to an increasing portion of surface runoff, and then slowly released 402 
into the stream as a form of baseflow. Therefore, increasing measures to maintain storm water over 403 
time may be a main reason for the increase of groundwater and baseflow in urban watersheds [68]. 404 
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(a) 

 
(b) 

Figure 5. Average daily streamflow (a) and baseflow (b) over time in the LEC watershed 405 

3.4. Parameter sensitivity analysis 406 

The sensitive parameters were optimized using the extension of auto-calibration in SWAT2012 407 
to calibrate the hydrological model, and were recognized on the basis of global sensitivity analysis. 408 
Most of the parameters were modified on a trial and error basis within reasonable limits after 409 
consideration of the physical properties of the watershed. The global sensitivity analysis showed that 410 
parameters representing surface runoff, soil properties, and groundwater return flow are sensitive. 411 
Hence, it is important to accurately estimate these parameters for streamflow simulation. The 10 most 412 
sensitive input parameters are shown in Table 8, while the remaining parameters had less significant 413 
effect on streamflow simulation. Different ranks have been commonly detected in the same parameter 414 
for different watersheds and with a different number of simulations, which indicates the stochastic 415 
nature of SWAT-CUP [43]. 416 

Table 8. List of top 10 ranking sensitive parameters for SWAT in the LEC watershed and their calibrated 417 

values  418 

Rank Parameter calibrated Value t-stat P-Value 

1 ALPHA_BF 0.81 44.71 0 

2 CN2 0.02 18.47 0 

3 CH_K2 28.39 -13.34 0 

4 CH_N2 0.08 -4.72 0 

5 SOL_AWC -0.17 -4.13 0 

6 RCHRG_DP 0.01 -3.16 0 

7 EPCO 0.16 -2.99 0 

8 SMTMP -1.51 2.48 0.01 

9 SFTMP 4.90 -2.24 0.03 

10 CANMX 23.27 1.95 0.05 

For the LEC watershed, SUFI-2 outlined the most sensitive parameters to input changes, and 419 
these were ALPHA_BF, CN2, CH_K2, CH_N2, SOL_AWC, RCHRG_DP, EPCO, SMTMP, SFTMP, 420 
and CANMX. They each have a p-value close to zero. The ALPHA_BF and CN2, ranked first and 421 
second in sensitivity, respectively, and higher than the others which appeared to have made the most 422 
contribution in improving the ENS. In general, CN2, ALPHA_BF, SOL_AWC, and RCHRG_DP were 423 
important parameters for both baseflow and streamflow simulation, as the water traveling from the 424 
root zone in SWAT to deep aquifers was not redistributed into the main channel, soil, or shallow 425 
aquifers, but considered lost from the system boundary [69]. The high ALPHA_BF constant in the 426 
LEC watershed indicated a rapid response to groundwater recharge.  427 
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3.5. Calibration and validation of SWAT model 428 

The proportion of baseflow (ratio of baseflow over total streamflow) of the measured and 429 
simulated streamflow are 36.5% and 39.1%, respectively. The good match indicated that partitioning 430 
between baseflow and surface runoff can be represented by the calibrated model in the LEC 431 
watershed [65]. 432 

Figures 6 and 7 show the simulated and measured monthly streamflow and baseflow for LEC 433 
during the calibration period (1984-1993) and validation period (1994-1998). Model assessment 434 
statistics for monthly simulated streamflow and baseflow are summarized in Table 9. The ENS and 435 
R2 were 0.84 and 0.87, respectively, within the calibration period of streamflow, and 0.74 and 0.83 436 
over the course of the validation period. These statistical outputs indicated that the simulated 437 
streamflow in calibration and validation were in ‘Very Good’ agreement, according Moriasi et al. [63] 438 
criteria. 439 

 440 

Figure 6. Observed and simulated streamflow of LEC watershed for calibration and validation period 441 

 442 

Figure 7. Observed and simulated baseflow of LEC watershed for calibration and validation period 443 

As shown in Fig. 6, observed and simulated streamflow outputs had a similar trend; in addition, 444 
the simulated streamflow showed a reasonable match with the observed records. Therefore, most of 445 
the measured and simulated streamflow values were bracketed by the 95 PPU, therefore, indicating 446 
comparatively little uncertainty for the  streamflow simulation [62]. However, the relatively low 447 
agreements at the end of winter of some years could be explained by the model deficiency in 448 
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capturing certain hydrological processes such as soil freezing-thawing and   snowmelt during this 449 
period. In addition, some differences were observed in the peaks of observed and simulated values. 450 
These might have been due to the precipitation pattern or due to the limitations of the curve number 451 
(CN) method, as the CN method used in SWAT doesn’t consider the duration and intensity of 452 
precipitation [65]. Results showed that the CN method overestimated streamflow for some large 453 
rainfall events. Overall, the observed and simulated average annual streamflow during the baseline 454 
model period was 0.83 m3/s and 0.98 m3/s, respectively. 455 

The agreement between the measured and simulated streamflow during the calibration and 456 
validation period, to some extent, involves a good groundwater discharge simulation. The computed 457 
baseflow agreed well with the observed results for the LEC (Fig. 7). During the calibration period, 458 
the R2, PBIAS, ENS and KGE were 0.80, -24.97, 0.60 and 0.67, respectively, while they were 0.84, -459 
31.40, 0.58 and 0.58 for model validation (Table 18). The performance of the SUFI-2 model for 460 
baseflow simulation was considered ‘Good’ for calibration and ‘Satisfactory’ for validation, according 461 
to Moriasi et al. [63] and Moriasi et al. [70]. However, the peak baseflow was not well matched, as the 462 
SWAT simulation tended to overestimate baseflow, likely because of the spatial distribution of 463 
precipitation data is unevenly represented. In addition, peak baseflow may be attributed to the 464 
change in land use that influences hydrological phenomena and is related to direct runoff as well. An 465 
alternative possibility for the differences might be the presence of practices like surface detention and 466 
retention basins, in addition to the effect of soil freezing/thawing on infiltration and recharge during 467 
initial snowmelt. Overall, the average annual baseflow during the period from 1984 to 1998 for both 468 
measured and simulated data was 0.30 m3/s and 0.38 m3/s, respectively. These results ensure that the 469 
model can be further applied to assess hydrologic response analysis to various land use and climate 470 
change scenarios. 471 

Table 9. Values of statistical indicators in the calibration and validation periods for streamflow and baseflow 472 

in the LEC watershed 473 

Period 
Streamflow (m3/s)  Baseflow (m3/s) 

R2 ENS PBIAS KGE  R2 ENS PBIAS KGE 

Calibration  (1984-1993) 0.87 0.84 -14.4 0.81  0.80 0.60 -24.9 0.67 

Validation (1994-1998) 0.83 0.74 -26.9 0.72  0.84 0.58 -31.4 0.58 

3.6. Changes in total water yield and baseflow within various simulation scenario 474 

Table 10 demonstrates the simulated SWAT annual average water yield and baseflow under 475 
different land use climate changes scenarios, as discussed in section 2.4.6, in the LEC watershed. 476 
Results indicated that the difference in average annual water yield between S2 and S1, that simulated 477 
the impacts of land use change, showed an increase of 30.5 mm (6.7%). Meanwhile, the average 478 
annual water yield increased by 88.1 mm (17.9%) in S3 as compared to S1, which indicated the 479 
impacts of climate variability. Water yield increased by 91.9 mm (20.3%) due to the combined effects 480 
of land use change and climate variation; i.e. the contrast between S1 and S4. These findings indicated 481 
that the average annual water yield increased in the LEC during CP1 and CP2 due to the effects of 482 
both land use dynamics and climate variation, with the influences of climate change greater than that 483 
of the land use alteration. Meanwhile, the contribution of the combined impacts was higher than that 484 
of land use change and climate change separately. Therefore, the results emphasized that when 485 
climate variation played a dominant role, the impact of land use dynamics on water yield was not 486 
obvious. However, urban expansion also had a considerable impact on annual water yield by 487 
increasing impervious area, therefore, increasing surface runoff and decreasing water infiltration 488 
[71]. 489 

On the other hand, simulation suggested the reduction of the average annual baseflow due to 490 
the effect of land use change and the combined impacts of land use and climate change by an amount 491 
of 42.2 mm (28.8%) and 33.7 mm (23.0%), respectively, while the average annual baseflow increased 492 
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by an amount of 22.3 mm (15.2%) due to the separate effects of climate change. Thus, both land use 493 
change and the combined effects of land use and climate change had a greater negative impact on 494 
average annual baseflow, which illustrates the higher effect of land use change on baseflow on the 495 
LEC watershed. Climate variation has reduced the negative impact of land use change by 5.8%, as it 496 
increased from -28.8% to -23.0% from S2 to S4. The reduction of average annual baseflow in S2 and 497 
S4 may be because of several activities, for instance, over-exploitation, industrial uses, water 498 
withdrawal and groundwater pumping that are primarily used in the LEC watershed for production, 499 
manufacturing and daily human consumption. In addition, the decreasing trend seen in average 500 
annual baseflow could be due to the increase in surface runoff and lower soil infiltration, due to 501 
urbanization and increasing imperviousness that resulted in less water reaching unsaturated soils. 502 

Table 10. Average annual change in water yield and baseflow in the LEC watershed 503 

Scenario Land use Climate Water yield (mm) Baseflow (mm) 
Surface Runoff 

(mm) 

   Av.  Ch. Δ   (%) Av.  Ch. Δ  (%) Av. Ch. Δ (%) 

S1 NLCD 1992 CP1 452.7 - - 146.5 - - 294.1 - - 

S2 NLCD 2011 CP1 483.2 30.5 6.7 104.3 -42.2 -28.8 374.7 80.6 27.4 

S3 NLCD 1992 CP2 533.8 81.1 17.9 168.8 22.3 15.2 360.9 66.8 22.7 

S4 NLDC 2011 CP2 544.6 91.9 20.3 112.8 -33.7 -23.0 428.5 134.3 45.7 

Figures 8 and 9 show the results of the LEC watershed average monthly water yield and 504 
baseflow in different simulated scenarios. Most of the water yield was concentrated from March to 505 
July in all scenarios i.e, within the rainy season. However, water yields accounted for 50% in both S1 506 
and S2, while increasing to 55% in S3 and S4 during the rainy season. After evaluating the change in 507 
monthly precipitation between CP1 and CP2 (Fig. 8), it might be concluded that the rainfall increase 508 
between CP1 and CP2 and the change in the pattern of  average annual rainfall resulted in increased 509 
flood peaks between the two periods. The combined effects of climate variability and land use change 510 
drive an increase in monthly water yield in all months except November, which experienced a higher 511 
rainfall pattern in the first time period (CP1) as compared to CP2. Meanwhile, the average monthly 512 
baseflow response showed a similar behavior to the water yield response; however, the effect of 513 
climate change on baseflow was higher than the impact on water yield in the rainy season (Fig. 9). 514 
Overall, both climate change and land use change had a greater impact on baseflow than water yield. 515 
Furthermore, average monthly baseflow showed an increase under the effect of solely climate change 516 
impacts of S3 in all months for the LEC watershed except for July and October, which showed a very 517 
minor reduction in baseflow (Fig. 10). The highest average monthly increase occurred in the coldest 518 
months of the year with respect to S3 with the lowest amount of rainfall. This might be attributed to 519 
the process of freeze-thaw that can change the runoff process, soil infiltration and subsurface water 520 
storage. Therefore, baseflow from shallow aquifers considered the main contributor to total 521 
streamflow with the reduction of average monthly precipitation. 522 

Figure 10 shows the average monthly streamflow changes relative to the baseline scenario (S1). 523 
Under the S2 scenario, the streamflow showed a reduction in January, February and June by 0.8% to 524 
3.7%, while it increased in other months by 1.6 to 16.5%. Under the S3 scenario, however, streamflow 525 
showed an increase in all months, especially in summer, by an amount of 3.4% to 30.3%. Furthermore, 526 
the S4 scenario showed a similar trend in streamflow increase in all months by an amount ranging 527 
from 7.6% to 34.2%, with the only reduction recorded in May by 2.1%. 528 
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 529 

Figure 8. Average monthly water yield for the LEC watershed under different scenarios 530 

 531 
Figure 9. Average monthly baseflow for the LEC watershed under different scenarios 532 

These changes in streamflow and baseflow were intimately bound up with the variation of 533 
precipitation between the two time periods. As can be seen in Figures 8 and 9, the variation in 534 
precipitation generally reflects the variation in water yield in most months. However, the exception 535 
in other months may be attributed to the impacts of temperature fluctuation. For example, baseflow 536 
declined in October under the S3 scenario even with the increase in rainfall. That was possibly in 537 
connection with temperature rise in CP2 compared to CP1 [3], which could lead to an increase in 538 
evapotranspiration. In addition, compensatory contributors to baseflow, for example lawn irrigation, 539 
may contribute to this fundamental change in baseflow; therefore, a reduction in lawn irrigation 540 
might lead to the decline in the amount of water discharged to the shallow aquifer that contributed 541 
to baseflow. 542 
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 544 

Figure 10. Relative change in average monthly streamflow in the LEC watershed 545 

4. Summary and Conclusions 546 

Recognizing the impacts of land use alteration and climate variability on hydrologic systems is 547 
the basis for pragmatic watershed sustainability and ecological restoration efforts. In this study, the 548 
impacts of climate variability and land use change from 1980 to 2017 on water streamflow and 549 
baseflow in the Little Eagle Creek watershed have been evaluated using the non-parametric Mann-550 
Kendall statistical test, land use maps and hydrologic modeling. The novelty lies in that not only were 551 
the effects of climate variation on hydrological response investigated, but the combined impact of 552 
land use dynamics and climate variation was also evaluated in an urbanized watershed in the US 553 
Midwest. 554 

The long-term streamflow and baseflow response to land use change and climate variability 555 
were evaluated using the calibrated SWAT model. The model contained four scenarios in two 556 
periods, and applied two land use datasets (1992 and 2011) for the two climate periods (CP1 and 557 
CP2). By simulating the historical, continuous variation in streamflow, the SWAT model was 558 
calibrated and validated over the period 1980 to 1998 throughout the SUFI-2 approach within the 559 
SWAT-CUP interface. The SUFI-2 algorithm played an important role in minimizing the differences 560 
between measured and simulated streamflow in the LEC watershed. Discrepancies observed 561 
between the outputs of the model simulation and the observed data may in part occur due to the lack 562 
of meteorological input data from more than a single station. The SWAT model produced ‘very good’ 563 
and ‘good’ results for calibrating and validating observed streamflow and baseflow data. Hence, the 564 
calibrated parameters in this study can be used to carry out further future environmental and 565 
hydrological studies in similar watersheds. The hydrological balance assessment has shown that 566 
baseflow is a key component of the total discharge as it accounted for 36.5% of total flow within the 567 
LEC watershed. In general, SWAT proved versatile in modeling the effects of environmental changes 568 
in urban watersheds. 569 

The model was used to explore likely impacts of urbanization and climate variation in an urban 570 
watershed. Much of the original cultivated and forest areas had already been converted to developed 571 
areas or urbanization. During the period of 1992-2011, about 39% of the LEC watershed area changed 572 
from cultivated to urban areas, while the climate became warmer and wetter. Overall, climate 573 
variability had the dominant impact on streamflow, while urban expansion influenced baseflow 574 
more significantly than climate change. Urbanization can be considered a major environmental 575 
stressor controlling hydrological components, including surface runoff, baseflow, and water yield in 576 
a catchment. Understanding the variation in streamflow and baseflow due to the separate and 577 
coupled effects of climate variation and land use dynamics is essential for sustainable management 578 
of water resources. The results gleaned from this study can be useful in providing information for 579 
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management and planning of water resources, in addition to assessing the prospective impacts of 580 
adaptation measures to cope with climate variation, particularly in areas that are sensitive to climate 581 
variability and experiencing high urbanization. 582 

The results obtained in this study must be interpreted carefully, with the caveat that the 583 
meteorological station records reflect data that are the result of the combined impacts of land use 584 
alteration and climate variability. Since these affects cannot be separated in this data, the predicted 585 
impact of climate variability alone on streamflow and baseflow may not be simulated accurately. 586 
Studies that focus on quantifying the effect of each land use category change on streamflow and 587 
baseflow are likely to yield useful additional insights on how climate variability and land use impact 588 
hydrological response separately. Furthermore, additional studies using catchments that exhibit 589 
different urbanization and climate regions could provide beneficial comparative results to determine 590 
the impacts of these variables on hydrological components. 591 
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