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Abstract: Membrane materials are most widely applied in construction engineering with 9 

small mass and high flexibility, it presents strong geometric nonlinearity in the process of 10 

vibration. In the paper, an improved multi-scale perturbation method is used to solve the 11 

aeroelastic stability of closed and open membrane roofs for quantify the effect of geometric 12 

nonlinearity on the single-mode aeroelastic instability wind speed of membrane roofs. The 13 

results show that the critical wind speed values of the two models are small when the 14 

geometrical nonlinearity of membrane material is neglected. In addition, under normal wind 15 

load, the influence of geometrical nonlinearity of membrane on the aerodynamic stability of 16 

roof can be neglected, However, under strong wind load, when the roof deformation reaches 17 

3% of the span, the influence of geometric nonlinearity should be considered and the influence 18 

increases with the decrease of transverse and downwind span of membrane roof. The results 19 

obtained in this paper have important theoretical reference value for the design the membrane 20 

structures. 21 

Keywords: geometric nonlinearity; improved multis-cale method; orthotropic membrane; 22 

aeroelastic instability 23 
 24 

1. Introduction 25 

Fabric membrane is the most widely used membrane material in construction engineering. It 26 
has the characteristics of high tensile strength and good flexibility. Fabric membranes are mainly 27 
composed of substrates and coatings. The substrates are usually braided by orthogonal fibers, which 28 
results in the orthotropic properties of the membranes, That is to say, the elastic modulus and 29 
Poisson's ratio in the two orthogonal directions are different. The building which is made up of 30 
membrane material covered on the structure skeleton or tensioned as a whole has beautiful 31 
appearance, good transparency, environmental protection and energy saving [1, 2]. Therefore, it is 32 
widely used in large-scale stadiums, exhibition venues and other public buildings. Because of the 33 
small mass and flexibility , it is easy to vibration under external disturbance. and the stiffness of the 34 
membrane material is small, which results in the large vibration deformation of the membrane 35 
structure under wind load, showing strong geometric non-linearity. Many research results shows 36 
that the single-mode aeroelastic instability can easily occur in membrane structures when the 37 
pre-tension of membrane materials is small [3, 4]. 38 

In the mathematical analysis of aeroelastic instability of flexible membrane structures, Yang  39 
et al. [5, 6] established the wind-induced dynamic coupling equation of hyperbolic parabolic 40 
membrane roofs with small sag by using elastic shallow shell theory and ideal fluid potential flow 41 
theory in 2006, and determined the critical wind speed of aeroelastic instability according to 42 
Routh-Hurwitz stability criterion. The influence of geometric nonlinearity of membranes was not 43 
taken into account when establishing the mathematical model. In 2011, Zheng et al. [7, 8] studied 44 
the non-linear aerodynamic stability of orthotropic tensioned membrane structures in rectangular 45 
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plane and hyperbolic paraboloid respectively. The critical wind velocities of single-mode instability 46 
of two membrane structures were determined by assuming the solution of vibration equation. In 47 
2017, Liu et al. [9] studied the aerodynamic stability of closed tensioned membrane structures by 48 
Galerkin method. The geometric nonlinearity of membrane vibration is weakened, and the critical 49 
wind speed of instability is obtained by using the weak nonlinearity solution method. 50 

In order to investigate the influence of geometric nonlinearity on the aeroelastic stability of 51 
membrane materials, the nonlinear wind-induced dynamic equations of membrane roofs are 52 
established based on Von Kamen's large deflection theory and Darumbel's principle, taking the flat 53 
rectangular orthotropic tensioned membrane roofs with fixed supports on the four sides of open 54 
and closed structures as analytical models and considering the effects of geometric nonlinearity and 55 
air damping of membrane materials. An improved multi-scale method which suitable for strong 56 
geometric nonlinearity is used to solve the vibration equation. The critical wind speed of instability 57 
obtained is compared with the results without considering geometric nonlinearity. The effect of 58 
geometric nonlinearity on the wind speed of single-mode aeroelastic instability of membrane 59 
material is obtained quantitatively. 60 

2. Analytical deduction of single-mode instability of orthotropic membrane aeroelasticity 61 

2.1. Establishment of Basic Equations 62 

Let the length and width of the orthotropic rectangular flexible membrane with four sides 63 

fixed be a and b respectively; the pre-tension along the length direction is N0x and the width 64 

direction is N0y. The wind blows parallel to the roof and toward the membrane surface, which 65 

makes the membrane surface vibrate. For flexible membranes, the research results show that 66 

the shear stress has little influence on the vibration process of the membranes and can be 67 

considered as zero[10]. Assuming that the planar membrane is in the xoy plane when 68 

equilibrium, and the pre-tension in the x direction is Nx and in the Y direction is Ny, When the 69 

membrane is disturbed by external forces perpendicular to the xoy plane, it will deform and 70 

then produce transverse vibration perpendicular to the membrane surface under the action of 71 

tension. Taking a vibrating micro-units on the vibrating membrane surface as shown in Figure 72 

1. 73 

 74 

Figure 1. Vibration micro-units of membrane 75 

Taking the element dxdy on the membrane surface. When the micro-facets are deformed, 76 

the edges of the micro-facets are subjected to the tension of the adjacent facets. In the 77 
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X-direction, we can regard the surface element as composed of countless chord elements with 78 

length dx and width of one unit. The tension acting on the chord element is consistent with its 79 

tangent direction. The tension Nx is at an angle α with the x coordinate axis. Therefore, the 80 

vertical component of the tension acting on the chord element at one end of X is Nxsinα. 81 

because α is small, sinα≈tanα. Let w be the vertical displacement of a point on the membrane 82 

away from the equilibrium position. Therefore: 83 

sin tan 
 

   
 

x x x

x

w
N N N

x
                       (1) 84 

The vertical force acting on the dy edge is: x

x

w
N dy

x

 
 
 

; and the vertical force at the x 85 

edge should be: x

x dx

w
N dy

x 

 
 
 

. Thus, the resultant force in the vertical direction on the x and 86 

x+dx sides of the panel is as follows: 87 

2

2x x x

x dx x

w w w
N dy N dy N dxdy

x x x

     
    

     
        (2) 88 

Similarly, the resultant force of the vertical component of the tension acting on the Y 89 

direction can be obtained as follows: 90 

2

2y y y

y dy y

w w w
N dx N dx N dxdy

y y y


     
    

     
   (3) 91 

So the total vertical force acting on the whole panel is: 92 

2 2

2 2
( , )z x y

w w
F N dxdy N dxdy q x y dxdy

x y

 
   

 
    (4) 93 

Where, Nx is the tension in the x direction (longitude), Ny is the tension in the y direction 94 

(latitude), w is the deflection of the membrane, and  ,q x y  is the external load acting on the 95 

unit area of the projection surface of the membrane. According to the force balance, we can 96 

obtained that: 97 

   
2 2

2 2
( , ) 0x y

w w
N dxdy N dxdy q x y dxdy

x y

 
  

 
       (5) 98 

2 2

2 2
( , ) 0x y

w w
q x y N N

x y

 
  

 
                         (6) 99 

The generalized external loads of flexible membrane roof under wind load include the 100 

wind load acting on the membrane surface, structural damping force and inertial force [10]. If 101 

the aerodynamic term is defined as p, then the generalized external load per unit area 102 

 ,q x y is: 103 

 
2

2

( , , ) ( , , )
, ( , , ) 2

w x y t w x y t
q x y p x y t c

t t
 

 
  

 
               (7) 104 
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For membrane material, the stiffness of membrane surface comes from the initial 105 

pre-tension of membrane material, so the initial pre-tension should be added in formula 6. 106 

Finally, the differential equations of motion of flexible membranes are obtained as follows: 107 

   
2 2 2

0 02 2 2

( , , ) ( , , )
( , , ) 2 0x xt y yt

w x y t w x y t w w
p x y t c N N N N

t t x y
 

   
      

   
 (8) 108 

Introducing the stress function ( , )x y , 

2

2xN h
y





, 

2

2yN h
x





, Then equation (6) 109 

becomes: 110 

2 2 2 2 2

0 02 2 2 2 2
2 0x y

w w w w
N h N h p c

y x x y t t

 
 

        
         

        
  (9) 111 

After deformation, the membrane surface strain is composed of linear and non-linear parts. 112 

The linear strain is caused by in-plane displacement u and v, and the non-linear strain is 113 

caused by deflection w. After ignoring shear stress, the total strain is as follows: 114 

2

2

1

2

1

2

x

y

u w

x x

v w

y y





  
   
   


   

       

        (10) 115 

Where, x is the strain in the X direction, y is the strain in the Y direction.  116 

By eliminating u and v in equation (10), the continuous deformation conditions satisfying 117 

the strain and deflection of the film surface can be obtained. 118 

222 2 2 2

2 2 2 2

yx w w w

y x x y x y

      
   

      
      (11) 119 

The membrane is orthotropic, and the direction of the fiber is the main direction of 120 

elasticity, so that it is consistent with the direction of coordinate system X and Y. Assuming 121 

that the direction of fiber is the same as the direction of coordinate system X and Y. The 122 

Young's modulus of elasticity in X and Y directions is 1E and 2E , respectively. The longitudinal 123 

Poisson's ratio and the latitudinal Poisson's ratio is 1 and 2 , respectively. The relationship 124 

between elastic modulus and Poisson's ratio is as follows. 125 

1

1E



=

2

2E



         (12) 126 

The stress-strain relationship is as follows: 127 

1 1 2

1 2 1 2

2 1 2

1 2 1 2

1 1

1 1

x x

y y

E E

E E



    

 

   

 
            
       
 
  

                   (13) 128 

Where x and y is the normal stresses in the X direction and Y direction respectively. h is 129 

the thickness of membrane. 130 

Letting x xN h   , y yN h   , substituting Equation (13) into Equation (11), the 131 

compatibility equation is obtained as follows: 132 
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2 22 2

2 1

2 2 2 2

1 2 1 2

2
2 2 2

2 2

1 1y yx x
N NN N

E h y E h y E h x E h x

w w w

x y x y

   
  

   

   
  

    

    (14) 133 

By substituting the stress function into Equation (14), it can be transformed into: 134 

4 4 4 4

2 1

4 2 2 2 2 4

1 2 1 2

2
2 2 2

2 2

1 1

E y E x y E x y E x

w w w

x y x y

       
  

     

   
  

    

     (15) 135 

2.2. Modified multiscale solutions of governing equations 136 

The initial surface function of rectangular planar membrane 0 ( , ) 0z x y  , then the surface 137 

equation of flexible membrane under wind load is as follows: 138 

( , , ) ( , , )z x y t w x y t                           (16) 139 

According to the Bubnov-Galerkin method, assuming the solution of the governing equation 140 

is [9, 10].  141 

 
1

1

( , , ) ( ) ( , )

( , , ) ( ) ( , )

n

i i

i

n

i i

i

w x y t T t W x y

x y t U t x y 










 





                      (17) 142 

Where ( , )iW x y is the mode function, ( , )i x y is the unknown stress function about the 143 

coordinates, ( )iT t and ( )iU t are the time-dependent function. 144 

Because the membrane is fixed on four sides, the vertical deflection at the boundary of the 
145 

membrane is zero, and the vibration mode function satisfying the conditions is assumed to be: 
146 

( , ) sin sin
m x n y

W x y
a b

 
                    (18) 147 

where m and n are positive integer, which denote sinusoidal half wave number. 
148 

substituting Equation (18) into Equation (17), the following equation is obtained: 149 

( , , ) ( )sin sin
m x n y

w x y t T t
a b

 
                     (19) 150 

Substituting Equation (19) into Equation (15), yields: 151 

4 4 2 2 4
2

4 4 2 2

1 2

1 1 2 2
( ) cos cos

2

m n m x n y
T t

E y E x a b a b

       
   

   
    (20) 152 

Assuming that the solution of stress function in formula (20) is 153 

2( , , ) ( ) ( , )

2 2
( , ) cos cos

x y t T t x y

m x n y
x y

a b

 

 
  

 



 


               (21) 154 

substituting Equation (21) into Equation (20), yields: 155 

 156 
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2 2

2

2 232

E a n

b m
  ，   

2 2

1

2 232

E b m

a n
         (22) 157 

2.1.1. Solution of Flexible Membrane Roof on Closed Structure 158 

Flexible membrane covers the top of closed structure as roof, and rigid wall around the 
159 

structure as vertical bearing member. Because its stiffness is far greater than the membrane’s 
160 

stiffness, it is assumed that the stiffness of vertical component is infinite in the process of 
161 

theoretical derivation in this paper. The membrane roof on closed structure is shown in Figure 
162 

2. 
163 

 164 
Figure 2. The membrane roof on closed structure  165 

For the membrane roof on closed structure, the aerodynamic force acting on the unit area 
166 

of the membrane projection surface is expressed as follows[8]: 
167 

 

        

2 2

2

0

3 2 22 22

x x
y y

Ra Ra

w ww w
VV x

x t tx t
p V d d d d

x yx y

 
 




   
   

 
 

                  
    

     
  
 

       (23) 168 

Substituting Equation (23) into Equation (9), yields: 
169 

   

2 2 2 2

0 02 2 2 2

2 2 2

0 0

2 2

2

0 0

3 3

( ) ( )

1 1

2

1 1
0

2

2

2

x y

x xRa Ra
y y

x x
Ra Ray y

w w
h N h N

y x x y

Vw w w
d d d d

t r t r x t

V Vw w
x d d x d d

r

w

t

t

r

c

x

 
 

 
 

 

 
    

 

 
     

 



 
 

 
 

   
  

   

     
    

      

    
     



 
 







 

  

 

  (24) 170 

Where    
2 2

r x y     , the integral region  0 ,0Ra a b      .  
171 

Substituting Equations (19), (21) and (22) into Equation (24), yields: 
172 

 
2

0 0
1 2 42

22 2 2 2 2 2
30

0 0 32 2 2 2 2 2

( ) ( )
2

2

( ) ( ) 0
2

x y

Vd T t dT t
W cW

dt dt

VW W W W
N N T t h T t

x y y x x y

 
    

 






   
      

   

          
        

       

  (25) 173 

Where: 
174 
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 

 

1

2

3 3 3

4 3

1 1
sin sin

1 1
cos sin

1 1
( ) ( ) cos sin

1 1
( )

x
y

Ra Ra

x
Ra Ray

x
Ra Ray

x
y

Ra

m n
W d d d d

r r a b

W m m n
d d d d

r x a r a b

W m m n
x d d x d d

r x a r a b

W x d d
r r













 
    

  
    

  
      

   













 

 
  

 

 
    

 

  

 

 

 

 3
( )sin sin

Ra

m n
x d d

a b

 
  

 175 

Using Bubnov-Galerkin method to integral Equation (25), yields: 
176 

 
2

0 0
1 2 42

22 2 2 2 2 2
30

0 0 32 2 2 2 2 2

( ) ( )
2

2
( , ) 0

( ) ( )
2

S

x y

Vd T t dT t
W cW

dt dt
W x y dxdy

VW W W W
N N T t h T t

x y y x x y

 
    

 






    
      

    
 

                           

  (26) 177 

Where  0 ,0S x a y b     . 
178 

Simplifing Formula (26), yields: 
179 

2
3

2

( ) ( )
( ) ( ) 0

d T t dT t
A B CT t DT t

dt dt
                 (27) 180 

Where: 
181 

0
1

2

0

0
  1

1

1
sin sin sin sin sin sin

4

1
sin sin sin sin   

S

S Ra Ra

S Ra

A W Wdxdy

m x n y m n m x n y
dxdy d d dxdy

a b r a b a b

ab

m n m x n y
d d dxdy

r a b a b


 



     
  








   
  

 
  

 

  
    

   

 

 
  

 



  

 

182 

 

 

20
2 4

0

0

3

2

0 0
2

2
2

1
cos sin sin sin

2

1
sin sin sin sin

2

2 sin sin

2 2

S S

S Ra

S Ra

S

V
B Wdxdy c W dxdy

mV m n m x n y
d d dxdy

a r a b a b

V m n m x n y
x d d dxdy

r a b a b

m x n y
c dxdy

a b

mV V

a


  



    
 

    
  



 


 
 



  

 
  

 

 
  

 

 
  

 

 

 

 

 



4  
2

cab


 
183 
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 

2

4 3

1
cos sin sin sin   

1
sin sin sin sin  

S Ra

S Ra

m n m x n y
d d dxdy

r a b a b

m n m x n y
x d d dxdy

r a b a b

   
  

   
   

 
  

 

 
  

 

 

 

 
184 

22 2

0
0 0 32 2

22 2

0
0 0 32 2

2 22 2 2
00 0

3

 
2

2

  
4 4 2

x y

S

x y

S Ra Ra

yx

VW W
C N N Wdxdy

x y

VW W
N Wdxdy N Wdxdy Wdxdy

x y

n aNm bN mV

a b a











 


  
   

  

 
  

 

   



    
185 

3 3

1
( )cos sin sin sin   

S Ra

m n m x n y
x d d dxdy

r a b a b

   
   

 
  

 
   

186 

2 2 2 2

2 2 2 2

2 2 4 ( )
  

2

S

W W
D h Wdxdy

y x x y

hm n

ab

  

      
  

    


 


 

187 

It can be obtained from numerical calculation that only when / 0.1b a , 0A  ; this will 
188 

not happen in practical engineering.Letting  /u B A ,
2

0 /C A   , /D A   . Then the 
189 

equation (27) is transformed into: 
190 

 2 3
0 0T T T T                            (28) 191 

Letting ω is the vibration frequency of membrane material and expanding 2 to the 
192 

power series of   near 
2

0  as follows: 
193 

 
2 2 2

0 1 2                           (29)  194 

The transformation parameters are introduced as follows. 
195 

1

2

0 1




 
                           (30)  196 

2

0

1

2
2 0
0 1

(1 )

1

 


 


 












                           (31)  197 

Expanding 2 to the power series of   as follows: 
198 

   
2

2 2 2 3 2 30
0 1 2 3 2 32

0 1

1
1 1

1
        

 


 



 
        

  
  (32) 199 

2
2

0

1 3
1 ( )

2 8 2


  

 
    

 
                 (33)  200 

The form of perturbation solution of the equation (28) can be: 
201 

2

0 0 1 1 0 1 2 0 1( , ) ( , ) ( , ) ( , )T t T t t T t t T t t              (34)  202 

Where 0t t , 1t t . 
203 

The differential operators are obtained as follows. 
204 
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2

0 1 2

2
2 2 2

0 0 1 1 0 22

...,

2 ( 2 ) ...

d
D D D

dt

d
D D D D D D

dt

 

 

   

    

        (35) 205 

Substituting Equations (30), (31) , (32) and (34) into Equation (28), yields: 
206 

2 2 2 2

0 0 1 1 0 2 0 1 2

2 3 22
0 1 2 0 1 22 2 0

0 0 1 2 2 2
1 0 1 2

(1 ) 2 ( 2 ) ( )

( ) ( )
(1 ) ( )

( )

0

D D D D D D T T T

T T T D D D
T T T

T T T

    

   
   

  

        

       
       

    



 207 

(36) 208 

 

0 2 2

0 0 0 0

2
1 2 2 30

0 1 0 1 0 1 0 0 0 0

1

2
2 2 2 20

0 2 2 0 1 1 1 0 2 0 0 1

1

0

2 ( ) 0

2 ( 2 ) 3 0

D T T

D T T D D T D T T

D T T D D T D D D T T T

 


 








 

    

     

      (37)  209 

The solution of the first equation in the system of equations (37) can be as follows: 
210 

0 0 0 0

0 1 1( ) ( )
i t i t

T A t e A t e
 

                            (38)  211 

Substituting Equation (38) into The Second Equation in Equation (37), yields: 
212 

0 0

2 3
32 2 2 30 0

0 1 0 1 0 1

1 1 1

1
2 3 0

it it
D T T i D A A A i A e A e cc

 
  

  

 
       

 
   (39)  213 

Where cc  is the conjugate complex term. Eliminating the term of immortality in equation 
214 

(39) , yields: 
215 

3
20 0

1

1 1

2 3 0D A A A i A
 


 

                       (40)  216 

Solving equation (40), we can obtain: 
217 

0 03 33 3

1

1

1
( )

8

it it
T A e A e




                       (41) 218 

Letting 
1

2

iA fe  , bring it into equation (41) and separating the imaginary part from the 
219 

real part. 
220 

2
30 0

1 1 1 1

31
,

2 8

df d
f f f

dt dt

 

 

                   (42)  221 

Substituting 
1

2

iA fe   into Equation (38), yields: 
222 

0 0 0 0cos( ) cos( )T f t f t                      (43)  223 

Comparing the angular frequency in equation (33) with equation (43), we can get the 
224 

equation under the first order approximation condition as follows. 
225 

0

1 2

d

dt


                            (44)  226 

According to the equations (42) and (43), yields: 
227 

2

1

3

4
f                             (45)  228 
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Substituting Equation (45) into Equation (42) and omitting higher order terms, yields: 
229 

2 2

0

3

4
f                             (46)  230 

The results show that when the critical wind speed of single mode instability is reached, 
231 

the frequency of the characteristic equation of the system approaches zero, which is equivalent 
232 

to static equilibrium instability [9]. That is: 
233 

2 2

0

3
0

4
f                        (47) 

      

234 

Where f is the vibration amplitude of membrane, 
235 

2 2 2 2 2 2

0 0 20 32

0
 0 1

1

3 3

2

4 2

1
sin sin sin sin   

1
( ) cos sin sin sin   

x y

S Ra

S Ra

m b N n a N m
V

ab ab a

m n m x n y
d d dxdy

r a b a b

m n m x n y
x d d dxdy

r a b a b

   

   

   
  

   
   


 
     

 



  
 

 
  

 

 

 

 
236 

 

2 2 5

0 1

2 ( )

4

hm n

ab ab

  

  







  

237 

Solving the equation, the critical wind speed for single mode instability of closed 
238 

membrane roof is obtained as follows: 
239 

   2 2 2 2 2 2 2 2 2

0 0 0 1

0 3

4 3 4

8

x y

cr

m b N n a N f a b ab
V

b m

       

  

  
     (48) 240 

where f is the vibration amplitude corresponding to the instability critical wind speed. It 
241 

shows that the critical wind speed is related to the vibration amplitude. Considering the 
242 

influence of geometric nonlinearity of membrane, the stiffness of membrane will change with 
243 

the change of amplitude in the process of vibration, which will affect the aerodynamic stability 
244 

of membrane roof to a certain extent, which is consistent with the conclusions of previous 
245 

research. When 0f  , the critical wind speed of instability can be obtained according to the 
246 

theory of small deflection. 
247 

2.1.2. Solution of Flexible Membrane Roof on Open Structure 248 

For membrane roofs open open structures, air flows from both sides of the membrane 
249 

surface due to the smaller thickness of the membrane, which can be approximately determined 
250 

by the thin-airfoil theory[ ].The membrane roof on open structure is shown in Figure 2. 
251 

 252 
Figure 3. The membrane roof on open structure  253 
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For the membrane roof on open structure, the aerodynamic force acting on the unit area of 
254 

the membrane projection surface is expressed as follows[7]: 
255 

 0 0
0

, ,
x

c cp y t d V
t

     


 
 

                  (49) 256 

Where c is the density of vortices. 
257 

 1 2

( )
( ) ,        1, 2,c j j j

T t
aV aV a T t a j M N

V
 

 
     

 
  (50) 258 

Substituting Equation (50) into Equation (9) , yields: 
259 

0

2 2 2 2 2

0 0 02 2 2 2 20
0( ) ( ) 2

y
c

x y c

w w w
h N h N V d

y x x y

w

t tt

 
    

    
     






     (51) 260 

Solutions of stress functions in compatible equations such as Equation (21), Substituting 
261 

Equations (19) and (21) into Equation (51) , yields: 
262 

2 2 2

0 02 2 2

2 2 2 2
3

02 2 02 2 0

0

( ) ( )
( )

( )

2

0

x y

y
c

c

d T t T t W W
W N N T t

dt x y

W W
h T

d
W

dt

t V d
y x x y t



 
   


  

   
  

     
     

     


       (52) 263 

Using Bubnov-Galerkin method to integral Equation (52), yields: 
264 

2 2 2

0 02 2 2

2 2 2 2
3

02 2 2

0

0
02

( ) ( )
( )

( , ) 0

( )

2 x y

yS c
c

d T t T t W W
W N N T t

dt x y
W x y dxdy

W W
h T t V d

y x x y

d
W

d

t

t


 
   


   

    
    

      
     

       




 (53) 265 

Where  0 ,0S x a y b     . 
266 

Integrating Equation (53) and simplifing it, yields: 
267 

2
3

2

( ) ( )
( ) ( ) 0

d T t dT t
A B CT t DT t E

dt dt
                  (54) 268 

Where: 
269 

2

4
S

ab
A W dxdy


    270 

0
0

2

2

0 sin s2
2

n2 i
S S

m x n y
B W dxdy

ab
dxdy

a b

  
 

 
   

 
   271 

2 2 2 2

0 0 0 02 2 2 2

2 22 2
00

( , ) ( , )
( , )

4 4

y x x y

S S S

yx

W x y W x y W W
C N N W x y dxdy N Wdxdy N Wdxdy

y x x y

n aNm bN

a b



    
    

    

  

  
272 

2 2 2 2 2 2 4

2 2 2 2

( )
  

2
S

W W hm n
D h Wdxdy

y x x y ab

         
    

    
  273 

0 0
0

( , )
y

S

E V d W x y dxdy
t


   

 
  

 
   274 

Substituting Equation (50) into Equation (54) , yields: 
275 

2
3

1 1 12

( ) ( )
( ) ( ) 0

d T t dT t
A B C T t DT t

dt dt
                  (55) 276 

Where: 
277 
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 

 

1 0 2
0

1 0 1 0 2
0

2

1 0 1

( , )

( , ) ( , )

( , )

y

j

S

y

j j

S S

j

S

A A a a d W x y dxdy

B B aV a d W x y dxdy aV a W x y dxdy

C C aV a W x y dxdy

 

  



 

  

 

 

  



 278 

The composition of equation (55) is consistent with the vibration control equation of 
279 

closed membrane roof, and the solving process is consistent with the above, which is not 
280 

discussed here. Thus, the expression of critical wind speed for single mode instability of open 
281 

flexible membrane roof can be obtained as follows. 
282 

2 2 2 2 2

0

1

2

0

0 1

/ 4 / 4 ( ) / 8

sin sin

3
M

x y

j

Ncr
j j

j

fm bN a n aN b hm n ab
V

m x n yab
a a

a bMN

  


 






  



    (56) 283 

3. Analysis of the Effect of Geometric Nonlinearity on Critical Wind Speed 284 

Assuming that the wind speed is in the X direction, 1m n  , 20b m , 0 2 /xN kN m , 
285 

0 2 /yN kN m . Next, the difference between the results of considering and not considering the 
286 

geometrical nonlinearity of thin films is discussed, and the necessity of considering the 
287 

geometrical nonlinearity of thin films in the design of such structures is given. 
288 

In this paper, the expression of critical wind speed derived from mathematics is related to 
289 

the amplitude of membrane vibration. Because the geometric nonlinearity of membrane is 
290 

considered, the stiffness of membrane will change with the change of amplitude in the process 
291 

of vibration, which will affect the aerodynamic stability of membrane roof to a certain extent. 
292 

Definiting   is the ratio of cross (Y) to along (X) wind direction span ratio. The variation 
293 

of critical wind speed with vibration amplitude for two types of membrane roofs with different 
294 

span ratios is shown in Figure 4. 
295 
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Figure 4. Curves of critical wind speed with amplitude for two types roof models 

Taking membrane roof on closed structure as an example, considering the geometric 
296 

nonlinearity of membrane, the critical wind speed for single mode instability of closed 
297 

membrane roof is obtained by solving the equation. 
298 

   2 2 2 2 2 2 2 2 2

0 0 0 1

0 3

4 3 4

8

x y

cr

m b N n a N f a b ab
V

b m

      

  

  
       (57) 299 

By substituting f=0 into Equation (57), the results of critical wind speed calculation without 
300 

considering geometric nonlinearity can be obtained. 
301 

 2 2

0 0

,

0 3

/ /

2

x y

cr L

a m bN a n aN b
V

m


 


                  (58) 302 

Comparing the critical wind speed of membrane roof on closed structure with and 
303 

without considering the geometric nonlinearity of membrane, the following results are 
304 

obtained: 
305 

 
 

2 2 2

0 1

2 2 2 2 2 2
, 0 0

3 4
1

4

cr

cr L x y

f a b abV

V m b N n a N

   

  


 


                  (59) 306 

4. Discussion 307 

According to Equation (59) , the critical wind speed of single mode instability obtained by 
308 

considering the geometrical nonlinearity of membrane is larger than the linear one. It shows 
309 

that the critical wind speed of instability obtained by neglecting the geometrical nonlinearity of 
310 

membrane is on the small side. It is conservative for structural design. By substituting the 
311 

specific values, the critical wind speed ratio 
,

cr

cr L

V

V
of the membrane roof on closed structure can 

312 

be obtained as shown in Table 1. 
313 

Table 1. Critical wind speed ratio of membrane roof on closed structure with and without geometric 314 
nonlinearity. 315 

 f=0.1m f=0.2m f=0.4m f=0.6m f=0.8m f=1m f=1.2m f=1.4m 

λ=0.5 1.00 1.04 1.14 1.29 1.47 1.68 1.90 2.14 

λ=1 1.00 1.01 1.05 1.11 1.19 1.29 1.40 1.52 

λ=2 1.00 1.01 1.05 1.11 1.20 1.29 1.40 1.52 

 316 

Similarly, the critical wind speed ratio
,

cr

cr L

V

V
of the membrane roof on open structure is 

317 

obtained as shown in Table 2. 
318 

Table 2. Critical wind speed ratio of membrane roof on open structure with and without geometric 319 
nonlinearity. 320 

 f=0.1m f=0.2m f=0.4m f=0.6m f=0.8m f=1m f=1.2m f=1.4m 

λ=0.5 1.00 1.04 1.14 1.29 1.47 1.68 1.90 2.14 

λ=1 1.00 1.01 1.05 1.11 1.19 1.29 1.40 1.52 

λ=2 1.00 1.01 1.05 1.11 1.20 1.29 1.40 1.52 
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From Table 1 and Table 2, it can be seen that when the cross-wind span ratio is small, the 321 

geometric nonlinearity has a greater impact on the critical wind speed of single-mode 322 

instability of membrane roof, and increases with the increase of vibration amplitude. When the 323 

span ratio is greater than 1, the effect is relatively small. Article 5.3.4 of China's Technical 324 

Regulations for Membrane Structures (CECS 158:2015)[12] stipulates that for integral tensioned 325 

and cable-supported membrane structures, the deformation of the membrane structure should 326 

not be greater than 1/200 of the span when considering the combination of wind load effects. In 327 

this example, the normal displacement is limited to 0.1m, and the critical wind speed ratio is 328 

1.00 when geometric nonlinearity is considered or not. Therefore, under normal wind loads, 329 

the influence of membrane geometric nonlinearity on the aerodynamic stability of roofs can be 330 

neglected. However, under strong wind loads, the deformation of roofs will exceed the norm 331 

limit. At this time, the influence of geometric nonlinearity should be considered. 332 

5. Conclusions 333 

In this paper, the aerodynamic stability of orthotropic rectangular planar membranes on closed 334 
and open structures is studied by mathematical analytic method. The governing equations of 335 
wind-induced nonlinear vibration of tensioned membrane roofs are established by using the theory 336 
of large deflection of membrane and Darumbell's principle.According to Bubnov-Galerkin method, 337 
the governing equations of aerodynamic coupling are transformed into second-order non-linear 338 
differential equations with constant coefficients and their periodic solutions are obtained by using 339 
the improved multi-scale method. By judging the stability of the periodic solutions of the equations, 340 
critical wind speed for single mode instability of the membrane roof considering geometric 341 
nonlinearity is obtained.The influence of geometrical nonlinearity on the critical wind speed of 342 
single-mode aeroelastic instability of membrane material is quantitatively obtained by comparing 343 
the results with those without consideration.  The main conclusions can be summarized as follows: 344 

Considering the geometric nonlinearity of membrane vibration, the critical wind speed of 345 
single mode instability of membrane roof increases nonlinearly with the increase of transverse 346 
vibration displacement of membrane. 347 

The critical wind speed of single mode instability with the geometrical nonlinearity of 348 
membrane considerd is larger than that of linear results. It shows that the critical wind speed of 349 
membrane is small when the geometrical nonlinearity of membrane is neglected. For structural 350 
design, it is conservative. When the span along the wind direction is small, the geometrical 351 
nonlinearity has a great influence on the critical wind speed of single mode instability of membrane 352 
roof, and with the amplitude of vibration. When the span ratio is greater than 1, the influence is 353 
relatively small. 354 

Under normal wind loads, the influence of membrane geometric nonlinearity on the 355 
aerodynamic stability of roofs can be neglected. However, under strong wind loads, the 356 
deformation of roofs may exceed the norm limit and reach about 3% of the span, the influence of 357 
geometric nonlinearity should be considered. 358 
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