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Abstract: Membrane materials are most widely applied in construction engineering with
small mass and high flexibility, it presents strong geometric nonlinearity in the process of
vibration. In the paper, an improved multi-scale perturbation method is used to solve the
aeroelastic stability of closed and open membrane roofs for quantify the effect of geometric
nonlinearity on the single-mode aeroelastic instability wind speed of membrane roofs. The
results show that the critical wind speed values of the two models are small when the
geometrical nonlinearity of membrane material is neglected. In addition, under normal wind
load, the influence of geometrical nonlinearity of membrane on the aerodynamic stability of
roof can be neglected, However, under strong wind load, when the roof deformation reaches
3% of the span, the influence of geometric nonlinearity should be considered and the influence
increases with the decrease of transverse and downwind span of membrane roof. The results
obtained in this paper have important theoretical reference value for the design the membrane
structures.

Keywords: geometric nonlinearity; improved multis-cale method; orthotropic membrane;
aeroelastic instability

1. Introduction

Fabric membrane is the most widely used membrane material in construction engineering. It
has the characteristics of high tensile strength and good flexibility. Fabric membranes are mainly
composed of substrates and coatings. The substrates are usually braided by orthogonal fibers, which
results in the orthotropic properties of the membranes, That is to say, the elastic modulus and
Poisson's ratio in the two orthogonal directions are different. The building which is made up of
membrane material covered on the structure skeleton or tensioned as a whole has beautiful
appearance, good transparency, environmental protection and energy saving [1, 2]. Therefore, it is
widely used in large-scale stadiums, exhibition venues and other public buildings. Because of the
small mass and flexibility , it is easy to vibration under external disturbance. and the stiffness of the
membrane material is small, which results in the large vibration deformation of the membrane
structure under wind load, showing strong geometric non-linearity. Many research results shows
that the single-mode aeroelastic instability can easily occur in membrane structures when the
pre-tension of membrane materials is small [3, 4].

In the mathematical analysis of aeroelastic instability of flexible membrane structures, Yang
et al. [5, 6] established the wind-induced dynamic coupling equation of hyperbolic parabolic
membrane roofs with small sag by using elastic shallow shell theory and ideal fluid potential flow
theory in 2006, and determined the critical wind speed of aeroelastic instability according to
Routh-Hurwitz stability criterion. The influence of geometric nonlinearity of membranes was not
taken into account when establishing the mathematical model. In 2011, Zheng et al. [7, 8] studied
the non-linear aerodynamic stability of orthotropic tensioned membrane structures in rectangular
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plane and hyperbolic paraboloid respectively. The critical wind velocities of single-mode instability
of two membrane structures were determined by assuming the solution of vibration equation. In
2017, Liu et al. [9] studied the aerodynamic stability of closed tensioned membrane structures by
Galerkin method. The geometric nonlinearity of membrane vibration is weakened, and the critical
wind speed of instability is obtained by using the weak nonlinearity solution method.

In order to investigate the influence of geometric nonlinearity on the aeroelastic stability of
membrane materials, the nonlinear wind-induced dynamic equations of membrane roofs are
established based on Von Kamen's large deflection theory and Darumbel's principle, taking the flat
rectangular orthotropic tensioned membrane roofs with fixed supports on the four sides of open
and closed structures as analytical models and considering the effects of geometric nonlinearity and
air damping of membrane materials. An improved multi-scale method which suitable for strong
geometric nonlinearity is used to solve the vibration equation. The critical wind speed of instability
obtained is compared with the results without considering geometric nonlinearity. The effect of
geometric nonlinearity on the wind speed of single-mode aeroelastic instability of membrane
material is obtained quantitatively.

2. Analytical deduction of single-mode instability of orthotropic membrane aeroelasticity

2.1. Establishment of Basic Equations

Let the length and width of the orthotropic rectangular flexible membrane with four sides
fixed be a and b respectively; the pre-tension along the length direction is Norand the width
direction is No,. The wind blows parallel to the roof and toward the membrane surface, which
makes the membrane surface vibrate. For flexible membranes, the research results show that
the shear stress has little influence on the vibration process of the membranes and can be
considered as zero[10]. Assuming that the planar membrane is in the xoy plane when
equilibrium, and the pre-tension in the x direction is Nx and in the Y direction is Ny, When the
membrane is disturbed by external forces perpendicular to the xoy plane, it will deform and
then produce transverse vibration perpendicular to the membrane surface under the action of
tension. Taking a vibrating micro-units on the vibrating membrane surface as shown in Figure
1.

Figure 1. Vibration micro-units of membrane

Taking the element dxdy on the membrane surface. When the micro-facets are deformed,
the edges of the micro-facets are subjected to the tension of the adjacent facets. In the
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X-direction, we can regard the surface element as composed of countless chord elements with
length dx and width of one unit. The tension acting on the chord element is consistent with its
tangent direction. The tension N is at an angle a with the x coordinate axis. Therefore, the
vertical component of the tension acting on the chord element at one end of X is Nisina.
because « is small, sina=tana. Let w be the vertical displacement of a point on the membrane
away from the equilibrium position. Therefore:

Nxsina:NXtana:Nx(a—Wj (1)
oX ),

ow
The vertical force acting on the dy edge is: N, (&j dy; and the vertical force at the x

ow
edge should be: N, (—j dy. Thus, the resultant force in the vertical direction on the x and

X+dx

x+dx sides of the panel is as follows:
oW ow o’w
N, | — dy—-N,| — | dy=N, —-dxd 2
" ( Jx+dx y " ( OX jx y " aXZ y ( )

Similarly, the resultant force of the vertical component of the tension acting on the Y
direction can be obtained as follows:

oW oW o*w
N, | — dx—N,|— | dx=N dxdy 3
y( jy+dy y(ayjy ¢ ayz ()

So the total vertical force acting on the whole panel is:

o°w o°w
ydxdy+ N, dedy++q(x, y)dxdy (4)

FZ = NX
Where, Nx is the tension in the x direction (longitude), Ny is the tension in the y direction
(latitude), w is the deflection of the membrane, and d(X,Y) is the external load acting on the
unit area of the projection surface of the membrane. According to the force balance, we can
obtained that:

2 2

oW o°w
N, P dxdy + NdeXdy+q(x, y)dxdy =0 5)
o*w o*w
Q(X,Y)JFNXWJFNyW:O (6)

The generalized external loads of flexible membrane roof under wind load include the
wind load acting on the membrane surface, structural damping force and inertial force [10]. If
the aerodynamic term is defined as p, then the generalized external load per unit area

Q(X, Y)is:

ow(x,y,t)  *w(x,y,t)
a T

a(x,y)=p(xy,t)-2pc )
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For membrane material, the stiffness of membrane surface comes from the initial
pre-tension of membrane material, so the initial pre-tension should be added in formula 6.
Finally, the differential equations of motion of flexible membranes are obtained as follows:

ow(x,y,t)  0*w(x,Y,t) o*w 22w
P(xy.)=2pc—""=—p——7 +(N0X+Nxt)y+(Noy+Nyt)ay2 =0 (8
: . 82¢ 62¢) )
Introducing the stress function @(X,y), N, = hyf N, = h?, Then equation (6)
X
becomes:

2 2 2 2 2
[NOX+th—fJZX—ZV+(NOy+th—(Zp]zy—\ZV+ p—ZpC%N—p%t—ZVZO )

After deformation, the membrane surface strain is composed of linear and non-linear parts.
The linear strain is caused by in-plane displacement u# and v, and the non-linear strain is
caused by deflection w. After ignoring shear stress, the total strain is as follows:

au 1wy
& =—+—=| —
“oox 2\ ox

v 1(ow)
&, =—+=| —
Yooy 2\ oy

Where, &, is the strain in the X direction, €| is the strain in the Y direction.

(10)

By eliminating u and v in equation (10), the continuous deformation conditions satisfying
the strain and deflection of the film surface can be obtained.

2
0%, . o, (o'w) &*wodw

oy>  ox* \oxoy ) ox* oy?
The membrane is orthotropic, and the direction of the fiber is the main direction of

elasticity, so that it is consistent with the direction of coordinate system X and Y. Assuming
that the direction of fiber is the same as the direction of coordinate system X and Y. The

(11)

Young's modulus of elasticity in X and Y directions is E; and E,, respectively. The longitudinal

Poisson's ratio and the latitudinal Poisson's ratio is 4 and £, , respectively. The relationship

between elastic modulus and Poisson's ratio is as follows.

Py )
E_E (12)
The stress-strain relationship is as follows:
E, #E,
Oy 1- H 1- H &y
{ } _ Hafh SV, { } 13)
o, HE E, &,

I-wmp,  1=pu,

Where O,and Oy is the normal stresses in the X direction and Y direction respectively. h is
the thickness of membrane.
Letting N, =h-o, , N, =h-0, | substituting Equation (13) into Equation (11), the

compatibility equation is obtained as follows:
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2 2
1IN, ON, o N, 1 ON,
Eh oy> Eh oy* Eh ox* Eh ox°
200\ A2 A2 (14)
_[ow) oJwow
oxoy ) ox* oy’
By substituting the stress function into Equation (14), it can be transformed into:
109 m 09 w 09 13
E1 oy* E, ox’0oy* E, ox’oy* E, ox'
(15)

2
_[w ) dPwow
oxoy ) ox* oy’

2.2. Modified multiscale solutions of governing equations

The initial surface function of rectangular planar membrane ZO(X, y) =0, then the surface
equation of flexible membrane under wind load is as follows:
z(x,y,t) =w(x,y,t) (16)
According to the Bubnov-Galerkin method, assuming the solution of the governing equation
is 9, 10].

w(x,y.0 = YT, OW(x.Y)
= 17)

P(x .0 =3 U, 04 (x.y)

Where Wi(X, Y)is the mode function, ¢i(X, Y) is the unknown stress function about the

coordinates, T, (3] andUi (t) are the time-dependent function.
Because the membrane is fixed on four sides, the vertical deflection at the boundary of the
membrane is zero, and the vibration mode function satisfying the conditions is assumed to be:
W(x,y)= smmsm nzy (18)
a b
where m and n are positive integer, which denote sinusoidal half wave number.
substituting Equation (18) into Equation (17), the following equation is obtained:

w(x,y,t)= T(t)sm—sm%y (19)
a
Substituting Equation (19) into Equation (15), yields:

4 4 2.2 _4
ia_¢+ia ¢ _ mn‘m Tz(t)(COSZmyszrCOSZnnyJ

= 20
E oy* E,ox' 2a%? 20
Assuming that the solution of stress function in formula (20) is
o(x,y,0) =T (D)4(x,y)
2Ny (1)

(X, y) :acosszamuﬁcos

substituting Equation (21) into Equation (20), yields:
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_E,a’n’ . E,b’m’
32b2m? 32a’n’

(22)

2.1.1. Solution of Flexible Membrane Roof on Closed Structure

Flexible membrane covers the top of closed structure as roof, and rigid wall around the
structure as vertical bearing member. Because its stiffness is far greater than the membrane’s
stiffness, it is assumed that the stiffness of vertical component is infinite in the process of
theoretical derivation in this paper. The membrane roof on closed structure is shown in Figure
2.

V(wind speed)
Atmosphere '

closed | closed

Figure 2. The membrane roof on closed structure
For the membrane roof on closed structure, the aerodynamic force acting on the unit area
of the membrane projection surface is expressed as follows[8]:

oW  ow o’w  o'w

— - V—+—

( 6x+6tjx;(x §) [ oxt atzj
1

dédn (23)

Substituting Equation (23) into Equation (9), yields:

0? o? oW
(=% q’ Nm) Hh=F N(,y) T 2pc 2"

ot
O°W  p, rplf O*w
- W‘?QF(?L ol (axatlé sy o
L) oo B e
Vo y=n

Wherer = \/(X—f)z +(y—77)2 , the integral region Rae{0<£<a,0<n<b},
Substituting Equations (19), (21) and (22) into Equation (24), yields:

(pW+%7lj—d T(t){ﬂ(h 7a)+ 2ch}det)

dt? 27
(25)
AW W pV? 00 W 50 oW
B EVIRCALINY ", 1) -h T3() =
("*ax2+°yay+27z73J(t) [6y o ok ay] =0

Where:
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H xgdfd?] ” sin 7 g n%ndfdn

—ﬂ( jzdgdn=—” cos 7% g m7d§d

175
plfo é Nz
V3 —Jlr—s(ajw (x=&)dédn = J‘j (x—=&)cos—=sin—+— o dédn
=7
72 =[] (W ) (x=E)dedy =ﬂi(x—§)sinm—”55in”ﬂd§dn
‘ Ra r’ & Ra re a b
176
Using Bubnov-Galerkin method to integral Equation (25), yields:
dT(t \% dT(t
(pW +&nj 2(){&(72 ak 2pcw} 0
T dt 2r dt
1rv H (x,y)dxdy =0 (26)
g o'W oW pV? O’D oW 0°D oW
- NOx 5 3 +N0y 3 + 73 T(t) h — t == T (t)
X - 2r oy° o ox* oy
178
179 ~Where S e{0<x<a0<y<b}.
Simplifing Formula (26), yields:
2
180 AdTO IO _cry_pregy=o o7
dt dt
181

Where:
A= ﬂ(pW +—;/1dexdy

182 _p”£5m ———sin wj dxdy+'0O H[

Ra

.[ =sin éZsi nm7d§d sin 7% gjn 1 ydxdy
a b a b

Ra

1. maé . nznp . MmzX . nzy
= =sin—=sin—+d£&dn |sin ——sin —=dxd
“ g(-!;a ra b °° UJ a b Y

B= ’;07\[/ .U(72 —yA)dedy+2ch;jW2dxdy

pOmV HU cosm—ﬂésmn%ndé‘d jsmmism bydxdy
a

- ij &)sin—= C”Z' m7d§d }Slansm bydxdy

+2pc”(sm Tsm anyJ dxdy

mV \"
Po a, - Po a,+ pcab
2a 2 2
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= lcosm—ﬂfsinnindfdrys X sin ydxdy
T a b a b
:” ” &)sin a§ ndéd }smstm bydxdy

o°W OW  pV?
C=|(||N,, —+N, — 4+ Wdxd
J-J. 0x 6X2 Oy ay 2 7/3j y

= ” NOX dedy H N, (;;N Wdxdy + ’0 - ” yaWdxdy

2 2
- “7*bN,, _ n‘z*aN,, +p0mV a
= 3

4a 4b 2a
= H(H%(x—f) cosm—”gsin nﬂdafdryjsin wsinwdxdy
Sl T a b a b

D ”h(aqnazw a?aZ\NJdey
oyt o oxt oy

_ 7r(a+ﬁ)

- 2ab

It can be obtained from numerical calculation that only whenb/a <0.1, A<O0; this will
not happen in practical engineering.Letting=B/(¢A), @} =-C/A,e=-D/A. Then the

equation (27) is transformed into:
T+@fT +8(,uT +T3) (28)

Letting © is the vibration frequency of membrane material and expanding @®to the

. 2
ower series of € near ®, as follows:
p o
2 _ 2 2 cen
O° =@, +e0,+ &, + (29)

The transformation parameters are introduced as follows.

L0}
a=— (30)
Wy +Ew,
__ 0@
o(l-«a
1 )2 (31)
2
W, + 0, =
0 1 1_a
Expanding @ to the power series of € as follows:
2
2 2 2 3 @, 2 3
o =) +so, |1+ Ew,+ew+-) | = 1+o0,a” +0,0” +--+) (32
v Lot (st ) |12 st a0 ) o
1 3 6%,
o=, 1+—a+(=-+—)a" +-- 33
[iderd S ] o
The form of perturbation solution of the equation (28) can be:
T(t,a) =Tyt b)) +aT,(t,t,) + T, (t,, )+ (34)

Where {, =1,t =at.

The differential operators are obtained as follows.
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%= D, +aD, +a’D, +...,

2
o D?, +2aD,D, + &’ (D? +2D,D,) +...

Substituting Equations (30), (31), (32) and (34) into Equation (28), yields:
(1-a)[ D% +2aD,D, +a’ (D +2D,D,) |(T, + &T, + &’T, +-+-)

(35)

2 +aT, +a’T, +-- ) +(D, +aD, +¢*D,)-
+(1—(1)60§(T0+0!T1+a2T2+-~-)+aa)0 (To 1 2 )"+ (D, 1 2)

o | (T, +aT,+a’T,+)
=0
(36)
a’ DiT,+fT, =0
2

o' DT, +T,+2D,DT, + 2 (D,T, +T2) =0
@y (37)

2
[0)
a’ D;T2 +T,+2D, DT, + (D12 +2D,D,)T, + —03T02T1 =0
0,
The solution of the first equation in the system of equations (37) can be as follows:
Ty = At)e"™" + A(t)e " (38)
Substituting Equation (38) into The Second Equation in Equation (37), yields:
2 3
. - . i 1 i
DT, + T, + [2qu DA+32 A+ Aje”o += A% 1cc=0 (39
o @y @y
Where CC is the conjugate complex term. Eliminating the term of immortality in equation
(39), yields:

3

2D,A+32L A2A+iu 2 A=0 (40)
@, @,
Solving equation (40), we can obtain:
1 ity | A3n-3i
T, = — (A% + A% h) (41)
8wy

1.
Letting A= 5 fe", bring it into equation (41) and separating the imaginary part from the

real part.
2
ﬂz_lﬂ&f, §49 _ 30 (42)
dt, 2 o dt, 8w,
. 1 s . : .
Substituting A= > fe' into Equation (38), yields:
T, = f cos(mpt, +¢) = f cos(awt + ¢,) (43)

Comparing the angular frequency in equation (33) with equation (43), we can get the
equation under the first order approximation condition as follows.

dg _ a,
——=— 44
2 (44)
According to the equations (42) and (43), yields:
32
w=—f (45)

4
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Substituting Equation (45) into Equation (42) and omitting higher order terms, yields:

w=,/m§+%gf2 (46)

The results show that when the critical wind speed of single mode instability is reached,
the frequency of the characteristic equation of the system approaches zero, which is equivalent
to static equilibrium instability [9]. That is:

3
w§+zgf220 (47)
Where f is the vibration amplitude of membrane,
a)z 3 2 m2ﬁ2b2N0X+n27r2a2Noy —'00ma3V2
° pabr+4p,a 2ab a

1. maé . nx . MmzX . nx
al:J'SJ‘UIFsmTgsandfdanstmTydxdy

Ra

1 mzé . N . MzX . N
a, :£I[{IF(X—§)COST”§SIH %ndﬁdn}m %sm %ydxdy

e 2hm?n’z° (a + )
ab(pabz +4p,,)

Solving the equation, the critical wind speed for single mode instability of closed
membrane roof is obtained as follows:
- 47z(m27z2b2 N, +n’z’a’N,, ) +3¢f? (p ra’h® + 4p0aba1) us)
8zbp,ma,

cr

where f is the vibration amplitude corresponding to the instability critical wind speed. It
shows that the critical wind speed is related to the vibration amplitude. Considering the
influence of geometric nonlinearity of membrane, the stiffness of membrane will change with
the change of amplitude in the process of vibration, which will affect the aerodynamic stability
of membrane roof to a certain extent, which is consistent with the conclusions of previous
research. When f — 0, the critical wind speed of instability can be obtained according to the
theory of small deflection.

2.1.2. Solution of Flexible Membrane Roof on Open Structure

For membrane roofs open open structures, air flows from both sides of the membrane
surface due to the smaller thickness of the membrane, which can be approximately determined
by the thin-airfoil theory[ ]. The membrane roof on open structure is shown in Figure 2.

V(wind speed)

Figure 3. The membrane roof on open structure
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254
255 For the membrane roof on open structure, the aerodynamic force acting on the unit area of
the membrane projection surface is expressed as follows[7]:
0 ex

256 p=po [, 7 (v, 0)dE+ V7, (49)
257

Where 7, is the density of vortices.
258 7. _aV;/J_51V(a1T(t)+a21 (t)j, (j=1,2,...M><N) (50)
259 v

Substituting Equation (50) into Equation (9) yields-

O’ 82 0 y 0y, o°w
260 (2 + No,) >+ (h - NOy) ~2p&,— +poV70+po "edn=p<S 1)
261 oy’ OX ot ot
262 Solutions of stress functions in Compatlble equatlons such as Equation (21), Substituting
Equations (19) and (21) into Equation (51), yields:
2
o ET0 o O, Ty, W gy
dt? dt OX oy?
3 o’p O°W 6 o'W 0 2
| LW TOOW T2ty gy -y [ Loy =0

264 oy* ox? a oy? o ot

Using Bubnov-Galerkin method to integral Equation (52), yields:

2
0 g T (NOX 2, O jT(t)
265 dt? dt OX oy?
.” (x,y)dxdy =0 (53)
S 0 a9 oW 8 ¢ oW T3 y 0y,
T () =P\ 7. =y J, == dn
ay ox’ 8x oy? o ot

266
g7 Where S e{0<x<a0<y<h}.

Integrating Equation (53) and simplifing it, yields:

d’T T

268 AdTO g0 _cripy_premy-£-o0 (54)
269 dt dt

Where:

270 A= ﬁpwzdxdy_P_ab

211 B= 2p§0HW dxdy = 2p§0”(sstm Eyj dxdy = pggab

C= j( aZW(X ) +N azW(X’Y)]W(x y)dxdy = ”NOX 2Wdedy HN ;:/Ndedy

272 s v
__ ﬁZbNOX B N’z aNoy
4a 4b
2 2 m2n2z*
213 D= Ih(a?az\/;/ +aq2)aZV:/)dedy:— z (a+f)
¢ \oy® Ox° Ox~ oy 2ab
y o
214 E-= ﬁ(povy +pf L dan (x, y)dxdy
275 s o
Substituting Equation (50) into Equation (54) , yields:
2

276 AdTO, g TO_criy-prey=0 (55)
277 dt dt

Where:
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A= A= ][} 2 W (x, ey

B, =B—-paVv Ij(joyaijdn)w (x, y)dxdy — p,aVv H a, W (X, y)dxdy
S S

C,=C+pyaV? [[a,W (x, y)dxdy
S

The composition of equation (55) is consistent with the vibration control equation of
closed membrane roof, and the solving process is consistent with the above, which is not
discussed here. Thus, the expression of critical wind speed for single mode instability of open
flexible membrane roof can be obtained as follows.

m?bN,, / 4a+naN,, / 4b+3hm’n’z*(a + f) £ * /8ab
MxN mzX. nzy; (56)

ab . i
a—— - SIN Sin
%MN;% a b

V. =x

cr

3. Analysis of the Effect of Geometric Nonlinearity on Critical Wind Speed

Assuming that the wind speed is in the X direction,m=n=1, b=20m, Ny, =2kN/m,

No, =2kN/m  Next, the difference between the results of considering and not considering the
geometrical nonlinearity of thin films is discussed, and the necessity of considering the
geometrical nonlinearity of thin films in the design of such structures is given.

In this paper, the expression of critical wind speed derived from mathematics is related to
the amplitude of membrane vibration. Because the geometric nonlinearity of membrane is
considered, the stiffness of membrane will change with the change of amplitude in the process
of vibration, which will affect the aerodynamic stability of membrane roof to a certain extent.

Definiting A is the ratio of cross (Y) to along (X) wind direction span ratio. The variation
of critical wind speed with vibration amplitude for two types of membrane roofs with different
span ratios is shown in Figure 4.
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Figure 4. Curves of critical wind speed with amplitude for two types roof models

296

297 Taking membrane roof on closed structure as an example, considering the geometric
29g  nonlinearity of membrane, the critical wind speed for single mode instability of closed
membrane roof is obtained by solving the equation.

4z (m’z’b*N, +n’z°a’N,, )+3¢f?( pra’b® +4p,aba
299 - ( 0 Oy) (/0 Po 1) (57)
300 87bp,ma,
301 By substituting /=0 into Equation (57), the results of critical wind speed calculation without
considering geometric nonlinearity can be obtained.
a(m’bN,, /a+n’aN,, /b)
302 V, =7 (58)
303 | 2P
304 Comparing the critical wind speed of membrane roof on closed structure with and
305 without considering the geometric nonlinearity of membrane, the following results are
obtained:
vV 3¢ f?( pra’h’® +4p,aba
306 o= 1+ 2(2 : ——— ) (59)
A 47r(m 7b°N,, +n°za Noy)
307 4. Discussion
308
309 According to Equation (59) , the critical wind speed of single mode instability obtained by

310 considering the geometrical nonlinearity of membrane is larger than the linear one. It shows
311  that the critical wind speed of instability obtained by neglecting the geometrical nonlinearity of
membrane is on the small side. It is conservative for structural design. By substituting the

cr

312
specific values, the critical wind speed ratio v of the membrane roof on closed structure can

313

be obtained as shown in Table 1.

314 Table 1. Critical wind speed ratio of membrane roof on closed structure with and without geometric
315 nonlinearity.

f=0.1m f=0.2m f=0.4m f=0.6m f=0.8m f=1m f=1.2m f=1.4m

2=0.5 1.00 1.04 1.14 1.29 1.47 1.68 1.90 2.14
A=1 1.00 1.01 1.05 1.11 1.19 1.29 1.40 1.52
A=2 1.00 1.01 1.05 1.11 1.20 1.29 1.40 1.52
316
317

cr

Similarly, the critical wind speed ratioy,

318 cr,L

obtained as shown in Table 2.

of the membrane roof on open structure is

319 Table 2. Critical wind speed ratio of membrane roof on open structure with and without geometric
320 nonlinearity.

f=0.lm  f=0.2m  f=0.4m  f=0.6m  f=0.8m f=1m f=1.2m  f=1.4m
4=0.5 1.00 1.04 1.14 1.29 1.47 1.68 1.90 2.14
A=1 1.00 1.01 1.05 1.11 1.19 1.29 1.40 1.52
A=2 1.00 1.01 1.05 1.11 1.20 1.29 1.40 1.52
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From Table 1 and Table 2, it can be seen that when the cross-wind span ratio is small, the
geometric nonlinearity has a greater impact on the critical wind speed of single-mode
instability of membrane roof, and increases with the increase of vibration amplitude. When the
span ratio is greater than 1, the effect is relatively small. Article 5.3.4 of China's Technical
Regulations for Membrane Structures (CECS 158:2015)[12] stipulates that for integral tensioned
and cable-supported membrane structures, the deformation of the membrane structure should
not be greater than 1/200 of the span when considering the combination of wind load effects. In
this example, the normal displacement is limited to 0.1m, and the critical wind speed ratio is
1.00 when geometric nonlinearity is considered or not. Therefore, under normal wind loads,
the influence of membrane geometric nonlinearity on the aerodynamic stability of roofs can be
neglected. However, under strong wind loads, the deformation of roofs will exceed the norm
limit. At this time, the influence of geometric nonlinearity should be considered.

5. Conclusions

In this paper, the aerodynamic stability of orthotropic rectangular planar membranes on closed
and open structures is studied by mathematical analytic method. The governing equations of
wind-induced nonlinear vibration of tensioned membrane roofs are established by using the theory
of large deflection of membrane and Darumbell's principle.According to Bubnov-Galerkin method,
the governing equations of aerodynamic coupling are transformed into second-order non-linear
differential equations with constant coefficients and their periodic solutions are obtained by using
the improved multi-scale method. By judging the stability of the periodic solutions of the equations,
critical wind speed for single mode instability of the membrane roof considering geometric
nonlinearity is obtained.The influence of geometrical nonlinearity on the critical wind speed of
single-mode aeroelastic instability of membrane material is quantitatively obtained by comparing
the results with those without consideration. The main conclusions can be summarized as follows:

Considering the geometric nonlinearity of membrane vibration, the critical wind speed of
single mode instability of membrane roof increases nonlinearly with the increase of transverse
vibration displacement of membrane.

The critical wind speed of single mode instability with the geometrical nonlinearity of
membrane considerd is larger than that of linear results. It shows that the critical wind speed of
membrane is small when the geometrical nonlinearity of membrane is neglected. For structural
design, it is conservative. When the span along the wind direction is small, the geometrical
nonlinearity has a great influence on the critical wind speed of single mode instability of membrane
roof, and with the amplitude of vibration. When the span ratio is greater than 1, the influence is
relatively small.

Under normal wind loads, the influence of membrane geometric nonlinearity on the
aerodynamic stability of roofs can be neglected. However, under strong wind loads, the
deformation of roofs may exceed the norm limit and reach about 3% of the span, the influence of
geometric nonlinearity should be considered.
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