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Abstract: Causality is the most important topic in the history of Western Science, and since the 7 
beginning of the statistical paradigm, it meaning has been reconceptualized many times. Causality 8 
entered into the realm of multi-causal and statistical scenarios some centuries ago. Despite of 9 
widespread critics, today Deep Learning and Machine Learning advances are not weakening 10 
causality but are creating a new way of finding indirect factors correlations. This process makes 11 
possible us to talk about approximate causality, as well as about a situated causality. 12 
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 15 

1. Causalities in the 21st Century. 16 

In classic Western Philosophies, causality was observed as an obvious observation of the divine 17 
regularities which were ruling Nature. From a dyadic truth perspective, some events were true 18 
while others were false, and those which were true followed strictly the Heaven’s will. That 19 
ontological perspective allowed early Greek philosophers (inspired by Mesopotamian, Egyptian and 20 
Indian scientists) to define causal models of reality with causal relations deciphered from a single 21 
origin, the arche (ἀρχή). Anaximander, Anaximenes, Thales, Plato or Aristotle, among others, 22 
created different models about causality, all of them connected by the same idea: hazard or 23 
nothingness was not possible. Despite those ideas were defended by atomists (who thought on a 24 
Nature with both hazard and void), any trace of them was deleted from researches. On the other 25 
hand, Eastern philosophers departed from the opposite ontological point of view: at the beginning 26 
was the nothingness, and the only true reality is the continuous change of things [1]. For Buddhist 27 
(using a four-valued logic), Hindu, Confucian or Taoist philosophers, causality was a reconstruction 28 
of the human mind, which is also a non-permanent entity. Therefore, the notion of causality is 29 
ontologically determined by situated perspectives about information values [2], which allowed and 30 
fed different and fruitful heuristic approaches to reality [3], [4]. Such situated contexts of thinking 31 
shape the ways by which people perform epistemic and cognitive tasks[5]–[7]. 32 

These ontological variations can be justified and fully understood once we assume the 33 
Duhem-Quine Thesis, that is, that it is impossible to test a scientific hypothesis in isolation, because 34 
an empirical test of the hypothesis requires one or more background assumptions (also called 35 
auxiliary assumptions or auxiliary hypotheses). Therefore, the history of the idea of causality 36 
changes coherently across the geographies and historical periods, entering during late 19th Century 37 
into the realm of statistics and, later in 20th Century, in multi-causal perspectives [8]. The statistical 38 
nature of contemporary causality has been involved into debates between schools, mainly Bayesians 39 
and a broad range of frequentist variations. At the same time, the epistemic thresholds has been 40 
changing, as the recent debate about statistical significance has shown, desacralizing the p-value. 41 
The most recent and detailed academic debate on statistical significance was extremely detailed into 42 
the #1 Supplement of the Volume 73, 209 of the journal The American Satistician, released in March, 43 
20th  2019. But during the last decades of 20th Century and the beginning of the 21st Century, 44 
computational tools have become the backbone of cutting scientific researches [9], [10]. After the 45 
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great advances produced by machine learning techniques (henceforth, ML), several authors have 46 
asked themselves whether ML can contribute to the creation of causal knowledge. We will answer to 47 
this question into next section. 48 

 49 

2.  Deep Learning, Counterfactuals, and Causality 50 

Is in this context, where the statistical analysis rules the study of causal relationships, that we 51 
find the attack to Machine Learning and Deep Learning as no suitable tools for the advance of causal 52 
and scientific knowledge. The most known and debated arguments come from the eminent 53 
statistician Judea Pearl [11], [12], and have been widely accepted. The main idea is that machine 54 
learning do not can create causal knowledge because the skill of managing counterfactuals, and 55 
following his exact words,  [11] page 7: “Our general conclusion is that human-level AI cannot 56 
emerge solely from model-blind learning machines; it requires the symbiotic collaboration of data 57 
and models. Data science is only as much of a science as it facilitates the interpretation of data – a 58 
two-body problem, connecting data to reality.  Data alone are hardly a science, regardless how big 59 
they get and how skillfully they are manipulated”. What he is describing is the well-known problem 60 
of the black box model: we use machines that process very complex amounts of data and provide 61 
some extractions at the end. As has been called, it is a GIGO (Garbage In, Garbage Out) process [13], 62 
[14]. It could be affirmed that GIGO problems are computational versions of Chinese room mental 63 
experiment [15]: the machine can find patterns but without real and detailed causal  meaning. This 64 
is what Pearl means: the blind use of data for establishing statistical correlations instead that of 65 
describing causal mechanisms. But is it true? In a nutshell: not at all. I’ll explain the reasons. 66 

 67 
2.1.Deep Learning is not a data driven but a context driven techology: made by humans for humans. 68 

Most of epistemic criticisms against AI are always repeating the same idea: machines are still 69 
not able to operate like humans do [16], [17]. The idea is always the same: computers are operating 70 
with data using a blind semantic perspective that makes not possible that they understand the causal 71 
connections between data. It is the definition of a black box model [18], [19]. But here happens the 72 
first problem: deep learning (henceforth, DL) is not the result of automated machines creating by 73 
themselves search algorithms and after it, evaluating them as well as their results. DL is designed by 74 
humans, who select the data, evaluate the results and decide the next step into the chain of possible 75 
actions. At epistemic level, is under human evaluation the decision about how to interpret the 76 
validity of DL results, a complex, but still only, technique [20]. But even last trends in AGI design 77 
include causal thinking, as DeepMind team has recently detailed [21], and with explainable 78 
properties. The exponential growth of data and their correlations has been affecting several fields, 79 
especially epidemiology [22], [23]. Initially it can be expressed by the agents of some scientific 80 
community as a great challenge, in the same way that astronomical statistics modified the 81 
Aristotelian-Newtonian idea of physical cause, but with time, the research field accepts new ways of 82 
thinking. Consider also the revolution of computer proofs in mathematics and the debates that these 83 
techniques generated among experts [24], [25].   84 

In that sense, DL is just providing a situated approximation to reality using correlational 85 
coherence parameters designed by the communities that use them. It is beyond the nature of any 86 
kind of machine learning to solve problems only related to human epistemic envisioning: let’s take 87 
the long, unfinished, and even disgusting debates among the experts of different of statistical 88 
schools [8]. And this is true because data do not provide or determine epistemology, in the same 89 
sense that groups of data do not provide the syntax and semantics of the possible organization 90 
systems to which they can be assigned. Any connection between the complex dimensions of any 91 
event expresses a possible epistemic approach, which is a (necessary) working simplification. We 92 
cannot understand the world using the world itself, in the same way that the best map is not a 1:1 93 
scale map, as Borges wrote (1946, On Exactitude in Science): “…In that Empire, the Art of Cartography 94 
attained such Perfection that the map of a single Province occupied the entirety of a City, and the 95 
map of the Empire, the entirety of a Province. In time, those Unconscionable Maps no longer 96 
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satisfied, and the Cartographers Guilds struck a Map of the Empire whose size was that of the 97 
Empire, and which coincided point for point with it. The following Generations, who were not so 98 
fond of the Study of Cartography as their Forebears had been, saw that that vast Map was Useless, 99 
and not without some Pitilessness was it, that they delivered it up to the Inclemencies of Sun and 100 
Winters. In the Deserts of the West, still today, there are Tattered Ruins of that Map, inhabited by 101 
Animals and Beggars; in all the Land there is no other Relic of the Disciplines of Geography” 102 

Then, DL cannot follow a different information processing process, a specific one completely 103 
different from those run by humans. As any other epistemic activity, DL must include different 104 
levels of uncertainties if we want to use it [26]. Uncertainty is a reality for any cognitive system, and 105 
consequently, DL must be prepared to deal with it. Computer vision is a clear example of that set of 106 
problems [27]. Kendall and Gal have even coined new concepts to allow introduce uncertainty into 107 
DL: homocedastic, and heterocedastic uncertainties (both aleatoric) [28]. The way used to integrate 108 
such uncertainties can determine the epistemic model (which is a real cognitive algorithmic 109 
extension of ourselves). For example, Bayesian approach provides an efficient way to avoid 110 
overfitting, allow to work with multi-modal data, and make possible use them in real-time scenarios 111 
(as compared to Monte Carlo approaches) [29]; or even better, some authors are envisioning 112 
Bayesian Deep Learning [30]. Dimensionality is a related question that has also a computational 113 
solution, as Yosuhua Bengio has been exploring during last decades [31]–[33]. 114 

In any case, we cannot escape from the informational formal paradoxes, which were 115 
well-known at logical and mathematical level once Gödel explained them; they just emerge in this 116 
computational scenario, showing that artificial learnability can also be undecidable [34]. Machine 117 
learning is dealing with a rich set of statistical problems, those that even at biological level are 118 
calculated at approximate levels [35]–[37], a heuristics that are being implemented also into 119 
machines. This open range of possibilities, and the existence of mechanisms like informational 120 
selection procedures (induction, deduction, abduction), makes possible to use DL in a controlled but 121 
creative operational level [38]. 122 

 123 
 124 

2.2. Deep learning is already running counterfactual approaches. 125 

 The second big Pearl critics is against DL because of its incapacity of integrating counterfactual 126 
heuristics. First we must affirm that counterfactuals do not warrant with precision any epistemic 127 
model, just add some value (or not). From a classic epistemic point of view, counterfactuals do not 128 
provide a more robust scientific knowledge: a quick look at the last two thousands of both Western 129 
and Estern sciences can give support to this view [4]. Even going beyond, I affirm that counterfactual  130 
can block thinking once it is structurally retaled to a close domain or paradigm of well-established 131 
rules; otherwise is just fiction or an empty mental experiment. Counterfactals are a fundamental 132 
aspect of human reasoning [39]–[42], and their algorithmic integration is a good idea [43]. But at the 133 
same time, due to the underdetermination [44]–[46], counterfactual thinking can express completely 134 
wrong ideas about reality. DL can no have an objective ontology that allows it to design a perfect 135 
epistemological tool: because of the huge complexity of the involved data as well as for the necessary 136 
situatedness of any cognitive system. Uncertainty would not form part of such counterfactual 137 
operationability [47], once it should ascribed to any not-well known but domesticable aspect of 138 
reality; nonetheless, some new ideas do not fit with the whole set of known facts, the current 139 
paradigm , nor the set of new ones. This would position us into a sterile no man’s land, or even block 140 
any sound epistemic movement. But humans are able to deal with it, going even beyond [48]. 141 
Opportunistic blending, and creative innovating are part of our set of most valuable cognitive skills 142 
[49] .  143 

 144 

 145 

2.3. DL is not Magic Algorithmic Thinking (MAT).  146 
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Our third and last analysis of DL characteristics is related to its explainability. Despite of the 147 
evidence that the causal debate is beyond any possible resolution provided by DL, because it 148 
belongs to ontological perspectives that require a different holistic analysis, it is clear that the results 149 
provided my DL must be nor only coherent but also explainable, otherwise we would be in front of a 150 
new algorithmic form of magic thinking. By the same reasons by which DL cannot be just mere a 151 
complex way of curve fitting, it cannot become a fuzzy domain beyond human understanding. Some 152 
attempts are being held to prevent us from this, most of them rules by DARPA: Big Mechanisms [50] 153 
or XAI (eXplainable Artificial Intelligence) [51], [52]. An image from DARPA website: 154 

 155 

 156 
Figure 1. Explanability in DL 157 

 158 
Figure 2. XAI from DARPA 159 

 160 
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Again, these approaches answer to a request: how to adapt new epistemic tools to our cognitive 161 
performative thresholds and characteristics. There is not a bigger revolution from a conceptual 162 
perspective than the ones that happened during Renaissance with the use of telescopes or 163 
microscopes. DL systems are not running by themselves interacting with the world, automatically 164 
selecting the informational events to be studied, or evaluating them in relation to a whole universal 165 
paradigm of semantic values. Humans neither do.  166 

Singularity debates are useful and exploring possible conceptual frameworks and must be held 167 
[53]–[55], but at the same time cannot become fallacious fatalist arguments against current 168 
knowledge. Today, DL is a tool used by experts in order to map new connections between sets of 169 
data. Epistemology is not automated process, despite of minor and naïve attempts to achieve it  170 
[56], [57]. Knowledge is a complex set of explanations related to different systems that is integrated 171 
dynamically by networks of epistemic (human, still) agents who are working with AI tools. 172 
Machines could postulate their own models, true, but the mechanisms to verify or refine them 173 
would not be beyond any mechanism different from the used previously by humans: data do not 174 
express by itself some pure nature, but offers different system properties that need to be classified in 175 
order to obtain knowledge. And this obtaining is somehow a creation based on the epistemic and 176 
body situatedness of the system. 177 

 178 
 179 
 180 

 181 

 182 
 183 
 184 
 185 
 186 
. 187 

 188 
 189 

3. Extending bad and/or good human cognitive skills through DL. 190 

It is beyond any doubt that DL is contributing to improve the knowledge in several areas some 191 
of them very difficult to interpret because of the nature of obtained data, like neuroscience [58]. 192 
These advances are expanding the frontiers of verifiable knowledge beyond classic human 193 
standards. But even in that sense, they are still explainable. Anyhow, are humans who fed up DL 194 
systems with scientific goals, provide data (from which to learn patterns) and define quantitative 195 
metrics (in order to know how close are you getting to success). At the same time, are we sure that is 196 
not our biased way to deal with cognitive processes that mechanism that allows us to be creative? 197 
For such reason, some attempts to reintroduce human biased reasoning into machine learning are 198 
being explored [59]. This re-biasing [60], even replying emotional like reasoning mechanisms [61], 199 
[62].  200 

My suggestion is that after great achievements following classic formal algorithmic approaches, 201 
it now time for DL practitioners to expand horizons looking into the great power of cognitive biases. 202 

For example, machine learning models with human cognitive biases are already capable of 203 
learning from small and biased datasets [63]. This process reminds the role of Student test in relation 204 
to frequentist ideas, always requesting large sets of data until the creation of the t-test, but now in the 205 
context of machine learning. 206 

In [63] the authors developed a method to reduce the inferential gap between human beings 207 
and machines by utilizing cognitive biases. They implemented a human cognitive model into 208 
machine learning algorithms and compared their performance with the currently most popular 209 
methods, naïve Bayes, support vector machine, neural networks, logistic regression, and random 210 
forests. This even could make possible one-shot learning systems [64]. Approximate computing can 211 
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boost the potentiality of DL, diminishing the computational power of the systems as well as adding 212 
new heuristic approaches to information analysis [35], [65]–[67]. 213 

Finally, a completely different type of problems, but also important, are how to reduce the 214 
biased datasets or heuristics we provide to our DL systems [68] as well as how to control the biases 215 
that make us not to interpret DL results properly [69]. Obviously, if there is any malicious value 216 
related to such bias, it must be also controlled [70]. 217 

 218 

4. Causality in DL: the epidemiological case study 219 

Several attempts has been implemented in order to allow causal models in DL, like [71] and the 220 
Structural Causal Model (SCM) (as an abstraction over a specific aspect of the CNN. We also 221 
formulate a method to quantitatively rank the filters of a convolution layer according to their 222 
counterfactual importance), or Temporal Causal Discovery Framework (TCDF, a deep learning 223 
framework that learns a causal graph structure by discovering causal relationships in observational 224 
time series data) by [72]. But my attempt here will be twofold: (1) first, to consider about the value of 225 
“causal data” for epistemic decisions in epidemiology; and (2) second, to look how DL could fit or 226 
not with those causal claims into the epidemiological field. 227 

 228 

4.1.Do causality affects at all epidemiological debates? 229 

According to the field reference [73], MacMahon and Pugh [74]  created the one of the most  230 
frequently used definitions of epidemiology: “Epidemiology is the study of the distribution and 231 
determinants of disease frequency in man”. Note the absence of the term ‘causality’ and, instead, the 232 
use of the one of ‘determinant’. This is the result of the classic prejudices of Hill in his paper of 1965: 233 
“I have no wish, nor the skill, to embark upon philosophical discussion of the meaning of ‘causation’. The ‘cause’ 234 
of illness may be immediate and direct; it may be remote and indirect underlying the observed association. But 235 
with the aims of occupational, and almost synonymous preventive, medicine in mind the decisive question is 236 
where the frequency of the undesirable event B will be influenced by a change in the environmental feature A. 237 
How such a change exerts that influence may call for a great deal of research, However, before deducing 238 
‘causation’ and taking action we shall not invariably have to sit around awaiting the results of the research. The 239 
whole chain may have to be unraveled or a few links may suffice. It will depend upon circumstances.” After 240 
this philosophical epistemic positioning, Hill numbered his 9 general qualitative association factors, 241 
also commonly called “Hill’s criteria” or even, which is frankly sardonic, “Hill’s Criteria of 242 
Causation”. For such epistemic reluctances epidemiologists abandoned the term “causation” and 243 
embraced other terms like “determinant” [75], “determining conditions” [76], or “active agents of  244 
change” [77]. For that reason, recent researches have claimed for a pluralistic approach to such 245 
complex analysis [78]. As a consequence we can see that even in a very narrow specialized field like 246 
epidemiology the meaning of cause is somehow fuzzy. Once medical evidences showed that 247 
causality was not always a mono-causality [22], [79] but, instead, the result of the sum of several 248 
causes/factors/determinants, the necessity of clarifying multi-causality emerged as a first-line 249 
epistemic problem. It was explained as a “web of causation” [80]. Some debates about the logics of 250 
causation and some popperian interpretations were held during two decades [81], [82]. Pearl himself 251 
provided  a graphic way to  adapt human cognitive visual skills to such new epidemiological 252 
multi-causal reasoning [83],  as well do-calculus [84], [85], and directed acyclic graphs (DAGs) are 253 
becoming a fundamental tool [86], [87]. DAGs are commonly related to randomized controlled trials 254 
(RCT) for assessing causality. But RCT are not a Gold Standard beyond any critic [88], [89], because 255 
as [90] affirmed, RCT are often flawed, mostly useless, although clearly indispensable (it is not so 256 
uncommon that the same author claim against classic p-value suggesting a new 0,005, [91]). Krauss 257 
has even defended the impossibility of using RCT without biases [92], although some authors 258 
defend that DAGs can reduce RCT biases [93]. 259 
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But there a real case that can shows us a good example about the weight of causality in real 260 
scientific debates. We will see the debates about the relation between smoke and lung cancer. As 261 
soon as in 1950 were explained the causal connections between smoking and lung cancer [94]. But far 262 
from being accepted, these results were replied by tobacco industry using scientific experimental 263 
regression. Perhaps the most famous generator of silly counterarguments was R.A. Fisher, the most 264 
important frequentist researcher of 20th Century. In 1958 he published a paper in Nature journal  [95] 265 
in which he affirmed that all connections between tobacco smoking and lung cancer were due to a 266 
false correlation. Even more: with the same data could be inferred that “smoking cigarettes was a 267 
cause of considerable prophylactic value in preventing the disease, for the practice of inhaling is rare 268 
among patients with cancer of the lung that with others” (p. 596). Two years later he was saying 269 
similar silly things in a high rated academic journal [96]. He even affirmed that Hill tried to plant 270 
fear into good citizens using propaganda, and entering misleadingly into the thread of 271 
overconfidence. The point is: did have Fisher real epistemic reasons for not to accepting the huge 272 
amount of existing causal evidences against tobacco smoking? No. And we are not affirming the 273 
consequent after collecting more data not available during Fisher life. He has strong causal 274 
evidences but he did not wanted to accept them. Still today, there are evidences that show how 275 
causal connections are field biased, again with tobacco or the new e-cigarettes [97]–[99].  276 

As a section conclusion can be affirmed that causality has strong specialized meanings and can 277 
be studied under a broad range of conceptual tools. The real example of tobacco controversies offers 278 
such long temporal examples. 279 

 280 

4.2.Can DL be of sume utility for the epidemiological debates on causality? 281 

The second part of my argumentation will try to elucidate whether DL can be useful for the 282 
resolution of debates about causality in epidemiological controversies. The answer is easy and clear: 283 
yes. But it is directly related to a specific idea of causality as well as of a demonstration. For example, 284 
can be found a  machine learning approach to enable evidence based oncology practice [100]. Thus, 285 
digital epidemiology is a robust update of previous epidemiological studies [101][102]. The new 286 
possibilities of finding new causal patterns using bigger sets of data is surely the best advantages of 287 
using DL for epidemiological purposes [103]. Besides, such data are the result of integrating  288 
multimodal sources, like visual combined with classic informational [104], but the future with mode 289 
and more data capture devices could integrate smell, taste, movements of agents,...deep 290 
convolutional neural networks can help us, for example, to estimate environmental exposures using 291 
images and other complementary data sources such as cell phone mobility and social media 292 
information. Combining fields such as computer vision and natural language processing, DL can 293 
provide the way to explore new interactions still opaque to us [105], [106]. 294 

Despite of the possible benefits, it is also true that the use of DL in epidemiological analysis has 295 
a dangerous potential of unethicality, as well as formal problems [107], [108]. But again, the 296 
evaluation of involved expert agents will evaluate such difficulties as things to be solved or huge 297 
obstacles for the advancement of the field. 298 

  299 

 300 

5. Conclusion: causal evidence is not a result, but a process. 301 

Author has made an overall reply to main critics to Deep Learning (and machine learning) as a 302 
reliable epistemic tool. Basic arguments of Judea Pearl have been criticized using real examples of 303 
DL, but also making a more general epistemic and philosophical analysis. The systemic nature of 304 
knowledge, also situated and even biased, has been pointed as the fundamental aspect of a new 305 
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algorithmic era for the advance of knowledge using DL tools. If formal systems have structural 306 
dead-ends like incompleteness, the bioinspired path to machine learning and DL becomes a reliable 307 
way [109], [110] to improve, one more time, our algorithmic approach to nature. Finally, thanks to 308 
the short case study of epidemiological debates on causality and their use of DL tools, we’ve seen a 309 
real implementation case of such epistemic mechanism. The advantages of DL for multi-causal 310 
analysis using multi-modal data have been explored as well as some possible critics. 311 

 312 
 313 

 314 
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