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Abstract
The present paper discusses a study of a class of Charlier matrix polynomials and its gen-
eralized analogue. Certain generating matrix functions, recurrence matrix relations, matrix
differential equation, summation formulas and many new results have been discussed for these
matrix polynomials. Weisner’s group theoretic method is used to obtain matrix generating re-
lations for Charlier matrix polynomials and the details of this method were given in this paper.
Finally, we will discuss only briefly the procedure followed.
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1 Introduction and motivation

Carl Charlier [2, 13] introduced the family of scalar Charlier polynomials. The introduction of special
functions is used as an analytical foundation for the majority of problems in mathematical physics it
has been solved exactly and finds broad practical applications. With the advancement of knowledge
in the field of special functions, it has been the approach of past years of research work to search for
new and easy approaches to establish new results and to give easy methods to obtain certain already
unknown, known and new results. This approach is better known as the Lie theoretic method. The
first significant advancement in this direction was made by Weisner [21, 22, 23, 24, 25, 26] who
exhibits the group theoretic significance of generating functions for hypergeometric, Hermite, and
Bessel functions. Then Manocha [8], Manoche and Jain [9], Miller [11, 12] and McBride [10] present
Weisner’s method in a systematic manner and thereby laid its firm foundation. Miller also extends
Weisner’s theory by relating it to what? Recently the matrix analogues of Laguerre and modified
Laguerre matrix polynomials have been considered in [5, 6, 7, 16, 17] for matrices in CN*¥ in a
number of previous papers, see for example [1, 14, 15] and his work references therein [18, 19, 20].
Motivated by the important works mentioned above, in the present paper mainly the group
theoretic approach of Weisner who has been used Weisner devised a method for obtaining generating
matrix relations for Charlier matrix polynomials, which satisfy certain conditions. In Section 2, we
give the definition, many new results and known properties of Charlier matrix polynomials. In
Section 3, we use the representation theory of the Lie algebra method and derive certain generating
matrix relations involving these matrix polynomials by using Weisner’s group theoretic techniques.

1.1 Preliminaries

In this subsection, we review some useful definitions, lemmas and the concepts related to the matrix
functional calculus. Throughout this paper, for a matrix A in C¥N*¥ its spectrum is denoted by
o(A) where o(A) is the set of the eigenvalues of A. The matrices I and 0 will denote the identity

matrix and null matrix in CV*¥ | respectively.
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Definition 1.1. [3, 4] For a matrix A € CN*¥ such that o(A) does not contain 0 or a negative
integer (0(A) NZ~ = () where ) is an empty set), the matrix form of the shifted factorial is defined

by

(A), = { }4’(A+I) (A4 (n—=1)I) =T(A+nT-(A), Zi(l) (1.1)

where T'(A) is an invertible matrix in CV*¥ and I'"!(A) is inverse Gamma matrix function.

(CN><N

For A is an arbitrary matrix of and using (1.1), we have the relations

(At = (A)n(A+ 0Dk = (A)r(A + E)n,

(=1* n! . .
0, k> n.

If Re(u) € o(A) is not an integer and using (1.1), we have the relation

I(I—-A—nDT YT - A) = (-1)"[(A),] 1, (1.3)
where I'(I — A) is an invertible matrix. In view of Eq. (1.1) and (1.3), we observe that

DA+ DT (A= (F— 1)) = (1) (~A)y (1.4

where I'(A — (k — 1)I) is an invertible matrix.

2 Charlier matrix polynomials: Definition and properties
Let us assume that A is a matrix in CV* whose A satisfy the condition —k ¢ o(A), for every
integer k > 0 (0(A) =spectrum of A), A is a complex parameter whose real part is a positive and

let us consider a new generating matrix function which represents the Charlier matrix polynomials
Cn(4; A, a;2) by

oo A
n t t
> =Cu(A; A a;7) at<1 - ) x> OH <1, x#0,a>0,a#1. (2.1)
i Az Az
From (2.1), we obtain a series representation of Charlier matrix polynomials of degree n as
C.(4; )\ a;2) =n! i iF(A + DI (A = (k= 1)) (log(a))" *(\z) . (2.2)
e = El(n — k)!
Theorem 2.1. Charlier matriz polynomials is defined by
C.(4; N\ a;2) = (log(a)™ 2 Fo ( —nl,—A;—; —

1
)\:clog(a)) , Az log(a) # 0. (2.3)

Proof. Using the relations (1.2) and (1.4) in (2.2), we get

n 1 L -
Cu(A X a;) = ) i (=nD)r(=1)" (= A)x(log(a))" " (Az) 7F,
k=0
the representation (2.3) is obtained. O
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Theorem 2.2. The generating matriz function for Charlier matrix polynomials is

t

o0 n —-B
;::0 n— WA\ a;1) = <1 - tlog(a)) 2 Fy (B, —A;—; )\x(l—tlog(a))) ,[tlog(a)| <1
(2.4)

where B is a matriz in CN*N,

Proof. By using the series representation of Charlier matrix polynomials given in (2.2) and (1.2),
we get

1)

M(B)n(—l)k(—z‘l)k(log(a))"k(,\x)ktn

NG
NE
£1:

3
I
<
3
I
<
~
Il
o

(B)nCr(A; X\, a;2) =

{(B)i(B + kI)n(—A)x(log(a)" (Az) 4+

o
Mg

b
kin

3
Il
o
=]

.||
(]

!(B)k(—A)k(log(a))”()\x)—k(l ~ tlog(a))~ BRIk

=
Il

— <1 —t log(a)> - g;) %(B)k(—A)k()\m)_k (ltfog(a)) k,

which gives the desired result. The matrix recurrence relations are also presented in the next
theorem: O

Theorem 2.3. For the Charlier matriz polynomials, the matriz recurrence relations

xdiCn(A; A a;x) +nCrh(A4; A a;2) = nlog(a)Ch_1(A; A, a;2),n > 1, (2.5)

x

mdiCn(A; A a;x) + (A= Axlog(a)l)Ch(4; A, a;x) = —AxChy1(A; N\ a; ) (2.6)
x

and

AzChy1(A; N a;2) + nlog(a)Cp_1(A; N, a;2) + (A — (n + Az log(a))I)Cp(4; N\, a;2) = O,n > 1,

(2.7)
hold.
Proof. Differentiating (2.1) with respect to x, we can write
" d t £\
——C,(4A; N\ a;2) = —Aa' (1 - — . .
Z;)n'd n(Aid aiw) = 305 a( Am) (28)
Multiplying equation (2.8) by (1 — )\tz> and using (2.1), we get
1" d 1 ¢ttt d o t”“
ZE@C”(A;)"G;:C)_,\QUZ s C.(4A; N a;2) = )\ 2 . n(4; X\ a; x).
n=0 n=0
Comparing the coefficient of " yields the matrix differential recurrence relation
d d
)\xQd—Cn(A; A a;x) — nxd—Cn_l(A; A a;x) =nAC,_1(A; N, a; ). (2.9)
x x
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On the other hand, differentiating (2.1) with respect to ¢, we have

P i1 A-T A
AMhaz) = ——at(1 - = 1 AN .
nz:;) n! Cn(4; ) a;2) Ve ( Aa:) +log(a)a ( )\m) (2.10)
Using (2.8) into (2.10) and subtracting
nt" X yn+1
,LZO n!C (A; M a;2) = _xzn'd n(A; X a;z) + log(a >nZ:0 - C.(4; ), a; ).

Comparing the coefficient of ¢, we obtain (2.5).
Multiplying equation (2.5) by Az, using (2.9) and subtracting %Cn(A; A, a; x), we have

I%Cn_l(A; A a;x) + (A= Axlog(a))Cro1(A; N, a;2) = —AxAC,, (A4; )\, a; x). (2.11)

Replacing n by n + 1 in (2.11), we obtain (2.6). From (2.5) and (2.6), we derive the desired pure
matrix recurrence relation (2.7). O

Theorem 2.4. The finite summation for Charlier matrix polynomials is

n

(1 - z)"cn(A; Naz-y)=3 k!(n”i o <— ylof(“)>kcn_k(A; A a; ),

i‘ <1,2#0. (2.12)

k=0
Proof. In (2.1), taking u = 5=, we can write the generating matrix relation

0o A

Z n(As N a;2) = a? <1—u> yx >0, |ul < 1. (2.13)
Let us consider the following equation:

Yyl — ()" Co(A N, asz) = Y L (Ma = 9)"Cal A N asz — ).

n=0 n—o "

Multiplying the both sides of this equation by a~*¥*, replacing n by n — k and using (2.13), we give

> (@ —y) CalAid gz —y) =a MY S ws) Co(A;\, a; 2)
n=0 s n= 0
x© unJrk
=22 G (FMwlog(a)*(Ar)"Cu(A; X s 2)
k!n!
n=0k=0
(oo} n un
— _ 1 k n—k _ A . )
n=0k=0
Comparing the coefficient of ™, the relation is established. O

Corollary 2.1. The Charlier matriz polynomials satisfy

n k
n n!
(1+t)"Cp(A N a;z(1+1)) = kZ:O ool (t log(a)> Ch_r(4; N\ a;2), |t < 1. (2.14)
Proof. Taking —% — ¢ in equation (2.12), we have the desired result. O
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Theorem 2.5. The generating matriz relation for Charlier matrix polynomials is

S A
1 t t t

§ —Cogr(A N )t =at(1——) ColANaz(l——));|—]| <1 )

2} w4 A g z)t” = a ( /\x> ( a;x( /\x)> )\x‘ (2.15)
Proof. If we replace t by ¢ + v in (2.1):

A oo
t+v (t+v)™

t+v _ . .

a (1 e ) = nE:O py C.(4; N a; ). (2.16)
By expanding the binomial theorem (¢ + v)™, replacing n by n + k and simplifying, we can write

= (t4v)" k

nEO n C.(4; ), a;x) ngogok' Crik(A; N a;x)tho"

ii Crir(4A; N a; x)tkv".
n=0 k=0

If we associate the factors depending on v in the left member of (2.16), we get

A A A o]
t+v t v (t+ o)™
t+v _ t v _ E C A: .
“ (1 Az ) “ (1 )\x> @ (1 Ax(1— & )) n! n(4;A,0;2).

Az n=0

By means of (2.1), we can write

A o
. v I Naz(l-

n=0

Therefore, the left member of (2.16) has the expansion in powers of v:

A A oo
t+v<1t;”) at<1)\t> Zv'Cn<A;)\,a;x(1)\t)).
xr xr n: X

n=0
Hence
¢ A oo o ¢
k,n _ t . .
T;Okgo Crik(A; N a;x)t"0" = a <1)\33> nE:O—n! Cn(A,)\,a,x(l )\x)>

Comparing the coefficients of v™ in the above equation, we get the assertion ((2.15) of Theorem

2.5. O
Theorem 2.6. The Charlier matriz polynomials is a solution of second order matriz differential
equation

[xQsz +((1+n—Azlog(a))I + A)zD + nA] C.(A N a;x)=0. (2.17)

Proof. Starting from (2.5) and (2.9), we get
(A - Az 10g(a)[> xDC,, (A; N, a;x) + nAC,(4; N\, a; ) = —nalog(a)DC,—1 (A5 N\, a5 ). (2.18)

Differentiating (2.5) with respect to 2 and multiplying by z, we get
22D?*C,(A; N\, a; 1) + (n 4 1)zDC, (A; N, a; ) = nzlog(a)DC,_1(A; N, a; ). (2.19)

Adding the result to (2.18) and (2.19) gives the second order matrix differential equation for the
Charlier matrix polynomials. O
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Starting from (2.2), we get the another formula of matrix recurrence relation for the Charlier
matrix polynomials

A
ECn(A—I;)\,a;x),CO(A;)\,a;x) =1, (2.20)

and if we take the backward shift operator Ef(A4) = f(A —1I) as

Crr1(A; A ;) =log(a)Cp(A; A, a5 2) —

C.(4; N\ a2) = (log(a)l - /\1AE> Cho1(4; ) a;2)
x

1
— <I — )\ajlog(a)AE> IOg(a)Cn—l(A, )\,(17:7})

which gives (2.20) and we obtain the new explicit representation for Charlier matrix polynomials

Co(A: N, a;2) = (I - @AE) ' ( log(a)) N (2.21)

Expanding the right hand side of the previous expression, using the binomial expansion, yields the
new explicit representation for Charlier matrix polynomials

n

Co(A; ) a;z) = Zk(nl )n! (Mﬁz@)k(log(a))n

=0
-1t 1 () ()

where Q) = I, QW) = AE1 = A, Q®® = (AE)?1 = (AE)(AE)1 = (AE)A = A(A—1I) and in general
QW) = (AE)1 = A(A—-1)...(A— (k- 1I).
Thus, we list the first elements of the Chartier matrix polynomials

(2.22)

Co(A; N a;) = 1 = QY

1)
Ci(4A; N a;2) = % —log(a)I = (A(a) - I> log(a) = <)\9r:(?;g(a) - Q(O)> log(a),

a4 hei2) = ( (ot~ vogay 1) (o5t )—(w%ﬁ&»a—%ﬁi;la)+@(°)>(l°g<“>)2’

Naa) - (AA-DA—2D) | AA-T) A N iesta))
Caldi A0 )‘< Celog@?  JDwlog@)? T e log@ I)(lg( )>

B Q(s) B Q(2) Q(l) o . 3
(e togarr ~*tog@y +roton ~ @) (120 -

Summary of these results are given in the next theorem.

Theorem 2.7. For a matriz A in CN*N | then Chartier matriz polynomials satisfy:

o Forn>1

Crt1(4; 0, a52) =log(a)Cr (A5 N, a;7) — ~—Cpn(A =I5\, a;2), Co(A; N, a52) = 1.

A

Az

o In (2.21) and (2.22) are defined the matriz versions of new explicit representations for Charlier
matriz polynomials.
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3 Linear differential operators

In accordance with the discussion in the preceding section, the partial differential matrix equation
are constructed from (2.17) by replacing n by ya%, D by 8% and C,(A; N\, a;z) by C,,(4A; A, a;2,y) =
Y Cr(4; A a;2):

_xQ(,i;I + ((1 + ya% — Az log(a))l + A>z§c + Ay(jy] C,(A; N a;2,9) = 0. (3.1)
We rewrite (3.1) in the form
_xza—zf + ((1 — Azlog(a))l + A>xa + xyif + Aya} C.(4; N\ a;z,y) =0. (3.2)
| Ox? ox Oyox Oy
Since
L vy ) Oulid aialy"] =L (. 5 ) Cui aia)],

for y # 0, we get

o 0
A. ; n =
L(% axvyay)[cn( P a;x)y"] =0,

if and only if
L d [Ch(A; X =0
z,—,n | [Cn(4; N, a;2)] = 0.

’d:];’

Again using the technique described in detail in section 2, we determine with the aid of (2.5) and
(2.6) the first order linear differential operators for Charlier matrix polynomials I, A, B and C such

that
A|CL (AN a;2)y" | =nCr(4; N, a;2)y", (3.3)
B|Cn(A; X a;2)y" | = nlog(a)Cr1(4; X, a;2)y" (3.4)
and
C|Cn(A; N a;2)y" | = =ACpi1(A; N, a;z)y™ T, (3.5)
where
0
A=y—I .
Ya," (3.6)
x 0 0
B=——71+—1 3.7
y Ox * dy (37)
and
€=y 14 y( 1A Aogla) (3.8)
Yo T\% s ) )

Therefore, the operators I, A, B and C generate a Lie group. From the above commutator relations,
we can state the next theorem.
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Theorem 3.1. The set of linear combinations of the partial differential operators I, A, B and C
forms a Lie algebra.

(¢) [AB]=-B, (i) [A,C]=C, (12)  [B,C] = —Alog(a)L, (3.9)
where 1 stands for the identity operator.

Proof. We find that

ABC, (A; N, a;2,y) = y;y [zaa:cl + ;I] Cn(A: X\ a;2,y).

Hence, on simplification, we have

ABC,(A; ), ) = o (A; ) =29 ¢ ) + 820(/“ )
- n A A3, T vn A Q3T a 9o ~n N AT, .
a; T,y xaa a;x,y y Oz Yy y6y2 Yy
(3.10)
On the other hand, we have
x 0 0 0
BAC, (A; N a;z,y) = —=—1+ —1 |y=—C,(A; \,a;z,y).
(A5 A a5z, y) (yax + 3y )yay (A5 A a52,y)
This is to be simplified as
2 o 82
BAC,(A; A a;2,y) :xmcn(x‘l; A a;z,y) + @Cn(z‘l; A a;z,y) + y@Cn(A; A a;T,y).
(3.11)
Then for aizy ayam7 subtracting (3.11) from (3.10), we get
[A,B|C,(A; X, a;x,y) = (AB — BA)C,,(A; A, a; 7, 7)
0
= 538 Cn(4; N a52,y) — 8nd(A;A,a;oc,y) = —BC,(4;)\, a;7,y).
Thus, we have the required result [A,B] = —B. Similarly, we can proceed to calculate each of the
following results [A, C] and [B, C], which completes the proof theorem. O

Now, we know that the operator 1L given by

1 82 0
LLC, (AN i) = 5 ColAidai o) + (1= Aclog(a)T + 4) 5 Col4id asz.)

d o Ay 0 o
+yWC (A,)\,G,ZL’,ZJ)‘F 8y n(A,/\,a,m,y).

Also, in making the calculation of [B, C], we found that

2

Col(A; N a2 ) + (1 + A — Azlog(a)) 2

0
CBC, (4 M\ a;x,y) =25 %

ox 2
A 0

Cn(Av )‘7 a; x)y) + (7 - )‘log(a))yaicn(Av )\,a;x,y).
T Y

Cn(A; N a;2,y)
2

Ty 0zdy

Hence, we get

11LCn(A; Aa;x,y) — CBC,(A; N, a;2,y) = Mog(a)y--Cn(4; A, a; 1, y).
X

9
Jy
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Therefore, it can be expressed as:

1

—LC, (AN, a52,y) = {CB + Mog(a)A} Co(4; 7, a;2,y),

x
or equivalently,

1

—L =CB+ Alog(a)A;z # 0. (3.12)

x
Now, we show that

1 1 1
[JL, (C} C.(4; N\ ax,y) = (L(C - (C]L> C.(4; N\ a;2,y)
x x x
= ( ((CIB% +A log(a)A> c-C (C]B +A log(a)A> ) Cn.(A; N a;x,y) (3.13)
= <(CIB%(C + Alog(a)AC — CCB — CA log(a)A> C.(4;\ a;2,y).

With the help of (3.9), we simplify AC — CA as follows:

AC-CA=C.
Hence, with the further aid of the commutator relations from (3.9), we get

(C(IB%(C - (CIB%) = (C( — Aog(a)Cp(4; N, a; , y)) = —\log(a)C.
From (3.13), we obtain

1
[]L, c} 0.
x

Thus, we establish that the operator %]L commutes with C. In the same way, we can calculate each

of the following results [iIL, A} =0 and [;]L, IB%} = 0. These results are summarized in the following
theorem. We summarize these results in the following theorem.

Theorem 3.2. Linear differential operators A, B and C defined in (3.5), (3.6) and (3.7) commute
with the operator %]L as follows

(0) [;L,A} —0, (i) BL,B} —0, (i) [im,c} o, (3.14)

where the operator L is as defined in (3.2).
We express the extended form of the group generated by the operators I, A, B and C as follows:

e f(z,y, A) = f(w,ye“,A) (3.15)
b
& (2, y, A) = f(zr(l n y),b+y,A),y £0, (3.16)
and
cC —Acy log(a) cy A cy
e f(z,y, A) =e VW14 =) fla+ey,y,A)iz#0,|—| <1, (3.17)
X X
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where f(z,y, A) is an arbitrary matrix function and a, b and ¢ are arbitrary constants.
From the above relations, we get

A
b
e flay ) = P (140 D) (@ (140) 0k et A iy 20

Cj' <1
(3.18)

3.1 Generating matrix functions derived from the operators

Here, we have determined the new generating matrix relations between Charlier matrix polynomials.
For arbitrary constants b and ¢ the operator e““e’®11L[C,,(4; A, a; 2)y"] will transform solutions of
L into solutions of L; in other words, we have

1 1
eCeBILC, (A; N, a; x,y) = —LeCe?™CL(A; N, a; 2, 1)
x x

if and only if Lu =0
Now it follows from (3.3) that C,(A; A, a; z,y) is a solution of the system

LC,(A; N\ a;z,y) =0 and (A —nl)C,(A;\ a;2,y) =0.

for the matrix function C, (A;\, a;x,y) = y"Cn(A; A\, a;x). Since B and C commute with %L we
have

1 1
eCe’B_L[C(A; N, a; 2)y"] = —LeCeBL[C, (A; X\, a; 2)y"]
x x

Before discussing particular cases (3.18), it is of interest to mention that the operators B and C being
commutative. The above generating matrix relations which yield a good number of a particular
generating relations by attributing different values to a = 0 appears to be new. Therefore, we will
consider the following three cases of the transformed function eCCebE%]L[Cn(A; A a; )y
Casel. b=1,c=0,
Case2. b=0,c=1.
Case 3. bc # 0

Case 1. From (3.16), we know that for an arbitrary matrix function

1
st = (1 D)1 40.4),
Yy
then it follows that
B[CL(A; N, a;2)y"] = (1 + y)nCn (A; A\, a; ac<1 + 1>)
Yy

Thus, we have obtained the generating matrix function which has the expansion:

n 1 " n! e . .
(1 + y) C, (A; )\,a;x(l + y)> = kZ:O m(log(a))ky kCn_k(A, A a;x), (3.19)

If we divide by y™

(1 + ;)ncn (A; )\,a;x(l + ;)) = zn: mjlli)!m(log(a))ky_kCn_k(A; A, @ ).

k=0

Replacing y~! by t, we get the generating matrix relation

n

(1+ t)nCn (A; ANayz(l+ t)) = Z m:l]i)w(log(a))ktkcn_k(A; A\ a; ), (3.20)
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Case 2. From (2.17) for an arbitrary matrix function, we know that

A
eccf(x, y, A) = e~ Aeylog(a) <1 + Cj) f<$ + ey, vy, A).

Therefore, for ¢ = 1, we have
A
C[Cn(A N, a5 2)y"] = e V108l (1 + z> C, (A; \a;x+y, y)

A
_ yne—Ay log(a) (1 T i) C, <A; \a;x+ y) .

If we equate the two expansions of this matrix function, we get

A o0 k

-2
y"e A los(@) (1 + y) C, (A;)\ya;x + y) = E ( k;') Y Crk(Ai N a5 ). (3.21)

x !

k=0
If we divide both members of this equation by y™ and simplify, we obtain the generating matrix
relation:
e~ Mlog(a) (1 L Y AC AXNaz+y) = EOO (0" Chik(A N\ a; ) (3.22)
T n 3 Ny Wy Yy = k! Yy n+k ) 7\y Wy . .

=0

If n = 0, this relation becomes the familiar generating matrix functions

A © _\\k
o~y log(a) (1 + z> Co (A; N\ a;z+ y) = Z ( k)'\) kak(A; A a;x). (3.23)
k=0 '

Case 3. For bc # 0. In order to simplify results we choose ¢ = 1 and b = —é. Then for all finite

values of «, we have bc # 0. For any arbitrary matrix function, then, we have
Cc —1iB C 1 1
eeaf(x7y7A):ef$ 1—— 731_*#4
oy @
A
1 1
= e Mvlosl®) (1 + y) f((x+y> (1 - )y - ,A).
x oy @
Hence, we get

n A
eceféB[Cn(A; A a;z)y"] = <y - 1> e~ vlos(a) (1 + y) C. <A; A a; (@ +y) (1 - 1)) (3.24)
x ay

(67

Separately, we consider the left hand side of (3.24) and we write exponential operators in a series

11
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form so that we have the following relation

eCe™3B[C, (A A, a; 2)y"] = i # ( - ;)kCTB’“[Cn(A; M)y
r,k=0
) gi:o ﬁ ( - i) k ( - /\> BHCo (4 ), 052y
_ ,iz: . ( _ ;)k ( _ /\)TIB%’“[CTL(A; A a; 2)y")
- ki) Zi:o # < - i>k< /\> [n log(a)(n — 1) log(a) ... (n — k + 1) log(a) | B**[Cy, 4 (A; X, a; )y ]
= ;)Zo o= ,TW ( ;)k<log(a)>k ( - A)rch(A; A a;x)y"
-£5 <><><>
(3.25)
Using (3.24) and (3.25), we get
A
()] sloonele)

i zn: le:l —n)k ( B ;> k(log(a)> k < - )‘)Tcn+k(A§ A a;x)y"

k=0 r=0

Finally, we replace y by —t in above equation and simplifying, we obtained the generating matrix
function between Charlier matrix polynomials, which we believe to be new generating function

1\" £\ 1
(t + ) eMtlog(a) (1 — ) C, (A; A a; (x —t) (1 + ))
o x at

T s k
_ZZ D) (loga)) Coik(A; N a; )t

rlklak
k=0r=0

(3.27)

Certain generating matrix relations established in this discussion prove the usefulness of operators
techniques in obtaining the results for the newly considered Charlier matrix polynomials from the
corresponding ones holding the unknown and known Charlier matrix polynomials.

4 Conclusion

A novel approach has been adopted in this work for developing some important properties of Char-
lier matrix polynomials viz recurrence matrix relations, differential recurrence matrix relations and
matrix differential matrix equation. Other important properties of the Charlier matrix polynomials
will be obtained for further research work. Since the Charlier matrix polynomials are significant
from the view point of applications. The Lie algebra method developed in this work can be used in
the investigation of some other Charlier matrix polynomials which play a vital role in Mathematical
Physics.
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