

1 Article

2 Gene expression profiling reveals that PXR activation inhibits hepatic

3 PPAR α activity and decreases FGF21 secretion in male C57Bl6/J mice

4 **Sharon Ann Barretto** ^{1,*}, **Frederic Lasserre** ^{1,*}, **Anne Fougerat** ¹, **Lorraine Smith** ¹,
5 **Tiffany Fougeray** ¹, **Celine Lukowicz** ¹, **Arnaud Polizzi** ¹, **Sarra Smati** ¹, **Marion**
6 **Régnier** ¹, **Claire Naylies** ¹, **Colette Bétoulières** ¹, **Yannick Lippi** ¹, **Hervé Guillou**
7 ¹, **Nicolas Loiseau** ¹, **Laurence Gamet-Payrastre** ¹, **Laila Mselli-Lakhal** ¹ and
8 **Sandrine Ellero-Simatos** ^{1,*}

9 ¹ Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, Toulouse, France;
10 Sharon.barretto@inra.fr (SAB), Frederic.lasserre@inra.fr (FL), anne.fougerat@inra.fr (AF),
11 lorraine.smith@inra.fr (LS), tiffany.fougeray@inra.fr (TF), celine.lukowicz@inra.fr (CL),
12 arnaud.polizzi@inra.fr (AP), sarra.smati@inra.fr (SS), marion.regnier@inra.fr (MR), claire.naylies@inra.fr
13 (CN), Colette.betoulieres@inra.fr (CB), yannick.lippi@inra.fr (YL), herve.guillou@inra.fr (HG),
14 nicolas.loiseau@inra.fr (NL), Laurence.payrastre@inra.fr (LGP), laila.lakhal@inra.fr (LML)

15 * Correspondence: sandrine.ellero-simatos@inra.fr

16 **Abstract:** The pregnane X receptor (PXR) is the main nuclear receptor regulating
17 the expression of xenobiotic metabolizing enzymes and is highly expressed in the
18 liver and intestine. Recent studies have highlighted its additional role in lipid
19 homeostasis, however, the mechanisms of these regulations are not fully
20 elucidated. We investigated the transcriptomic signature of PXR activation in the
21 liver of adult wild-type vs *Pxr*^{-/-} C57Bl6/J male mice treated with the rodent specific
22 ligand pregnenolone 16 α -carbonitrile (PCN). PXR activation increased liver
23 triglyceride accumulation and significantly regulated the expression of 1215 genes
24 mostly xenobiotic metabolizing enzymes. Among the down-regulated genes, we
25 identified a strong peroxisome proliferator-activated receptor α (PPAR α)
26 signature. Comparison of this signature with a list of fasting-induced PPAR α
27 target genes confirmed that PXR activation decreased the expression of more than
28 25 PPAR α target genes, among which the hepatokine fibroblast growth factor 21
29 (*Fgf21*). PXR activation abolished plasmatic levels of FGF21. We provide a
30 comprehensive signature of PXR activation in the liver and identify new PXR
31 target genes that might be involved in the steatogenic effect of PXR. Moreover, we
32 show that PXR activation down-regulates hepatic PPAR α activity and FGF21
33 circulation, which could participate in the pleiotropic role of PXR in energy
34 homeostasis.

35 **Keywords:** nuclear receptors, hepatokines, transcriptomics

37

38 1. Introduction

39 Pregnan X receptor (PXR, systematic name NR1I2) is a member of the nuclear
40 receptor superfamily and is highly expressed in the liver and intestine of mammals
41 [1]. PXR was characterized as a xenosensor that regulates the expression of
42 xenobiotic metabolizing enzymes and transporters, thereby facilitating elimination
43 of xenobiotics and endogenous toxic chemicals such as bile acids [2]. Upon
44 ligand-binding, PXR translocates to the nucleus, heterodimerizes with retinoid X
45 receptor (RXR, NR2B1) and binds to PXR direct repeat 4 (DR-4) response elements
46 (PXRE) that are usually located upstream of target genes. Because of an unusually
47 large and flexible binding pocket, PXR can be activated by a variety of structurally
48 diverse chemicals including pharmaceutical drugs, dietary supplements, herbal
49 medicines, environmental pollutants and endogenous molecules [3]. In line with
50 the role of PXR as a master regulator of xenobiotic metabolism, its first described
51 target gene was cytochrome P450 (CYP) 3A4 in humans [4], which represents 10%
52 of all clinically relevant drug-metabolizing CYPs in the human liver and up to
53 75-85% in the intestine [5] and is responsible for the metabolism of 60% of
54 marketed drugs [6].

55 Besides its original function as part of the detoxification machinery, recent studies
56 have also unveiled functions for PXR in intermediary metabolism. There is an
57 increasing amount of clinical evidence showing that PXR agonists cause
58 hyperglycaemia in humans [7] and pre-clinical work suggesting that PXR regulates
59 hepatic glucose metabolism but there is still no solid understanding of the
60 consequences or of the mechanisms involved. Activated PXR has been shown to
61 repress expression of the gluconeogenic genes glucose-6-phosphatase (G6Pase) and
62 phosphoenopyruvate carboxykinase (PEPCK) [8], and of genes involved in glucose
63 uptake such as GLUT2 and of glucokinase (GCK) [9]. Although there is limited data
64 on the relationship between PXR and fatty liver in humans *in vivo*, many studies
65 have demonstrated that PXR activation also causes hepatic lipid accumulation in
66 human cell models and *in vitro* and *in vivo* mouse models [7,10]. This pro-steatotic
67 effect is thought to result from both activation of lipogenesis and inhibition of
68 β -oxidation [7]. However, the mechanisms by which PXR activation induces
69 perturbations of lipid metabolism are not fully elucidated. Recently, it was shown
70 that activation of intestinal PXR signaling induced dyslipidemia and intestinal
71 cholesterol accumulation [11], while activation of hepatic PXR signaling was
72 sufficient to promote hypercholesterolemia and hepatic lipid accumulation [12].

73 Here, we aimed to gain insights into the mechanisms of PXR-induced hepatic
74 triglyceride accumulation and performed a transcriptomic comparison of the
75 hepatic gene profiles of WT vs. *Pxr*^{-/-} male mice treated with the rodent specific PXR
76 ligand pregnenolone 16 α -carbonitrile (PCN). As expected, we observed that PCN
77 treatment induced hepatic steatosis. We unraveled several previously unknown
78 PXR target genes involved in liver lipid accumulation and discovered a very robust
79 PPAR α signature amongst the PXR down-regulated target genes. The PXR-induced
80 decrease in PPAR α activity included the regulation of the hepatokine FGF21, a

81 liver-derived hormone with major endocrine roles [13]. This cross-talk between
 82 PXR and PPAR α in the regulation of FGF21 may contribute to endocrine disruption
 83 by xenobiotics acting as ligands for PXR.

84 2. Results

85 2.1. Effect of PXR activation on physiological parameters and liver lipids

86 We investigated the effect of PXR activation by its pharmacological ligand PCN in
 87 WT and *Pxr*^{-/-} male mice. PCN treatment did not affect body weight but increased
 88 relative liver mass in a PXR-dependent way. In the liver, PXR activation
 89 significantly increased cholesterol esters and triglyceride levels (Figure 1A). In the
 90 plasma, PXR activation increased alanine transaminase and decreased total
 91 cholesterol levels but did not impact free fatty acids or triglycerides (Figure 1B).

101 **Figure 1.** Effect of PCN treatment on liver parameters (a) and plasma biochemistry (b). Data are
 102 shown as mean \pm SEM of n=5-6 per group. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.005 for PCN effect using 2-way
 103 ANOVA and Tukey's post-tests. \$p \leq 0.05 for genotype effect.

104 2.2 Effects of PXR activation on the hepatic transcriptome

105 Using microarrays, we obtained global transcriptional profiles. Principal
 106 component analysis (PCA) first illustrated that PCN treatment significantly
 107 impacted the hepatic transcriptome (Figure 2A). The discrimination of WT PCN vs.
 108 WT Cont seems stronger than that of the *Pxr*^{-/-} PCN vs. *Pxr*^{-/-} Cont, confirming, as
 109 expected, a significant PXR-dependent transcriptional effect of PCN.

110 We next sought to decipher the biological functions affected by PXR activation. We
 111 used linear models and considered genes to be significantly regulated with a
 112 fold-change > 1.5 and a FDR < 0.05 . PCN treatment significantly up-regulated the
 113 expression of 1258 genes in WT animals, and of 333 genes in *Pxr*^{-/-} mice (Figure 2C).

114 Using the 1029 “prototypical” PXR target genes (those that were up-regulated only
115 in WT animals), we conducted a pathway enrichment analysis, which revealed 7
116 functional clusters significantly enriched (Figure 2D and Supplementary Table 2)
117 with genes involved in cell cycle, cell division and mitosis, glutathione metabolism,
118 cytochromes P450, lipid metabolism, chemotaxis and positive regulation of
119 inflammatory response. Figure 2E confirms these results by illustrating the
120 fold-changes of the top 30 most upregulated genes. These results first confirmed the
121 well-described influence of PXR activation on hepatic xenobiotic metabolizing
122 enzymes, mainly those from the Cyp3 family. Supplementary Table 3 provides the
123 full description of the impact of PCN treatment on all xenobiotic metabolizing
124 enzymes. Induction of 2 of the most well described PXR targets, *Cyp2c55* and
125 *Cyp3a11* were further confirmed using RT-qPCR (Figure 2B). Interestingly, the
126 “lipid metabolism” pathway was also highly significantly enriched upon PXR
127 activation and, among the 30 genes with the highest fold-change, the patatin-like
128 phospholipase domain containing 3 (*Pnpla3*), the thyroid hormone-responsive spot
129 14 (*Thrsp* or *Spot14*), and the growth/differentiation factor 15 (*Gdf15*) belonged to
130 this pathway. Induction of *Gdf15* was also confirmed by RT-qPCR (Figure 2B).

131 We next investigated the effect of PCN on gene down-regulation. PCN treatment
132 significantly decreased the expression of 186 genes in a PXR-dependent manner
133 (Figure 2F). GO analyses revealed that these genes were involved in lipid metabolic
134 process, biological rhythms, transforming growth factor- β (TGF β) signaling
135 pathway, glucose metabolism and cytochromes P450 (Figure 2G). The 30 genes with
136 the highest fold-changes are illustrated in Figure 2H. Interestingly, among these 30
137 genes, 5 (namely *Fgf21*, *Cyp4a10*, *Cyp4a31*, *Acot1* and *Plin4*) are well-described target
138 genes of PPAR α , a key hepatic transcriptional regulator involved in lipid
139 homeostasis.

Figure 3. Comparison between PXR and PPAR α target genes. (a&d) Venn diagrams representing the number of genes up- (a) or down- (d) regulated upon fasting in *Pparα*^{+/+} vs. *Pparα*^{-/-} mice. (b&e) Venn diagrams representing the number of genes regulated upon PPAR α (red) or PXR (blue) activation. (c&f) Fold-changes for the genes that are shared in the previous Venn diagrams.

2.4 Regulation of FGF21

Using RT-qPCR analyses, we confirmed that PXR activation down-regulated *Pparα* and its target genes expression (Figure 4A), among which *Fgf21*. FGF21 is a recently described hepatokine with systemic metabolic effects [16]. We measured plasmatic FGF21 and confirmed that circulating FGF21 was decreased upon PCN treatment, since its levels were not detectable anymore in WT-treated mice (Figure 4B). Surprisingly, PXR deletion also influenced FGF21 level since *Pxr*^{-/-} mice also showed no detectable levels of circulating FGF21.

186

187 **Figure 4.** Impact of PXR activation on hepatic PPAR α activity. Gene expression in the liver (a)
 188 derived from the microarray and from complementary qPCR experiments. (b) Plasma levels of
 189 FGF21. Data are mean \pm SEM of n=5-6 per group. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.005 for PCN effect, #p \leq 0.05
 190 for genotype effect using 2-way ANOVA and Tukey's post-tests. ND: not determined (under the
 191 limit of detection).

192 3. Discussion

193 The liver is one of the major organs involved in energy production. Hepatic lipid
 194 metabolism plays a crucial role during fasting and/or prolonged exercise. Upon
 195 lowering of blood glucose, the liver increases glucose production by augmenting
 196 gluconeogenesis and glycogenolysis to maintain blood glucose levels; increases
 197 fatty acid oxidation and ketogenesis to provide extra-hepatic tissues with ketone
 198 bodies; and decreases lipogenesis to attenuate triglyceride storage. These processes
 199 are under tight transcriptional control and, in response to hormones such as
 200 glucagon and glucocorticoids, many transcription factors cooperate to regulate
 201 various genes involved in metabolic pathways aimed at restoring homeostasis [17].
 202 Among those, hepatic PPAR α has been well described as crucial for this adaptation.
 203 However, recent data have highlighted that other nuclear receptors, such as the aryl
 204 H receptor (AhR), the constitutive androstane receptor (CAR) and PXR, which were
 205 historically described as xenobiotic sensors, can also interact with the
 206 hormone-responsive transcription factors to regulate the liver metabolic processes
 207 [18].

208 Here, we investigated the transcriptomic effects of a pharmacological activation of
 209 PXR. The expression of PXR was not described as highly circadian, however, its
 210 activity, as measured by the expression of its prototypical target gene *Cyp3a11*, has
 211 been shown to be influenced by the time of the day, and is highest as ZT6 [19].

212 Therefore, we decided to investigate the effects of PXR activation at ZT6, a time at
213 which mice were in a physiological semi-fasted state.

214 Several studies have already investigated the hepatic signature of PXR activation *in*
215 *vivo* [20-22] or *in vitro* [23]. However, most of these studies focused on the effect of
216 PXR activation on xenobiotic metabolizing enzymes. Here, we confirm that
217 regulation of xenobiotic metabolism is one of PXR's most potent functions in the
218 hepatocytes (Figure 2; Supplementary Table 3). However, our gene enrichment
219 analyses also revealed that lipid metabolism was among the top-dysregulated
220 pathways upon PXR activation, considering both the up-regulated, as well as the
221 down-regulated genes. Among the up-regulated genes, we observed that PXR
222 activation increased the expression of several genes that correlates with lipogenesis
223 such as the patatin-like phospholipase domain containing 3 (*Pnpla3*) and the
224 thyroid hormone-responsive spot 14 (*Thrsp* or *Spot14*). Spot14 was first identified as
225 a thyroid-responsive gene and is known to transduce hormone- and
226 nutrient-related signals to genes involved in lipogenesis [24]. Regulation of SPOT14
227 by PXR was previously described in human hepatocytes [25] and led to increased
228 fatty acid synthase (FASN) expression and triglyceride accumulation. The PNPLA3
229 protein has lipase activity towards triglycerides in hepatocytes and a
230 loss-of-function polymorphism of this gene has been shown to be strongly
231 associated with nonalcoholic fatty liver disease [26]. However, to our knowledge,
232 the regulation of *Pnpla3* expression by PXR has not been previously described.
233 Among the lipid-metabolic-related genes, we also observed that the expression of
234 the growth/differentiation factor 15 (*Gdf15*), also known as MIC-1, was increased by
235 a factor of 4 upon PCN treatment, in a PXR-dependent way. GDF15 is a distant
236 member of the transforming growth factor- β (TGF- β) superfamily that is considered
237 as a crucial hormone in regulating lipid and carbohydrate metabolism. In animal
238 models, overexpression of GDF15 leads to a lean phenotype and improvements of
239 metabolic parameters by increasing the expression of key thermogenic and lipolytic
240 genes in brown and white adipose tissue [27]. Hepatic and circulating GDF15 levels
241 were also increased in animals with blunted β -oxidation (*Cpt2^{hep-/-}* mice) to maintain
242 systemic energy homeostasis upon fasting [28]. Whether the observed increase in
243 *Gdf15* mRNA upon PCN treatment results from a direct regulation of *Gdf15* by PXR
244 or represents a secondary adaptation to decreased β -oxidation remains to be
245 determined. In both cases, regulation of GDF15 levels upon PXR activation might
246 be of physiological relevance since GDF15 has been implicated in a wide variety of
247 biological functions including control of food intake and body weight [29].

248 Among the genes that were down-regulated upon PXR activation, we observed a
249 very consistent PPAR α -like signature, with the decreased expression of many *Cyp4*
250 genes, which are highly sensitive PPAR α target genes [14,15]. These results coincide
251 with previous findings in which PCN decreased the hepatic expression of *Ppara*,
252 *Cyp4a10* and *Cyp4a14* [21]. Neonatal exposure to a single dose of PCN also
253 persistently down-regulated *Cyp4a* expression and decreased PPAR α binding to

254 the Cyp4a gene loci in adult mice [20]. By comparing the list of genes
255 down-regulated upon PXR activation to a list of genes up-regulated upon PPAR α
256 activation, we here extend these previous findings and demonstrate that the
257 inhibition of PPAR α activity by PXR affects more than the expression of Cyp4
258 genes. For example, the PXR-PPAR α interaction probably inhibited the expression
259 of the acetyl-Coenzyme A acyltransferase 1B (*Acaa1b*), of the acyl-coA thioesterase 3
260 (*Acot3*), of *Krt23* and *Rab30*, of the rate limiting enzyme in ketogenesis
261 3-hydroxy-3-methylglutaryl-CoenzymeA synthase 2 (*Hmgcs2*) and of the
262 hepatokine *Fgf21*, all of which are well-described PPAR α targets [14]. Using a
263 similar approach in human primary hepatocytes treated with the hPXR ligand
264 rifampicin and the hPPAR α ligand WY14643, Kandel et al. had previously shown
265 that more than 14 genes were responsive to both WY14643 (up-regulated) and to
266 rifampicin (down-regulated), among which *ACAA2*, *CYP4A11* and *HMGCS2* [23],
267 therefore suggesting the human relevance of our results.

268 FGF21 is predominantly produced in the liver [30] and exerts pleiotropic effects on
269 the body to maintain overall metabolic homeostasis. FGF21 metabolic benefits
270 range from reducing body weight to alleviating hyperglycaemia and insulin
271 resistance and improvement of lipid profiles [16]. Although PXR is mainly
272 expressed in the liver and in the intestine, and not in adipose tissue [31], deletion of
273 *Pxr* appear to influence insulin sensitivity also in white adipose tissue and in the
274 muscle [32], serum leptin and adiponectin levels [33] and PXR activation regulates
275 gene expression in both white and brown adipose tissues [34]. This suggests
276 systemic effects of *Pxr* deletion and activation for which mechanisms have not been
277 described yet. White and brown adipose tissues are among the most described
278 target tissues of FGF21 [16]. Whether FGF21 could be an effector of the systemic
279 effects of PXR remains an open question. Here, we demonstrate that both
280 PXR-activation and PXR deletion decrease the hepatic *Fgf21* mRNA levels and
281 completely abolished the circulating FGF21 levels.

282 Perspectives and limitations of our study include the use of male mice only, while
283 PXR activation has been shown to impact both xenobiotic metabolizing enzymes
284 and glucose and lipid metabolism in a sexually-dimorphic way [35,36]. Therefore, it
285 would be interesting to decipher whether the signature of PXR activation described
286 in our study is also valid in female mice. Second, our study focused on short-term
287 changes. An important remaining question is to determine the effect of multiple
288 weak PXR agonists such as those present in our environment on the observed
289 regulations, especially on FGF21 secretion.

290 Altogether, our results present an additional resource of transcriptome analyses
291 that confirm and extend previous findings on the genes involved in the
292 pro-steatotic effects of PXR. As previously observed in various models [7], we
293 confirm that the observed pro-steatotic effect of PXR activation probably results
294 from both induction of lipogenesis and repression of β -oxidation, and further

295 highlight that this repression is certainly mediated, as least in part, through
296 inhibition of PPAR α . We also provide new hypotheses regarding the yet poorly
297 explored pleiotropic effects of PXR that could result from regulation of recently
298 discovered hepatokines such as GDF15 and/or FGF21. More studies are needed to
299 confirm the physiological relevance of these regulations. Our findings might have
300 clinical and public health relevance given the wide range of drugs and
301 environmental xenobiotics that have been described as PXR ligands and potential
302 endocrine disruptors.

303 **4. Materials and Methods**

304 Animals

305 *In vivo* studies were performed in a conventional laboratory animal room following
306 the European Union guidelines for laboratory animal use and care. The current
307 project was approved by an independent ethics committee (CEEA-86
308 Toxcométhique) under the authorization number 2018062810452910). The animals
309 were treated humanely with due consideration to the alleviation of distress and
310 discomfort. All mice were housed at 21-23°C on a 12-hour light (ZT0-ZT12) 12-hour
311 dark (ZT12-ZT24) cycle and allowed free access to the diet (Teklad Global 18%
312 Protein Rodent Diet) and tap water. ZT stands for Zeitgeber time; ZT0 is defined as
313 the time when the lights are turned on. Twelve six-week old wild-type (WT)
314 C57BL/6J male mice were purchased from Charles River and 12 *Pxr*^{-/-} animals
315 (backcrossed on the C57Bl/6J background) were engineered in Pr. Meyer's
316 laboratory [37] and are bred for 10y in our animal facility. Mice were acclimatized
317 for two weeks, then randomly allocated to the different experimental groups:
318 wild-type control (WT CONT, n=6), wild-type PCN-treated (WT PCN, n=6), *Pxr*^{-/-}
319 control (*Pxr*^{-/-} CONT, n=6), *Pxr*^{-/-} PCN-treated (*Pxr*^{-/-} PCN, n=6). PCN-treated mice
320 received a daily intraperitoneal injection of PCN (100 mg/kg) in corn oil for 4 days
321 while control mice received corn oil only. Mice were killed at ZT6, 6 hours after the
322 last PCN injection.

323 Blood and tissue samples

324 Body weight was monitored at the beginning and at the end of experimental period.
325 Prior to sacrifice, the submandibular vein was lanced, and blood was collected into
326 lithium heparin-coated tubes (BD Microtainer). Plasma was prepared by
327 centrifugation (1500 g, 10 min, 4°C) and stored at -80°C. At sacrifice, the liver, the
328 three parts of the small intestine (duodenum, jejunum, ileum), and the colon were
329 removed and snap-frozen in liquid nitrogen and stored at -80°C until used for RNA
330 extraction.

331 Gene expression

332 Total RNA was extracted with TRIzol reagent (Invitrogen). Gene expression
333 profiles were obtained at the GeT-TRIX facility (Génopole Toulouse
334 Midi-Pyrénées, France) using Sureprint G3 Mouse GE v2 microarrays (8x60K;
335 design 074,809; Agilent technologies) following the manufacturer's instructions
336 Microarray data and experimental details are available in NCBI's Gene Expression
337 Omnibus [38] and are accessible through GEO Series accession numbers
338 GSE123804. For real-time quantitative polymerase chain reaction (qPCR), 2 µg RNA
339 samples were reverse-transcribed using the High-Capacity cDNA Reverse
340 Transcription Kit (Applied Biosystems). Supplementary Table 1 presents the SYBR
341 Green assay primers. Amplifications were performed using an ABI Prism 7300
342 Real-Time PCR System (Applied Biosystems). qPCR data were normalised to
343 TATA-box-binding protein mRNA levels, and analyzed with LinRegPCR.v2015.3.

344 **Plasma analysis**

345 Alanine transaminase (ALT), total cholesterol, triglycerides and free fatty acids
346 (FFA) were determined using a Pentra 400 biochemical analyzer (Anexplo facility,
347 Toulouse, France). Plasma FGF21 was assayed using the rat/mouse FGF21 ELISA
348 kit (EMD Millipore) following the manufacturer's instructions.

349 **Liver neutral lipid analysis**

350 Tissue samples were homogenized in methanol/5 mM EGTA (2:1, v/v); then, lipids
351 (corresponding to an equivalent of 2 mg tissue) were extracted according to the
352 Bligh and Dyer method [39] with chloroform/methanol/water (2.5:2.5:2.1, v/v/v), in
353 the presence of the following internal standards: glyceryl trinonadecanoate,
354 stigmasterol, and cholesteryl heptadecanoate (Sigma). Triglycerides, free
355 cholesterol, and cholesterol esters were analysed with gas-liquid chromatography
356 on a Focus Thermo Electron system equipped with a Zebron-1 Phenomenex fused-
357 silica capillary column (5 m, 0.25 mm i.d., 0.25 mm film thickness). Oven
358 temperature was programmed to increase from 200 to 350 °C at 5 °C/min, and the
359 carrier gas was hydrogen (0.5 bar). Injector and detector temperatures were 315 °C
360 and 345 °C respectively.

361 **Statistical analysis**

362 Microarray data were processed using R (<http://www.r-project.org>) and
363 Bioconductor packages (www.bioconductor.org, v 3.0, Gentleman, Carey et al.
364 2004). Raw data (median signal intensity) were filtered, log2 transformed, corrected
365 for batch effects (microarray washing bath) and normalized using CrossNorm
366 method [40]. Normalized data were first analysed using Matlab (v2014.8). Principal
367 component analysis was performed using an in-house function. Linear model was
368 fitted using the limma lmFit function [41]. Pair-wise comparisons between
369 biological conditions were applied using specific contrasts. A correction for False
370 multiple testing was applied using Benjamini-Hochberg procedure for False

371 Discovery Rate (FDR). Probes with $FDR \leq 0.05$ and $|fold-change| > 1.5$ were
372 considered to be differentially expressed between conditions. Gene-annotation
373 enrichment analysis and functional annotation clustering were evaluated using
374 DAVID [42]. For non- microarray data, differential effects were analyzed by
375 analysis of variance followed by Tukey's post-hoc tests. A p-value <0.05 was
376 considered significant.

377 **Author Contributions:** Conceptualization, H.G and S.E.S.; methodology, S.A.B, F.L.A, S.S, C.L, T.F.; software,
378 Y.L.; formal analysis, S.A.B, Y.L. and S.E.S. ; investigation, S.A.B, F.L. M.R., A.P. writing—original draft
379 preparation, S.A.B, S.E.S.; writing—review and editing, A.F., C.L., H.G and S.E.S.; supervision, H.G, L.G.P,
380 L.M.L, N.L and S.E.S.; project administration, H.G, L.G.P, L.M.L, N.L and S.E.S.; funding acquisition, H.G,
381 L.G.P, L.M.L, N.L and S.E.S.

382 **Funding:** S.A.B. is supported by a PhD grant from Région Occitanie and INRA AlimH department. This work
383 was supported by grants from Agence Nationale de la Recherche (ANR), Fond Européen de Développement
384 Régional (FEDER) and Région Occitanie. SES is supported by a Joint Programming Initiative (JPI) grant Fatmal.

385 **Acknowledgments:** We thank all members of the EZOP staff for their careful help with this project. We thank
386 the staff from the Genotoul: Anexplo, Get-TriX and Metatoul-Lipidomic facilities. Pxr-/- mice are a generous gift
387 from Pr Steven Kliewer (University of Texas Southwestern Medical School, Dallas, TX, USA). Colony founders
388 were kindly provided by Pr Urs A Meyer (Biozentrum, University of Basel, Basel, Switzerland).

389 **Conflicts of Interest:** "The authors declare no conflict of interest."

390 Abbreviations

ACAA	acetyl-Coenzyme A acyltransferase
Acot	acyl-coA thioesterase
AhR	aryl H receptor
CAR	cytochrome P450
Cpt	carnitine palmitoyltransferase
CYP	constitutive androstane receptor
DR4	direct repeat 4
FASN	fatty acid synthase
FDR	false discovery rate
FGF21	fibroblast growth factor 21
G6Pase	glucose-6-phosphatase
GDF15	growth/differentiation factor 15
GCK	glucokinase
GO	gene ontology
GLUT2	glucose transporter 2
HMGCS	3-hydroxy-3-methylglutaryl-CoenzymeA synthase
hPPAR α	Human PPAR α
hPXR	human PXR
Krt23	keratin 23
PXR	pregnane X receptor
PXRE	pregnane X receptor response elements
PCA	principal component analysis

PCN	pregnenolone 16 α -carbonitrile
PEPCK	phosphoenopyruvate carboxykinase
PNPLA3	patatin-like phospholipase domain containing 3
PPAR α	peroxisome proliferator-activated receptor α
Rab30	ras-related protein rab-30
RT-qPCR	quantitative reverse transcription PCR
RXR	retinoid X receptor
SPOT14	thyroid hormone-responsive spot 14
TGF β	transforming growth factor- β
Thrsp	thyroid hormone-responsive spot 14
WT	wild-type
ZT	Zeitgeber time

391

392 **References**

393 1. Bookout, A. L.; Jeong, Y.; Downes, M.; Yu, R. T.; Evans, R. M.; Mangelsdorf, D. J. Anatomical profiling of
394 nuclear receptor expression reveals a hierarchical transcriptional network. *Cell* **2006**, *126*, 789–799.

395 2. Kliewer, S. A.; Moore, J. T.; Wade, L.; Staudinger, J. L.; Watson, M. A.; Jones, S. A.; McKee, D. D.; Oliver, B. B.;
396 Willson, T. M.; Zetterström, R. H.; Perlmann, T.; Lehmann, J. M. An orphan nuclear receptor activated by
397 pregnanes defines a novel steroid signaling pathway. *Cell* **1998**, *92*, 73–82.

398 3. Hernandez, J. P.; Mota, L. C.; Baldwin, W. S. Activation of CAR and PXR by Dietary, Environmental and
399 Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. *Curr
400 Pharmacogenomics Person Med* **2009**, *7*, 81–105.

401 4. Guengerich, F. P. Cytochrome P-450 3A4: regulation and role in drug metabolism. *Annu Rev Pharmacol Toxicol*
402 **1999**, *39*, 1–17.

403 5. Drozdzik, M.; Busch, D.; Lapczuk, J.; Müller, J.; Ostrowski, M.; Kurzawski, M.; Oswald, S. Protein Abundance
404 of Clinically Relevant Drug-Metabolizing Enzymes in the Human Liver and Intestine: A Comparative Analysis
405 in Paired Tissue Specimens. *Clinical Pharmacology & Therapeutics* **2018**, *104*, 515–524.

406 6. Yu, J.; Petrie, I. D.; Levy, R. H.; Ragueneau-Majlessi, I. Mechanisms and Clinical Significance of
407 Pharmacokinetic-based Drug-drug Interactions with Drugs Approved by the U.S. Food and Drug
408 Administration in 2017. *Drug Metab. Dispos.* **2018**, dmd.118.084905.

409 7. Hakkola, J.; Rysä, J.; Hukkanen, J. Regulation of hepatic energy metabolism by the nuclear receptor PXR.
410 *Biochim Biophys Acta* **2016**.

411 8. Kodama, S.; Koike, C.; Negishi, M.; Yamamoto, Y. Nuclear receptors CAR and PXR cross talk with FOXO1 to
412 regulate genes that encode drug-metabolizing and gluconeogenic enzymes. *Mol. Cell. Biol.* **2004**, *24*, 7931–7940.

413 9. Rysä, J.; Buler, M.; Savolainen, M. J.; Ruskoaho, H.; Hakkola, J.; Hukkanen, J. Pregnane X receptor agonists
414 impair postprandial glucose tolerance. *Clinical Pharmacology & Therapeutics* **2013**, *93*, 556–563.

415 10. Bitter, A.; Rümmele, P.; Klein, K.; Kandel, B. A.; Rieger, J. K.; Nüssler, A. K.; Zanger, U. M.; Trauner, M.;
416 Schwab, M.; Burk, O. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by
417 distinct lipogenic mechanisms. *Arch. Toxicol.* **2015**, *89*, 2089–2103.

418 11. Meng, Z.; Gwag, T.; Sui, Y.; Park, S.-H.; Zhou, X.; Zhou, C. The atypical antipsychotic quetiapine induces
419 hyperlipidemia by activating intestinal PXR signaling. *JCI Insight* **2019**, *4*, 1.

420 12. Gwag, T.; Meng, Z.; Sui, Y.; Helsley, R. N.; Park, S.-H.; Wang, S.; Greenberg, R. N.; Zhou, C. Non-nucleoside
421 reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. *J
422 Hepatol* **2019**, *70*, 930–940.

423 13. Kliewer, S. A.; Mangelsdorf, D. J. A Dozen Years of Discovery: Insights into the Physiology and
424 Pharmacology of FGF21. *Cell Metab* **2019**, *29*, 246–253.

425 14. Régnier, M.; Polizzi, A.; Lippi, Y.; Fouché, E.; Michel, G.; Lukowicz, C.; Smati, S.; Marrot, A.; Lasserre, F.;
426 Naylies, C.; Batut, A.; Viars, F.; Bertrand-Michel, J.; Postic, C.; Loiseau, N.; Wahli, W.; Guillou, H.; Montagner,
427 A. Insights into the role of hepatocyte PPAR α activity in response to fasting. *Mol. Cell. Endocrinol.* **2017**.

428 15. Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.;
429 Lukowicz, C.; Benhamed, F.; Iroz, A.; Bertrand-Michel, J.; Saati, Al, T.; Cano, P.; Mselli-Lakhal, L.; Mithieux, G.;
430 Rajas, F.; Lagarrigue, S.; Pineau, T.; Loiseau, N.; Postic, C.; Langin, D.; Wahli, W.; Guillou, H. Liver PPAR α is
431 crucial for whole-body fatty acid homeostasis and is protective against NAFLD. *Gut* **2016**, *65*, 1202–1214.

432 16. BonDurant, L. D.; Potthoff, M. J. Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic
433 Homeostasis. *Annual Review of Nutrition* **2018**, *38*, 173–196.

434 17. Goldstein, I.; Hager, G. L. Transcriptional and Chromatin Regulation during Fasting – The Genomic Era.
435 *Trends in Endocrinology & Metabolism* **2015**, *26*, 699–710.

436 18. Konno, Y.; Negishi, M.; Kodama, S. The roles of nuclear receptors CAR and PXR in hepatic energy
437 metabolism. *Drug Metab. Pharmacokinet.* **2008**, *23*, 8–13.

438 19. Montagner, A.; Korecka, A.; Polizzi, A.; Lippi, Y.; Blum, Y.; Canlet, C.; Tremblay-Franco, M.; Gautier-Stein,
439 A.; Burcelin, R.; Yen, Y.-C.; Je, H. S.; Maha, A.-A.; Mithieux, G.; Arulampalam, V.; Lagarrigue, S.; Guillou, H.;
440 Pettersson, S.; Wahli, W. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived
441 signals. *Sci Rep* **2016**, *6*, 20127.

442 20. Li, C. Y.; Cheng, S. L.; Bammler, T. K.; Cui, J. Y. Editor's Highlight: Neonatal Activation of the
443 Xenobiotic-Sensors PXR and CAR Results in Acute and Persistent Down-regulation of PPAR α -Signaling in
444 Mouse Liver. *Toxicol Sci* **2016**, *153*, 282–302.

445 21. Cui, J. Y.; Klaassen, C. D. RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the
446 mouse liver transcriptome. *Biochim Biophys Acta* **2016**.

447 22. Nagahori, H.; Nakamura, K.; Sumida, K.; Ito, S.; Ohtsuki, S. Combining Genomics To Identify the Pathways
448 of Post-Transcriptional Nongenotoxic Signaling and Energy Homeostasis in Livers of Rats Treated with the
449 Pregnan X Receptor Agonist, Pregnenolone Carbonitrile. *Journal of proteome research* **2017**, *16*, 3634–3645.

450 23. Kandel, B. A.; Thomas, M.; Winter, S.; Damm, G.; Seehofer, D.; Burk, O.; Schwab, M.; Zanger, U. M.
451 Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPAR α in
452 primary human hepatocytes. *Biochim Biophys Acta* **2016**.

453 24. LaFave, L. T.; Augustin, L. B.; Mariash, C. N. S14: insights from knockout mice. *Endocrinology* **2006**, *147*,
454 4044–4047.

455 25. Moreau, A.; Téruel, C.; Beylot, M.; Albalea, V.; Tamasi, V.; Umbdenstock, T.; Parmentier, Y.; Sa-Cunha, A.;
456 Suc, B.; Fabre, J.-M.; Navarro, F.; Ramos, J.; Meyer, U.; Maurel, P.; Vilarem, M.-J.; Pascussi, J. M. A novel
457 pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. *Hepatology* **2009**, *49*, 2068–2079.

458 26. Dai, G.; Liu, P.; Li, X.; Zhou, X.; He, S. Association between PNPLA3 rs738409 polymorphism and
459 nonalcoholic fatty liver disease (NAFLD) susceptibility and severity: A meta-analysis. *Medicine (Baltimore)* **2019**,
460 98, e14324.

461 27. Chrysovergis, K.; Wang, X.; Kosak, J.; Lee, S.-H.; Kim, J. S.; Foley, J. F.; Travlos, G.; Singh, S.; Baek, S. J.; Eling,
462 T. E. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. *Int J*

463 *Obes (Lond)* **2014**, *38*, 1555–1564.

464 28. Lee, J.; Choi, J.; Scafidi, S.; Wolfgang, M. J. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism
465 during Starvation. *Cell Rep* **2016**, *16*, 201–212.

466 29. Mullican, S. E.; Lin-Schmidt, X.; Chin, C.-N.; Chavez, J. A.; Furman, J. L.; Armstrong, A. A.; Beck, S. C.;
467 South, V. J.; Dinh, T. Q.; Cash-Mason, T. D.; Cavanaugh, C. R.; Nelson, S.; Huang, C.; Hunter, M. J.; Rangwala, S.
468 M. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. *Nat
469 Med* **2017**, *23*, 1150–1157.

470 30. Markan, K. R.; Naber, M. C.; Ameka, M. K.; Anderegg, M. D.; Mangelsdorf, D. J.; Kliewer, S. A.;
471 Mohammadi, M.; Pothoff, M. J. Circulating FGF21 is liver derived and enhances glucose uptake during
472 refeeding and overfeeding. *Diabetes* **2014**, *63*, 4057–4063.

473 31. Ellero-Simatos, S.; Chakhtoura, G.; Barreau, C.; Langouët, S.; Benelli, C.; Penicaud, L.; Beaune, P.; de
474 Waziers, I. Xenobiotic-metabolizing cytochromes p450 in human white adipose tissue: expression and
475 induction. *Drug Metab. Dispos.* **2010**, *38*, 679–686.

476 32. He, J.; Gao, J.; Xu, M.; Ren, S.; Stefanovic-Racic, M.; O'Doherty, R. M.; Xie, W. PXR ablation alleviates
477 diet-induced and genetic obesity and insulin resistance in mice. *Diabetes* **2013**, *62*, 1876–1887.

478 33. Spruiell, K.; Richardson, R. M.; Cullen, J. M.; Awumey, E. M.; Gonzalez, F. J.; Gyamfi, M. A. Role of pregnane
479 X receptor in obesity and glucose homeostasis in male mice. *The Journal of Biological Chemistry* **2014**, *289*,
480 3244–3261.

481 34. Ma, Y.; Liu, D. Activation of pregnane X receptor by pregnenolone 16 α -carbonitrile prevents high-fat
482 diet-induced obesity in AKR/J mice. *PLoS ONE* **2012**, *7*, e38734.

483 35. Lu, Y.-F.; Jin, T.; Xu, Y.; Zhang, D.; Wu, Q.; Zhang, Y.-K. J.; Liu, J. Sex differences in the circadian variation of
484 cytochrome p450 genes and corresponding nuclear receptors in mouse liver. *Chronobiol. Int.* **2013**, *30*, 1135–1143.

485 36. Spruiell, K.; Gyamfi, A. A.; Yeyeodu, S. T.; Richardson, R. M.; Gonzalez, F. J.; Gyamfi, M. A. Pregnan X
486 Receptor-Humanized Mice Recapitulate Gender Differences in Ethanol Metabolism but Not Hepatotoxicity. *J
487 Pharmacol Exp Ther* **2015**, *354*, 459–470.

488 37. Staudinger, J. L.; Goodwin, B.; Jones, S. A.; Hawkins-Brown, D.; MacKenzie, K. I.; LaTour, A.; Liu, Y.;
489 Klaassen, C. D.; Brown, K. K.; Reinhard, J.; Willson, T. M.; Koller, B. H.; Kliewer, S. A. The nuclear receptor PXR
490 is a lithocholic acid sensor that protects against liver toxicity. *Proc Natl Acad Sci USA* **2001**, *98*, 3369–3374.

491 38. Edgar, R.; Domrachev, M.; Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization
492 array data repository. *Nucleic Acids Res* **2002**, *30*, 207–210.

493 39. Bligh, E. G.; Dyer, W. J. A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION.
494 *Canadian Journal of Biochemistry and Physiology* **2011**, *37*, 911–917.

495 40. Cheng, L.; Lo, L.-Y.; Tang, N. L. S.; Wang, D.; Leung, K.-S. CrossNorm: a novel normalization strategy for
496 microarray data in cancers. *Sci Rep* **2016**, *6*, 18898.

497 41. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray
498 experiments. *Stat Appl Genet Mol Biol* **2004**, *3*, Article3–25.

499 42. Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Bioinformatics enrichment tools: paths toward the
500 comprehensive functional analysis of large gene lists. *Nucleic Acids Res* **2009**, *37*, 1–13.

501