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Abstract: Sleep postures monitoring systems in the hospital aim at transforming sensing signals
into quantitative data to characterize the sleep behaviors of the patient. However, a home-care
sleep posture monitoring system needs to be user friendly. In this paper, we present iSleePost - a
user-friendly home-care intelligent sleep posture monitoring system. We address the labor-intensive
labeling issue of traditional machine learning approaches in the training phase. Our proposed mobile
health (mHealth) system leverages the communications and computation capabilities of mobile
phones for provisioning a continuous sleep posture monitoring service. Our experiments show that
iSleePost can achieve 90 percent accuracy in recognizing sleep postures. More importantly, iSleePost
demonstrates that an easily-wear wrist sensor can accurately quantify sleep postures.
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1. Introduction

Sleep is one of the most important daily activities. A night of poor quality sleep can make a person
feel fatigue on the next day. Long-term sleep disorders will even induce a range of health problems [1].
It has been reported that sleep duration is a risk factor of cardiovascular disease [2]. Recent studies
also reveal the relation between poor sleep quality and diabetes [3], hypertension [4] and depression
[5]. Besides sleep duration, sleep habits are another indicator of sleep quality[8,26]. Sleep postures
are the habit which can cause some health problems. For example, obstructive sleep apnea (OSA) can
cause breath pauses during sleep. Various research works have been reported to prevent OSA through
complicated system design [9,10]. In fact, this can be achieved by a simple sleep posture monitoring
method [11,12]. Sleep study has attracted a lot of attention.

Hence, sleep research centers have become an important institution in hospitals. Taipei Medical
University, Shuang Ho Hospital established the first Sleep Research Center in Taiwan. Unlike patients
of other traditional diseases, the patients of this center sleep overnight in a sleep monitoring room
(as shown in Figure 1). During overnight sleep, multiple sensors are attached to the patient to collect
biological data, including electroencephalography (EEG), electrocardiography (ECG), blood pressure,
sleep postures, and so on.
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Figure 1. Sleep monitoring room in the sleep center. The patients suffer from sleep disease are closely
monitored in this room during sleep.

Most current sleep monitoring devices are complex and inconvenient. They also disturb the
patient’s sleep quality. One important monitoring device of a current sleep monitoring system is
actually attached to the patient’s chest as shown in Figure 2. This chest device has an inertial
measurement sensor for monitoring patients’” movements. The sensed data from this device are
recorded and further analyzed to estimate sleep postures and sleep quality. This chest-worn device
needs to be attached to the patient’s chest, resulting in considerable sleep disturbance. Moreover, a
patient definitely feels more comfortable to sleep in his/her own home than in the center of a hospital.
As a result, a more comfortable monitoring device is a desirable feature for the sleep disorder treatment
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Figure 2. The attached device on the patient’s chest for monitoring body movement. The dimension of
the device makes it a major disturbance during sleep.

To this end, we have developed a novel wrist-worn sleep posture monitoring system. Current
commercial wristband products, such as MI Band, Garmin Smart watch and Apple Watch, can not
recognize sleep postures. Although some studies are focusing on sleep posture monitoring, their data
are generated from labor intensive labeling, which is not quite practical.

In this paper, we propose a wrist-worn sleep posture quantification system, called iSleePost.
During the training phase, iSleePost uses two accelerometers. The care recipient wears one
accelerometer on his/her chest for automatic label collection. The other one is worn on the wrist for
collecting motion data. Based on a sliding window approach, iSleePost processes the wrist-sensor data
to obtain the features of a body’s motions. iSleePost maps these features to current positions based on
the chest accelerometer sensor. We built iSleePost testbed with physical accelerometers, phone and
server to test the feasibility of the proposed idea. Our experimental results demonstrated that iSleePost
can recognize four sleep postures: supine, stomach, right side and left side[27], as shown in Figure 3.
Two machine learning algorithms are applied for sleep posture prediction in our experiments. Our
results show that iSleePost can achieve 90 percent overall accuracy in sleep posture prediction. The
design concept of iSleePost sheds the light of quantifying human sleep postures in the future.
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Figure 3. Four common sleep postures for iSleepPost to recognize. (a)prone, (b)left side, (c)right side
and (d)supine [27].

The rest of this paper is organized as follows. The related works are discussed in Section 2. The
system model is described in Section 3. Our data processing framework is presented in Section 4. The
learning algorithms for iSleepPost system are discussed in Section 5. Numerical results on collected
data are reported in Section 6. The future applications are discussed in Section 7. Finally, we give our
concluding remarks in Section 8.

2. Related Works

In this section, we give a brief survey of the existing sleep posture monitoring research, which
can be categorized into two kinds: contact-body class and non-contact body class. In the contact-body
class, the equipment deployed to monitor care recipient has contact with a care recipient’s body. In
the non-contact body class, the equipment does not contact the recipient’s body. The monitoring
equipment used in each work is briefly introduced. Moreover, the data processing framework of the
works and their results are described and summarized.

2.1. Non-contact body class

In the non-contact class, the sleep posture monitoring system using the non-contact body device
can improve the comfort level of the care recipient during sleep. However, one disadvantage of this
method is that the monitoring of the postures is easily confused with other objects, such as blankets or
clothes. In addition, the recognition result of non-contact body devices will be affected by the position
and angle of the monitoring equipment. Therefore, such systems are usually not portable and require
sophisticated deployment processes.

Most of the research in this category adopts a surveillance camera to monitor care recipients. A
video camera or image recording device is set up to continuously record image of care recipients. An
image taken from the camera is processed in real time using an image recognition-based algorithm
to obtain a sleep posture [17]. Besides, vision-based approaches, depth cameras were adopted for
monitoring sleep postures. In [18,19], depth camera were used to capture the a 3D image of sleep. By
analyzing the depth data, the system can recognize multiple sleep postures.

Research effort through non-camera-based equipment was proposed to monitor human activities.
Wi-Fi is one of the most popular signals for activity monitoring [7]. The authors of [6] deployed a
pair of Wi-Fi transceivers and capture the channel state information to monitor the respiration and
movements of sleeping subjects. Such a system requires considerable effort in deployment. The
position and angle of the equipment need to follow strict instructions to avoid interference. In addition,
due to changes in the environment, a complete model training process is required after deployment.
As a result, the aforementioned difficulties make them almost impossible to use at home.

2.2. Contact body class

The contact body class is a more direct approach to monitor sleep postures. Thus, most current
sleep posture monitoring systems belong to this category. To clearly introduce these works, we further
categorize them into two sub-categories: non-wearable and wearable. On one hand, a non-wearable
subclass, such as a pressure mattress type sleep posture monitoring system, is characterized in that
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the care recipient does not have to wear any equipment. On the other hand, wearable sub-class is
characterized by the fact that the care recipients need to wear a monitoring device.

2.2.1. Non-wearable sub-class

The non-wearable approach for monitoring sleep posture uses a pressure mat as the monitoring
equipment. A pressure mat is a mattress or mattress topping which has dozens of pressure sensors
embedded beneath so that the distribution of the subject’s weight on the mat can be measured. A lot
of research adopted pressure mat as their primary monitoring equipment for sleep posture recognition.
In [20], the authors extracted 55 types of features from the raw data, which are collected from pressure
mat, and then applied 4 classification algorithms for sleep posture estimation. In [21], the authors
developed a sleep posture recognition algorithm by using limbs’ characteristics. Furthermore, [22]
adopted hydraulic sensors to substitute pressure sensors for improving the convenience of the sleep
monitoring system. [23] adopted a single piezoelectric sensor to measure the ballistocardiogram signas,
and further to estimate sleep postures. Last but not least, [24] combined pressure mat and infrared
array sensors to obtain sleep postures.

2.2.2. Wearable sub-class

In this sub-class, care recipients need to wear a monitoring device on their bodies. Obviously, this
approach can provide more accurate results than other methods. However, one of the disadvantages of
this method is that wearing the device can affect the quality of sleep of the subject. In [16], the authors
placed an accelerometer on the chest of the care recipient and collected data from the sensor. During
the sleep of a care recipient, his/her actual postures are recorded by the camera. The authors applied
a linear discriminant algorithm to train a posture recognition model. The model is then applied to
real-time sleep posture monitoring. A commercial product for sleep posture monitoring with chest
sensor device is actually on the market now [15]. This product exploits a disposable accelerometer,
which can be worn on the chest to monitor sleep postures.

In general, the wearable sub-class is not a comfortable approach for the care recipient because
sensors worn on the body may limit their activities and cause problems. However, the inconvenience
can be reduced by changing the location of the sensor. In [28], they placed a tilt sensor on the subject’s
wrist, and recorded the sleep posture and the data of sensor. Needless to say, wearing a sensor on
his/her wrist is more comfortable than wearing it on the chest. After collecting the data for ten nights,
they analyzed the data. The result shows there exist a certain relationship between the body postures
and the sensor tilt.

Despite the increasing popularity of sleep research, it is rarely seen that a healthy sleep posture
monitoring system can simultaneously achieve the goals of high accuracy, low deployment cost,
and high sleep quality. More importantly, most current methods require a labor-intensive data
collection process. In this paper, we propose an innovative sleep posture monitoring system based on a
wrist-worn device, which has the advantages of low deployment cost, high precision, and user-friendly
sensor placement design.

3. System Architecture

Figure 4 shows the architecture of our considered sleep posture monitoring system. Now we
describe the hardware components and the communication methods between these components.


https://doi.org/10.20944/preprints201907.0060.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2019 d0i:10.20944/preprints201907.0060.v1

50f16

<N (11118

<N (1118
|11

CLOUD PLATFORM

Figure 4. The system architecture of iSleePost, consisting of two wearable accelerometer sensors with
BLE chip, a smartphone, and a personal computer connected to the Internet.

3.1. Hardware

The hardware of our proposed system can be divided into three layers: sensing layer, data
collecting layer, and cloud layer. Devices with different computing capabilities are adopted to meet the
needs of each layers.

3.1.1. Sensing layer

In the sensing layer, two inertial sensors are applied for sensing the motions of different body
parts. These sensors should be small and light enough to reduce the disturbance. Also, they should
be energy efficient, thereby reducing the frequency of battery replacement. In order to meet these
requirements, we adopt Koala as the sensing device for this layer [29]. Koala is an inertial sensor
which has been successfully applied for body motion monitoring, such as gait detection [30]. Koala
is capable to detect and record physical motions, ranged from -2 G to 2 G in X, Y and Z directions.
Moreover, a Bluetooth low energy (BLE) chip is attached on Koala to transmit the data with low energy
consumption. The specification of Koala reports that their sampling rate is tunable, which can be set to
a low frequency for long operation time.

3.1.2. Data collecting layer

The role of data collection layer is to collect and preprocess the raw data from the sensing layer
and then send them to the designated server through the Internet. This layer plays an important role
in our system. It transform the amount of raw data into a smaller feature data, which relieves the
communications load on the Internet. Also, the device of this layer should be portable to be used at
home. Hence, smartphones are the perfect candidate for the data collection layer.

3.1.3. Cloud layer

On the other end of the Internet, we need to deploy a powerful device to train models and predict
sleep postures for a group of care recipient. We used a personal computer equipped with Intel i7
processor as the server in the cloud layer in our experimental system.

3.2. Communications

Most of the devices in our system are wirelessly connected for making the system portable.
Depending on the capability of devices, different communication methods are considered. To reduce
the energy consumption of data transmission between the sensing layer and the data collecting layer,
Bluetooth Low Energy (BLE) protocol is adopted and implemented in our system. BLE is a newly
announced standard for reducing energy consumption in data exchange between Bluetooth devices.
As for the communication between the data collecting layer and the cloud layer, the transmitted data
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can be sent to the Internet via either Wi-Fi or cellular network from smartphones. Hence, the developed
sleep monitoring system can be operated in many environments.

In conclusion, the hardware components of the propsoed iSleepPost system include two wearable
accelerometer sensor device with Bluetooth communication function, a smart phone, and a personal
computer connected to the Internet.

4. Data Processing Framework

We designed a two-phase framework for sleep posture monitoring. The first is a training phase,
one sensor is attached to the chest and the other sensor is strapped to the wrist. After the sleep posture
model finishes learning, the monitoring phase is initiated, and only the wrist sensor is needed. The
changes in architecture between two phases are shown in Figure 5.

Training Stage Estimating Stage

Sensor2(Wrist)

Sensor1(Chest) fll Sensor2(Wrist)
...
v
Cloud Server
Cloud Server

Sleeping Posture

- < | <!
|

Figure 5. The two operation phases for iSleePost monitoring system: 1) Training phase, 2) monitoring
phase. In the training phase, both chest and wrist sensors are required. In the monitoring phase, only
wrist sensor is required.

We have designed data pipelines to process the raw sensor data in a timely fashion. We will
introduce the data pipelines and the deployment of elements in this section. The overview of data
processing framework is shown in Figure 6. The flow chart in the figure shows the processing pipelines.
The boxes represent the processing elements and their goals. Above the flow chart are the devices
on which the elements are implemented. The processing elements are distributed across the system
to reduce network traffic. The arrows indicate the directions of data flows in the framework. At the
beginning of the flow are two data collecting sensors. These two sensors are placed on the chest and
wrist, which are called chest sensor and wrist sensor hereafter. The sensed data of the chest and wrist
sensors are processed in two different ways and presented by the upper half and the lower half in the

flow chart.
Sensors Phone Server
Acceleration Preprocessing Feature
Sensor(Wrist) Extraction
Raw Data > Model Training
Collection ‘Sliding Window Mean .
Algorithm.

or
Feature Feature ‘Support Vector
Extraction Extraction / o)

-
Moan Determine Sleep
Posture.

Preprocessing

Siing Window

Figure 6. Overview of the data processing framework. The flow chart represents the pipelines of
processing data. The device icons above the flow chart shows the device in which the processing
elements takes place.

The chest sensor data flow is only in used when the system is in training phase. During the
training phase, the sensor data from two accelerometers are gathered simultaneously and processed to
learn the posture model. The actual posture can be estimated based on the chest sensor data, while the
wrist sensor data can provide the features of wrist positions. In the monitoring phase, we estimate the
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postures in real-time based on the learned posture model and the features of the wrist sensor data. In
this case, the data flow from the chest sensor will not be used.

The sensed data gathered from the chest and wrist sensors are processed by different methods,
which are discussed next.

4.1. Chest Sensor

The orientation of a tightly tied chest sensor can represent the body position, which is the standard
method for obtaining sleep posture in hospitals nowadays. Hence, the chest sensor data are used as
the ground truth to train and assess the system. The detail of processing chest sensor data is presented
in the followings and the flow chart is shown in Figure 8.

6 = arctan(y, x) 1)

x! cosf sinf) [x
= 2
<y’> (— sin® cos 9) (y) @
e  Step 1: Calibration

The system will first collect the raw inertial data to calibrate the axes of the sensor. The care
recipient is requested to stand or sit straight to identify the angles of the chest sensor. A rotation
matrix will be calculated according to (1) and (2) for transforming the data into a base which the
X axis is perpendicular to the ground and the Y axis is parallel to the ground. After that, all the
data from chest sensor will be rotated based on the rotation matrix. The effect of the calibration
step is shown in Figure 7.

e  Step 2.1: Noise Removal
The noise will be removed by the following cleaning process in the system. The process calculates
the variance of data within a sliding window, and then set it as a threshold. The data which
contain values less than the threshold are removed for noise cleaning.

e  Step 2.2: Feature extraction
After the noise is removed, the system calculates the mean of the rest of the data within the sliding
window to obtain features of each axes.

e  Step 3: Differentiate Standing or Lying Position
The dominating axis is decided by comparing the magnitude of the feature of each axis. If Y or Z
is the dominating axis, it indicates that a care recipient is in the lying position.

e  Step 4: Recognize Sleep Posture
According to the positive or the negative of the three axes. Sleep postures are estimated based on
the values of Y axis and Z axis, as shown in Table 1.

GROUND

Figure 7. The effect of the rotation matrix. The sensor data will be calibrated into a new X axis which is
perpendicular to the ground and a new Y axis which is parallel to the ground.
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Figure 8. The full data processing flow for chest sensor data. The data in each steps are visualized for a
better understanding of our preocess.

Table 1. Decision manner.

| Dominating Axis | +/- | Body Posture |
‘ | Positive | LeftLateral |
‘ Y | Negative | Right Lateral |
‘ ‘ Positive ‘ Prone ‘
‘ z | Negative | Supine |

4.2. Wrist Sensor

The processing of wrist sensor data aims at obtaining the characteristic of wrist movement. The
proposed sleep posture monitoring system will segment the data by sliding window. Then calculate
the mean of wrist sensor data in each window, which is also called the feature data of wrist position in
this paper.

The collected raw data from wrist sensor are recorded in the form of
{timestamp, valuel, value2,value3} , where the timestamp is in milliseconds and the value is
floating point. The three values represent the detected acceleration in three axis, which are X, Y and
Z axis. We denote these values with x; ;, where t is the timestamps and j € {x,y,z} denotes the
axis. We let x; = {x¢y, Xty, Xt} to denote a raw data record. Therefore, the entire raw data D can be
represented as:

D= {Xfl,th,th...XT},
where T denotes the last timestamp in the whole dataset D. Then, we group the raw data into
N = |T/windowsize| frames, a frame of data is denoted by

f = {x;}, windowsize x (i — 1) < t < windowsize x i,

where i € [1,N] is the frame index. In other words, a frame is a collection of raw data in the time
duration- windowsize, and the frames are parts of the whole dataset. The windowsize was set to 1,000
in our system.
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After segmenting the raw data into blocks, we need to obtain the features of each block, namely,
to obtain the characteristic of wrist movement, and learn the model for predicting sleep postures. We
denote the mean of the j-th axis of i-th frame as y;: , where

1 .
‘u; — n—l th,j/ th,]' c fl.

The feature set S for learning the model is {ytx, py, p:} , which are the means of each axis. We
denote the feature set as X' = {y}, pj, pi}, whichis the combination of feature from each axis.
Then, we form the feature data matrix X by concatenating all the frame features. Thus, the feature data
is present as:

XZ
X:

XN
Let Y be the posture label of the feature data X/, where Y! €

{Stand, Supine, Right Lateral, Left Lateral, Prone}. The sleep posture labels are referred to as
the target labels or classes. The labels can form a label column:

YZ
Y =

Y.N
Finally, the feature data and the corresponding target labels are obtained for model learning.

5. Learning Algorithms

From the chest sensor data, the target classes of sleep postures are obtained. The features of the
model training are extracted from the wrist sensor data. Combining the target class and the extracted
features, we can form the training data of the learning algorithm for identifying sleep postures. Figure
9 shows the training process of sleep postures. In this paper, two classification algorithms are tested
for posture monitoring: Support Vector Machine and Random Forest. Both algorithms will be briefly
introduced in this section, and then evaluated in the experiment section.

5.1. Random Forest (RF)

The random forest algorithm is used to train the sleep posture model for the proposed monitoring
system [31]. Random forest is an ensemble learning method, consisting of many decision tree classifiers.
Each decision trees is trained by a randomly selected subset of the training data, which equals the
random sampling method with replacement. When constructing the decision tree in RF, the split
criterion is decided based on a random selected feature set S. The randomness in the training process
can decrease the variance of a RF model. When it comes to the monitoring phase, the features are fed
to each decision tree in the forest, and each tree will return a predictive result. The result which is
returned by a majority of decision trees represents the predictive result if the entire forest.

The selection of training sets in RF is random, so the accuracy of the trained model varies. In our
experiment, we test the RF model multiple times to obtain the range of the accuracy.

5.2. Support Vector Machine (SVM)

SVM is a classifier that classifies data by separating two classes with a hyperplane. The classifier
tends to maximize the margin between different classes. The feature space of the data will be mapped


https://doi.org/10.20944/preprints201907.0060.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2019

10 of 16

into a higher dimension so that the data could be linearly separated. In both training and testing phase,
a similarity function is needed for determining the similarity between data. The similarity function
can be implemented by kernel functions. The kernel function should be selected depending on the
insight of data.

Because SVM is a binary classifier, it can only classify two classes. However, the multiple classes
classification of SVM can be achieved by the one-against-one (OAO) and one-against-all (OAA)
approaches[32]. We adopt the OAA for model training. The OAA method will build |Yi| SVM models.
The training process considers the feature data as the first class if they belong to the Y"-th class. The
new class label for the i-th feature data is denoted by Yi. The considered method is defined as

®)

gi_ L oifyi=Y
—1, otherwise

The main idea for training a linear SVM is finding a hyperplane which can create the largest
margin between two classes. We first set the normal vector of the hyperplane as W and the offset of
the hyperplane as b, Thus, the constrains for each classes are formulated as follows:

+1-¢& V:Yi=+1
—14¢ V:Yi=-1
& >0 Vi (4)

ICYrW-X' +b
+b

>
w- X <

The formula enforce the hyperplane to separate the two classes and to have at least 1 unit margin
to the data. The term ¢; relax the margin constrain , which allows a few data to have shorter distance
to the hyperplane. We can find the hyperplane that maximize the margin of two classes and separate
out most of the data by solving the Lagrangian dual problem

rCl  SVMPOAA .

N 1N N . o
— 1
i = En 3 L i)
i=1 i=1j=1

N A,

Z AiYE=

i=1

0<A; <CVi ©)
where ~ = {)q Ay e /\N} and C is a penalty constant. K (X!, X7) is a kernel function. We use the
radial basis function in our system

iy = X =¥
K(X', X)) =e 2,y>0 (6)

where 7 is a parameter in RBF kernel function. The optimization problem in (5) can be solved by
sequential minimal optimization [33]. Finally, the remaining work is to establish the decision rules
for classifying multiple class data. In an OAA-SVM model which is built for class Yh, the predictive
result is decided by the sign of the output of formula. For instance, if we have non-labeled data Z, the
classification process is shown in 7.

N .
1C(2) = sign{ (L AwiK(X', 2)) + 1)

@)

B Yh lifc(z):/r+/r
ClaSS(Z) - {Other , lf C(Z) —_r_r

d0i:10.20944/preprints201907.0060.v1
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However, there are |Yi] SVM models build in the system, and each model only considers one
class. Therefore, the classifying result will be made by the voting results of each model. A vector of
size ‘Yi‘ is constructed and initialized for counting votes. The test data Z are input into every model.
If the result from the Y’ model is Y?, the vote for Y* will be increased by one; otherwise, the votes for
all other class will be increased by one. After the voting is done, the class with the majority of votes
will be the output result.

Raw data
from sensors  chest d.

Figure 9. Model training process in the system. The training data and the label data are collected by
the smartphone, and then sent to the server for training personal model for posture prediction.

6. Experimental Results

6.1. Experiment Settings

We implemented the proposed system by using an Android phone and Koala sensors, as shown in
Figure 10. The server is implemented by Python, and with the package Scikit-learn [34]. The datasets
used for evaluating the system are introduced in the following:

@Lc

LG Ofez

Figure 10. Required hardware in the sleep posture monitoring system. One the left is an Android
smartphone, on the right are two wearable sensors.

e  Training Dataset (Labeled Data 1): The model training dataset is collected from both chest and
wrist sensors. The dataset of each person is obtained from the following two scenarios:

- Lying with the aforementioned four sleep postures and sitting on the bed for 3 minutes.
- Changing two sleep postures 10 times.

o  Testing Dataset (Labeled Data 2): The testing dataset is collected in an independent two minutes
trial. All postures are done by the subject. Also, the ground truth is recorded during the trail. In
other words, both sensors are worn during the collecting phase of testing data.

6.2. Results

By comparing the estimated postures of the model and the ground truth recorded from the chest
data, the result can be obtained and reported with confusion matrix (CM). Multiple classification
models are selected and tested. We discuss the key observations in the following section.

6.2.1. Sleep Posture Monitoring With SVM

The SVM with linear kernel and the OAA approach was adopted. Figure 11 shows the CM of
the result. The vertical axis presents the true label of the data, and the horizontal axis presents the
estimated label of the data. The accuracy with respect to postures is shown in Figure 12, the accuracy
for the prone posture is much lower than the others. This is because the linear SVM cannot establish
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an arbitrary decision boundary in data. In other words, the data of prone posture cannot be linearly
separated from others.

Figure 12. CM with normalized for the SVM. linear kernel.

6.2.2. Sleep Posture Monitoring With RF

A parameter of training random forest model is the number of decision trees, which specifies
how many decision tree will be constructed in the model. To decide this number, we split the training
dataset (Labeled data 1) into two parts: one for training the model with a specific number of trees, and
the other for validating the accuracy of this setting. The proportion for splitting the data we adopted is
two thirds for training and one third for validation. Our system trains the models with tree number
from one to fifty, and pick the one with the best accuracy to be the posture classifying model. This
procedure can prevent the trained model from overfitting. Table 13 shows the accuracy result of four
sleep postures as well as for an upright (standing) position. One can observe that the accuracy is
over 90% except for the stomach sleep posture. A further experiment is performed to test how the
randomness in RF affects the accuracy. We had done the training and testing phases for a hundred
trials, and then analyze the collected results from each trial. The accuracy for each posture are shown
by a box diagram in Fig 15. Note that the overall accuracy of RF varies in one hundred trials. In this
experiment, RF outperforms SVM significantly.
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Figure 13. CM for the RFE. tree_number = 10. overall accuracy: 0.88

Figure 14. CM with normalized for the RF. tree_number = 10.

Variation of the Accuracy of RF
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Figure 15. Statistic Result for RF model. The boxes represent the 25 percentile and the 75 percentile.
The bold horizontal lines represent the mean. And, the dots represent the outliers.

7. Future Applications

Because the proposed system overcomes the disadvantages of the traditional monitoring systems,
we can improve many parts of the current monitoring system, or easily been integrated into an
ubiquitous healthcare service system [35]. Moreover, we list some promising applications which will
occur in the near future on the followings:

7.1. Precision Medicine

Our system can assist the dosage adjustment of medicines that have sleep-related side effects. For
example, the overdosing of Parkinson’s disease medicine may make the patient’s body rigid during
sleep. In practice, the dosage of the prescribed medicine is often adjusted by considering the severity
of patient’s side effect. However, the events that happen during sleep are hard to be perceived by the
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patients themselves. Our sleep posture monitoring system can record all sleep conditions and assist
the physicians to prescribe the correct dosage.

7.2. Home Long-term Sleep Monitoring

Our system is easy to be deployed at home, and the sleep condition is recorded every day. Some
of the symptoms may not happen every day. Thus, it takes long time to identify these symptoms. Also,
we can detect whether the sleep behavior is changed. This might be an indication of sickness. Our
system is suitable for these scenarios because of being designed for long-term usage.

7.3. Risky Position Alarm

An alarm function can be easily integrated with our monitoring system to prevent sleep-related
diseases. The duration of sleep postures are presented by our system in real-time. Therefore, the alarm
system only needs physicians or caregivers to set the condition when patients need to be alarmed.

8. Conclusions

In this paper, a cost-effective and user-friendly sleep posture monitor system is proposed. We
design a process to automatically recognize the body posture in the training phase. This process can
avoid labor-intensive tasks in labeling the postures of the training phase. In the monitoring phase,
our system can recognize the posture by analyzing data collected from one sensor on the wrist, and
perform accurately. We test two different types of learning algorithms with our system, and achieve
over 90% accuracy with random forest algorithm, and 80% accuracy with SVM algorithm, respectively.
The proposed one-sensor sleep posture monitor system is more cost-effective than the existing products
using camera monitoring or pressure mat sensing devices. In this paper, we are the first to show the
wrist accelerometer can be a feasible sensing device for sleep posture monitoring. We demonstrate that
the proposed system can analyze and predict human sleep postures, which can provide important
insights into the design of body sensor systems in the future.
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