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1 Abstract: Laser scanning is an effective tool for acquiring geometric attributes of trees and vegetation,
> which lays a solid foundation for 3-dimensional tree modelling. Existing studies on tree modelling
s from laser scanning data are vast. Nevertheless, some works don’t ensure sufficient modelling
«  accuracy, while some other works are mainly rule-based and therefore highly depend on user inputs.
s In this paper, we propose a novel method to accurately and automatically reconstruct tree branches
s from laser scans. We first extract an initial tree skeleton from the input tree p oint cloud, then
»  simplify the skeleton through iteratively removing redundant components. A global-optimization
s  approach is performed to fit a sequence of cylinders to approximate the geometry of the tree branches.
o Experiments on various types of trees from different data sources demonstrate the effectiveness and
1o robustness of our method. The resulted tree models can be further applied in the precise estimation
1 of tree attributes, urban landscape visualization, etc.

1= Keywords: laser scanning; point cloud; tree modelling; precision forestry

13 1. Introduction

14 Trees are an important component throughout the world. They form and function in natural
15 ecosystems such as forests, and also in human-made environments for instance parks and gardens
s [1]. Urban scenes without trees or plants are lifeless. Furthermore, satisfying environmental goals
1z always require heavy reliance on vegetation mapping and monitoring [2]. Models of trees, therefore,
1« have a wide range of applications, including urban landscape design, ecological simulation, forestry
1o management, and entertainment. While applications such as landscape design and visualization
20 only require modelling virtual trees, lots of other applications relevant with ecological modelling and
= forestry management require accurate measuring of tree parameters (e.g., height, stem thickness).
22 Accurate tree modelling not only enhances the realism within a scene, but also provides promising
23 approaches to scientifically manage vegetations and forests, which will in return contribute a lot to
24 ecosystem protection, resource preservation, preventing degradation, and many other human activities
= [3]. Hence, obtaining accurate 3D tree models is necessary and of great importance to modern society.
26 The traditional way of measuring trees is to manually conduct fieldwork, which is usually
2z expensive and time-consuming [4]. Since the last several decades, the remote-sensing technology
2s has been widely exploited in mapping various information on forests and plants [5]. Both satellite
20 sensors and airborne sensors can effectively acquire digital images with high spatial resolution, and
30 that provides viable data sources for forestry analysis on the individual tree level [3]. Moreover, with
a1 the development of digital image processing technologies, researchers had tried to reconstruct digital
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sz tree models from photographs [6]. The work of [7] utilized visual hulls of the original tree shape to
33 approximate the main skeleton of the tree, based on which small twigs and leaves are synthesized
sa  to generate a plausible tree model. Reche-Martinez et al. [6] described a volumetric approach to
ss  reconstruct trees from multiple views. Combining plant images with sparse point clouds obtained
36 from Structure From Motion (SFM), Quan et al. [8] reconstructed realistic plants with generic leaves
sz with user interactions. While the works mentioned above can produce impressive modelling results,
;s they don’t aim to reconstruct explicit branch or leaf geometry. Reconstructing trees from photographs
s remains a challenging problem due to the complexity of the modelling process [9].

40 Recently, the LiDAR (Light Detection and Ranging) technology has been widely used in
a  forestry-related analysis and studies. As measurements from LiDAR can achieve millimetre-level of
«2 details from the objects, it becomes possible to directly capture 3D information and rapidly estimate the
4 trees attributes [10]. For example, LIDAR measurements are widely applied in further researches such
s as tree height estimation [11], tree canopy analysis [12] and tree species classification [13]. Moreover,
« by applying LiDAR technology we are capable of acquiring highly dense point clouds, which lays the
s foundation for accurate tree reconstruction and modelling.

a7 To achieve accurate tree modelling from laser scans, both the branch geometry and the tree
s skeleton are required to be taken account of. The works of [14,15] adopted a cylinder-fitting approach
4 to obtain the geometry of tree branches. To further extract the tree skeletal structure, some works
so employ a rule-based procedural modelling approach to synthesize branches [9,16], which will generate
51 the tree skeleton with high quality but requires prior knowledge as well as manual parameters
s adjustments. Some other works proposed purely data-driven methods to automatically extract the
ss skeleton without requiring additional user interactions. The work of [17] constructed the shortest-path
s« map over the input point clouds to extract consecutive skeletal curves. Served as an alternative
ss for the shortest-path mapping, Dey and Sun [18] utilized the medial axis to represent the skeletal
ss structure of 3D tree-like objects. Instead of extracting skeleton curves directly from point clouds,
sz Bucksch et al. [19] applied another method that organizes points into an octree structure and generates
ss  skeletal curves from the octree cells. Similarly, Yan et al. [20] also applied a K-means clustering-based
so approach to generate tree skeletons. However, these works highly rely on the quality of the input
e data and therefore may not be robust enough to data quality issues such as holes or missing data
e due to occlusions. Following the work of [17], Livny et al. [21] computed a minimum spanning
ez graph over the point cloud to obtain an initial tree skeleton and applied several global optimization
es techniques to refine the tree branch structure. Following this work, we further improve the fidelity of
es the reconstructed tree models.

o5 In this paper, we propose a skeleton-based approach to accurately reconstruct tree branches from
ss individual tree point clouds. We assume that each tree is segmented out from the point clouds. Our
ez method employs the Minimum Spanning Tree (MST) algorithm to effectively extract the initial tree
ez skeleton over input points. By iterative skeleton simplification and cylinder fitting, we obtain the tree
e model with reconstructed branches. Leaves and textures are further added to enhance the realism
70 of the tree model (Figure 1). One novelty of our work is that we construct the initial tree skeleton
= based on the desired characteristics of input points. Furthermore, we develop a specific simplification
72 strategy to maintain the natural topological structure of tree branches while collapsing redundant
73 vertices and edges. Our reconstruction approach demonstrates both the geometrical correctness and
= the topological fidelity of the generated tree models.
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Figure 1. An overview of the proposed methodology.
»s 2. Materials and Methods
76 Our input data is the point cloud of a single tree, which typically contains noises and outliers, but

7z is expected to convey the major branch structure of a tree. Figure 1 illustrates the overall pipeline of
7e our method, which consists of the following major steps:

7o o  Skeleton initialization. We triangulate the tree points and apply the MST algorithm to extract the

80 initial tree skeleton. Note that the main-branch points are identified and centralized beforehand
81 to improve the quality of the skeleton;

.2 o  Skeleton simplification. The initial skeleton is iteratively simplified, resulting in a light-weight
o3 tree skeleton. We simplify the skeleton by retrieving and merging adjacent vertices if their distance
8a is sufficiently small;

es o  Branch fitting. Based on the reconstructed tree skeleton, we fit a sequence of cylinders over the
86 input points to approximate the geometry of the branches. We first apply non-linear least squares
87 to obtain the accurate radius of the tree trunk. Then, we derive the radius of the subsequent
a8 branches from the main trunk geometry;

e o  Adding realism. We synthesize leaves at the end of tree branches and add textures to enhance
%0 realism.

o1 2.1. Skeleton Initialization

92 Based on the fact that points close to each other are likely to belong to the same branch, we
s construct a MST graph over the input point cloud to represent the initial tree skeleton. To extract a
o  MST over input points, we first apply Delaunay triangulation to construct an initial graph. Delaunay
s triangulation lays the foundation for MST computation as most efficient approaches find a minimum
96 spanning tree among edges in the Delaunay triangulation of the points [22]. Additionally, it helps to
sz complete the missing region or incomplete branches, which ensures the robustness of our method to
s the input point clouds with poor data quality. Having obtained the triangulation graph, we weight all
oo the edges using their lengths defined in the Euclidean space. Then the Dijkstra shortest path algorithm
10 is utilized to compute the MST from the triangulation, which serves as a representation of the initial
101 skeleton of the individual tree.
102 Figure 2 shows the initial skeleton extracted over the input points by shortest-path computation.
103 In most cases, the MST constructed indicates the skeletal structure of the original tree (Figure 2a).
10s  Nevertheless, special cases exist when pure MST cannot represent the tree skeleton correctly (Figure 2b).
15 Trees with a short and fat shape typically have scattered points and branches, which leads to the
s computed MST growing in a horizontal manner rather than a compact vertical manner.
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(a)

(1) (2)
(b)
Figure 2. Skeleton initialization for two trees. (a) A valid tree skeleton structure (in red). (b) An invalid

tree skeleton structure (in red).

107 We address the problem by intentionally centralizing points that belong to the main branches
1e  Of the tree. The aim is to generate condensed branches for better skeleton extraction. As points near
10s the bifurcations or the branch tips typically sharply change in terms of density, while points within
1o a single branch share a stable density (Figure 3a), we can find main-branch points with a relatively
11 stable density in their neighbors. Identified main-branch points are centralized through the mean-shift
1z algorithm [23]. Asillustrated in Figure 3b, the extracted skeleton after main-branch point centralization
us  has a compact vertical growing manner.

(a) (b)
Figure 3. Skeleton extraction from the centralized points. (a) Density map of the raw point cloud. Red
indicates high density and blue indicates low density. (b) Skeleton extracted after the main-branch
point centralization.
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us  2.2. Skeleton Simplification

115 The initial tree skeleton extracted from the input point cloud has a large amount of redundant
ue  vertices and edges. Most of the redundant vertices and small edges don’t contribute to the tree skeleton
uzr shape and thus are of little importance, and should be removed to further simplify the tree skeleton.
us The simplification is conducted in two major steps. We first assign importance values to vertices and
e edges, based on which small noisy components can be removed accordingly. Then, we iteratively check
120 the proximity between adjacent vertices and merge close vertices. Figure 4 illustrates the simplification
121 process.

(a) (b)

(d)
Figure 4. Skeleton simplification. (a) Initial skeleton. (b) Importance value assigned to branches. (c)

Simplification by eliminating noisy small branches. (d) Simplification by merging similar vertices and
edges.

122 2.2.1. Assigning vertex and edge importances

123 We assign importance values to vertices and edges in the initial tree skeleton to further guide the
124 simplification process. Our goal is to keep important vertices and main branch edges while ignoring
125 short branches and noisy points. Several previous works [9] suggest utilizing the point density,
126 together with the point orientation vector extracted from the Principal Component Analysis (PCA), to
127 indicate the importance of the vertex. However, the weights evaluated in such a way are significantly
122 dependent on the quality of the scanned points and thus become unreliable when encountered with
120 POOT Scanning issues.

130 Instead of weighting from the density, we weight each vertex according to its length of the subtree,
131 which is computed as the sum of the length of all edges within the subtree of the vertex. Through such
132 a way, high-connective vertices close to the tree base area get heavier weights while low-connective
133 vertices near the tree crown get smaller weights. One advantage is that the weighting process is
13s  Not sensitive to input points density, which makes it robust to data with different scanning qualities.
135 Accordingly, each branch edge is weighted as the average of the subtree length of its two ending
136 vertices. Typically, vertices and edges on the tree crown have consistent low weights [21], while near
137 the tree base small branches have drastically small weights compared to the main trunk branches.
13 Such a characteristic helps us clear away noisy branches at the trunk, and at the same time, keeps the
130 small leave branches at the crown.

10 2.2.2. Simplifying adjacent vertices and edges

141 Having eliminated small noisy branches with relatively low importances, we notice that many
12 redundant vertices and edges still exist as they share similar positions and orientations within their
13 neighborhood. To simplify those similar components, we iteratively check the proximity between
14s  adjacent vertices. A similarity indicator « is defined to describe the closeness between targeted vertices.
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For vertex which has only one single child, the skeleton simplification becomes a line simplification
problem. Since that the more proxy the current vertex is to the line segment formed by its parent and
its child, the less important this vertex is. Hence, the indicator « is computed as follow:

o= ;/ 1)

where d is the distance between the current point and the line segment formed by its parent and
its child; 7 is the distance threshold of an edge in the tree skeleton which controls the simplification
process. As illustrated in Figure 5, if the indicator value « is smaller than a given threshold o

a <o, )

145 'we consider the current point unimportant and therefore it can be removed from the skeleton.

- -

/. Child Chuld

| Vi —)
g C ufrent
g

Parent -/ Parent
Figure 5. Single child simplification.

For vertex which has multiple children vertices, the similarity indicator a indicates the closeness
of the pair of two children vertices, and therefore is defined as follow:

[ysinf I,sinf

a = min(———, ), ©)]

2 "

14s  Where [ represents the length of the edge between one specific child vertex and its parent; 6 is the
17 angle between two edges and r is the distance threshold of a specific edge (see Figure 6). Note that the
e indicator computed from different directions (i.e. from Vj to V; or from V; to V1) will have different
s values and therefore we select the minimum one to evaluate the proximity between adjacent child
150 vertices. The smaller the indicator value, the more similarity between two vertices. If a is smaller than
11 a given threshold o, we merge the pair of vertices into a new vertex. The merged new vertex location
12 Ppew 1S computed as the weighted average of the original two vertices, where the weight of each vertex
153 is computed as the length of its subtree:

_ 1w + pows
Prew w1 + W, .

(4)
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Figure 6. Multi-children simplification. Grey edges on the right indicates newly generated branches.

e 2.3. Branch Fitting

155 Based on the simplified tree skeleton, we further reconstruct the tree geometry. To precisely model
156 the geometry of tree branches, we apply a cylinder-fitting approach. According to [24], the cylinder
157 primitive is the most robust primitive in terms representing the geometry of the tree branches, even
15 with holes and noises in the dataset. Moreover, compared with the complex curve fitting method,
s cylinder fitting is relatively easy and fast in computation [25]. Figure 7 shows in general how cylinder
10 fitting is employed to obtain the tree model with branches.

(@ (b) () (d
Figure 7. Branch fitting. (a) Tree skeleton. (b) Points segmented to different tree parts. (c) Cylinder
fitted to the main trunk. (d) Geometry derived for the subsequent branches.

161 The main trunk close to the tree base area typically has the highest density of supportive points. We
162 exploit an optimization-based approach to obtain the accurate branch geometry. First, the neighboring
163 points lying within the trunk part are segmented and identified (Figure 7b). We can either use a
1es  brute-force searching method or apply a kd-tree query to speed up the segmentation. Next, we fit
165 a cylinder to approximate the branch geometry based on the corresponding trunk points. This is a
166 typical non-linear least squares problem. We hereby define our input data, parameters to be solved,
167 and the objective function as follows (Figure 8):
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Figure 8. Parameters and objective in the cylinder fitting problem.

s ®  Input data are the position P of the input points;
10 o  Parameters to be solved are the axis direction vector 7 of the cylinder, the position P, of the end

170 point on the axis, and the radius R of the cylinder;
i1 e Objective function is defined as the sum of the squared distance from the points to the branch

172 cylinder:

min i D(p);. (5)
i=1

We use the Levenberg Marquardt algorithm to solve the non-linear least-squares problem. Normal
least-squares is sensitive to data noises and outliers. Therefore, to further improve the solution quality,
we repeat the non-linear least square process and introduce the weights for each point during the
second computing iteration. We want to give heavy influences to the points closer to the cylinder
and relatively low influence to the points that are far from the cylinder. Hence, weights are assigned
according to the point’s distance to the cylinder. The weight for one specific point is defined as follow:

(6)

173 where D; represents the distance between the current iy, point and the cylinder obtained from the
17a  initial computation, and D,y is the maximum distance among all the points to the cylinder. Through
175 such a way, we normalize all the weights of the points to the range between 0 and 1. The objective
176 function is denoted accordingly:

mlni D(p)lwl (7)
i=1

Figure 7c shows the accurate geometry of the tree trunk obtained from cylinder fitting. For the
sequent small tree branches, as the points become noisier when getting close to the tree crown and
branch tips, fitting an accurate cylinder to small branches is infeasible. Instead, we apply an allometric
rule to obtain plausible estimates for the rest of the tree branches [9]. The radius of a branch edge
is proportional to its weight, which is defined as the average of the subtree length of its two ending
vertices. We compute the radius of the rest branch edges using the following equation:

w.
RE,‘ - Rt(;; ’ (8)

17z where R,, is the radius of the it" branch edge; R; is the radius of the trunk obtained from cylinder
s fitting and w is the weight of the specific branch edge. Figure 7d shows the derived tree branch model
17o  from the constructed tree skeleton.
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180 2.4. Adding Realism

181 To further add realism, we add leaves and texture to the reconstructed tree models. Since it’s
12 almost impossible for us to capture the geometry and texture characteristics of leaves from laser scans,
13 it becomes impossible to reconstruct accurate leaves purely from the point clouds. In this work, we
1a  generate oriented leaves at the end of each branch following that of [21].

1ss 3. Results and Discussion

186 We implemented our tree reconstruction algorithm using C++. We use Boost [26] for minimum
1z Spanning tree extraction and Easy3D [27] for visualization.

1se  3.1. Test Datasets

180 To develop and test the proposed tree reconstruction method, several point cloud datasets have
10 been collected. These test datasets contain point clouds from publicly available point cloud repositories,
101 the Floriade Project of Almere, and the AHN dataset [28]. These point clouds include various tree
102 species and types. Also, a wide range of data sources is covered, i.e., static laser scans, mobile laser
103 scans, and airborne laser scans.

10a  3.2. Visual Evaluation

105 We reconstructed a variety of trees with different species and branch structures (see Figure 9a
16 and Figure 9b). Among them, some trees are tall and slim (Figure 9a), while others are short and fat
17 (Figure 9b). From these results, we can see that our method is capable of processing various type
10 Of trees with different sizes. Besides, we also tested our method on scanned trees from various data
100 sources (see Figure 9¢, Figure 9d and Figure 9e), including mobile scanning, static scanning as well as
200 airborne scanning. It is observed that point clouds collected by mobile scanning (Figure 9c) or static
21 scanning (Figure 9d) have a high quality and thus were all accurately reconstructed. On the other
202 hand, from Figure 9e, we can see that the input point cloud airborne scanning are poorly sampled and
203 is extremely sparse. With such a low quality input, our approach is still able to produce a plausible 3D
204 Teconstruction.

205 3.3. Reconstruction Accuracy

206 We evaluated the geometrical accuracy of the modelling results by computing the mean distance
20 between the input points and the generated tree branch model. The statistics in Table 1 suggested that
208 our approach can generate tree models that fit closely to the input point cloud data and thus ensures
200 high geometrical accuracy.

Table 1. Geometrical accuracy evaluation

Figure9a  Figure9b  Figure 9c

Height 5.61m 10.05m 16.28m
Mean Distance 2.76cm 10.04cm 6.59cm
Standard Deviation 2cm 8cm 6cm
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(b)

(d

(e)
Figure 9. Reconstructed models for various trees. From left to right: point cloud; skeleton; tree

branches; tree final model.
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210 3.4. Robustness

211 As described in section 2, the simplification threshold ¢ is introduced during the tree skeleton
22 simplification process, where we utilize an indicator to measure the proximity between the adjacent
23 vertices. This section discusses how different parameter values influence the modelling results, based
212 on which, we choose the threshold values that best fit our methodology.

215 The simplification threshold ¢ controls the similarity indicator &, which determines the relative
zs  proximity between adjacent vertices. We tested the value of ¢ from 0.5 to 3 and the results are shown
21z in Figure 10. According to our experiments, a very small threshold ¢ for the indicator makes it tough
21s for close vertices to merge, while a very big ¢ causes oversimplification. Therefore, we chose 1.5 as the
210 threshold value. It is denoted that the parameter value is pre-fixed in our algorithm, which means that
220 we used the same parameter setting for generating all the 3D models in this paper. As ¢ is a relative
21 value indicating the closeness among vertices, it is generally applicable for most trees. Users don’t
222 have to adjust the specific threshold value for specific input data, which makes our approach robust to
223 various trees.

(a) (b) (c)
Figure 10. Simplification results using different o values. (a) ¢ = 0.5. (b) o = 1.5. (c) o = 3.

22a 3.5, Comparisons

228 We compare our modelling results to that of [21] as it’s the closest related to our work. Given
226 the same point cloud, our algorithm is capable of reconstructing tree models with higher topological
22z and geometrical accuracy. In Figure 11, we demonstrate the visual comparison. We can see that our
226 reconstructed models have more reasonable branch structure and also fit better to the input points. The
220 performance improvement benefits from two reasons. First, we identify and centralize main-branch
230 points, which in return generates tree skeletons that are topologically correct. Besides, our cylinder
a1 fitting exploits a distance-weighted non-linear least squares fitting, which significantly improves the
232 geometrical accuracy.
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(b)
Figure 11. Comparison between Livny’s method (left) and our method (right) on two trees.
233 3.6. Limitations
234 Our algorithm can successfully reconstruct accurate and detailed 3D tree models from point

25 clouds. However, it still has some limitations. First of all, our approach is data-driven. For poorly
236 scanned data with sparse points, though our method can reconstruct a plausible topological structure
237 of the tree branches, it is unable to achieve sufficient geometrical accuracy. Moreover, our work doesn’t
23s  consider natural growing rules for tree branches (i.e., branch split angle, branch growing length). The
239 incorporation of domain knowledge will further constrain the reconstructed models to be topologically
2e0 correct and improve the fidelity of the models, improving both geometrical and topological accuracy.

221 4. Conclusions and Future Work

242 In this paper, we proposed an automatic approach to accurately reconstruct 3D tree branches
2a3  from point clouds. During the reconstruction, both the geometrical accuracy and topological fidelity of
2aa the tree are taken into consideration. One novelty of our work is that we aid the skeleton construction
2es  process with the main-branch point centralization, which contributes to improving the quality of the
26 generated tree branch structure. Moreover, an optimization-based approach is employed to accurately
2a7  reconstruct the geometry of the tree branches. Experimental results revealed that our method is robust
28 in dealing with various types and sizes of the trees. As long as the input point clouds demonstrate
2e0  clear branch structure, our method is capable of generating tree models of high quality.

250 In future work, we would like to perform automatic instance segmentation of trees. As our method
21 only works for individual tree point clouds, automatic segmentation will expand our algorithm to a
=2 broader range of applications. Besides, as there are many irregular shapes of tree branches in nature,
23 we will further consider fitting free-form surfaces instead of cylinders to model the branch geometry
254 More precisely.
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