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Abstract: Laser scanning is an effective tool for acquiring geometric attributes of trees and vegetation, 
which lays a solid foundation for 3-dimensional tree modelling. Existing studies on tree modelling 
from laser scanning data are vast. Nevertheless, some works don’t ensure sufficient modelling 
accuracy, while some other works are mainly rule-based and therefore highly depend on user inputs. 
In this paper, we propose a novel method to accurately and automatically reconstruct tree branches 
from laser scans. We first e xtract a n i nitial t ree s keleton f rom t he i nput t ree p oint c loud, then 
simplify the skeleton through iteratively removing redundant components. A global-optimization 
approach is performed to fit a sequence of cylinders to approximate the geometry of the tree branches. 
Experiments on various types of trees from different data sources demonstrate the effectiveness and 
robustness of our method. The resulted tree models can be further applied in the precise estimation 
of tree attributes, urban landscape visualization, etc.

Keywords: laser scanning; point cloud; tree modelling; precision forestry12

1. Introduction13

Trees are an important component throughout the world. They form and function in natural14

ecosystems such as forests, and also in human-made environments for instance parks and gardens15

[1]. Urban scenes without trees or plants are lifeless. Furthermore, satisfying environmental goals16

always require heavy reliance on vegetation mapping and monitoring [2]. Models of trees, therefore,17

have a wide range of applications, including urban landscape design, ecological simulation, forestry18

management, and entertainment. While applications such as landscape design and visualization19

only require modelling virtual trees, lots of other applications relevant with ecological modelling and20

forestry management require accurate measuring of tree parameters (e.g., height, stem thickness).21

Accurate tree modelling not only enhances the realism within a scene, but also provides promising22

approaches to scientifically manage vegetations and forests, which will in return contribute a lot to23

ecosystem protection, resource preservation, preventing degradation, and many other human activities24

[3]. Hence, obtaining accurate 3D tree models is necessary and of great importance to modern society.25

The traditional way of measuring trees is to manually conduct fieldwork, which is usually26

expensive and time-consuming [4]. Since the last several decades, the remote-sensing technology27

has been widely exploited in mapping various information on forests and plants [5]. Both satellite28

sensors and airborne sensors can effectively acquire digital images with high spatial resolution, and29

that provides viable data sources for forestry analysis on the individual tree level [3]. Moreover, with30

the development of digital image processing technologies, researchers had tried to reconstruct digital31

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2019                   doi:10.20944/preprints201907.0058.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Remote Sens. 2019, 11, 2074; doi:10.3390/rs11182074

http://www.mdpi.com
https://doi.org/10.20944/preprints201907.0058.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs11182074


2 of 14

tree models from photographs [6]. The work of [7] utilized visual hulls of the original tree shape to32

approximate the main skeleton of the tree, based on which small twigs and leaves are synthesized33

to generate a plausible tree model. Reche-Martinez et al. [6] described a volumetric approach to34

reconstruct trees from multiple views. Combining plant images with sparse point clouds obtained35

from Structure From Motion (SFM), Quan et al. [8] reconstructed realistic plants with generic leaves36

with user interactions. While the works mentioned above can produce impressive modelling results,37

they don’t aim to reconstruct explicit branch or leaf geometry. Reconstructing trees from photographs38

remains a challenging problem due to the complexity of the modelling process [9].39

Recently, the LiDAR (Light Detection and Ranging) technology has been widely used in40

forestry-related analysis and studies. As measurements from LiDAR can achieve millimetre-level of41

details from the objects, it becomes possible to directly capture 3D information and rapidly estimate the42

trees attributes [10]. For example, LiDAR measurements are widely applied in further researches such43

as tree height estimation [11], tree canopy analysis [12] and tree species classification [13]. Moreover,44

by applying LiDAR technology we are capable of acquiring highly dense point clouds, which lays the45

foundation for accurate tree reconstruction and modelling.46

To achieve accurate tree modelling from laser scans, both the branch geometry and the tree47

skeleton are required to be taken account of. The works of [14,15] adopted a cylinder-fitting approach48

to obtain the geometry of tree branches. To further extract the tree skeletal structure, some works49

employ a rule-based procedural modelling approach to synthesize branches [9,16], which will generate50

the tree skeleton with high quality but requires prior knowledge as well as manual parameters51

adjustments. Some other works proposed purely data-driven methods to automatically extract the52

skeleton without requiring additional user interactions. The work of [17] constructed the shortest-path53

map over the input point clouds to extract consecutive skeletal curves. Served as an alternative54

for the shortest-path mapping, Dey and Sun [18] utilized the medial axis to represent the skeletal55

structure of 3D tree-like objects. Instead of extracting skeleton curves directly from point clouds,56

Bucksch et al. [19] applied another method that organizes points into an octree structure and generates57

skeletal curves from the octree cells. Similarly, Yan et al. [20] also applied a K-means clustering-based58

approach to generate tree skeletons. However, these works highly rely on the quality of the input59

data and therefore may not be robust enough to data quality issues such as holes or missing data60

due to occlusions. Following the work of [17], Livny et al. [21] computed a minimum spanning61

graph over the point cloud to obtain an initial tree skeleton and applied several global optimization62

techniques to refine the tree branch structure. Following this work, we further improve the fidelity of63

the reconstructed tree models.64

In this paper, we propose a skeleton-based approach to accurately reconstruct tree branches from65

individual tree point clouds. We assume that each tree is segmented out from the point clouds. Our66

method employs the Minimum Spanning Tree (MST) algorithm to effectively extract the initial tree67

skeleton over input points. By iterative skeleton simplification and cylinder fitting, we obtain the tree68

model with reconstructed branches. Leaves and textures are further added to enhance the realism69

of the tree model (Figure 1). One novelty of our work is that we construct the initial tree skeleton70

based on the desired characteristics of input points. Furthermore, we develop a specific simplification71

strategy to maintain the natural topological structure of tree branches while collapsing redundant72

vertices and edges. Our reconstruction approach demonstrates both the geometrical correctness and73

the topological fidelity of the generated tree models.74
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Figure 1. An overview of the proposed methodology.

2. Materials and Methods75

Our input data is the point cloud of a single tree, which typically contains noises and outliers, but76

is expected to convey the major branch structure of a tree. Figure 1 illustrates the overall pipeline of77

our method, which consists of the following major steps:78

• Skeleton initialization. We triangulate the tree points and apply the MST algorithm to extract the79

initial tree skeleton. Note that the main-branch points are identified and centralized beforehand80

to improve the quality of the skeleton;81

• Skeleton simplification. The initial skeleton is iteratively simplified, resulting in a light-weight82

tree skeleton. We simplify the skeleton by retrieving and merging adjacent vertices if their distance83

is sufficiently small;84

• Branch fitting. Based on the reconstructed tree skeleton, we fit a sequence of cylinders over the85

input points to approximate the geometry of the branches. We first apply non-linear least squares86

to obtain the accurate radius of the tree trunk. Then, we derive the radius of the subsequent87

branches from the main trunk geometry;88

• Adding realism. We synthesize leaves at the end of tree branches and add textures to enhance89

realism.90

2.1. Skeleton Initialization91

Based on the fact that points close to each other are likely to belong to the same branch, we92

construct a MST graph over the input point cloud to represent the initial tree skeleton. To extract a93

MST over input points, we first apply Delaunay triangulation to construct an initial graph. Delaunay94

triangulation lays the foundation for MST computation as most efficient approaches find a minimum95

spanning tree among edges in the Delaunay triangulation of the points [22]. Additionally, it helps to96

complete the missing region or incomplete branches, which ensures the robustness of our method to97

the input point clouds with poor data quality. Having obtained the triangulation graph, we weight all98

the edges using their lengths defined in the Euclidean space. Then the Dijkstra shortest path algorithm99

is utilized to compute the MST from the triangulation, which serves as a representation of the initial100

skeleton of the individual tree.101

Figure 2 shows the initial skeleton extracted over the input points by shortest-path computation.102

In most cases, the MST constructed indicates the skeletal structure of the original tree (Figure 2a).103

Nevertheless, special cases exist when pure MST cannot represent the tree skeleton correctly (Figure 2b).104

Trees with a short and fat shape typically have scattered points and branches, which leads to the105

computed MST growing in a horizontal manner rather than a compact vertical manner.106
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(1) (2)
(a)

(1) (2)
(b)

Figure 2. Skeleton initialization for two trees. (a) A valid tree skeleton structure (in red). (b) An invalid
tree skeleton structure (in red).

We address the problem by intentionally centralizing points that belong to the main branches107

of the tree. The aim is to generate condensed branches for better skeleton extraction. As points near108

the bifurcations or the branch tips typically sharply change in terms of density, while points within109

a single branch share a stable density (Figure 3a), we can find main-branch points with a relatively110

stable density in their neighbors. Identified main-branch points are centralized through the mean-shift111

algorithm [23]. As illustrated in Figure 3b, the extracted skeleton after main-branch point centralization112

has a compact vertical growing manner.113

(a) (b)
Figure 3. Skeleton extraction from the centralized points. (a) Density map of the raw point cloud. Red
indicates high density and blue indicates low density. (b) Skeleton extracted after the main-branch
point centralization.
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2.2. Skeleton Simplification114

The initial tree skeleton extracted from the input point cloud has a large amount of redundant115

vertices and edges. Most of the redundant vertices and small edges don’t contribute to the tree skeleton116

shape and thus are of little importance, and should be removed to further simplify the tree skeleton.117

The simplification is conducted in two major steps. We first assign importance values to vertices and118

edges, based on which small noisy components can be removed accordingly. Then, we iteratively check119

the proximity between adjacent vertices and merge close vertices. Figure 4 illustrates the simplification120

process.121

(a) (b) (c) (d)
Figure 4. Skeleton simplification. (a) Initial skeleton. (b) Importance value assigned to branches. (c)
Simplification by eliminating noisy small branches. (d) Simplification by merging similar vertices and
edges.

2.2.1. Assigning vertex and edge importances122

We assign importance values to vertices and edges in the initial tree skeleton to further guide the123

simplification process. Our goal is to keep important vertices and main branch edges while ignoring124

short branches and noisy points. Several previous works [9] suggest utilizing the point density,125

together with the point orientation vector extracted from the Principal Component Analysis (PCA), to126

indicate the importance of the vertex. However, the weights evaluated in such a way are significantly127

dependent on the quality of the scanned points and thus become unreliable when encountered with128

poor scanning issues.129

Instead of weighting from the density, we weight each vertex according to its length of the subtree,130

which is computed as the sum of the length of all edges within the subtree of the vertex. Through such131

a way, high-connective vertices close to the tree base area get heavier weights while low-connective132

vertices near the tree crown get smaller weights. One advantage is that the weighting process is133

not sensitive to input points density, which makes it robust to data with different scanning qualities.134

Accordingly, each branch edge is weighted as the average of the subtree length of its two ending135

vertices. Typically, vertices and edges on the tree crown have consistent low weights [21], while near136

the tree base small branches have drastically small weights compared to the main trunk branches.137

Such a characteristic helps us clear away noisy branches at the trunk, and at the same time, keeps the138

small leave branches at the crown.139

2.2.2. Simplifying adjacent vertices and edges140

Having eliminated small noisy branches with relatively low importances, we notice that many141

redundant vertices and edges still exist as they share similar positions and orientations within their142

neighborhood. To simplify those similar components, we iteratively check the proximity between143

adjacent vertices. A similarity indicator α is defined to describe the closeness between targeted vertices.144
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For vertex which has only one single child, the skeleton simplification becomes a line simplification
problem. Since that the more proxy the current vertex is to the line segment formed by its parent and
its child, the less important this vertex is. Hence, the indicator α is computed as follow:

α =
d
r

, (1)

where d is the distance between the current point and the line segment formed by its parent and
its child; r is the distance threshold of an edge in the tree skeleton which controls the simplification
process. As illustrated in Figure 5, if the indicator value α is smaller than a given threshold σ:

α ≤ σ, (2)

we consider the current point unimportant and therefore it can be removed from the skeleton.145

Figure 5. Single child simplification.

For vertex which has multiple children vertices, the similarity indicator α indicates the closeness
of the pair of two children vertices, and therefore is defined as follow:

α = min(
l1 sin θ

r2
,

l2 sin θ

r1
), (3)

where l represents the length of the edge between one specific child vertex and its parent; θ is the146

angle between two edges and r is the distance threshold of a specific edge (see Figure 6). Note that the147

indicator computed from different directions (i.e. from V1 to V2 or from V2 to V1) will have different148

values and therefore we select the minimum one to evaluate the proximity between adjacent child149

vertices. The smaller the indicator value, the more similarity between two vertices. If α is smaller than150

a given threshold σ, we merge the pair of vertices into a new vertex. The merged new vertex location151

pnew is computed as the weighted average of the original two vertices, where the weight of each vertex152

is computed as the length of its subtree:153

pnew =
p1w1 + p2w2

w1 + w2
. (4)
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Figure 6. Multi-children simplification. Grey edges on the right indicates newly generated branches.

2.3. Branch Fitting154

Based on the simplified tree skeleton, we further reconstruct the tree geometry. To precisely model155

the geometry of tree branches, we apply a cylinder-fitting approach. According to [24], the cylinder156

primitive is the most robust primitive in terms representing the geometry of the tree branches, even157

with holes and noises in the dataset. Moreover, compared with the complex curve fitting method,158

cylinder fitting is relatively easy and fast in computation [25]. Figure 7 shows in general how cylinder159

fitting is employed to obtain the tree model with branches.160

(a) (b) (c) (d)
Figure 7. Branch fitting. (a) Tree skeleton. (b) Points segmented to different tree parts. (c) Cylinder
fitted to the main trunk. (d) Geometry derived for the subsequent branches.

The main trunk close to the tree base area typically has the highest density of supportive points. We161

exploit an optimization-based approach to obtain the accurate branch geometry. First, the neighboring162

points lying within the trunk part are segmented and identified (Figure 7b). We can either use a163

brute-force searching method or apply a kd-tree query to speed up the segmentation. Next, we fit164

a cylinder to approximate the branch geometry based on the corresponding trunk points. This is a165

typical non-linear least squares problem. We hereby define our input data, parameters to be solved,166

and the objective function as follows (Figure 8):167
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Figure 8. Parameters and objective in the cylinder fitting problem.

• Input data are the position P of the input points;168

• Parameters to be solved are the axis direction vector~a of the cylinder, the position Pa of the end169

point on the axis, and the radius R of the cylinder;170

• Objective function is defined as the sum of the squared distance from the points to the branch171

cylinder:172

min
n

∑
i=1

D(p)i. (5)

We use the Levenberg Marquardt algorithm to solve the non-linear least-squares problem. Normal
least-squares is sensitive to data noises and outliers. Therefore, to further improve the solution quality,
we repeat the non-linear least square process and introduce the weights for each point during the
second computing iteration. We want to give heavy influences to the points closer to the cylinder
and relatively low influence to the points that are far from the cylinder. Hence, weights are assigned
according to the point’s distance to the cylinder. The weight for one specific point is defined as follow:

wi = 1 − Di
Dmax

, (6)

where Di represents the distance between the current ith point and the cylinder obtained from the173

initial computation, and Dmax is the maximum distance among all the points to the cylinder. Through174

such a way, we normalize all the weights of the points to the range between 0 and 1. The objective175

function is denoted accordingly:176

min
n

∑
i=1

D(p)iwi. (7)

Figure 7c shows the accurate geometry of the tree trunk obtained from cylinder fitting. For the
sequent small tree branches, as the points become noisier when getting close to the tree crown and
branch tips, fitting an accurate cylinder to small branches is infeasible. Instead, we apply an allometric
rule to obtain plausible estimates for the rest of the tree branches [9]. The radius of a branch edge
is proportional to its weight, which is defined as the average of the subtree length of its two ending
vertices. We compute the radius of the rest branch edges using the following equation:

Rei = Rt(
wi
wt

), (8)

where Rei is the radius of the ith branch edge; Rt is the radius of the trunk obtained from cylinder177

fitting and w is the weight of the specific branch edge. Figure 7d shows the derived tree branch model178

from the constructed tree skeleton.179
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2.4. Adding Realism180

To further add realism, we add leaves and texture to the reconstructed tree models. Since it’s181

almost impossible for us to capture the geometry and texture characteristics of leaves from laser scans,182

it becomes impossible to reconstruct accurate leaves purely from the point clouds. In this work, we183

generate oriented leaves at the end of each branch following that of [21].184

3. Results and Discussion185

We implemented our tree reconstruction algorithm using C++. We use Boost [26] for minimum186

spanning tree extraction and Easy3D [27] for visualization.187

3.1. Test Datasets188

To develop and test the proposed tree reconstruction method, several point cloud datasets have189

been collected. These test datasets contain point clouds from publicly available point cloud repositories,190

the Floriade Project of Almere, and the AHN dataset [28]. These point clouds include various tree191

species and types. Also, a wide range of data sources is covered, i.e., static laser scans, mobile laser192

scans, and airborne laser scans.193

3.2. Visual Evaluation194

We reconstructed a variety of trees with different species and branch structures (see Figure 9a195

and Figure 9b). Among them, some trees are tall and slim (Figure 9a), while others are short and fat196

(Figure 9b). From these results, we can see that our method is capable of processing various type197

of trees with different sizes. Besides, we also tested our method on scanned trees from various data198

sources (see Figure 9c, Figure 9d and Figure 9e), including mobile scanning, static scanning as well as199

airborne scanning. It is observed that point clouds collected by mobile scanning (Figure 9c) or static200

scanning (Figure 9d) have a high quality and thus were all accurately reconstructed. On the other201

hand, from Figure 9e, we can see that the input point cloud airborne scanning are poorly sampled and202

is extremely sparse. With such a low quality input, our approach is still able to produce a plausible 3D203

reconstruction.204

3.3. Reconstruction Accuracy205

We evaluated the geometrical accuracy of the modelling results by computing the mean distance206

between the input points and the generated tree branch model. The statistics in Table 1 suggested that207

our approach can generate tree models that fit closely to the input point cloud data and thus ensures208

high geometrical accuracy.209

Table 1. Geometrical accuracy evaluation

Figure 9a Figure 9b Figure 9c

Height 5.61m 10.05m 16.28m
Mean Distance 2.76cm 10.04cm 6.59cm
Standard Deviation 2cm 8cm 6cm
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(a)

(b)

(c)

(d)

(e)
Figure 9. Reconstructed models for various trees. From left to right: point cloud; skeleton; tree
branches; tree final model.
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3.4. Robustness210

As described in section 2, the simplification threshold σ is introduced during the tree skeleton211

simplification process, where we utilize an indicator to measure the proximity between the adjacent212

vertices. This section discusses how different parameter values influence the modelling results, based213

on which, we choose the threshold values that best fit our methodology.214

The simplification threshold σ controls the similarity indicator α, which determines the relative215

proximity between adjacent vertices. We tested the value of σ from 0.5 to 3 and the results are shown216

in Figure 10. According to our experiments, a very small threshold σ for the indicator makes it tough217

for close vertices to merge, while a very big σ causes oversimplification. Therefore, we chose 1.5 as the218

threshold value. It is denoted that the parameter value is pre-fixed in our algorithm, which means that219

we used the same parameter setting for generating all the 3D models in this paper. As σ is a relative220

value indicating the closeness among vertices, it is generally applicable for most trees. Users don’t221

have to adjust the specific threshold value for specific input data, which makes our approach robust to222

various trees.223

(a) (b) (c)
Figure 10. Simplification results using different σ values. (a) σ = 0.5. (b) σ = 1.5. (c) σ = 3.

3.5. Comparisons224

We compare our modelling results to that of [21] as it’s the closest related to our work. Given225

the same point cloud, our algorithm is capable of reconstructing tree models with higher topological226

and geometrical accuracy. In Figure 11, we demonstrate the visual comparison. We can see that our227

reconstructed models have more reasonable branch structure and also fit better to the input points. The228

performance improvement benefits from two reasons. First, we identify and centralize main-branch229

points, which in return generates tree skeletons that are topologically correct. Besides, our cylinder230

fitting exploits a distance-weighted non-linear least squares fitting, which significantly improves the231

geometrical accuracy.232
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(1) (2)
(a)

(1) (2)
(b)

Figure 11. Comparison between Livny’s method (left) and our method (right) on two trees.

3.6. Limitations233

Our algorithm can successfully reconstruct accurate and detailed 3D tree models from point234

clouds. However, it still has some limitations. First of all, our approach is data-driven. For poorly235

scanned data with sparse points, though our method can reconstruct a plausible topological structure236

of the tree branches, it is unable to achieve sufficient geometrical accuracy. Moreover, our work doesn’t237

consider natural growing rules for tree branches (i.e., branch split angle, branch growing length). The238

incorporation of domain knowledge will further constrain the reconstructed models to be topologically239

correct and improve the fidelity of the models, improving both geometrical and topological accuracy.240

4. Conclusions and Future Work241

In this paper, we proposed an automatic approach to accurately reconstruct 3D tree branches242

from point clouds. During the reconstruction, both the geometrical accuracy and topological fidelity of243

the tree are taken into consideration. One novelty of our work is that we aid the skeleton construction244

process with the main-branch point centralization, which contributes to improving the quality of the245

generated tree branch structure. Moreover, an optimization-based approach is employed to accurately246

reconstruct the geometry of the tree branches. Experimental results revealed that our method is robust247

in dealing with various types and sizes of the trees. As long as the input point clouds demonstrate248

clear branch structure, our method is capable of generating tree models of high quality.249

In future work, we would like to perform automatic instance segmentation of trees. As our method250

only works for individual tree point clouds, automatic segmentation will expand our algorithm to a251

broader range of applications. Besides, as there are many irregular shapes of tree branches in nature,252

we will further consider fitting free-form surfaces instead of cylinders to model the branch geometry253

more precisely.254
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