

Article

Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees

Shenglan Du ¹, Roderik Lindenbergh ², Hugo Ledoux ¹, Jantien Stoter ¹ and Liangliang Nan ^{1,*}

¹ 3D GeoInformation Research Group, Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, Netherland; dushenglan940128@163.com, h.ledoux@tudelft.nl, j.e.stoter@tudelft.nl, Liangliang.Nan@tudelft.nl

² Spatial Laser Scanning Lab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherland; r.c.lindenbergh@tudelft.nl

* Correspondence: Liangliang.Nan@tudelft.nl

Abstract: Laser scanning is an effective tool for acquiring geometric attributes of trees and vegetation, which lays a solid foundation for 3-dimensional tree modelling. Existing studies on tree modelling from laser scanning data are vast. Nevertheless, some works don't ensure sufficient modelling accuracy, while some other works are mainly rule-based and therefore highly depend on user inputs. In this paper, we propose a novel method to accurately and automatically reconstruct tree branches from laser scans. We first extract an initial tree skeleton from the input tree point cloud, then simplify the skeleton through iteratively removing redundant components. A global-optimization approach is performed to fit a sequence of cylinders to approximate the geometry of the tree branches. Experiments on various types of trees from different data sources demonstrate the effectiveness and robustness of our method. The resulted tree models can be further applied in the precise estimation of tree attributes, urban landscape visualization, etc.

Keywords: laser scanning; point cloud; tree modelling; precision forestry

1. Introduction

Trees are an important component throughout the world. They form and function in natural ecosystems such as forests, and also in human-made environments for instance parks and gardens [1]. Urban scenes without trees or plants are lifeless. Furthermore, satisfying environmental goals always require heavy reliance on vegetation mapping and monitoring [2]. Models of trees, therefore, have a wide range of applications, including urban landscape design, ecological simulation, forestry management, and entertainment. While applications such as landscape design and visualization only require modelling virtual trees, lots of other applications relevant with ecological modelling and forestry management require accurate measuring of tree parameters (e.g., height, stem thickness). Accurate tree modelling not only enhances the realism within a scene, but also provides promising approaches to scientifically manage vegetations and forests, which will in return contribute a lot to ecosystem protection, resource preservation, preventing degradation, and many other human activities [3]. Hence, obtaining accurate 3D tree models is necessary and of great importance to modern society.

The traditional way of measuring trees is to manually conduct fieldwork, which is usually expensive and time-consuming [4]. Since the last several decades, the remote-sensing technology has been widely exploited in mapping various information on forests and plants [5]. Both satellite sensors and airborne sensors can effectively acquire digital images with high spatial resolution, and that provides viable data sources for forestry analysis on the individual tree level [3]. Moreover, with the development of digital image processing technologies, researchers had tried to reconstruct digital

32 tree models from photographs [6]. The work of [7] utilized visual hulls of the original tree shape to
33 approximate the main skeleton of the tree, based on which small twigs and leaves are synthesized
34 to generate a plausible tree model. Reche-Martinez et al. [6] described a volumetric approach to
35 reconstruct trees from multiple views. Combining plant images with sparse point clouds obtained
36 from Structure From Motion (SFM), Quan et al. [8] reconstructed realistic plants with generic leaves
37 with user interactions. While the works mentioned above can produce impressive modelling results,
38 they don't aim to reconstruct explicit branch or leaf geometry. Reconstructing trees from photographs
39 remains a challenging problem due to the complexity of the modelling process [9].

40 Recently, the LiDAR (Light Detection and Ranging) technology has been widely used in
41 forestry-related analysis and studies. As measurements from LiDAR can achieve millimetre-level of
42 details from the objects, it becomes possible to directly capture 3D information and rapidly estimate the
43 trees attributes [10]. For example, LiDAR measurements are widely applied in further researches such
44 as tree height estimation [11], tree canopy analysis [12] and tree species classification [13]. Moreover,
45 by applying LiDAR technology we are capable of acquiring highly dense point clouds, which lays the
46 foundation for accurate tree reconstruction and modelling.

47 To achieve accurate tree modelling from laser scans, both the branch geometry and the tree
48 skeleton are required to be taken account of. The works of [14,15] adopted a cylinder-fitting approach
49 to obtain the geometry of tree branches. To further extract the tree skeletal structure, some works
50 employ a rule-based procedural modelling approach to synthesize branches [9,16], which will generate
51 the tree skeleton with high quality but requires prior knowledge as well as manual parameters
52 adjustments. Some other works proposed purely data-driven methods to automatically extract the
53 skeleton without requiring additional user interactions. The work of [17] constructed the shortest-path
54 map over the input point clouds to extract consecutive skeletal curves. Served as an alternative
55 for the shortest-path mapping, Dey and Sun [18] utilized the medial axis to represent the skeletal
56 structure of 3D tree-like objects. Instead of extracting skeleton curves directly from point clouds,
57 Bucksch et al. [19] applied another method that organizes points into an octree structure and generates
58 skeletal curves from the octree cells. Similarly, Yan et al. [20] also applied a K-means clustering-based
59 approach to generate tree skeletons. However, these works highly rely on the quality of the input
60 data and therefore may not be robust enough to data quality issues such as holes or missing data
61 due to occlusions. Following the work of [17], Livny et al. [21] computed a minimum spanning
62 graph over the point cloud to obtain an initial tree skeleton and applied several global optimization
63 techniques to refine the tree branch structure. Following this work, we further improve the fidelity of
64 the reconstructed tree models.

65 In this paper, we propose a skeleton-based approach to accurately reconstruct tree branches from
66 individual tree point clouds. We assume that each tree is segmented out from the point clouds. Our
67 method employs the Minimum Spanning Tree (MST) algorithm to effectively extract the initial tree
68 skeleton over input points. By iterative skeleton simplification and cylinder fitting, we obtain the tree
69 model with reconstructed branches. Leaves and textures are further added to enhance the realism
70 of the tree model (Figure 1). One novelty of our work is that we construct the initial tree skeleton
71 based on the desired characteristics of input points. Furthermore, we develop a specific simplification
72 strategy to maintain the natural topological structure of tree branches while collapsing redundant
73 vertices and edges. Our reconstruction approach demonstrates both the geometrical correctness and
74 the topological fidelity of the generated tree models.

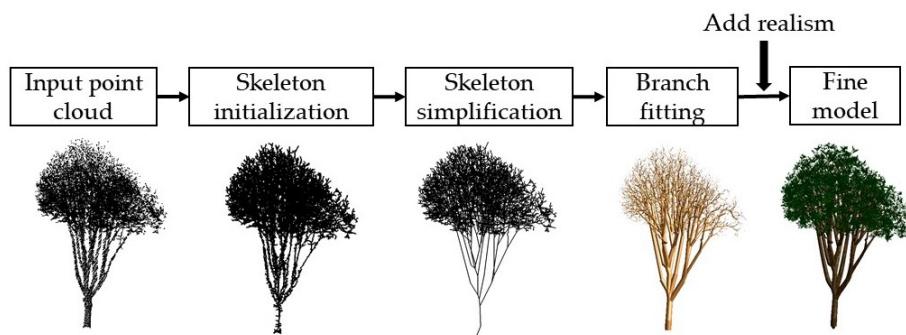


Figure 1. An overview of the proposed methodology.

75 2. Materials and Methods

76 Our input data is the point cloud of a single tree, which typically contains noises and outliers, but
 77 is expected to convey the major branch structure of a tree. [Figure 1](#) illustrates the overall pipeline of
 78 our method, which consists of the following major steps:

79 • **Skeleton initialization.** We triangulate the tree points and apply the MST algorithm to extract the
 80 initial tree skeleton. Note that the main-branch points are identified and centralized beforehand
 81 to improve the quality of the skeleton;

82 • **Skeleton simplification.** The initial skeleton is iteratively simplified, resulting in a light-weight
 83 tree skeleton. We simplify the skeleton by retrieving and merging adjacent vertices if their distance
 84 is sufficiently small;

85 • **Branch fitting.** Based on the reconstructed tree skeleton, we fit a sequence of cylinders over the
 86 input points to approximate the geometry of the branches. We first apply non-linear least squares
 87 to obtain the accurate radius of the tree trunk. Then, we derive the radius of the subsequent
 88 branches from the main trunk geometry;

89 • **Adding realism.** We synthesize leaves at the end of tree branches and add textures to enhance
 90 realism.

91 2.1. Skeleton Initialization

92 Based on the fact that points close to each other are likely to belong to the same branch, we
 93 construct a MST graph over the input point cloud to represent the initial tree skeleton. To extract a
 94 MST over input points, we first apply Delaunay triangulation to construct an initial graph. Delaunay
 95 triangulation lays the foundation for MST computation as most efficient approaches find a minimum
 96 spanning tree among edges in the Delaunay triangulation of the points [22]. Additionally, it helps to
 97 complete the missing region or incomplete branches, which ensures the robustness of our method to
 98 the input point clouds with poor data quality. Having obtained the triangulation graph, we weight all
 99 the edges using their lengths defined in the Euclidean space. Then the Dijkstra shortest path algorithm
 100 is utilized to compute the MST from the triangulation, which serves as a representation of the initial
 101 skeleton of the individual tree.

102 [Figure 2](#) shows the initial skeleton extracted over the input points by shortest-path computation.
 103 In most cases, the MST constructed indicates the skeletal structure of the original tree ([Figure 2a](#)).
 104 Nevertheless, special cases exist when pure MST cannot represent the tree skeleton correctly ([Figure 2b](#)).
 105 Trees with a short and fat shape typically have scattered points and branches, which leads to the
 106 computed MST growing in a horizontal manner rather than a compact vertical manner.

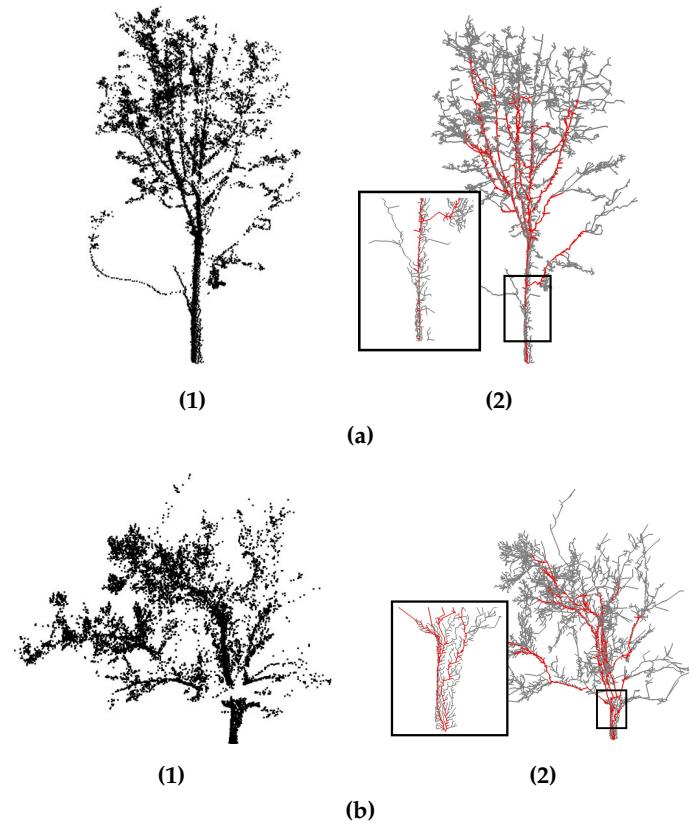


Figure 2. Skeleton initialization for two trees. (a) A valid tree skeleton structure (in red). (b) An invalid tree skeleton structure (in red).

107 We address the problem by intentionally centralizing points that belong to the main branches
 108 of the tree. The aim is to generate condensed branches for better skeleton extraction. As points near
 109 the bifurcations or the branch tips typically sharply change in terms of density, while points within
 110 a single branch share a stable density (Figure 3a), we can find main-branch points with a relatively
 111 stable density in their neighbors. Identified main-branch points are centralized through the mean-shift
 112 algorithm [23]. As illustrated in Figure 3b, the extracted skeleton after main-branch point centralization
 113 has a compact vertical growing manner.

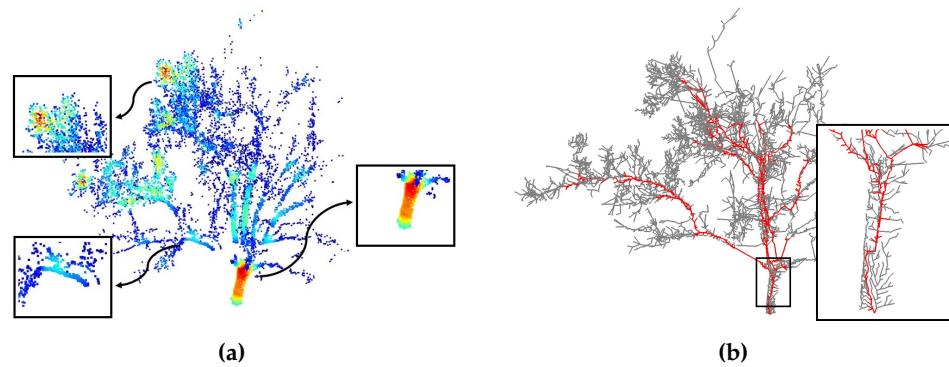
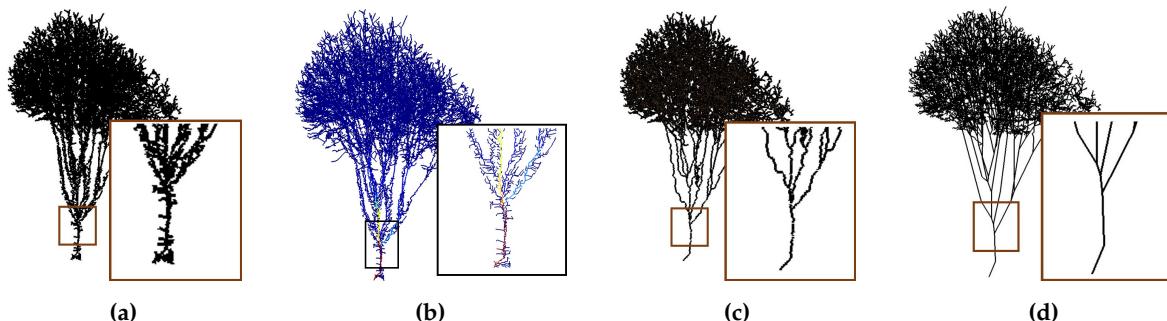


Figure 3. Skeleton extraction from the centralized points. (a) Density map of the raw point cloud. Red indicates high density and blue indicates low density. (b) Skeleton extracted after the main-branch point centralization.

114 2.2. Skeleton Simplification

115 The initial tree skeleton extracted from the input point cloud has a large amount of redundant
 116 vertices and edges. Most of the redundant vertices and small edges don't contribute to the tree skeleton
 117 shape and thus are of little importance, and should be removed to further simplify the tree skeleton.
 118 The simplification is conducted in two major steps. We first assign importance values to vertices and
 119 edges, based on which small noisy components can be removed accordingly. Then, we iteratively check
 120 the proximity between adjacent vertices and merge close vertices. [Figure 4](#) illustrates the simplification
 121 process.



122 **Figure 4.** Skeleton simplification. (a) Initial skeleton. (b) Importance value assigned to branches. (c)
 123 Simplification by eliminating noisy small branches. (d) Simplification by merging similar vertices and
 124 edges.

125 2.2.1. Assigning vertex and edge importances

126 We assign importance values to vertices and edges in the initial tree skeleton to further guide the
 127 simplification process. Our goal is to keep important vertices and main branch edges while ignoring
 128 short branches and noisy points. Several previous works [9] suggest utilizing the point density,
 129 together with the point orientation vector extracted from the Principal Component Analysis (PCA), to
 130 indicate the importance of the vertex. However, the weights evaluated in such a way are significantly
 131 dependent on the quality of the scanned points and thus become unreliable when encountered with
 132 poor scanning issues.

133 Instead of weighting from the density, we weight each vertex according to its length of the subtree,
 134 which is computed as the sum of the length of all edges within the subtree of the vertex. Through such
 135 a way, high-connective vertices close to the tree base area get heavier weights while low-connective
 136 vertices near the tree crown get smaller weights. One advantage is that the weighting process is
 137 not sensitive to input points density, which makes it robust to data with different scanning qualities.
 138 Accordingly, each branch edge is weighted as the average of the subtree length of its two ending
 139 vertices. Typically, vertices and edges on the tree crown have consistent low weights [21], while near
 140 the tree base small branches have drastically small weights compared to the main trunk branches.
 141 Such a characteristic helps us clear away noisy branches at the trunk, and at the same time, keeps the
 142 small leave branches at the crown.

143 2.2.2. Simplifying adjacent vertices and edges

144 Having eliminated small noisy branches with relatively low importances, we notice that many
 145 redundant vertices and edges still exist as they share similar positions and orientations within their
 146 neighborhood. To simplify those similar components, we iteratively check the proximity between
 147 adjacent vertices. A similarity indicator α is defined to describe the closeness between targeted vertices.

For vertex which has only one single child, the skeleton simplification becomes a line simplification problem. Since that the more proxy the current vertex is to the line segment formed by its parent and its child, the less important this vertex is. Hence, the indicator α is computed as follow:

$$\alpha = \frac{d}{r}, \quad (1)$$

where d is the distance between the current point and the line segment formed by its parent and its child; r is the distance threshold of an edge in the tree skeleton which controls the simplification process. As illustrated in [Figure 5](#), if the indicator value α is smaller than a threshold σ :

$$\alpha \leq \sigma, \quad (2)$$

¹⁴⁵ we consider the current point unimportant and therefore it can be removed from the skeleton.

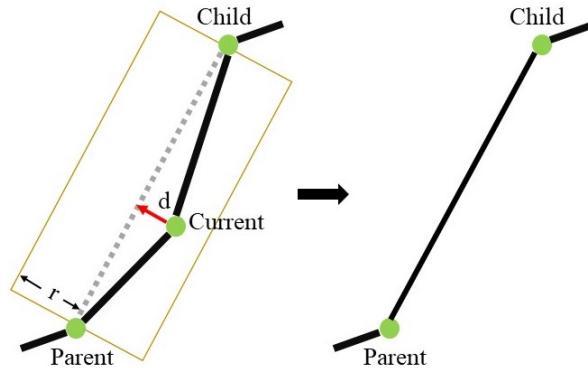


Figure 5. Single child simplification.

For vertex which has multiple children vertices, the similarity indicator α indicates the closeness of the pair of two children vertices, and therefore is defined as follow:

$$\alpha = \min\left(\frac{l_1 \sin \theta}{r_2}, \frac{l_2 \sin \theta}{r_1}\right), \quad (3)$$

¹⁴⁶ where l represents the length of the edge between one specific child vertex and its parent; θ is the
¹⁴⁷ angle between two edges and r is the distance threshold of a specific edge (see [Figure 6](#)). Note that the
¹⁴⁸ indicator computed from different directions (i.e. from V_1 to V_2 or from V_2 to V_1) will have different
¹⁴⁹ values and therefore we select the minimum one to evaluate the proximity between adjacent child
¹⁵⁰ vertices. The smaller the indicator value, the more similarity between two vertices. If α is smaller than
¹⁵¹ a given threshold σ , we merge the pair of vertices into a new vertex. The merged new vertex location
¹⁵² p_{new} is computed as the weighted average of the original two vertices, where the weight of each vertex
¹⁵³ is computed as the length of its subtree:

$$p_{new} = \frac{p_1 w_1 + p_2 w_2}{w_1 + w_2}. \quad (4)$$

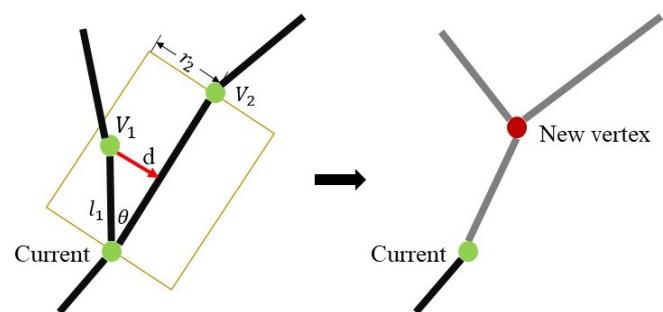


Figure 6. Multi-children simplification. Grey edges on the right indicates newly generated branches.

154 2.3. Branch Fitting

155 Based on the simplified tree skeleton, we further reconstruct the tree geometry. To precisely model
156 the geometry of tree branches, we apply a cylinder-fitting approach. According to [24], the cylinder
157 primitive is the most robust primitive in terms representing the geometry of the tree branches, even
158 with holes and noises in the dataset. Moreover, compared with the complex curve fitting method,
159 cylinder fitting is relatively easy and fast in computation [25]. [Figure 7](#) shows in general how cylinder
160 fitting is employed to obtain the tree model with branches.

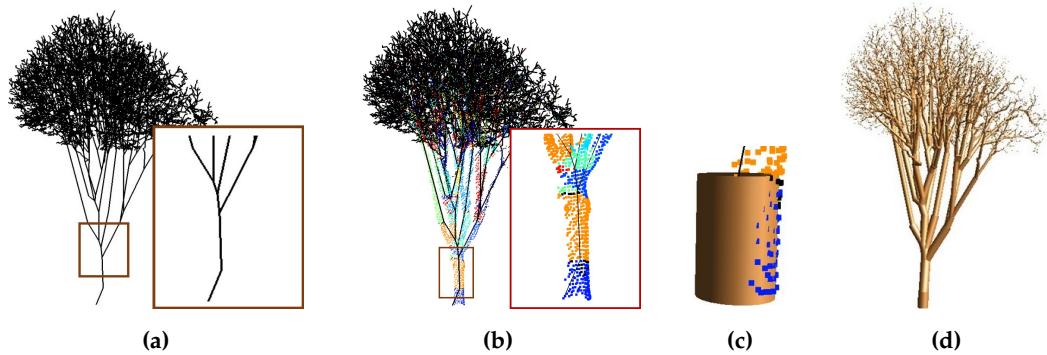


Figure 7. Branch fitting. (a) Tree skeleton. (b) Points segmented to different tree parts. (c) Cylinder fitted to the main trunk. (d) Geometry derived for the subsequent branches.

161 The main trunk close to the tree base area typically has the highest density of supportive points. We
162 exploit an optimization-based approach to obtain the accurate branch geometry. First, the neighboring
163 points lying within the trunk part are segmented and identified ([Figure 7b](#)). We can either use a
164 brute-force searching method or apply a kd-tree query to speed up the segmentation. Next, we fit
165 a cylinder to approximate the branch geometry based on the corresponding trunk points. This is a
166 typical non-linear least squares problem. We hereby define our input data, parameters to be solved,
167 and the objective function as follows ([Figure 8](#)):

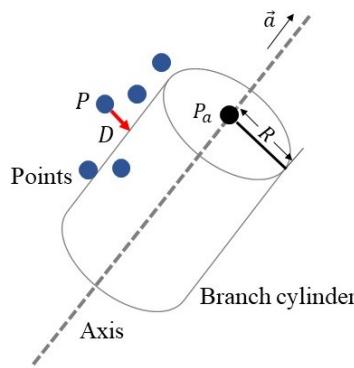


Figure 8. Parameters and objective in the cylinder fitting problem.

168 • **Input data** are the position P of the input points;
 169 • **Parameters to be solved** are the axis direction vector \vec{a} of the cylinder, the position P_a of the end
 170 point on the axis, and the radius R of the cylinder;
 171 • **Objective function** is defined as the sum of the squared distance from the points to the branch
 172 cylinder:

$$\min \sum_{i=1}^n D(p)_i. \quad (5)$$

We use the Levenberg Marquardt algorithm to solve the non-linear least-squares problem. Normal least-squares is sensitive to data noises and outliers. Therefore, to further improve the solution quality, we repeat the non-linear least square process and introduce the weights for each point during the second computing iteration. We want to give heavy influences to the points closer to the cylinder and relatively low influence to the points that are far from the cylinder. Hence, weights are assigned according to the point's distance to the cylinder. The weight for one specific point is defined as follow:

$$w_i = 1 - \frac{D_i}{D_{max}}, \quad (6)$$

173 where D_i represents the distance between the current i^{th} point and the cylinder obtained from the
 174 initial computation, and D_{max} is the maximum distance among all the points to the cylinder. Through
 175 such a way, we normalize all the weights of the points to the range between 0 and 1. The objective
 176 function is denoted accordingly:

$$\min \sum_{i=1}^n D(p)_i w_i. \quad (7)$$

Figure 7c shows the accurate geometry of the tree trunk obtained from cylinder fitting. For the subsequent small tree branches, as the points become noisier when getting close to the tree crown and branch tips, fitting an accurate cylinder to small branches is infeasible. Instead, we apply an allometric rule to obtain plausible estimates for the rest of the tree branches [9]. The radius of a branch edge is proportional to its weight, which is defined as the average of the subtree length of its two ending vertices. We compute the radius of the rest branch edges using the following equation:

$$R_{e_i} = R_t \left(\frac{w_i}{w_t} \right), \quad (8)$$

177 where R_{e_i} is the radius of the i^{th} branch edge; R_t is the radius of the trunk obtained from cylinder
 178 fitting and w is the weight of the specific branch edge. **Figure 7d** shows the derived tree branch model
 179 from the constructed tree skeleton.

180 **2.4. Adding Realism**

181 To further add realism, we add leaves and texture to the reconstructed tree models. Since it's
 182 almost impossible for us to capture the geometry and texture characteristics of leaves from laser scans,
 183 it becomes impossible to reconstruct accurate leaves purely from the point clouds. In this work, we
 184 generate oriented leaves at the end of each branch following that of [21].

185 **3. Results and Discussion**

186 We implemented our tree reconstruction algorithm using C++. We use Boost [26] for minimum
 187 spanning tree extraction and Easy3D [27] for visualization.

188 **3.1. Test Datasets**

189 To develop and test the proposed tree reconstruction method, several point cloud datasets have
 190 been collected. These test datasets contain point clouds from publicly available point cloud repositories,
 191 the Floriade Project of Almere, and the AHN dataset [28]. These point clouds include various tree
 192 species and types. Also, a wide range of data sources is covered, i.e., static laser scans, mobile laser
 193 scans, and airborne laser scans.

194 **3.2. Visual Evaluation**

195 We reconstructed a variety of trees with different species and branch structures (see [Figure 9a](#)
 196 and [Figure 9b](#)). Among them, some trees are tall and slim ([Figure 9a](#)), while others are short and fat
 197 ([Figure 9b](#)). From these results, we can see that our method is capable of processing various type
 198 of trees with different sizes. Besides, we also tested our method on scanned trees from various data
 199 sources (see [Figure 9c](#), [Figure 9d](#) and [Figure 9e](#)), including mobile scanning, static scanning as well as
 200 airborne scanning. It is observed that point clouds collected by mobile scanning ([Figure 9c](#)) or static
 201 scanning ([Figure 9d](#)) have a high quality and thus were all accurately reconstructed. On the other
 202 hand, from [Figure 9e](#), we can see that the input point cloud airborne scanning are poorly sampled and
 203 is extremely sparse. With such a low quality input, our approach is still able to produce a plausible 3D
 204 reconstruction.

205 **3.3. Reconstruction Accuracy**

206 We evaluated the geometrical accuracy of the modelling results by computing the mean distance
 207 between the input points and the generated tree branch model. The statistics in [Table 1](#) suggested that
 208 our approach can generate tree models that fit closely to the input point cloud data and thus ensures
 209 high geometrical accuracy.

Table 1. Geometrical accuracy evaluation

	Figure 9a	Figure 9b	Figure 9c
Height	5.61m	10.05m	16.28m
Mean Distance	2.76cm	10.04cm	6.59cm
Standard Deviation	2cm	8cm	6cm

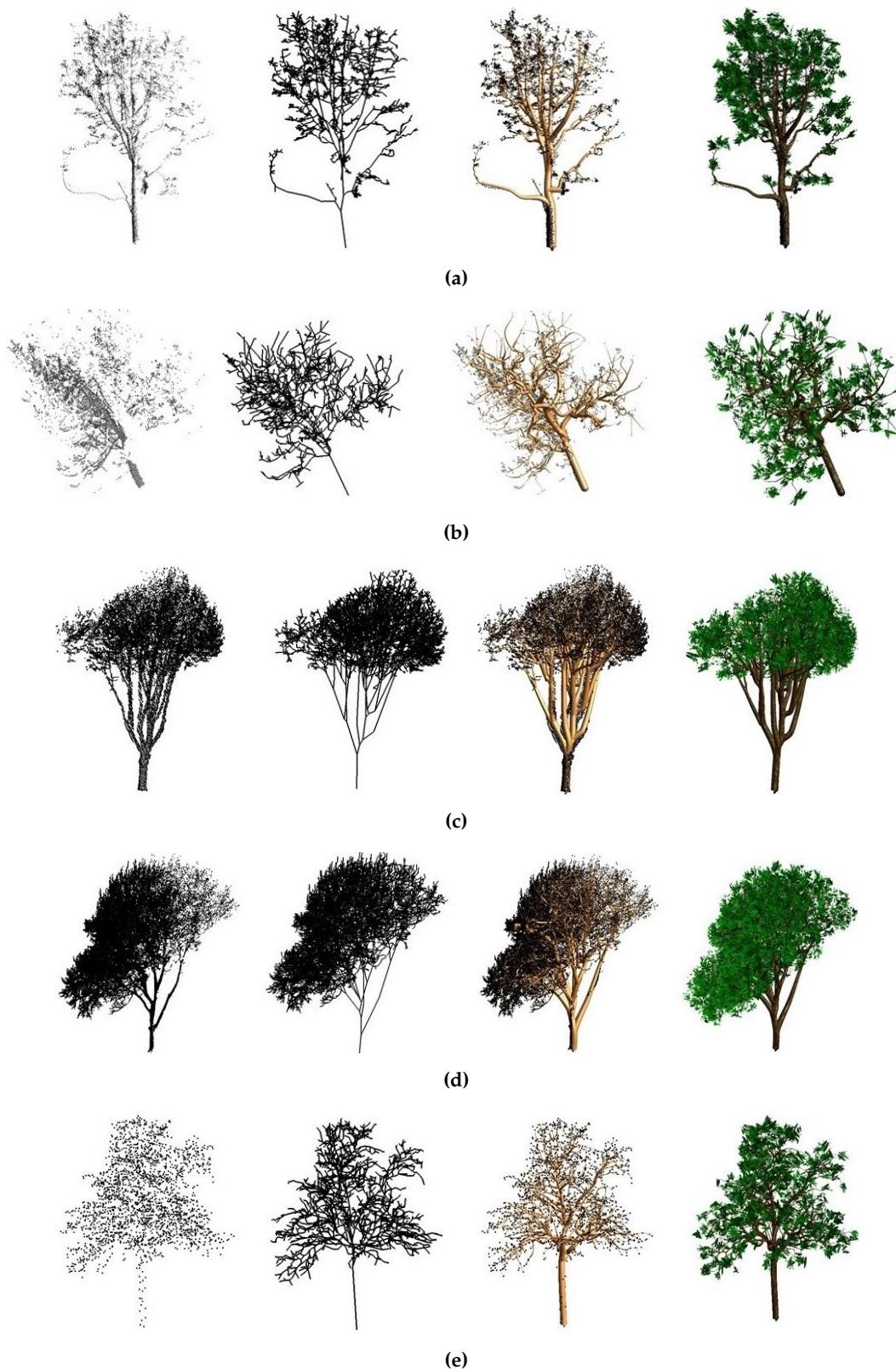


Figure 9. Reconstructed models for various trees. From left to right: point cloud; skeleton; tree branches; tree final model.

210 **3.4. Robustness**

211 As described in [section 2](#), the simplification threshold σ is introduced during the tree skeleton
 212 simplification process, where we utilize an indicator to measure the proximity between the adjacent
 213 vertices. This section discusses how different parameter values influence the modelling results, based
 214 on which, we choose the threshold values that best fit our methodology.

215 The simplification threshold σ controls the similarity indicator α , which determines the relative
 216 proximity between adjacent vertices. We tested the value of σ from 0.5 to 3 and the results are shown
 217 in [Figure 10](#). According to our experiments, a very small threshold σ for the indicator makes it tough
 218 for close vertices to merge, while a very big σ causes oversimplification. Therefore, we chose 1.5 as the
 219 threshold value. It is denoted that the parameter value is pre-fixed in our algorithm, which means that
 220 we used the same parameter setting for generating all the 3D models in this paper. As σ is a relative
 221 value indicating the closeness among vertices, it is generally applicable for most trees. Users don't
 222 have to adjust the specific threshold value for specific input data, which makes our approach robust to
 223 various trees.

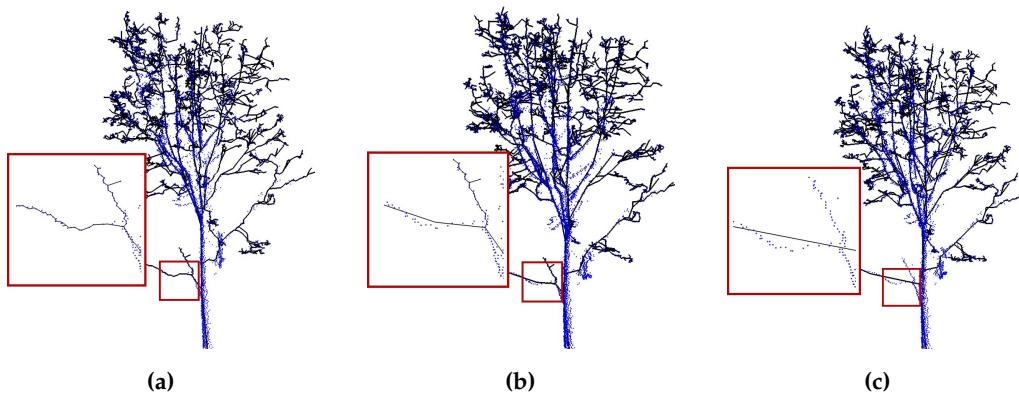


Figure 10. Simplification results using different σ values. (a) $\sigma = 0.5$. (b) $\sigma = 1.5$. (c) $\sigma = 3$.

224 **3.5. Comparisons**

225 We compare our modelling results to that of [\[21\]](#) as it's the closest related to our work. Given
 226 the same point cloud, our algorithm is capable of reconstructing tree models with higher topological
 227 and geometrical accuracy. In [Figure 11](#), we demonstrate the visual comparison. We can see that our
 228 reconstructed models have more reasonable branch structure and also fit better to the input points. The
 229 performance improvement benefits from two reasons. First, we identify and centralize main-branch
 230 points, which in return generates tree skeletons that are topologically correct. Besides, our cylinder
 231 fitting exploits a distance-weighted non-linear least squares fitting, which significantly improves the
 232 geometrical accuracy.

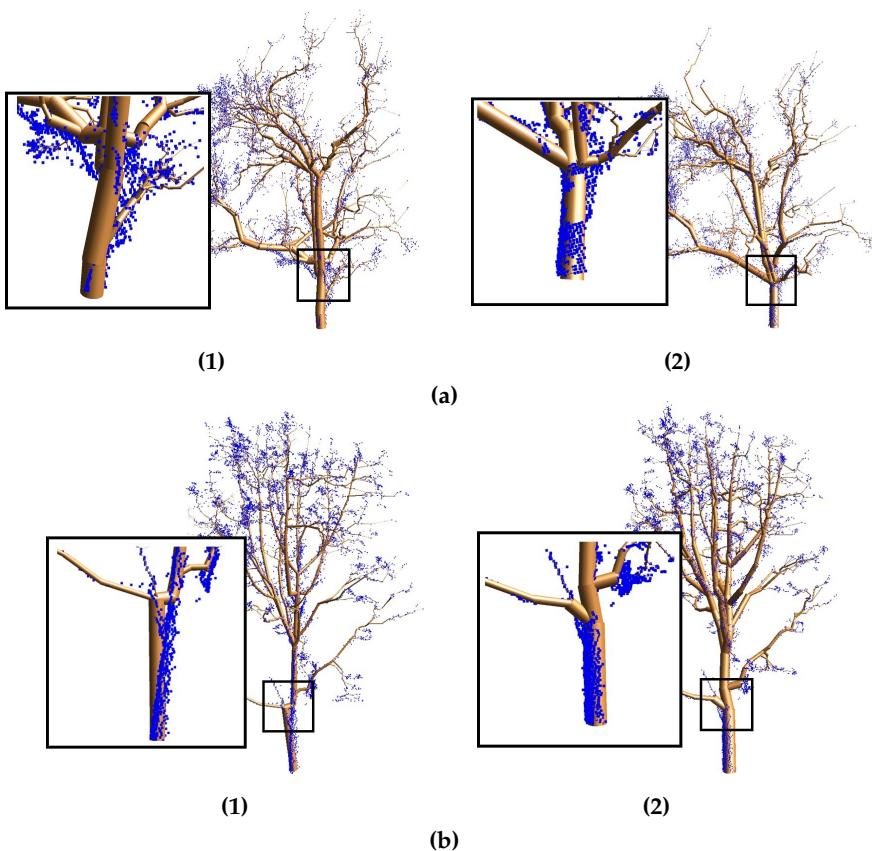


Figure 11. Comparison between Livny's method (left) and our method (right) on two trees.

233 **3.6. Limitations**

234 Our algorithm can successfully reconstruct accurate and detailed 3D tree models from point
 235 clouds. However, it still has some limitations. First of all, our approach is data-driven. For poorly
 236 scanned data with sparse points, though our method can reconstruct a plausible topological structure
 237 of the tree branches, it is unable to achieve sufficient geometrical accuracy. Moreover, our work doesn't
 238 consider natural growing rules for tree branches (i.e., branch split angle, branch growing length). The
 239 incorporation of domain knowledge will further constrain the reconstructed models to be topologically
 240 correct and improve the fidelity of the models, improving both geometrical and topological accuracy.

241 **4. Conclusions and Future Work**

242 In this paper, we proposed an automatic approach to accurately reconstruct 3D tree branches
 243 from point clouds. During the reconstruction, both the geometrical accuracy and topological fidelity of
 244 the tree are taken into consideration. One novelty of our work is that we aid the skeleton construction
 245 process with the main-branch point centralization, which contributes to improving the quality of the
 246 generated tree branch structure. Moreover, an optimization-based approach is employed to accurately
 247 reconstruct the geometry of the tree branches. Experimental results revealed that our method is robust
 248 in dealing with various types and sizes of the trees. As long as the input point clouds demonstrate
 249 clear branch structure, our method is capable of generating tree models of high quality.

250 In future work, we would like to perform automatic instance segmentation of trees. As our method
 251 only works for individual tree point clouds, automatic segmentation will expand our algorithm to a
 252 broader range of applications. Besides, as there are many irregular shapes of tree branches in nature,
 253 we will further consider fitting free-form surfaces instead of cylinders to model the branch geometry
 254 more precisely.

255 Author Contributions: Shenglan Du performed the study and implemented the algorithms. Roderik Lindenburgh,
256 Hugo Ledoux and Jantien Stoter provided constructive comments and suggestions. Liangliang Nan proposed this
257 topic and provided daily supervision.

258 Acknowledgments: We thank Yufu Zang, Kaixuan Zhang, and Agung Indrajit for valuable comments. We also
259 thank the Floriade Project for providing test datasets.

260 Conflicts of Interest: The authors declare no conflict of interest.

261 References

- 262 1. Deussen, O.; Hanrahan, P.; Lintermann, B.; Měch, R.; Pharr, M.; Prusinkiewicz, P. Realistic modeling and
263 rendering of plant ecosystems. *Proceedings of the 25th annual conference on Computer graphics and*
264 *interactive techniques*. ACM, 1998, pp. 275–286.
- 265 2. Maltamo, M.; Næsset, E.; Vauhkonen, J. Forestry applications of airborne laser scanning. *Concepts and case*
266 *studies. Manag For Ecosys* **2014**, *27*, 460.
- 267 3. Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and
268 delineation from passive remote sensing. *International Journal of Remote Sensing* **2011**, *32*, 4725–4747.
- 269 4. Hyypä, J.; Kelle, O.; Lehtinen, M.; Inkkinen, M. A segmentation-based method to retrieve stem volume
270 estimates from 3-D tree height models produced by laser scanners. *IEEE Transactions on geoscience and*
271 *remote sensing* **2001**, *39*, 969–975.
- 272 5. Kamal, M.; Phinn, S.; Johansen, K. Object-based approach for multi-scale mangrove composition mapping
273 using multi-resolution image datasets. *Remote Sensing* **2015**, *7*, 4753–4783.
- 274 6. Reche-Martinez, A.; Martin, I.; Drettakis, G. Volumetric reconstruction and interactive rendering of trees
275 from photographs. *ACM transactions on graphics (ToG)*. ACM, 2004, Vol. 23, pp. 720–727.
- 276 7. Shlyakhter, I.; Rozenoer, M.; Dorsey, J.; Teller, S. Reconstructing 3D tree models from instrumented
277 photographs. *IEEE Computer Graphics and Applications* **2001**, *21*, 53–61.
- 278 8. Quan, L.; Tan, P.; Zeng, G.; Yuan, L.; Wang, J.; Kang, S.B. Image-based plant modeling. *ACM Transactions*
279 *on Graphics (TOG)*. ACM, 2006, Vol. 25, pp. 599–604.
- 280 9. Guo, J.; Xu, S.; Yan, D.M.; Cheng, Z.; Jaeger, M.; Zhang, X. Realistic Procedural Plant Modeling from
281 Multiple View Images. *IEEE transactions on visualization and computer graphics* **2018**.
- 282 10. Liang, X.; Kankare, V.; Hyypä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.;
283 Guan, F.; others. Terrestrial laser scanning in forest inventories. *ISPRS Journal of Photogrammetry and Remote*
284 *Sensing* **2016**, *115*, 63–77.
- 285 11. Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning
286 and the RANSAC algorithm. *Remote sensing* **2014**, *6*, 4323–4344.
- 287 12. Brandtberg, T.; Warner, T.A.; Landenberger, R.E.; McGraw, J.B. Detection and analysis of individual leaf-off
288 tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North
289 America. *Remote sensing of Environment* **2003**, *85*, 290–303.
- 290 13. Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner. *Remote*
291 *Sensing of Environment* **2004**, *90*, 415–423.
- 292 14. Hackenberg, J.; Morhart, C.; Sheppard, J.; Spiecker, H.; Disney, M. Highly accurate tree models derived
293 from terrestrial laser scan data: A method description. *Forests* **2014**, *5*, 1069–1105.
- 294 15. Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Automatic and self-adaptive stem reconstruction in
295 landslide-affected forests. *Remote Sensing* **2016**, *8*, 974.
- 296 16. Xu, H.; Gossett, N.; Chen, B. Knowledge and heuristic-based modeling of laser-scanned trees. *ACM*
297 *Transactions on Graphics (TOG)* **2007**, *26*, 19.
- 298 17. Verroust, A.; Lazarus, F. Extracting skeletal curves from 3D scattered data. *Proceedings Shape Modeling*
299 *International'99. International Conference on Shape Modeling and Applications*. IEEE, 1999, pp. 194–201.
- 300 18. Dey, T.K.; Sun, J. Defining and computing curve-skeletons with medial geodesic function. *Symposium on*
301 *geometry processing*, 2006, Vol. 6, pp. 143–152.
- 302 19. Bucksch, A.; Lindenbergh, R.C.; Menenti, M. SkelTre-fast skeletonisation for imperfect point cloud data of
303 botanic trees. *Eurographics*, 2009.

304 20. Yan, D.M.; Wintz, J.; Mourrain, B.; Wang, W.; Boudon, F.; Godin, C. Efficient and robust reconstruction
305 of botanical branching structure from laser scanned points. 2009 11th IEEE International Conference on
306 Computer-Aided Design and Computer Graphics. IEEE, 2009, pp. 572–575.

307 21. Livny, Y.; Yan, F.; Olson, M.; Chen, B.; Zhang, H.; El-Sana, J. Automatic reconstruction of tree skeletal
308 structures from point clouds. *ACM Transactions on Graphics (TOG)*. ACM, 2010, Vol. 29, p. 151.

309 22. Zhou, H.; Shenoy, N.; Nicholls, W. Efficient minimum spanning tree construction without Delaunay
310 triangulation. Proceedings of the 2001 Asia and South Pacific Design Automation Conference. ACM, 2001,
311 pp. 192–197.

312 23. Cheng, Y. Mean shift, mode seeking, and clustering. *IEEE transactions on pattern analysis and machine
313 intelligence* **1995**, *17*, 790–799.

314 24. Markku, Å.; Raumonen, P.; Kaasalainen, M.; Casella, E. Analysis of geometric primitives in quantitative
315 structure models of tree stems. *Remote Sensing* **2015**, *7*, 4581–4603.

316 25. Panyam, M.; Kurfess, T.R.; Tucker, T.M. Least squares fitting of analytic primitives on a GPU. ASME 2008
317 9th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical
318 Engineers, 2008, pp. 233–240.

319 26. Boost. Available online: https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html (accessed
320 on 01-September-2018).

321 27. Easy3D. Available online: <https://github.com/LiangLiangNan/Easy3D> (accessed on 01-March-2019).

322 28. AHN Dataset. Available online: https://www.pdok.nl/attenderingsservice-rss/-/asset_publisher/mvZkjafth739/content/actueel-hoogtebestand-nederland-ahn3- (accessed on 01-January-2019).

323