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Abstract: Lung cancer is one of the most important health risks worldwide for human. Non-small 
cell lung cancer (NSCLC) is the most common cause of premature death from malignant disease. 
This study provides in-depth insights from systems biology analyses to identify molecular to inform 
systemic drug targeting in NSCLC. Gene expression profiles from non small cell lung cancer were 
analyzed with genome-scale biomolecular networks (I,e., protein-protein interaction, 
transcriptional and post transcriptional regulatory networks). The aim of the study was to 
determine the pathways and expression profile of the genes to discover molecular signature at RNA 
and protein levels which could serve as potential drug targets for therapeutics innovation and the 
identification of novel targets. Eight proteins, six TFs and seven miRNAs came into prominence as 
potential drug targets. The differential expression profiles of these reporter biomolecules were 
cross-validated by independent RNA-Seq and miRNA-Seq. Risk discrimination performance of the 
reporter biomolecules NPR3, JUN, PPARG, TP53, CKMT1A, SP3 and TFAP2A were also evaluated. 
Total 213 drugs and 7 proteins were found for non small cell lung cancer through dgidb. Among 
these identified drugs seven drugs such as- Gemcitabine, Carboplatin, paclitaxel, Docetaxel, 
Crizotinib, Bevacizumab and Gemcitabine is used for NSCLC which is approved by National 
Cancer Institute. The molecular signatures and repurposed drugs presented here permit further 
attention for experimental studies which are offer significant potential as biomarkers and candidate 
therapeutics for precision medicine approaches to clinical management of NSCLC. 

Keywords: lung cancer; molecular signature; molecular pathway; differentially expressed genes; 
protein-protein interaction; reporter biomolecules and bioinformatics 

 

1. Introduction 

Lung cancer is the second leading cause of cancer death worldwide among the human cancer. 
In Bangladesh, Lung cancers deaths reached 9,660 or 1.33% of total deaths according to the latest 
WHO data published in May, 2014. International Agency for Research on Cancer calculated cancer-
related death rates in Bangladesh was 7.5% in 2005 and it will be 13% in 2030. Smoking, alcohol and 
high air pollutions are the main risk factor of lung cancer (Alberg et al., 2013). Non-small cell lung 
cancer (NSCLC) account for approximately 75% of all of lung cancers, which is the most common 
type of bronchial tumor in the world (Jemal et al., 2007). Conventional diagnosis of lung cancer is 
currently based on tumor histology. The main histological types of NSCLC include adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma. Despite the well-defined histological types of 
NSCLC, patient survival and treatment outcomes can differ substantially, even among NSCLCs of 
the same histological type and stage. Both sub-types adenocarcinoma and squamous cell carcinoma 
are very different in regard to copy number, DNA methylation, genetic mutations, transcriptome, 
proteome and biomarkers. Defining different lung cancer entities based on clinical, pathological and 
molecular alterations also determines disease evolution and treatment options. In spite of significant 
progress in the development of targeted-therapy, the high mortality rate in lung cancer firmly 
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emphasizes the need for prevention and efficient detection of lung cancer, as well as a better 
classification, enabling patients to benefit from more specific therapy. Microarrays have been Lung 
cancer morphology exhibits a broad spectrum and many tumors are atypical or lack the morphologic 
features necessary for improved differential diagnoses. Lung cancer diagnoses based solely on 
morphological features are in many cases insufficient (D’Amico, 2008).  

In recent years, there has been an expanding interest in the molecular genetic classification of 
cancers. Gene expression profiling is one of the methods used for this purpose. The data obtained 
from gene expression analyses may allow the differentiation of cancer subgroups based on molecular 
phenotypes. Subgroups determined by gene expression in combination with clinical features like 
spread reflect the cancer’s biology and progression better than histology alone (Golub, 2001). The aim 
to reduce the high morbidity rate in lung cancer is related to growing efficiency of early detection 
and prevention of cancer risk factor strategies of lung cancer while still in a curable stage. Depend on 
the site of the primary tumor, these patient are treated with surgery and/ or radiotherapy. Despite 
advances in early detection and standard treatment, NSCLC is often diagnosed at an advanced stage 
and carries a poor prognosis. Greater knowledge of the molecular origins and progression of lung 
cancer may lead to improvements in the treatment and prevention of the disease. Gene expression 
profiling offers a more functional molecular understanding of lung cancer that may grant insights 
into its pathophysiology and yield relevant information for staging, prognosis and therapeutic 
decision-making. 

Microarrays have been used for more than two decades in pre-clinical research to determine 
gene-expression profiling associated with different pathological sub-groups or diverse clinical 
evolution and to evaluate biological and cellular functions determined by these gene panels. 
Improved outcomes for NSCLC are therefore clearly needed. There are a number of different 
strategies currently under evaluation. However, a better understanding of the molecular mechanisms 
that determine clinical outcomes is likely to provide the basis for more effective therapeutic 
intervention. Questions have been raised regarding the reproducibility of microarray result and there 
are examples of gene expression signature that even though validated in independent patient cohorts, 
show relative little overlap of genes. It has also been stated that differential gene expression on 
transcript level matches protein abundance to only about 40% (Tian et al., 2004). 

In the present study, system biomedicine framework was used to identify molecular biomarker 
signature and inform systemic drug targeting in non small cell lung cancer (Figure 1). For this 
purpose, gene expression profiles from lung cancer were subjected to integrative analyses with 
genome-scale biomolecular networks to reveal molecular signature at mRNA, miRNA and protein 
levels, which serve as potential drug targets for therapeutics innovation. The differential expression 
profiles and the risk discrimination performance of the reporter biomolecules were cross-validated 
in independent transcriptome datasets. 
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Figure 1. The methodology of multi-stage analysis which is employed in the present study. (A) Gene 
expression data were obtained from the Gene Expression Omnibus (GEO) database. The dataset was 
statistically analyzed to identify differentially expressed genes (DEGs). (B) Functional enrichment of 
DEGs was performed to identify significantly enriched Gene Ontology (GO) terms and Pathways. (C) 
Protein-protein interaction network was reconstructed around DEGs and the topological analyses 
were performed via cytoscape to identify hub proteins. (D) To identify reporter micro-RNA (miRNA) 
and transcription factors (TFs), DEGs were integrated with miRNA-target gene and TF-target 
interactions and the statistically significant miRNAs and TFs were considered as the reporter 
transcriptional regulatory elements. (E) The survival analysis of the hub biomolecules was done 
through The Cancer Genome Atlus (TCGA) NSCLC datasets via SurvExpress and Oncolnc. (F) The 
candidate drug molecules were identified by Drug Gene Interaction Database (dgidb). 

2. Materials and Methods 

2.1. Gene Expression Profiling in Non Small Cell Lung Cancer 

For non small cell lung cancer, the transcriptome data (GSE54712) was obtained from the 
previous study (Lopez et al., 2014) through the publicly available Gene Expression Omnibus (NCBI-
GEO) dataset (Barrett et al., 2013). mRNA profiling was hybridized to in-situ oligonucleotide 
microarrays (Agilent-014850 Whole Human Genome Microarray 4x44K). 

2.2. Differentially Expressed Gene 

The gene expression dataset was normalized by the Robust Multi-Array Average (RMA) 
expression measure for identifying DEGs. There are several statistical approaches for identifying 
DEGs from the normalized dataset, however, most of them shows week performance in presence of 
outliers as well as in the case of small sample. The robust version of statistical Linear Models for 
Microarray Data (LIMMA) works well in both cases. Therefore we implemented the robust version 
of “LIMMA” package under the Bioconductor platform to detect the DEGs. To control the false 
discovery rate in multiple-testing the p-values were adjusted by Benjamini Hochberg’s method and 
by using adjusted p-value >0.01 criterion was cutoff to designate statistical significance. The 
hierarchical clustering analysis was applied to categorize patients and gene into groups using 
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Heatmap3 package. All analyses packages were implemented in R (version 3.2.3), analysis were 
performed through the Bioconductor platform (Gentleman et al., 2004). 

2.3. Gene Function Enrichment  

To find out molecular function, biological process and molecular pathway annotations of the 
identified DEGs through Database for Annotation, Visualization and Integrated Discovery (DAVID) 
(version v6.8) bioinformatics resources by using gene overrepresentation analyses.  Whole set of 
genome annotation for human genome was used as the background reference set. Analyses were 
carried out by using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database as the 
annotation sources. DAVID bioinformatics resources were used to find out molecular pathway 
annotations of the identified DEGs (Huang et al., 2009). P-values were determined by using Fisher 
Exact test and Benjamini-Hochberg’s correction was used the multiple testing correction technique. 
Results with adjusted-p <0.01 were considered as statistically significant. 

2.4. Analysis and Reconstruction of Protein-Protein Interaction Sub-network 

The previously reconstructed protein-protein interaction (PPI) network of Homo sapiens 
(Karagoz et al., 2016), which consist of 288,033 physical interactions between 21,052 proteins, was 
recruited in the present study to construct a PPI subnetwork around the protein encoded by the 
identified DEGs. The subnetwork was shown as an undirected graph, where nodes represent the 
proteins and the edges represent the interactions between the proteins. The sub-network was 
visualized and analyzed via cytoscape (v3.6.1). 

To determine highly connected proteins (i,e., hub proteins) a topological analysis was applied 
through Cyto-Hubba plugin (Chin et al., 2009) and the dual-metric approach considering degree and 
between’s centrality metrics simultaneously were employed (Calimlioglu et al., 2015). 

2.5. Determination of Reporter Transcription Factors and miRNAs  

Transcriptional regulatory biomolecules (i.e.,TFs)was obtained through human transcriptional 
regulation interaction data bases TRRUST v2 (www.grnpedia.org/trrust) which significant changes 
has occurred at transcriptional level. To identify significant changes of miRNAs which occur at 
transcriptional level, the experimentally verified miRNA-target gene interactions was involved in 
this study which were obtained through human transcriptional regulation interaction (Bovolenta et 
al., 2012) and miRTarbase (Release 6.0) (Chou et al., 2016) as well as previous study (Gov et al., 2017). 
To obtained z-score and corresponding p-values of the regulatory molecules, the reporter features 
algorithms (Patil and Nielsen, 2005) was used and implemented as described previously (Kori et al., 
2016). P-values were corrected via Benjamini-Hochberg’s methods and statistically significant 
(adjusted p <0.01) results were considered as reporter regulatory elements. 

2.6. Cross-validation and Evaluation of Performance of Reporter Biomolecules  

According to their prognostic index and survival multivariate the patients were divided into 
low and high-risk group and risk assessments were performed through oncolnc (Anaya, 2016). The 
differences between the risk groups in gene expression levels were represented via box plots and 
statistical significance of the differences was estimated through t-test. Survival signatures of reporter 
biomolecules were evaluated through Kaplan-Meier plots and a log –rank p-value <0.01 was 
considered as a cut-off to describe statistical significance in all survival analyses. 

2.7. Identification of Candidate Drugs through Drug Repositioning 

To identify novel therapeutics in NSCLC through drug repositioning the transcriptome guided 
drug repositioning tool and Drug Gene Interaction Database (dgidb) (Cotto et al., 2017) was used to 
designate the candidate drugs targeting the hub protein and reporter TFs. Total 213 drugs and 7 
proteins was found for non small cell lung cancer through dgidb. Drugs associated with each disease 
dataset were expected by employing the hypergeometric probability test. For exploring more 
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accurate drug candidates for specific disease, it is suggested to search based on the particular 
condition (Turanli et al., 2017). 

3. Results 

3.1. Genome Reprogramming in Non Small Cell Lung Cancer 

In this present study, statistical test LIMMA was used to identify DEGs from noise and outliers 
in the transcriptome dataset. The parametric method LIMMA was identified 379 DEGs with statistical 
significance of adjusted p<0.01. Among those, 168 genes were up regulated, whereas 211 genes were 
down regulated (Figure 2A). Through hierarchical clustering analysis based on the profiles of DEGs, 
it was shown that the tumor and normal sample were distinguished with 100% specificity and 92% 
sensitivity (Figure 2B). These DEGs were considered in further analysis. 
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Figure 2. (A & B): Heat map of differentially expressed genes and clustering analysis of DEGs. The 
above of the heat map presents clustering of samples and the left of the heat map presents clustering 
of the DEGs. Purple: high expression level and Green: low expression level. A. Showed the 
hierarchical clustering B. represent the clustering of samples/ patients. 

To clarify the molecular functions, biological processes, cellular components and KEGG 
pathways functional overrepresentation were carried out, which associated with proteins encoded 
by the DEGs. GO analysis was performed by DAVID results represent that both up regulated and 
down regulated DEGs are significantly enriched in biological processes (BP), where up regulated 
genes include regulation of small GTPase mediated signal transduction, regulation of Rho protein 
signal transduction, positive regulation of GTPase activity, small GTPase mediated signal 
transduction, positive regulation of GTPase activity, cell adhesion, regulation of heart rate by cardiac 
conduction (Table 1) and down regulated genes include negative regulation of endopeptidase 
activity, oxidation-reduction process, daunorubicin metabolic process, doxorubicin metabolic 
process, progesterone metabolic process (Table 1). In case of cellular component (CC), up regulated 
genes are involved in plasma membrane extracellular region, integral component of plasma 
membrane, intercalated disc, cell junction, myosin complex (Table 1) and down regulated genes are 
involved in integral component of plasma membrane, integral component of membrane, 
proteinaceous extracellular matrix (Table 1). In addition, up regulated genes were enriched in 
molecular function (MF) including guanyl-nucleotide exchange factor activity, Rho guanyl-
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nucleotide exchange factor activity, serine-type endopeptidase inhibitor activity, calmodulin binding, 
actin filament binding (Table 1) and down regulared enriched in serine-type endopeptidase inhibitor 
activity, oxidoreductase activity, ketosteroid monooxygenase activity, trans-1,2-dihydrobenzene-1,2-
diol dehydrogenase activity, phenanthrene 9,10-monooxygenase activity, chemorepellent activity, 
symporter activity, metallopeptidase activity (Table 1). 

The up regulated DEGs and down regulated DEGs both are significantly enriched which are 
analyzed in KEGG pathway analysis. The results are represented up regulation of pathways in ECM-
receptor interaction, focal adhesion and PI3K-Akt signaling pathway. On the other hand, down 
regulated DEGs were enriched in Phosphatidylinositol signaling system, Pathways in cancer, PI3K-
Akt signaling pathway and regulation of actin cytoskeleton pathways which were represent in non 
small cell lung cancer (Table 1). 

Table 1. Functional overrepresentation of differentially expressed genes in non small cell lung 
cancer. 

Gene Ontology Gene Ontology (GO) Pthways # of Genes P-values 

Up Regulated Genes   

Biological Processes 

Regulation of small GTPase mediated signal transduction 5 2.0E-2 

regulation of Rho protein signal transduction 4 2.5E-2 

positive regulation of GTPase activity 9 7.2E-2 

small GTPase mediated signal transduction 6 4.3E-2 

positive regulation of GTPase activity 9 7.2E-2 

regulation of heart rate by cardiac conduction 3 3.0E-2 

extracellular matrix organization 7 4.2E-3 

cell adhesion 11 
3.0E-3 

 

Cellular Component 

plasma membrane 45 3.6E-3 

extracellular region 19 4.5E-2 

integral component of plasma membrane 18 2.9E-2 

intercalated disc 4 4.3E-3 

cell junction 9 1.9E-2 

myosin complex 3 5.2E-2 

    

Molecular Function 

guanyl-nucleotide exchange factor activity 6 2.1E-3 

Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 

serine-type endopeptidase inhibitor activity 4 3.8E-2 

calmodulin binding 5 5.7E-2 

actin filament binding 4 8.1E-2 

motor activity 3 9.1E-2 

    

KEGG Pathways 

ECM-receptor interaction 3 1.6E-1 

Focal adhesion 4 2.3E-1 

PI3K-Akt signaling pathway 4 5.4E-1 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2019                   doi:10.20944/preprints201907.0051.v1

https://doi.org/10.20944/preprints201907.0051.v1


  

3.2. Proteomic Signatures in Non Small Cell Lung Cancer 

Central proteins, so called “hub proteins” have a significant role in signal transduction events 
during disease progression. To identify these hub proteins a PPI sub-network was constructed 
around proteins encoded by the DEGs via their physical interactions and topological analysis was 
formed. As a result, eight hub proteins were found (Table 2 and Figure 3) and those are Protein 
Tyrosine Phosphatase, Non-Receptor Type 20 (PTPN20), ST6 N-Acetylgalactosaminide Alpha-2,6-
Sialyltransferase 2 (ST6GALNAC2), Engulfment And Cell Motility 1 (ELMO1), Taxilin Gamma 
Pseudogene, Y-Linked (TXLNGY), Natriuretic Peptide Receptor 3 (NPR3), Complement Factor H 
(CFH), Contactin Associated Protein Like 3B (CNTNAP3B),Creatine Kinase U-type and mitochondria 
(CKMT1A).  

Down Regulated Genes   

Biological Process 

negative regulation of endopeptidase activity 8 3.3E-4 

oxidation-reduction process 15 4.7E-3 

cellular response to jasmonic acid stimulus 3 6.8E-4 

daunorubicin metabolic process 3 3.1E-3 

doxorubicin metabolic process 3 3.1E-3 

progesterone metabolic process 3 3.9E-3 

    

Cellular Component 

plasma membrane 63 4.3E-4 

integral component of plasma membrane 26 4.7E-3 

integral component of membrane 70 4.9E-3 

proteinaceous extracellular matrix 7 5.6E-2 

    

Molecular Function 

serine-type endopeptidase inhibitor activity 7 5.2E-4 

oxidoreductase activity 10 2.4E-4 

ketosteroid monooxygenase activity 3 3.2E-4 

trans-1,2-dihydrobenzene-1,2-diol dehydrogenase 

activity 
3 6.3E-4 

phenanthrene 9,10-monooxygenase activity 3 6.3E-4 

chemorepellent activity 3 3.2E-2 

symporter activity 4 1.6E-2 

metallopeptidase activity 4 5.2E-2 

   

KEGG Pathways 

Phosphatidylinositol signaling system 6 8.0E-3 

Pathways in cancer 9 1.3E-1 

PI3K-Akt signaling pathway 6 4.5E-1 

Regulation of actin cytoskeleton 4 5.1E-1 
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Figure 3. Hub proteins were obtained from protein-protein interaction networks of the DEGs in non 
small cell lung cancer. The nodes indicate the DEGs and the edges indicate the interactions between 
two genes. 

The transcriptional and post-transcriptional regulatory components (i.e., TFs and miRNAs) 
occurs significant changes at transcriptional level, which were also identified. The results have found 
six TFs and seven miRNAs as reporter transcriptional regulatory components (Table 2). 

Table 2. Statistically significant values of Hub proteins and Reporter biomolecules in non small cell 
lung cancer are given in table. . 

Symbol Description Feature 
Hazard ratio 

(TCGA) 

PTPN20 
Protein Tyrosine Phosphatase, Non-

Receptor Type 20 
Hub Protein NA 

ST6GALNAC2 
ST6 N-Acetylgalactosaminide Alpha-

2,6-Sialyltransferase 2 
Hub Protein 1.12 

ELMO1 Engulfment And Cell Motility 1 Hub Protein 1.59 

TXLNGY Taxilin Gamma Pseudogene, Y-Linked Hub Protein  

NPR3 Natriuretic Peptide Receptor 3 Hub Protein 1.03 

CFH Complement Factor H Hub Protein 1.05 

CNTNAP3B Contactin Associated Protein Like 3B Hub Protein NA 

CKMT1A Creatine Kinase, Mitochondrial 1A Hub Protein 1.21 

TP53 tumor protein p53 
Reporter Transcription 

Factor 
1.02 
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SP3 SP3 transcription factor 
Reporter Transcription 

Factor 
1.08 

JUN JUN proto-oncogene 
Reporter Transcription 

Factor 
1.08 

PPARG 
Peroxisome proliferator- activated 

receptor gamma 

Reporter Transcription 

Factor 
1.23 

TFAP2A Transcription factor AP-2 alpha 
Reporter Transcription 

Factor 
1.68 

TWIST1 
Twist basic helix-loop-helix 

transcription factor1 

Reporter Transcription 

Factor 
1.25 

miR-146a-5p MicoRNA-146a Receptor mirRNA NA 

miR-210-3p MIcroRNA-210 Receptor mirRNA NA 

miR-374a-5p MIcroRNA-374a Receptor mirRNA NA 

miR-548b-3p MIcroRNA-548b Receptor mirRNA NA 

miR-544a MIcroRNA-544a Receptor mirRNA NA 

miR-152-3p MIcroRNA-152 Receptor mirRNA NA 

miR-204-5p MIcroRNA-204 Receptor mirRNA NA 

All Hubs 

PTPN20, ST6GALNAC2, ELMO1, 

TXLNGY, NPR3, CFH, CNTNAP3B, 

CKMT1A 

All Hub Proteins 1.51 

All TFs 
TP53, SP3, JUN, PPARG, TFAP2A, 

TWIST1 

All receptor transcription 

factors 
1.65 

3.3. Cross-validation and Risk Discrimination Performance of Reporter Biomolecules 

The differential expression signatures was validated and the analysis of the risk discrimination 
performance of reporter biomolecules (i.e., 8 hub proteins, 6 TFs and 7miRNAs) were performed 
using independent RNA-seq and miRNA-seq dataset obtained from TCGA. According to the 
expression levels of the reporter biomolecules, the samples were divided into two groups and groups 
are entitled as low-risk and high-risk considering their risk discrimination performance. The 
differences in the gene expression levels (encoding hub proteins or reporter TFs) between the risk 
groups were presented via box-plots and prognostic capabilities based on survival data were 
analyzed Kaplan-Meier plots, log-rank test and hazard ratio (Figure 4 and Figure 5). Furthermore, 
the discrimination power of the all hub proteins and all reporter TFs were also analyzed and 
statistically significant performance in terms of survival probabilities in all datasets were found in 
both groups. 
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Figure 4. Cross validation and prognostic performance analyses of hub proteins.  Kaplan-Meier plots 
are representing the prognostic power of all hub proteins in NSCLC. Box-plots present differential 
expression of genes encoding hub proteins in two risk groups. 
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Figure 5. Cross validation and prognostic performance analyses of Transcriptional Factors. (A) 
Kaplan-Meier plots representing the prognostic power of all TFs in NSCLC. (B) Box-plots present 
differential expression of genes encoding TFs in two risk groups. 

3.4. Identification of Candidate Drugs through Drug Repositioning 

Considering hub proteins and transcription factors as potential drug targets and the 
transcriptomic signatures of genes within the disease-gene-drug triad we identified potential drug 
for each target protein by using the transcriptome guided drug repositioning tool and the Drug Gene 
Interaction Database (dgidb). As a result 213 drugs and 7 proteins were found (Figure 6).  
 

 

Figure 6. Identified potential drugs for molecular signature by using the transcriptome guided drug 
repositioning tool and dgidb. 

Among these identified drugs seven drugs is used for non small cell lung cancer which is 
approved by National Cancer Institute. Gemcitabine, Carboplatin, paclitaxel, Docetaxel, Crizotinib, 
Bevacizumab and Gemcitabine drugs are used for the treatment of NSCLC (Table 3).  
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Table 3. Selected repositioned drugs in non small cell lung cancer. 

Repositioning drug Drug Class/ Status/ Description 

Docetaxel Approved, Investigational. Docetaxel is a clinically well established anti-mitotic 

chemotherapy medication used mainly for the treatment of breast, ovarian, and 

non-small cell lung cancer. Docetaxel reversibly binds to tubulin with high 

affinity in a 1:1 stoichiometric ratio. 

Gemcitabine Approved, Gemcitabine is used in various carcinomas: non-small cell lung 

cancer, pancreatic cancer, bladder cancer and breast cancer. It is being 

investigated for use in oesophageal cancer, and is used experimentally in 

lymphomas and various other tumor types. 

Carboplatin Approved an organoplatinum compound that possesses antineoplastic activity. 

Paclitaxel An organoplatinum compound that possesses antineoplastic activity.  It is 

available as an intravenous solution for injection and the newer formulation 

contains albumin-bound paclitaxel marketed under the brand name Abraxane. 

Crizotinib Crizotinib an inhibitor of receptor tyrosine kinase for the treatment of non-small 

cell lung cancer (NSCLC). Verification of the presence of ALK fusion gene is 

done by Abbott Molecular's Vysis ALK Break Apart FISH Probe Kit. This 

verification is used to select for patients suitable for treatment. FDA approved 

in August 26, 2011. 

Bevacizumab  A recombinant humanized monoclonal IgG1 antibody that binds to and inhibits 

the biologic activity of human vascular endothelial growth factor (VEGF). 

Bevacizumab contains human framework regions and the complementarity-

determining regions of a murine antibody that binds to VEGF. 

Gemcitabine  Gemcitabine is used in various carcinomas: non-small cell lung cancer, 

pancreatic cancer, bladder cancer and breast cancer. It is being investigated for 

use in oesophageal cancer, and is used experimentally in lymphomas and 

various other tumor types. 

4. Discussion 

Although the prevalence and mortality of NSCLC are among the highest worldwide and the 
disease has been studied extensively, there is still a need for more accurate prognostic and diagnostic 
markers as well as for information about the underlying molecular events in the disease’s 
development. In the present study, we followed a multi-omics data integration framework to reveal 
molecular signatures at mRNA, miRNA and protein levels, which offers the promise as biomarkers 
and potential drug targets for efficacious treatments. In the gene expression study, we performed 
several analyses of NSCLC, including GO, clustering, new biomarker discovery, a comparison of 
survival based on histology and gene expression profiles, and analysis of patient survival. 

The analysis of gene expression profiles in lung cancer samples resulted with a total of 379 DEGs 
with statistically significant changes in their expression profiles. Overrepresentation analyses for 
DEGs indicated the prominence of ECM organization and associated cell communication/signaling 
pathways (such as focal adhesion, ECM-receptor interaction pathways, and PI3K-Akt signaling 
pathway); hence, emphasized the critical roles of tumor microenvironment in NSCLC. Recent studies 
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indicated the importance of tumor microenvironment as a decisive factor in tumorigenesis in various 
cancers (Dzobo et al., 2016, Gollapalli et al., 2017, Gov et al., 2017, Hu et al., 2017, Miskolczi et al., 
2018). GO analysis of statistically significant up regulated genes in NSCLC uncovered biological 
processes involved in cell adhesion and positive regulation of GTPase activity , whereas GO analysis 
of statistically significant down regulated genes in NSCLC uncovered genes involved in much more 
diverse processes, such as anatomical structure development, oxidation-reduction process and 
negative regulation of endopeptidase activity (Table 1). 

Therefore, in the last decades, the reconstruction of accurate PPI sub-networks gained 
importance with the emergence of systems medicine and systems pharmacology concepts, which aim 
to offer solutions to many emerging problems associated with diseases such as identifying efficacious 
biomarkers and therapeutic targets for accurate diagnosis, prognosis, and therapeutics (Sevimoglu 
and Arga, 2014, Turanli and Arga, 2017). We reconstructed a PPI sub-network around the DEGs in 
NSCLC, and analyzed the topology of the reconstructed network to identify central proteins, i.e. hub 
proteins, that have the potential to contribute to the initiation and/or progression of cancer 
development (Table 2).  

The regulation of gene expression is controlled by TFs and miRNAs at transcriptional and/or 
post-transcriptional levels; thus changes in these molecules may provide crucial information on 
dysregulation of gene expression in NSCLC. Therefore, reporter TFs and miRNAs have been 
identified (Table 2). 

The role of systems outlook gradually increases through improving existent approaches and 
developing novel concepts to provide possible solutions to the grand challenge in pharmacology, i.e., 
the development of efficacious treatment strategies for tackling the complexities of the diseases 
(Turanli and Arga, 2017). The development of novel and effective treatment strategies for complex 
pathophysiologies, such as cancers, requires an understanding of the generation and progression 
mechanisms. Besides, systems biology research generates new information that can help in 
understanding the mechanisms behind disease pathogenesis to identify new biomarkers and 
therapeutic targets and to enable drug discovery. By using molecular signatures 213 drugs and seven 
proteins was identified. Among these drugs seven drugs is used for NSCLC which is approved by 
national cancer institute (Table 3). Integration of transcriptome datasets with biological network 
models provides molecular signatures, which will be beneficial for understanding etiopathogenesis 
and biological mechanisms of the diseases, and for developing effective and safe medications. 

5. Conclusion 

In this present study, transcriptome data were integrated with genome-scale biological networks 
to reveal molecular signatures at RNA and protein levels. Analysis of the genome reprogramming in 
NSCLC emphasized the decisive role of tumor microenvironment in tumorigenesis. Eight protein, 
six TFs and seven miRNA came into prominence as potential drug targets. The differential expression 
profile of these reporter biomolecules were cross validated in independent RNA-seq and miRNA-seq 
datasets. Moreover, seven novel candidate drugs were identified for NSCLC which is approved by 
national cancer institute. 
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