Article

Identification of Biomarker Signatures and Candidate Drugs in Non-Small Cell Lung Cancer

Amina Rownaq ¹, Md. Parvez Mosharaf ², S. M. Shahinul Islam ¹ and Md. Nurul Haque Mollah ^{2,*}

- ¹ Institute of Biological Sciences, University of Rajshahi, Bangladesh.
- ² Bioinformatics Lab., Department of Statistics, University of Rajshahi, Bangladesh.
- * Correspondence: mollah.stat.bio@ru.ac.bd

Abstract: Lung cancer is one of the most important health risks worldwide for human. Non-small cell lung cancer (NSCLC) is the most common cause of premature death from malignant disease. This study provides in-depth insights from systems biology analyses to identify molecular to inform systemic drug targeting in NSCLC. Gene expression profiles from non small cell lung cancer were analyzed with genome-scale biomolecular networks (I.e., protein-protein interaction, transcriptional and post transcriptional regulatory networks). The aim of the study was to determine the pathways and expression profile of the genes to discover molecular signature at RNA and protein levels which could serve as potential drug targets for therapeutics innovation and the identification of novel targets. Eight proteins, six TFs and seven miRNAs came into prominence as potential drug targets. The differential expression profiles of these reporter biomolecules were cross-validated by independent RNA-Seq and miRNA-Seq. Risk discrimination performance of the reporter biomolecules NPR3, JUN, PPARG, TP53, CKMT1A, SP3 and TFAP2A were also evaluated. Total 213 drugs and 7 proteins were found for non small cell lung cancer through dgidb. Among these identified drugs seven drugs such as- Gemcitabine, Carboplatin, paclitaxel, Docetaxel, Crizotinib, Bevacizumab and Gemcitabine is used for NSCLC which is approved by National Cancer Institute. The molecular signatures and repurposed drugs presented here permit further attention for experimental studies which are offer significant potential as biomarkers and candidate therapeutics for precision medicine approaches to clinical management of NSCLC.

Keywords: lung cancer; molecular signature; molecular pathway; differentially expressed genes; protein-protein interaction; reporter biomolecules and bioinformatics

1. Introduction

Lung cancer is the second leading cause of cancer death worldwide among the human cancer. In Bangladesh, Lung cancers deaths reached 9,660 or 1.33% of total deaths according to the latest WHO data published in May, 2014. International Agency for Research on Cancer calculated cancer-related death rates in Bangladesh was 7.5% in 2005 and it will be 13% in 2030. Smoking, alcohol and high air pollutions are the main risk factor of lung cancer (Alberg et al., 2013). Non-small cell lung cancer (NSCLC) account for approximately 75% of all of lung cancers, which is the most common type of bronchial tumor in the world (Jemal et al., 2007). Conventional diagnosis of lung cancer is currently based on tumor histology. The main histological types of NSCLC include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Despite the well-defined histological types of NSCLC, patient survival and treatment outcomes can differ substantially, even among NSCLCs of the same histological type and stage. Both sub-types adenocarcinoma and squamous cell carcinoma are very different in regard to copy number, DNA methylation, genetic mutations, transcriptome, proteome and biomarkers. Defining different lung cancer entities based on clinical, pathological and molecular alterations also determines disease evolution and treatment options. In spite of significant progress in the development of targeted-therapy, the high mortality rate in lung cancer firmly

emphasizes the need for prevention and efficient detection of lung cancer, as well as a better classification, enabling patients to benefit from more specific therapy. Microarrays have been Lung cancer morphology exhibits a broad spectrum and many tumors are atypical or lack the morphologic features necessary for improved differential diagnoses. Lung cancer diagnoses based solely on morphological features are in many cases insufficient (D'Amico, 2008).

In recent years, there has been an expanding interest in the molecular genetic classification of cancers. Gene expression profiling is one of the methods used for this purpose. The data obtained from gene expression analyses may allow the differentiation of cancer subgroups based on molecular phenotypes. Subgroups determined by gene expression in combination with clinical features like spread reflect the cancer's biology and progression better than histology alone (Golub, 2001). The aim to reduce the high morbidity rate in lung cancer is related to growing efficiency of early detection and prevention of cancer risk factor strategies of lung cancer while still in a curable stage. Depend on the site of the primary tumor, these patient are treated with surgery and/ or radiotherapy. Despite advances in early detection and standard treatment, NSCLC is often diagnosed at an advanced stage and carries a poor prognosis. Greater knowledge of the molecular origins and progression of lung cancer may lead to improvements in the treatment and prevention of the disease. Gene expression profiling offers a more functional molecular understanding of lung cancer that may grant insights into its pathophysiology and yield relevant information for staging, prognosis and therapeutic decision-making.

Microarrays have been used for more than two decades in pre-clinical research to determine gene-expression profiling associated with different pathological sub-groups or diverse clinical evolution and to evaluate biological and cellular functions determined by these gene panels. Improved outcomes for NSCLC are therefore clearly needed. There are a number of different strategies currently under evaluation. However, a better understanding of the molecular mechanisms that determine clinical outcomes is likely to provide the basis for more effective therapeutic intervention. Questions have been raised regarding the reproducibility of microarray result and there are examples of gene expression signature that even though validated in independent patient cohorts, show relative little overlap of genes. It has also been stated that differential gene expression on transcript level matches protein abundance to only about 40% (Tian et al., 2004).

In the present study, system biomedicine framework was used to identify molecular biomarker signature and inform systemic drug targeting in non small cell lung cancer (Figure 1). For this purpose, gene expression profiles from lung cancer were subjected to integrative analyses with genome-scale biomolecular networks to reveal molecular signature at mRNA, miRNA and protein levels, which serve as potential drug targets for therapeutics innovation. The differential expression profiles and the risk discrimination performance of the reporter biomolecules were cross-validated in independent transcriptome datasets.

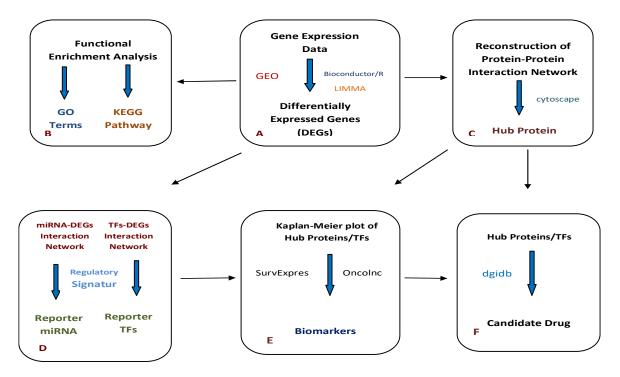


Figure 1. The methodology of multi-stage analysis which is employed in the present study. (A) Gene expression data were obtained from the Gene Expression Omnibus (GEO) database. The dataset was statistically analyzed to identify differentially expressed genes (DEGs). (B) Functional enrichment of DEGs was performed to identify significantly enriched Gene Ontology (GO) terms and Pathways. (C) Protein-protein interaction network was reconstructed around DEGs and the topological analyses were performed via cytoscape to identify hub proteins. (D) To identify reporter micro-RNA (miRNA) and transcription factors (TFs), DEGs were integrated with miRNA-target gene and TF-target interactions and the statistically significant miRNAs and TFs were considered as the reporter transcriptional regulatory elements. (E) The survival analysis of the hub biomolecules was done through The Cancer Genome Atlus (TCGA) NSCLC datasets via SurvExpress and Oncolnc. (F) The candidate drug molecules were identified by Drug Gene Interaction Database (dgidb).

2. Materials and Methods

2.1. Gene Expression Profiling in Non Small Cell Lung Cancer

For non small cell lung cancer, the transcriptome data (GSE54712) was obtained from the previous study (Lopez et al., 2014) through the publicly available Gene Expression Omnibus (NCBIGEO) dataset (Barrett et al., 2013). mRNA profiling was hybridized to in-situ oligonucleotide microarrays (Agilent-014850 Whole Human Genome Microarray 4x44K).

2.2. Differentially Expressed Gene

The gene expression dataset was normalized by the Robust Multi-Array Average (RMA) expression measure for identifying DEGs. There are several statistical approaches for identifying DEGs from the normalized dataset, however, most of them shows week performance in presence of outliers as well as in the case of small sample. The robust version of statistical Linear Models for Microarray Data (LIMMA) works well in both cases. Therefore we implemented the robust version of "LIMMA" package under the Bioconductor platform to detect the DEGs. To control the false discovery rate in multiple-testing the p-values were adjusted by Benjamini Hochberg's method and by using adjusted p-value >0.01 criterion was cutoff to designate statistical significance. The hierarchical clustering analysis was applied to categorize patients and gene into groups using

Heatmap3 package. All analyses packages were implemented in R (version 3.2.3), analysis were performed through the Bioconductor platform (Gentleman et al., 2004).

2.3. Gene Function Enrichment

To find out molecular function, biological process and molecular pathway annotations of the identified DEGs through Database for Annotation, Visualization and Integrated Discovery (DAVID) (version v6.8) bioinformatics resources by using gene overrepresentation analyses. Whole set of genome annotation for human genome was used as the background reference set. Analyses were carried out by using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database as the annotation sources. DAVID bioinformatics resources were used to find out molecular pathway annotations of the identified DEGs (Huang et al., 2009). P-values were determined by using Fisher Exact test and Benjamini-Hochberg's correction was used the multiple testing correction technique. Results with adjusted-p <0.01 were considered as statistically significant.

2.4. Analysis and Reconstruction of Protein-Protein Interaction Sub-network

The previously reconstructed protein-protein interaction (PPI) network of *Homo sapiens* (Karagoz et al., 2016), which consist of 288,033 physical interactions between 21,052 proteins, was recruited in the present study to construct a PPI subnetwork around the protein encoded by the identified DEGs. The subnetwork was shown as an undirected graph, where nodes represent the proteins and the edges represent the interactions between the proteins. The sub-network was visualized and analyzed via cytoscape (v3.6.1).

To determine highly connected proteins (i.e., hub proteins) a topological analysis was applied through Cyto-Hubba plugin (Chin et al., 2009) and the dual-metric approach considering degree and between's centrality metrics simultaneously were employed (Calimlioglu et al., 2015).

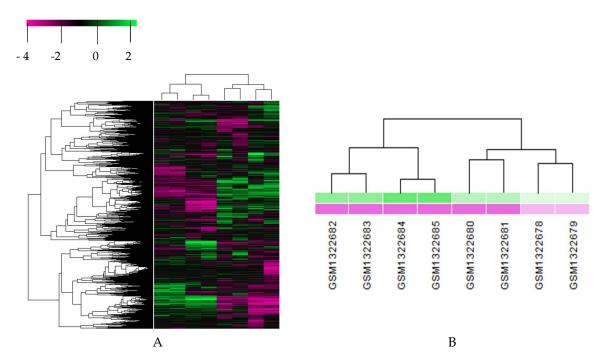
2.5. Determination of Reporter Transcription Factors and miRNAs

Transcriptional regulatory biomolecules (i.e.,TFs)was obtained through human transcriptional regulation interaction data bases TRRUST v2 (www.grnpedia.org/trrust) which significant changes has occurred at transcriptional level. To identify significant changes of miRNAs which occur at transcriptional level, the experimentally verified miRNA-target gene interactions was involved in this study which were obtained through human transcriptional regulation interaction (Bovolenta et al., 2012) and miRTarbase (Release 6.0) (Chou et al., 2016) as well as previous study (Gov et al., 2017). To obtained z-score and corresponding p-values of the regulatory molecules, the reporter features algorithms (Patil and Nielsen, 2005) was used and implemented as described previously (Kori et al., 2016). P-values were corrected via Benjamini-Hochberg's methods and statistically significant (adjusted p <0.01) results were considered as reporter regulatory elements.

2.6. Cross-validation and Evaluation of Performance of Reporter Biomolecules

According to their prognostic index and survival multivariate the patients were divided into low and high-risk group and risk assessments were performed through oncolnc (Anaya, 2016). The differences between the risk groups in gene expression levels were represented via box plots and statistical significance of the differences was estimated through t-test. Survival signatures of reporter biomolecules were evaluated through Kaplan-Meier plots and a log –rank p-value <0.01 was considered as a cut-off to describe statistical significance in all survival analyses.

2.7. Identification of Candidate Drugs through Drug Repositioning


To identify novel therapeutics in NSCLC through drug repositioning the transcriptome guided drug repositioning tool and Drug Gene Interaction Database (dgidb) (Cotto et al., 2017) was used to designate the candidate drugs targeting the hub protein and reporter TFs. Total 213 drugs and 7 proteins was found for non small cell lung cancer through dgidb. Drugs associated with each disease dataset were expected by employing the hypergeometric probability test. For exploring more

accurate drug candidates for specific disease, it is suggested to search based on the particular condition (Turanli et al., 2017).

3. Results

3.1. Genome Reprogramming in Non Small Cell Lung Cancer

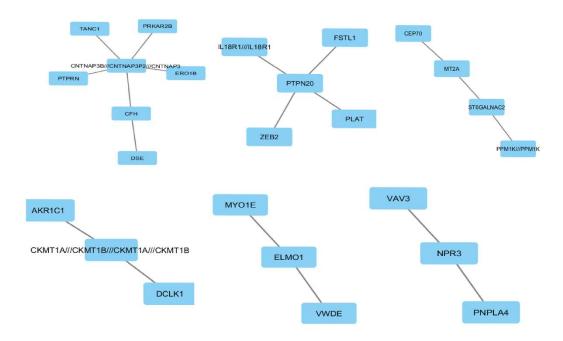
In this present study, statistical test LIMMA was used to identify DEGs from noise and outliers in the transcriptome dataset. The parametric method LIMMA was identified 379 DEGs with statistical significance of adjusted p<0.01. Among those, 168 genes were up regulated, whereas 211 genes were down regulated (Figure 2A). Through hierarchical clustering analysis based on the profiles of DEGs, it was shown that the tumor and normal sample were distinguished with 100% specificity and 92% sensitivity (Figure 2B). These DEGs were considered in further analysis.

Figure 2. (A & B): Heat map of differentially expressed genes and clustering analysis of DEGs. The above of the heat map presents clustering of samples and the left of the heat map presents clustering of the DEGs. Purple: high expression level and Green: low expression level. A. Showed the hierarchical clustering B. represent the clustering of samples/ patients.

To clarify the molecular functions, biological processes, cellular components and KEGG pathways functional overrepresentation were carried out, which associated with proteins encoded by the DEGs. GO analysis was performed by DAVID results represent that both up regulated and down regulated DEGs are significantly enriched in biological processes (BP), where up regulated genes include regulation of small GTPase mediated signal transduction, regulation of Rho protein signal transduction, positive regulation of GTPase activity, small GTPase mediated signal transduction, positive regulation of GTPase activity, cell adhesion, regulation of heart rate by cardiac conduction (Table 1) and down regulated genes include negative regulation of endopeptidase activity, oxidation-reduction process, daunorubicin metabolic process, doxorubicin metabolic process, progesterone metabolic process (Table 1). In case of cellular component (CC), up regulated genes are involved in plasma membrane extracellular region, integral component of plasma membrane, intercalated disc, cell junction, myosin complex (Table 1) and down regulated genes are involved in integral component of plasma membrane, integral component of membrane, proteinaceous extracellular matrix (Table 1). In addition, up regulated genes were enriched in molecular function (MF) including guanyl-nucleotide exchange factor activity, Rho guanyl-nucleotide

nucleotide exchange factor activity, serine-type endopeptidase inhibitor activity, calmodulin binding, actin filament binding (Table 1) and down regulared enriched in serine-type endopeptidase inhibitor activity, oxidoreductase activity, ketosteroid monooxygenase activity, trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activity, phenanthrene 9,10-monooxygenase activity, chemorepellent activity, symporter activity, metallopeptidase activity (Table 1).

The up regulated DEGs and down regulated DEGs both are significantly enriched which are analyzed in KEGG pathway analysis. The results are represented up regulation of pathways in ECM-receptor interaction, focal adhesion and PI3K-Akt signaling pathway. On the other hand, down regulated DEGs were enriched in Phosphatidylinositol signaling system, Pathways in cancer, PI3K-Akt signaling pathway and regulation of actin cytoskeleton pathways which were represent in non small cell lung cancer (Table 1).


Table 1. Functional overrepresentation of differentially expressed genes in non small cell lung cancer.

Gene Ontology Gene Ontology (GO) Pthways # of Genes P-values	Cancer.			
Regulation of small GTPase mediated signal transduction 5 2.0E-2 regulation of Rho protein signal transduction 4 2.5E-2 positive regulation of GTPase activity 9 7.2E-2 small GTPase mediated signal transduction 6 4.3E-2 positive regulation of GTPase activity 9 7.2E-2 regulation of heart rate by cardiac conduction 3 3.0E-2 extracellular matrix organization 7 4.2E-3 cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 Molecular Function 29 1.9E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1	Gene Ontology	Gene Ontology Gene Ontology (GO) Pthways		
regulation of Rho protein signal transduction positive regulation of GTPase activity 9 7.2E-2 small GTPase mediated signal transduction 6 4.3E-2 positive regulation of GTPase activity 9 7.2E-2 regulation of heart rate by cardiac conduction 3 3.0E-2 extracellular matrix organization 7 4.2E-3 cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 Molecular Function guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 7 4.2E-3 actin filament binding 7 4.2E-3 motor activity 9 7.2E-2 actin filament binding 10 4.2E-3 10 2.1E-3 10 2.1E-3 10 2.1E-3 10 2.1E-3 10 3.8E-2 11 2.1E-2 11 3.8E-2 12 3.8E-2 13 3.8E-2 14 3.8E-2 15 3.8E-2 16 3.8E-2 17 3.8E-2 18 3.8		Up Regulated Genes		
Positive regulation of GTPase activity 9 7.2E-2 small GTPase mediated signal transduction 6 4.3E-2 small GTPase mediated signal transduction 6 4.3E-2 positive regulation of GTPase activity 9 7.2E-2 regulation of heart rate by cardiac conduction 3 3.0E-2 extracellular matrix organization 7 4.2E-3 cell adhesion 11 3.0E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 myosin complex 3 5.2E-2 myosin complex 3 5.2E-2 myosin complex 4 3.8E-2 extracellular Function 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 3.8E-2 extine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 for the first of the f		Regulation of small GTPase mediated signal transduction	5	2.0E-2
small GTPase mediated signal transduction 6 4.3E-2 positive regulation of GTPase activity 9 7.2E-2 regulation of heart rate by cardiac conduction 3 3.0E-2 extracellular matrix organization 7 4.2E-3 cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 myosin complex 3 5.2E-2 Molecular Function guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		regulation of Rho protein signal transduction	4	2.5E-2
Positive regulation of GTPase activity 9 7.2E-2 regulation of heart rate by cardiac conduction 3 3.0E-2 extracellular matrix organization 7 4.2E-3 and 2.2E-3 cell adhesion 11 cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 myosin complex 3 5.2E-2 serine-type endopeptidase inhibitor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 feld feld for activity 3 9.1E-2 feld feld feld feld feld feld feld feld		positive regulation of GTPase activity	9	7.2E-2
regulation of heart rate by cardiac conduction 3 3.0E-2 extracellular matrix organization 7 4.2E-3 cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 ell junction 9 1.9E-2 myosin complex 3 5.2E-2 myosin complex 3 5.2E-2 eserine-type endopeptidase inhibitor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		small GTPase mediated signal transduction	6	4.3E-2
extracellular matrix organization 7 4.2E-3 3.0E-3 cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 intercalated disc 4 4.3E-3 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1	Biological Processes	positive regulation of GTPase activity	9	7.2E-2
cell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		regulation of heart rate by cardiac conduction	3	3.0E-2
reell adhesion 11 plasma membrane 45 3.6E-3 extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 18 2.9E-2 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		extracellular matrix organization	7	4.2E-3
extracellular region 19 4.5E-2 integral component of plasma membrane 18 2.9E-2 integral component of plasma membrane 4 4.3E-3 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 myosin complex 4 2.1E-3 Rho guanyl-nucleotide exchange factor activity 6 2.1E-3 serine-type endopeptidase inhibitor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 actin filament binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 for activity 3 9.1E-2 for activity 4 2.3E-1 for activity 3 9.1E-2 for activity 3 9.1E-2 for activity 4 2.3E-1 for activity 3 9.1E-2 for activity 4 2.3E-1 for activity 3 9.1E-2 for activity 3 9.1E-2 for activity 4 2.3E-1 for activity 5 6 2.1E-3 for activity 6 6 2.1E-3 for activity 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7		cell adhesion	11	3.0E-3
Cellular Component integral component of plasma membrane intercalated disc 4 4.3E-3 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		plasma membrane	45	3.6E-3
intercalated disc 4 4.3E-3 cell junction 9 1.9E-2 myosin complex 3 5.2E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		extracellular region	19	4.5E-2
myosin complex Guanyl-nucleotide exchange factor activity Rho guanyl-nucleotide exchange factor activity Serine-type endopeptidase inhibitor activity Calmodulin binding Calmodulin binding Calmotor activity ECM-receptor interaction Focal adhesion A 4.3E-3 4.3E-3 4.3E-3 4.3E-3 4.3E-3 4.3E-3 4.3E-3 4.3E-3 5.7E-2 4.3E-3 4.3E-3 4.3E-3 5.7E-2 4.3E-3 4.3E-3 4.3E-3 5.7E-2 4.3E-3 4.3E-		integral component of plasma membrane	18	2.9E-2
myosin complex 3 5.2E-2 guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1	Cellular Component	intercalated disc	4	4.3E-3
Rho guanyl-nucleotide exchange factor activity 6 2.1E-3 Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 5 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		cell junction	9	1.9E-2
Rho guanyl-nucleotide exchange factor activity 4 2.1E-2 serine-type endopeptidase inhibitor activity 4 3.8E-2 Calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		myosin complex	3	5.2E-2
serine-type endopeptidase inhibitor activity 4 3.8E-2 Calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		guanyl-nucleotide exchange factor activity	6	2.1E-3
Molecular Functioncalmodulin binding55.7E-2actin filament binding48.1E-2motor activity39.1E-2ECM-receptor interaction31.6E-1KEGG PathwaysFocal adhesion42.3E-1		Rho guanyl-nucleotide exchange factor activity	4	2.1E-2
calmodulin binding 5 5.7E-2 actin filament binding 4 8.1E-2 motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		serine-type endopeptidase inhibitor activity	4	3.8E-2
motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1	Molecular Function	calmodulin binding	5	5.7E-2
motor activity 3 9.1E-2 ECM-receptor interaction 3 1.6E-1 KEGG Pathways Focal adhesion 4 2.3E-1		actin filament binding	4	8.1E-2
KEGG Pathways Focal adhesion 4 2.3E-1			3	9.1E-2
KEGG Pathways Focal adhesion 4 2.3E-1		FCM-receptor interaction	3	1 6F-1
·	KEGG Pathways	•		
		PI3K-Akt signaling pathway	4	5.4E-1

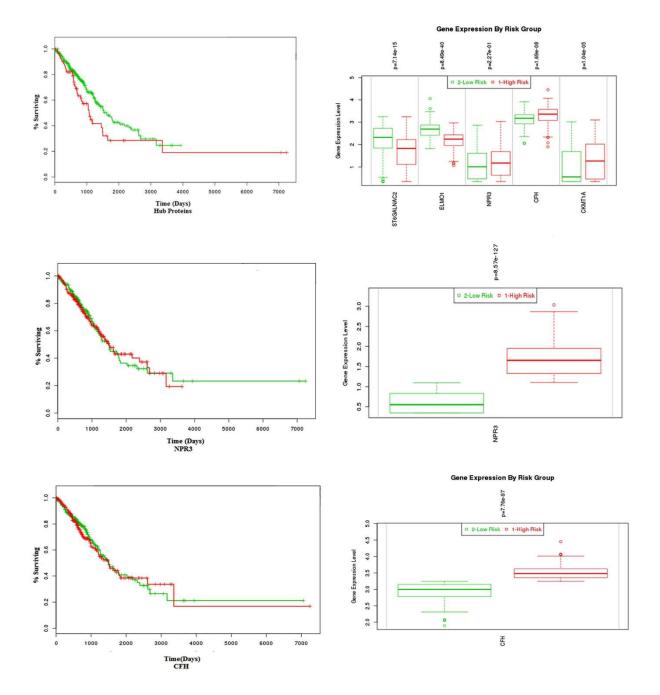
	Down Regulated Genes		
	negative regulation of endopeptidase activity	8	3.3E-4
	oxidation-reduction process	15	4.7E-3
Piological Deces	cellular response to jasmonic acid stimulus	3	6.8E-4
Biological Process	daunorubicin metabolic process	3	3.1E-3
	doxorubicin metabolic process	3	3.1E-3
	progesterone metabolic process	3	3.9E-3
	plasma membrane	63	4.3E-4
	integral component of plasma membrane	26	4.7E-3
Cellular Component	integral component of membrane	70	4.9E-3
	proteinaceous extracellular matrix	7	5.6E-2
	serine-type endopeptidase inhibitor activity	7	5.2E-4
	oxidoreductase activity	10	2.4E-4
	ketosteroid monooxygenase activity	3	3.2E-4
	trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activity	3	6.3E-4
Molecular Function	phenanthrene 9,10-monooxygenase activity	3	6.3E-4
	chemorepellent activity	3	3.2E-2
	symporter activity	4	1.6E-2
	metallopeptidase activity	4	5.2E-2
	Phosphatidylinositol signaling system	6	8.0E-3
	Pathways in cancer	9	1.3E-1
KEGG Pathways	PI3K-Akt signaling pathway	6	4.5E-1
	Regulation of actin cytoskeleton	4	5.1E-1

3.2. Proteomic Signatures in Non Small Cell Lung Cancer

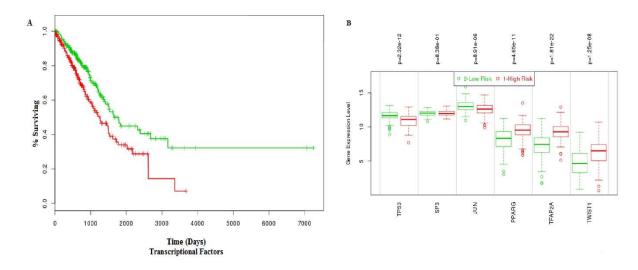
Central proteins, so called "hub proteins" have a significant role in signal transduction events during disease progression. To identify these hub proteins a PPI sub-network was constructed around proteins encoded by the DEGs via their physical interactions and topological analysis was formed. As a result, eight hub proteins were found (Table 2 and Figure 3) and those are Protein Tyrosine Phosphatase, Non-Receptor Type 20 (PTPN20), ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 2 (ST6GALNAC2), Engulfment And Cell Motility 1 (ELMO1), Taxilin Gamma Pseudogene, Y-Linked (TXLNGY), Natriuretic Peptide Receptor 3 (NPR3), Complement Factor H (CFH), Contactin Associated Protein Like 3B (CNTNAP3B), Creatine Kinase U-type and mitochondria (CKMT1A).

Figure 3. Hub proteins were obtained from protein-protein interaction networks of the DEGs in non small cell lung cancer. The nodes indicate the DEGs and the edges indicate the interactions between two genes.

The transcriptional and post-transcriptional regulatory components (i.e., TFs and miRNAs) occurs significant changes at transcriptional level, which were also identified. The results have found six TFs and seven miRNAs as reporter transcriptional regulatory components (Table 2).


Table 2. Statistically significant values of Hub proteins and Reporter biomolecules in non small cell lung cancer are given in table. .

Symbol	Description	Feature	Hazard ratio (TCGA)
PTPN20	Protein Tyrosine Phosphatase, Non- Receptor Type 20	Hub Protein	NA
ST6GALNAC2	ST6 N-Acetylgalactosaminide Alpha- 2,6-Sialyltransferase 2	Hub Protein	1.12
ELMO1	Engulfment And Cell Motility 1	Hub Protein	1.59
TXLNGY	Taxilin Gamma Pseudogene, Y-Linked	Hub Protein	
NPR3	Natriuretic Peptide Receptor 3	Hub Protein	1.03
CFH	Complement Factor H	Hub Protein	1.05
CNTNAP3B	Contactin Associated Protein Like 3B	Hub Protein	NA
CKMT1A	Creatine Kinase, Mitochondrial 1A	Hub Protein	1.21
TP53	tumor protein p53	Reporter Transcription Factor	1.02


SP3	SP3 transcription factor	Reporter Transcription Factor	1.08
JUN	JUN proto-oncogene	Reporter Transcription Factor	1.08
PPARG	Peroxisome proliferator- activated receptor gamma	Reporter Transcription Factor	1.23
TFAP2A	Transcription factor AP-2 alpha	Reporter Transcription Factor	1.68
TWIST1	Twist basic helix-loop-helix transcription factor1	Reporter Transcription Factor	1.25
miR-146a-5p	MicoRNA-146a	Receptor mirRNA	NA
miR-210-3p	MIcroRNA-210	Receptor mirRNA	NA
miR-374a-5p	MIcroRNA-374a	Receptor mirRNA	NA
miR-548b-3p	MIcroRNA-548b	Receptor mirRNA	NA
miR-544a	MIcroRNA-544a	Receptor mirRNA	NA
miR-152-3p	MIcroRNA-152	Receptor mirRNA	NA
miR-204-5p	MIcroRNA-204	Receptor mirRNA	NA
All Hubs	PTPN20, ST6GALNAC2, ELMO1, TXLNGY, NPR3, CFH, CNTNAP3B, CKMT1A	All Hub Proteins	1.51
All TFs	TP53, SP3, JUN, PPARG, TFAP2A, TWIST1	All receptor transcription factors	1.65

3.3. Cross-validation and Risk Discrimination Performance of Reporter Biomolecules

The differential expression signatures was validated and the analysis of the risk discrimination performance of reporter biomolecules (i.e., 8 hub proteins, 6 TFs and 7miRNAs) were performed using independent RNA-seq and miRNA-seq dataset obtained from TCGA. According to the expression levels of the reporter biomolecules, the samples were divided into two groups and groups are entitled as low-risk and high-risk considering their risk discrimination performance. The differences in the gene expression levels (encoding hub proteins or reporter TFs) between the risk groups were presented via box-plots and prognostic capabilities based on survival data were analyzed Kaplan-Meier plots, log-rank test and hazard ratio (Figure 4 and Figure 5). Furthermore, the discrimination power of the all hub proteins and all reporter TFs were also analyzed and statistically significant performance in terms of survival probabilities in all datasets were found in both groups.

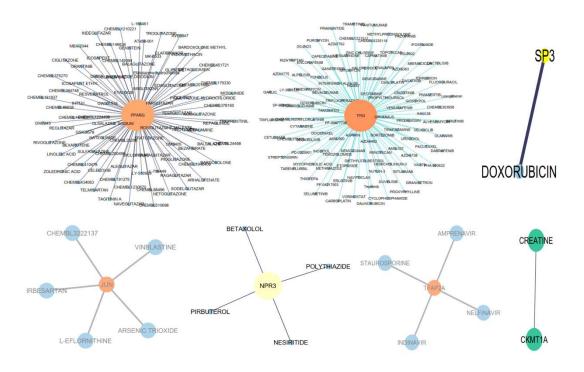

Figure 4. Cross validation and prognostic performance analyses of hub proteins. Kaplan-Meier plots are representing the prognostic power of all hub proteins in NSCLC. Box-plots present differential expression of genes encoding hub proteins in two risk groups.

Figure 5. Cross validation and prognostic performance analyses of Transcriptional Factors. (A) Kaplan-Meier plots representing the prognostic power of all TFs in NSCLC. (B) Box-plots present differential expression of genes encoding TFs in two risk groups.

3.4. Identification of Candidate Drugs through Drug Repositioning

Considering hub proteins and transcription factors as potential drug targets and the transcriptomic signatures of genes within the disease-gene-drug triad we identified potential drug for each target protein by using the transcriptome guided drug repositioning tool and the Drug Gene Interaction Database (dgidb). As a result 213 drugs and 7 proteins were found (Figure 6).

Figure 6. Identified potential drugs for molecular signature by using the transcriptome guided drug repositioning tool and dgidb.

Among these identified drugs seven drugs is used for non small cell lung cancer which is approved by National Cancer Institute. Gemcitabine, Carboplatin, paclitaxel, Docetaxel, Crizotinib, Bevacizumab and Gemcitabine drugs are used for the treatment of NSCLC (Table 3).

Table 3. Selected repositioned drugs in non small cell lung cancer.

Repositioning drug	Drug Class/ Status/ Description	
Docetaxel	Approved, Investigational. Docetaxel is a clinically well established anti-mitotic	
	chemotherapy medication used mainly for the treatment of breast, ovarian, and	
	non-small cell lung cancer. Docetaxel reversibly binds to tubulin with high	
	affinity in a 1:1 stoichiometric ratio.	
Gemcitabine	Approved, Gemcitabine is used in various carcinomas: non-small cell lung	
	cancer, pancreatic cancer, bladder cancer and breast cancer. It is being	
	investigated for use in oesophageal cancer, and is used experimentally in	
	lymphomas and various other tumor types.	
Carboplatin	$\label{proved} Approved\ an\ organ op latinum\ compound\ that\ possesses\ antine op lastic\ activity.$	
Paclitaxel	An organoplatinum compound that possesses antineoplastic activity. It is	
	available as an intravenous solution for injection and the newer formulation	
	contains albumin-bound paclitaxel marketed under the brand name Abraxane.	
Crizotinib	Crizotinib an inhibitor of receptor tyrosine kinase for the treatment of non-small	
	cell lung cancer (NSCLC). Verification of the presence of ALK fusion gene is	
	done by Abbott Molecular's Vysis ALK Break Apart FISH Probe Kit. This	
	verification is used to select for patients suitable for treatment. FDA approved	
	in August 26, 2011.	
Bevacizumab	A recombinant humanized monoclonal IgG1 antibody that binds to and inhibits	
	the biologic activity of human vascular endothelial growth factor (VEGF).	
	Bevacizumab contains human framework regions and the complementarity-	
	determining regions of a murine antibody that binds to VEGF.	
Gemcitabine	Gemcitabine is used in various carcinomas: non-small cell lung cancer,	
	pancreatic cancer, bladder cancer and breast cancer. It is being investigated for	
	use in oesophageal cancer, and is used experimentally in lymphomas and	
	various other tumor types.	

4. Discussion

Although the prevalence and mortality of NSCLC are among the highest worldwide and the disease has been studied extensively, there is still a need for more accurate prognostic and diagnostic markers as well as for information about the underlying molecular events in the disease's development. In the present study, we followed a multi-omics data integration framework to reveal molecular signatures at mRNA, miRNA and protein levels, which offers the promise as biomarkers and potential drug targets for efficacious treatments. In the gene expression study, we performed several analyses of NSCLC, including GO, clustering, new biomarker discovery, a comparison of survival based on histology and gene expression profiles, and analysis of patient survival.

The analysis of gene expression profiles in lung cancer samples resulted with a total of 379 DEGs with statistically significant changes in their expression profiles. Overrepresentation analyses for DEGs indicated the prominence of ECM organization and associated cell communication/signaling pathways (such as focal adhesion, ECM-receptor interaction pathways, and PI3K-Akt signaling pathway); hence, emphasized the critical roles of tumor microenvironment in NSCLC. Recent studies

indicated the importance of tumor microenvironment as a decisive factor in tumorigenesis in various cancers (Dzobo et al., 2016, Gollapalli et al., 2017, Gov et al., 2017, Hu et al., 2017, Miskolczi et al., 2018). GO analysis of statistically significant up regulated genes in NSCLC uncovered biological processes involved in cell adhesion and positive regulation of GTPase activity, whereas GO analysis of statistically significant down regulated genes in NSCLC uncovered genes involved in much more diverse processes, such as anatomical structure development, oxidation-reduction process and negative regulation of endopeptidase activity (Table 1).

Therefore, in the last decades, the reconstruction of accurate PPI sub-networks gained importance with the emergence of systems medicine and systems pharmacology concepts, which aim to offer solutions to many emerging problems associated with diseases such as identifying efficacious biomarkers and therapeutic targets for accurate diagnosis, prognosis, and therapeutics (Sevimoglu and Arga, 2014, Turanli and Arga, 2017). We reconstructed a PPI sub-network around the DEGs in NSCLC, and analyzed the topology of the reconstructed network to identify central proteins, i.e. hub proteins, that have the potential to contribute to the initiation and/or progression of cancer development (Table 2).

The regulation of gene expression is controlled by TFs and miRNAs at transcriptional and/or post-transcriptional levels; thus changes in these molecules may provide crucial information on dysregulation of gene expression in NSCLC. Therefore, reporter TFs and miRNAs have been identified (Table 2).

The role of systems outlook gradually increases through improving existent approaches and developing novel concepts to provide possible solutions to the grand challenge in pharmacology, i.e., the development of efficacious treatment strategies for tackling the complexities of the diseases (Turanli and Arga, 2017). The development of novel and effective treatment strategies for complex pathophysiologies, such as cancers, requires an understanding of the generation and progression mechanisms. Besides, systems biology research generates new information that can help in understanding the mechanisms behind disease pathogenesis to identify new biomarkers and therapeutic targets and to enable drug discovery. By using molecular signatures 213 drugs and seven proteins was identified. Among these drugs seven drugs is used for NSCLC which is approved by national cancer institute (Table 3). Integration of transcriptome datasets with biological network models provides molecular signatures, which will be beneficial for understanding etiopathogenesis and biological mechanisms of the diseases, and for developing effective and safe medications.

5. Conclusion

In this present study, transcriptome data were integrated with genome-scale biological networks to reveal molecular signatures at RNA and protein levels. Analysis of the genome reprogramming in NSCLC emphasized the decisive role of tumor microenvironment in tumorigenesis. Eight protein, six TFs and seven miRNA came into prominence as potential drug targets. The differential expression profile of these reporter biomolecules were cross validated in independent RNA-seq and miRNA-seq datasets. Moreover, seven novel candidate drugs were identified for NSCLC which is approved by national cancer institute.

Author Contributions: conceptualization: A.R. and M.N.H.M.; methodology: A.R. and M.N.H.M.; software: A.R. and P.M.; validation M.N.H.M. and S.M.S.I.; formal analysis: A.R..; investigation M.N.H.M.; resources M.N.H.M.; data curation A.R..; writing—original draft preparation: A.R.; writing—review and editing: A.R., P. M. and M.N.H.M.; supervision: S.M.S.I. and M.N.H.M.

Conflict of Interest: The authors declare that they have no conflict of interest.

Acknowledgement: We are grateful to Institute of Biological Sciences and Lab of Bioinformatics, University of Rajshahi, Rajshahi, Bangladesh for providing research facility. Also thanks to Ministry of Science and Technology (MOST) for providing scholarship of this study.

Reference

- Alberg AJ, Brock MV, Ford JG, Samet JM and Spivack SD (2013). Epidemiology of lung cancer: Diagnosis and management of lung cancer. Third Edition: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143: e15, e295.
- Anaya J (2016). OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science 2:e67.
- Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall 1 KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Alexandra Soboleva A (2013). NCBI GEO: Archive for functional genomics data sets Update. Nucleic Acids Res 41: 991-995.
- Bovolenta LA, Acencio ML, and Lemke N (2012). HTRIdb: An open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics 13: 405.
- Calimlioglu B, Karagoz K, Sevimoglu T, Kilic E, Gov E and Arga KY (2015). Tissue-Specific Molecular Biomarker Signatures of Type 2 Diabetes: An Integrative Analysis of Transcriptomics and Protein-Protein Interaction Data. OMICS 19: 563-573.
- Chin C, Chen S and Wu H (2009). Cyto-Hubba: A Cytoscape Plug-in for Hub Object Analysis in Network Biology. Genome Inform 5: 2-3.
- Chou CH, Chang NW, Shrestha S, Hsu SD, Lim YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD (2016). miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44: D239-D247.
- Cotto KC, Wagner AH, Feng Y, Kiwala S, Coffman AC, Spies G, Wollam A, Spies NC, Griffith OL, Griffith M., Nov, 2017. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Research 17.
- D'Amico TA (2008). Molecular biologic staging of lung cancer. Ann Thorac Surg 8 5: S737-S742.
- Dzobo K, Senthebane DA, Rowe A, Thomford NE, Mwapagha LM, Al-Awwad N, Dandara C, Parker MI (2016). Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf. OMICS 20(12): 681-691.
- Gentleman RC, Carey VJ and Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacas S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith G, Tierney L, Yang JY, Zhang J (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
- Gollapalli K, Ghantasala S, Atak A, Rapole S, Moiyadi A, Epari S, Srivastava S (2017) Tissue Proteome Analysis of Different Grades of Human Gliomas Provides Major Cues for Glioma Pathogenesis. OMICS 21(5): 275-284.
- Golub TR (2001). Genome-wide views of cancer. N Engl J Med 344: 601-602.
- Gov E, Kori M, and Arga KY (2017). Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer. OMICS 21: 603-615.
- Hu M, Qian C, Hu Z, Fei B and Zhou H (2017). Biomarkers in Tumor Microenvironment? Upregulation of Fibroblast Activation Protein- α Correlates with Gastric Cancer Progression and Poor Prognosis. OMICS 21(1): 38-44.
- Huang Z, Cheng Y, Chiu PM, Cheung FM, Nicholls JM, Kwong DL, Lee AW, Zabarovsky ER, Stanbridge EJ, Lung HL, Lung ML (2012). Tumor suppressor Alpha B-crystallin (CRYAB) associates with the cadherin/catenin adherens junction and impairs NPC progression-associated properties. Oncogene 31: 3709–3720.
- Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007). Cancer statistics, CA Cancer J Clin 57: 43-66.
- Karagoz K, Sevimoglu T and Arga KY (2016). Integration of multiple biological features yields high confidence human protein interactome. J Theor Biol 403: 85-96.
- Kori M, Gov E and Arga KY (2016). Molecular signatures of ovarian diseases: Insights from network medicine perspective. Syst Biol Reprod Med 62: 266–282.

- <u>Lopez-Ayllon BD</u>, <u>Moncho-Amor V</u>, <u>Abarrategi A</u>, <u>Ibañez-de-Cáceres I</u>, <u>Castro-Carpeño J</u>, <u>Belda-Iniesta C</u>, <u>Perona R</u> and <u>Sastre L</u> (2014). Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations. Cancer Med Oct; 3(5): 1099-111.
- Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J, Wellbrock C (2018) Collagen abundance controls phenotypes through lineage-specific microenvironment sensing. Oncogene. doi: 10.1038/s41388018-0209-0.
- Patil KR, and Nielsen J (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topol- ogy. Proc Natl Acad Sci U S A 102: 2685-2689.
- Sevimoglu T, Arga KY (2014). The role of protein interaction networks in systems biomedicine. Comp Struct Biotech J 11: 22-27.
- Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA and Hood LE (2004). Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3(10): 960-969.
- Turanli B and Arga KY (2017). Systems biomedicine acts as a driver for the evolution of pharmacology. Ann Pharmacol Pharm, 2: 1087.